blob: 44e674ed28716a57508747f165c4e44b1d553dec [file] [log] [blame]
Matt Flemingbd353862009-08-14 01:58:43 +09001/*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
14 */
15
16/* #define DEBUG */
17#include <linux/kernel.h>
18#include <linux/io.h>
19#include <linux/list.h>
20#include <linux/mm.h>
21#include <asm/dwarf.h>
22#include <asm/unwinder.h>
23#include <asm/sections.h>
Paul Mundt34974472009-08-14 02:10:59 +090024#include <asm/unaligned.h>
Matt Flemingbd353862009-08-14 01:58:43 +090025#include <asm/dwarf.h>
26#include <asm/stacktrace.h>
27
28static LIST_HEAD(dwarf_cie_list);
29DEFINE_SPINLOCK(dwarf_cie_lock);
30
31static LIST_HEAD(dwarf_fde_list);
32DEFINE_SPINLOCK(dwarf_fde_lock);
33
34static struct dwarf_cie *cached_cie;
35
36/*
37 * Figure out whether we need to allocate some dwarf registers. If dwarf
38 * registers have already been allocated then we may need to realloc
39 * them. "reg" is a register number that we need to be able to access
40 * after this call.
41 *
42 * Register numbers start at zero, therefore we need to allocate space
43 * for "reg" + 1 registers.
44 */
45static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
46 unsigned int reg)
47{
48 struct dwarf_reg *regs;
49 unsigned int num_regs = reg + 1;
50 size_t new_size;
51 size_t old_size;
52
53 new_size = num_regs * sizeof(*regs);
54 old_size = frame->num_regs * sizeof(*regs);
55
56 /* Fast path: don't allocate any regs if we've already got enough. */
57 if (frame->num_regs >= num_regs)
58 return;
59
Paul Mundt0fc11e32009-08-14 23:58:37 +090060 regs = kzalloc(new_size, GFP_ATOMIC);
Matt Flemingbd353862009-08-14 01:58:43 +090061 if (!regs) {
62 printk(KERN_WARNING "Unable to allocate DWARF registers\n");
63 /*
64 * Let's just bomb hard here, we have no way to
65 * gracefully recover.
66 */
67 BUG();
68 }
69
70 if (frame->regs) {
71 memcpy(regs, frame->regs, old_size);
72 kfree(frame->regs);
73 }
74
75 frame->regs = regs;
76 frame->num_regs = num_regs;
77}
78
79/**
80 * dwarf_read_addr - read dwarf data
81 * @src: source address of data
82 * @dst: destination address to store the data to
83 *
84 * Read 'n' bytes from @src, where 'n' is the size of an address on
85 * the native machine. We return the number of bytes read, which
86 * should always be 'n'. We also have to be careful when reading
87 * from @src and writing to @dst, because they can be arbitrarily
88 * aligned. Return 'n' - the number of bytes read.
89 */
Paul Mundt34974472009-08-14 02:10:59 +090090static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
Matt Flemingbd353862009-08-14 01:58:43 +090091{
Paul Mundtbf43a162009-08-14 03:06:13 +090092 u32 val = get_unaligned(src);
93 put_unaligned(val, dst);
Matt Flemingbd353862009-08-14 01:58:43 +090094 return sizeof(unsigned long *);
95}
96
97/**
98 * dwarf_read_uleb128 - read unsigned LEB128 data
99 * @addr: the address where the ULEB128 data is stored
100 * @ret: address to store the result
101 *
102 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
103 * from Appendix C of the DWARF 3 spec. For information on the
104 * encodings refer to section "7.6 - Variable Length Data". Return
105 * the number of bytes read.
106 */
107static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
108{
109 unsigned int result;
110 unsigned char byte;
111 int shift, count;
112
113 result = 0;
114 shift = 0;
115 count = 0;
116
117 while (1) {
118 byte = __raw_readb(addr);
119 addr++;
120 count++;
121
122 result |= (byte & 0x7f) << shift;
123 shift += 7;
124
125 if (!(byte & 0x80))
126 break;
127 }
128
129 *ret = result;
130
131 return count;
132}
133
134/**
135 * dwarf_read_leb128 - read signed LEB128 data
136 * @addr: the address of the LEB128 encoded data
137 * @ret: address to store the result
138 *
139 * Decode signed LEB128 data. The algorithm is taken from Appendix
140 * C of the DWARF 3 spec. Return the number of bytes read.
141 */
142static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
143{
144 unsigned char byte;
145 int result, shift;
146 int num_bits;
147 int count;
148
149 result = 0;
150 shift = 0;
151 count = 0;
152
153 while (1) {
154 byte = __raw_readb(addr);
155 addr++;
156 result |= (byte & 0x7f) << shift;
157 shift += 7;
158 count++;
159
160 if (!(byte & 0x80))
161 break;
162 }
163
164 /* The number of bits in a signed integer. */
165 num_bits = 8 * sizeof(result);
166
167 if ((shift < num_bits) && (byte & 0x40))
168 result |= (-1 << shift);
169
170 *ret = result;
171
172 return count;
173}
174
175/**
176 * dwarf_read_encoded_value - return the decoded value at @addr
177 * @addr: the address of the encoded value
178 * @val: where to write the decoded value
179 * @encoding: the encoding with which we can decode @addr
180 *
181 * GCC emits encoded address in the .eh_frame FDE entries. Decode
182 * the value at @addr using @encoding. The decoded value is written
183 * to @val and the number of bytes read is returned.
184 */
185static int dwarf_read_encoded_value(char *addr, unsigned long *val,
186 char encoding)
187{
188 unsigned long decoded_addr = 0;
189 int count = 0;
190
191 switch (encoding & 0x70) {
192 case DW_EH_PE_absptr:
193 break;
194 case DW_EH_PE_pcrel:
195 decoded_addr = (unsigned long)addr;
196 break;
197 default:
198 pr_debug("encoding=0x%x\n", (encoding & 0x70));
199 BUG();
200 }
201
202 if ((encoding & 0x07) == 0x00)
203 encoding |= DW_EH_PE_udata4;
204
205 switch (encoding & 0x0f) {
206 case DW_EH_PE_sdata4:
207 case DW_EH_PE_udata4:
208 count += 4;
Paul Mundt34974472009-08-14 02:10:59 +0900209 decoded_addr += get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900210 __raw_writel(decoded_addr, val);
211 break;
212 default:
213 pr_debug("encoding=0x%x\n", encoding);
214 BUG();
215 }
216
217 return count;
218}
219
220/**
221 * dwarf_entry_len - return the length of an FDE or CIE
222 * @addr: the address of the entry
223 * @len: the length of the entry
224 *
225 * Read the initial_length field of the entry and store the size of
226 * the entry in @len. We return the number of bytes read. Return a
227 * count of 0 on error.
228 */
229static inline int dwarf_entry_len(char *addr, unsigned long *len)
230{
231 u32 initial_len;
232 int count;
233
Paul Mundt34974472009-08-14 02:10:59 +0900234 initial_len = get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900235 count = 4;
236
237 /*
238 * An initial length field value in the range DW_LEN_EXT_LO -
239 * DW_LEN_EXT_HI indicates an extension, and should not be
240 * interpreted as a length. The only extension that we currently
241 * understand is the use of DWARF64 addresses.
242 */
243 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
244 /*
245 * The 64-bit length field immediately follows the
246 * compulsory 32-bit length field.
247 */
248 if (initial_len == DW_EXT_DWARF64) {
Paul Mundt34974472009-08-14 02:10:59 +0900249 *len = get_unaligned((u64 *)addr + 4);
Matt Flemingbd353862009-08-14 01:58:43 +0900250 count = 12;
251 } else {
252 printk(KERN_WARNING "Unknown DWARF extension\n");
253 count = 0;
254 }
255 } else
256 *len = initial_len;
257
258 return count;
259}
260
261/**
262 * dwarf_lookup_cie - locate the cie
263 * @cie_ptr: pointer to help with lookup
264 */
265static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
266{
267 struct dwarf_cie *cie, *n;
268 unsigned long flags;
269
270 spin_lock_irqsave(&dwarf_cie_lock, flags);
271
272 /*
273 * We've cached the last CIE we looked up because chances are
274 * that the FDE wants this CIE.
275 */
276 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
277 cie = cached_cie;
278 goto out;
279 }
280
281 list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
282 if (cie->cie_pointer == cie_ptr) {
283 cached_cie = cie;
284 break;
285 }
286 }
287
288 /* Couldn't find the entry in the list. */
289 if (&cie->link == &dwarf_cie_list)
290 cie = NULL;
291out:
292 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
293 return cie;
294}
295
296/**
297 * dwarf_lookup_fde - locate the FDE that covers pc
298 * @pc: the program counter
299 */
300struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
301{
302 unsigned long flags;
303 struct dwarf_fde *fde, *n;
304
305 spin_lock_irqsave(&dwarf_fde_lock, flags);
306 list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
307 unsigned long start, end;
308
309 start = fde->initial_location;
310 end = fde->initial_location + fde->address_range;
311
312 if (pc >= start && pc < end)
313 break;
314 }
315
316 /* Couldn't find the entry in the list. */
317 if (&fde->link == &dwarf_fde_list)
318 fde = NULL;
319
320 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
321
322 return fde;
323}
324
325/**
326 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
327 * @insn_start: address of the first instruction
328 * @insn_end: address of the last instruction
329 * @cie: the CIE for this function
330 * @fde: the FDE for this function
331 * @frame: the instructions calculate the CFA for this frame
332 * @pc: the program counter of the address we're interested in
333 *
334 * Execute the Call Frame instruction sequence starting at
335 * @insn_start and ending at @insn_end. The instructions describe
336 * how to calculate the Canonical Frame Address of a stackframe.
337 * Store the results in @frame.
338 */
339static int dwarf_cfa_execute_insns(unsigned char *insn_start,
340 unsigned char *insn_end,
341 struct dwarf_cie *cie,
342 struct dwarf_fde *fde,
343 struct dwarf_frame *frame,
Matt Flemingb9558732009-08-15 23:10:57 +0100344 unsigned long pc)
Matt Flemingbd353862009-08-14 01:58:43 +0900345{
346 unsigned char insn;
347 unsigned char *current_insn;
348 unsigned int count, delta, reg, expr_len, offset;
349
350 current_insn = insn_start;
351
Matt Flemingb9558732009-08-15 23:10:57 +0100352 while (current_insn < insn_end && frame->pc <= pc) {
Matt Flemingbd353862009-08-14 01:58:43 +0900353 insn = __raw_readb(current_insn++);
354
355 /*
356 * Firstly, handle the opcodes that embed their operands
357 * in the instructions.
358 */
359 switch (DW_CFA_opcode(insn)) {
360 case DW_CFA_advance_loc:
361 delta = DW_CFA_operand(insn);
362 delta *= cie->code_alignment_factor;
363 frame->pc += delta;
364 continue;
365 /* NOTREACHED */
366 case DW_CFA_offset:
367 reg = DW_CFA_operand(insn);
368 count = dwarf_read_uleb128(current_insn, &offset);
369 current_insn += count;
370 offset *= cie->data_alignment_factor;
371 dwarf_frame_alloc_regs(frame, reg);
372 frame->regs[reg].addr = offset;
373 frame->regs[reg].flags |= DWARF_REG_OFFSET;
374 continue;
375 /* NOTREACHED */
376 case DW_CFA_restore:
377 reg = DW_CFA_operand(insn);
378 continue;
379 /* NOTREACHED */
380 }
381
382 /*
383 * Secondly, handle the opcodes that don't embed their
384 * operands in the instruction.
385 */
386 switch (insn) {
387 case DW_CFA_nop:
388 continue;
389 case DW_CFA_advance_loc1:
390 delta = *current_insn++;
391 frame->pc += delta * cie->code_alignment_factor;
392 break;
393 case DW_CFA_advance_loc2:
Paul Mundt34974472009-08-14 02:10:59 +0900394 delta = get_unaligned((u16 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900395 current_insn += 2;
396 frame->pc += delta * cie->code_alignment_factor;
397 break;
398 case DW_CFA_advance_loc4:
Paul Mundt34974472009-08-14 02:10:59 +0900399 delta = get_unaligned((u32 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900400 current_insn += 4;
401 frame->pc += delta * cie->code_alignment_factor;
402 break;
403 case DW_CFA_offset_extended:
404 count = dwarf_read_uleb128(current_insn, &reg);
405 current_insn += count;
406 count = dwarf_read_uleb128(current_insn, &offset);
407 current_insn += count;
408 offset *= cie->data_alignment_factor;
409 break;
410 case DW_CFA_restore_extended:
411 count = dwarf_read_uleb128(current_insn, &reg);
412 current_insn += count;
413 break;
414 case DW_CFA_undefined:
415 count = dwarf_read_uleb128(current_insn, &reg);
416 current_insn += count;
417 break;
418 case DW_CFA_def_cfa:
419 count = dwarf_read_uleb128(current_insn,
420 &frame->cfa_register);
421 current_insn += count;
422 count = dwarf_read_uleb128(current_insn,
423 &frame->cfa_offset);
424 current_insn += count;
425
426 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
427 break;
428 case DW_CFA_def_cfa_register:
429 count = dwarf_read_uleb128(current_insn,
430 &frame->cfa_register);
431 current_insn += count;
Matt Fleming180aa6e2009-08-15 00:04:00 +0100432 frame->cfa_offset = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900433 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
434 break;
435 case DW_CFA_def_cfa_offset:
436 count = dwarf_read_uleb128(current_insn, &offset);
437 current_insn += count;
438 frame->cfa_offset = offset;
439 break;
440 case DW_CFA_def_cfa_expression:
441 count = dwarf_read_uleb128(current_insn, &expr_len);
442 current_insn += count;
443
444 frame->cfa_expr = current_insn;
445 frame->cfa_expr_len = expr_len;
446 current_insn += expr_len;
447
448 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
449 break;
450 case DW_CFA_offset_extended_sf:
451 count = dwarf_read_uleb128(current_insn, &reg);
452 current_insn += count;
453 count = dwarf_read_leb128(current_insn, &offset);
454 current_insn += count;
455 offset *= cie->data_alignment_factor;
456 dwarf_frame_alloc_regs(frame, reg);
457 frame->regs[reg].flags |= DWARF_REG_OFFSET;
458 frame->regs[reg].addr = offset;
459 break;
460 case DW_CFA_val_offset:
461 count = dwarf_read_uleb128(current_insn, &reg);
462 current_insn += count;
463 count = dwarf_read_leb128(current_insn, &offset);
464 offset *= cie->data_alignment_factor;
465 frame->regs[reg].flags |= DWARF_REG_OFFSET;
466 frame->regs[reg].addr = offset;
467 break;
468 default:
469 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
470 break;
471 }
472 }
473
474 return 0;
475}
476
477/**
478 * dwarf_unwind_stack - recursively unwind the stack
479 * @pc: address of the function to unwind
480 * @prev: struct dwarf_frame of the previous stackframe on the callstack
481 *
482 * Return a struct dwarf_frame representing the most recent frame
483 * on the callstack. Each of the lower (older) stack frames are
484 * linked via the "prev" member.
485 */
486struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
487 struct dwarf_frame *prev)
488{
489 struct dwarf_frame *frame;
490 struct dwarf_cie *cie;
491 struct dwarf_fde *fde;
492 unsigned long addr;
493 int i, offset;
494
495 /*
496 * If this is the first invocation of this recursive function we
497 * need get the contents of a physical register to get the CFA
498 * in order to begin the virtual unwinding of the stack.
499 *
Matt Flemingf8264662009-08-13 20:41:31 +0100500 * NOTE: the return address is guaranteed to be setup by the
501 * time this function makes its first function call.
Matt Flemingbd353862009-08-14 01:58:43 +0900502 */
Matt Flemingb9558732009-08-15 23:10:57 +0100503 if (!pc && !prev)
504 pc = (unsigned long)current_text_addr();
Matt Flemingbd353862009-08-14 01:58:43 +0900505
Paul Mundt0fc11e32009-08-14 23:58:37 +0900506 frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
Matt Flemingbd353862009-08-14 01:58:43 +0900507 if (!frame)
508 return NULL;
509
510 frame->prev = prev;
511
512 fde = dwarf_lookup_fde(pc);
513 if (!fde) {
514 /*
515 * This is our normal exit path - the one that stops the
516 * recursion. There's two reasons why we might exit
517 * here,
518 *
519 * a) pc has no asscociated DWARF frame info and so
520 * we don't know how to unwind this frame. This is
521 * usually the case when we're trying to unwind a
522 * frame that was called from some assembly code
523 * that has no DWARF info, e.g. syscalls.
524 *
525 * b) the DEBUG info for pc is bogus. There's
526 * really no way to distinguish this case from the
527 * case above, which sucks because we could print a
528 * warning here.
529 */
530 return NULL;
531 }
532
533 cie = dwarf_lookup_cie(fde->cie_pointer);
534
535 frame->pc = fde->initial_location;
536
537 /* CIE initial instructions */
538 dwarf_cfa_execute_insns(cie->initial_instructions,
Matt Flemingf8264662009-08-13 20:41:31 +0100539 cie->instructions_end, cie, fde,
Matt Flemingb9558732009-08-15 23:10:57 +0100540 frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900541
542 /* FDE instructions */
543 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
Matt Flemingb9558732009-08-15 23:10:57 +0100544 fde, frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900545
546 /* Calculate the CFA */
547 switch (frame->flags) {
548 case DWARF_FRAME_CFA_REG_OFFSET:
549 if (prev) {
550 BUG_ON(!prev->regs[frame->cfa_register].flags);
551
552 addr = prev->cfa;
553 addr += prev->regs[frame->cfa_register].addr;
554 frame->cfa = __raw_readl(addr);
555
556 } else {
557 /*
558 * Again, this is the first invocation of this
559 * recurisve function. We need to physically
560 * read the contents of a register in order to
561 * get the Canonical Frame Address for this
562 * function.
563 */
564 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
565 }
566
567 frame->cfa += frame->cfa_offset;
568 break;
569 default:
570 BUG();
571 }
572
573 /* If we haven't seen the return address reg, we're screwed. */
574 BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
575
576 for (i = 0; i <= frame->num_regs; i++) {
577 struct dwarf_reg *reg = &frame->regs[i];
578
579 if (!reg->flags)
580 continue;
581
582 offset = reg->addr;
583 offset += frame->cfa;
584 }
585
586 addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
587 frame->return_addr = __raw_readl(addr);
588
589 frame->next = dwarf_unwind_stack(frame->return_addr, frame);
590 return frame;
591}
592
593static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
594 unsigned char *end)
595{
596 struct dwarf_cie *cie;
597 unsigned long flags;
598 int count;
599
600 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
601 if (!cie)
602 return -ENOMEM;
603
604 cie->length = len;
605
606 /*
607 * Record the offset into the .eh_frame section
608 * for this CIE. It allows this CIE to be
609 * quickly and easily looked up from the
610 * corresponding FDE.
611 */
612 cie->cie_pointer = (unsigned long)entry;
613
614 cie->version = *(char *)p++;
615 BUG_ON(cie->version != 1);
616
617 cie->augmentation = p;
618 p += strlen(cie->augmentation) + 1;
619
620 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
621 p += count;
622
623 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
624 p += count;
625
626 /*
627 * Which column in the rule table contains the
628 * return address?
629 */
630 if (cie->version == 1) {
631 cie->return_address_reg = __raw_readb(p);
632 p++;
633 } else {
634 count = dwarf_read_uleb128(p, &cie->return_address_reg);
635 p += count;
636 }
637
638 if (cie->augmentation[0] == 'z') {
639 unsigned int length, count;
640 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
641
642 count = dwarf_read_uleb128(p, &length);
643 p += count;
644
645 BUG_ON((unsigned char *)p > end);
646
647 cie->initial_instructions = p + length;
648 cie->augmentation++;
649 }
650
651 while (*cie->augmentation) {
652 /*
653 * "L" indicates a byte showing how the
654 * LSDA pointer is encoded. Skip it.
655 */
656 if (*cie->augmentation == 'L') {
657 p++;
658 cie->augmentation++;
659 } else if (*cie->augmentation == 'R') {
660 /*
661 * "R" indicates a byte showing
662 * how FDE addresses are
663 * encoded.
664 */
665 cie->encoding = *(char *)p++;
666 cie->augmentation++;
667 } else if (*cie->augmentation == 'P') {
668 /*
669 * "R" indicates a personality
670 * routine in the CIE
671 * augmentation.
672 */
673 BUG();
674 } else if (*cie->augmentation == 'S') {
675 BUG();
676 } else {
677 /*
678 * Unknown augmentation. Assume
679 * 'z' augmentation.
680 */
681 p = cie->initial_instructions;
682 BUG_ON(!p);
683 break;
684 }
685 }
686
687 cie->initial_instructions = p;
688 cie->instructions_end = end;
689
690 /* Add to list */
691 spin_lock_irqsave(&dwarf_cie_lock, flags);
692 list_add_tail(&cie->link, &dwarf_cie_list);
693 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
694
695 return 0;
696}
697
698static int dwarf_parse_fde(void *entry, u32 entry_type,
699 void *start, unsigned long len)
700{
701 struct dwarf_fde *fde;
702 struct dwarf_cie *cie;
703 unsigned long flags;
704 int count;
705 void *p = start;
706
707 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
708 if (!fde)
709 return -ENOMEM;
710
711 fde->length = len;
712
713 /*
714 * In a .eh_frame section the CIE pointer is the
715 * delta between the address within the FDE
716 */
717 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
718
719 cie = dwarf_lookup_cie(fde->cie_pointer);
720 fde->cie = cie;
721
722 if (cie->encoding)
723 count = dwarf_read_encoded_value(p, &fde->initial_location,
724 cie->encoding);
725 else
726 count = dwarf_read_addr(p, &fde->initial_location);
727
728 p += count;
729
730 if (cie->encoding)
731 count = dwarf_read_encoded_value(p, &fde->address_range,
732 cie->encoding & 0x0f);
733 else
734 count = dwarf_read_addr(p, &fde->address_range);
735
736 p += count;
737
738 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
739 unsigned int length;
740 count = dwarf_read_uleb128(p, &length);
741 p += count + length;
742 }
743
744 /* Call frame instructions. */
745 fde->instructions = p;
746 fde->end = start + len;
747
748 /* Add to list. */
749 spin_lock_irqsave(&dwarf_fde_lock, flags);
750 list_add_tail(&fde->link, &dwarf_fde_list);
751 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
752
753 return 0;
754}
755
756static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
757 unsigned long *sp,
758 const struct stacktrace_ops *ops, void *data)
759{
760 struct dwarf_frame *frame;
761
762 frame = dwarf_unwind_stack(0, NULL);
763
764 while (frame && frame->return_addr) {
765 ops->address(data, frame->return_addr, 1);
766 frame = frame->next;
767 }
768}
769
770static struct unwinder dwarf_unwinder = {
771 .name = "dwarf-unwinder",
772 .dump = dwarf_unwinder_dump,
773 .rating = 150,
774};
775
776static void dwarf_unwinder_cleanup(void)
777{
778 struct dwarf_cie *cie, *m;
779 struct dwarf_fde *fde, *n;
780 unsigned long flags;
781
782 /*
783 * Deallocate all the memory allocated for the DWARF unwinder.
784 * Traverse all the FDE/CIE lists and remove and free all the
785 * memory associated with those data structures.
786 */
787 spin_lock_irqsave(&dwarf_cie_lock, flags);
788 list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
789 kfree(cie);
790 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
791
792 spin_lock_irqsave(&dwarf_fde_lock, flags);
793 list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
794 kfree(fde);
795 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
796}
797
798/**
799 * dwarf_unwinder_init - initialise the dwarf unwinder
800 *
801 * Build the data structures describing the .dwarf_frame section to
802 * make it easier to lookup CIE and FDE entries. Because the
803 * .eh_frame section is packed as tightly as possible it is not
804 * easy to lookup the FDE for a given PC, so we build a list of FDE
805 * and CIE entries that make it easier.
806 */
807void dwarf_unwinder_init(void)
808{
809 u32 entry_type;
810 void *p, *entry;
811 int count, err;
812 unsigned long len;
813 unsigned int c_entries, f_entries;
814 unsigned char *end;
815 INIT_LIST_HEAD(&dwarf_cie_list);
816 INIT_LIST_HEAD(&dwarf_fde_list);
817
818 c_entries = 0;
819 f_entries = 0;
820 entry = &__start_eh_frame;
821
822 while ((char *)entry < __stop_eh_frame) {
823 p = entry;
824
825 count = dwarf_entry_len(p, &len);
826 if (count == 0) {
827 /*
828 * We read a bogus length field value. There is
829 * nothing we can do here apart from disabling
830 * the DWARF unwinder. We can't even skip this
831 * entry and move to the next one because 'len'
832 * tells us where our next entry is.
833 */
834 goto out;
835 } else
836 p += count;
837
838 /* initial length does not include itself */
839 end = p + len;
840
Paul Mundt34974472009-08-14 02:10:59 +0900841 entry_type = get_unaligned((u32 *)p);
Matt Flemingbd353862009-08-14 01:58:43 +0900842 p += 4;
843
844 if (entry_type == DW_EH_FRAME_CIE) {
845 err = dwarf_parse_cie(entry, p, len, end);
846 if (err < 0)
847 goto out;
848 else
849 c_entries++;
850 } else {
851 err = dwarf_parse_fde(entry, entry_type, p, len);
852 if (err < 0)
853 goto out;
854 else
855 f_entries++;
856 }
857
858 entry = (char *)entry + len + 4;
859 }
860
861 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
862 c_entries, f_entries);
863
864 err = unwinder_register(&dwarf_unwinder);
865 if (err)
866 goto out;
867
868 return;
869
870out:
871 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
872 dwarf_unwinder_cleanup();
873}