blob: 3423f33769b7c52571bf57fb75a00427e3d3cd41 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include <linux/netdevice.h>
32#include <linux/ethtool.h>
33#include <linux/pci.h>
34#include <linux/delay.h>
35
36#include "e1000.h"
37
38struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
42};
43
44#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96};
97
98#define E1000_GLOBAL_STATS_LEN \
99 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102 "Register test (offline)", "Eeprom test (offline)",
103 "Interrupt test (offline)", "Loopback test (offline)",
104 "Link test (on/offline)"
105};
106#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
107
108static int e1000_get_settings(struct net_device *netdev,
109 struct ethtool_cmd *ecmd)
110{
111 struct e1000_adapter *adapter = netdev_priv(netdev);
112 struct e1000_hw *hw = &adapter->hw;
113
114 if (hw->media_type == e1000_media_type_copper) {
115
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
126
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
131 }
132
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
136
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
148 }
149
150 if (er32(STATUS) & E1000_STATUS_LU) {
151
152 adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
153 &adapter->link_duplex);
154 ecmd->speed = adapter->link_speed;
155
156 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
157 * and HALF_DUPLEX != DUPLEX_HALF */
158
159 if (adapter->link_duplex == FULL_DUPLEX)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
166 }
167
168 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
171}
172
173static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
174{
175 struct e1000_mac_info *mac = &adapter->hw.mac;
176
177 mac->autoneg = 0;
178
179 /* Fiber NICs only allow 1000 gbps Full duplex */
180 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
181 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
182 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
183 "configuration\n");
184 return -EINVAL;
185 }
186
187 switch (spddplx) {
188 case SPEED_10 + DUPLEX_HALF:
189 mac->forced_speed_duplex = ADVERTISE_10_HALF;
190 break;
191 case SPEED_10 + DUPLEX_FULL:
192 mac->forced_speed_duplex = ADVERTISE_10_FULL;
193 break;
194 case SPEED_100 + DUPLEX_HALF:
195 mac->forced_speed_duplex = ADVERTISE_100_HALF;
196 break;
197 case SPEED_100 + DUPLEX_FULL:
198 mac->forced_speed_duplex = ADVERTISE_100_FULL;
199 break;
200 case SPEED_1000 + DUPLEX_FULL:
201 mac->autoneg = 1;
202 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
203 break;
204 case SPEED_1000 + DUPLEX_HALF: /* not supported */
205 default:
206 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
207 "configuration\n");
208 return -EINVAL;
209 }
210 return 0;
211}
212
213static int e1000_set_settings(struct net_device *netdev,
214 struct ethtool_cmd *ecmd)
215{
216 struct e1000_adapter *adapter = netdev_priv(netdev);
217 struct e1000_hw *hw = &adapter->hw;
218
219 /* When SoL/IDER sessions are active, autoneg/speed/duplex
220 * cannot be changed */
221 if (e1000_check_reset_block(hw)) {
222 ndev_err(netdev, "Cannot change link "
223 "characteristics when SoL/IDER is active.\n");
224 return -EINVAL;
225 }
226
227 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
228 msleep(1);
229
230 if (ecmd->autoneg == AUTONEG_ENABLE) {
231 hw->mac.autoneg = 1;
232 if (hw->media_type == e1000_media_type_fiber)
233 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
234 ADVERTISED_FIBRE |
235 ADVERTISED_Autoneg;
236 else
237 hw->phy.autoneg_advertised = ecmd->advertising |
238 ADVERTISED_TP |
239 ADVERTISED_Autoneg;
240 ecmd->advertising = hw->phy.autoneg_advertised;
241 } else {
242 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
243 clear_bit(__E1000_RESETTING, &adapter->state);
244 return -EINVAL;
245 }
246 }
247
248 /* reset the link */
249
250 if (netif_running(adapter->netdev)) {
251 e1000e_down(adapter);
252 e1000e_up(adapter);
253 } else {
254 e1000e_reset(adapter);
255 }
256
257 clear_bit(__E1000_RESETTING, &adapter->state);
258 return 0;
259}
260
261static void e1000_get_pauseparam(struct net_device *netdev,
262 struct ethtool_pauseparam *pause)
263{
264 struct e1000_adapter *adapter = netdev_priv(netdev);
265 struct e1000_hw *hw = &adapter->hw;
266
267 pause->autoneg =
268 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269
270 if (hw->mac.fc == e1000_fc_rx_pause) {
271 pause->rx_pause = 1;
272 } else if (hw->mac.fc == e1000_fc_tx_pause) {
273 pause->tx_pause = 1;
274 } else if (hw->mac.fc == e1000_fc_full) {
275 pause->rx_pause = 1;
276 pause->tx_pause = 1;
277 }
278}
279
280static int e1000_set_pauseparam(struct net_device *netdev,
281 struct ethtool_pauseparam *pause)
282{
283 struct e1000_adapter *adapter = netdev_priv(netdev);
284 struct e1000_hw *hw = &adapter->hw;
285 int retval = 0;
286
287 adapter->fc_autoneg = pause->autoneg;
288
289 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
290 msleep(1);
291
292 if (pause->rx_pause && pause->tx_pause)
293 hw->mac.fc = e1000_fc_full;
294 else if (pause->rx_pause && !pause->tx_pause)
295 hw->mac.fc = e1000_fc_rx_pause;
296 else if (!pause->rx_pause && pause->tx_pause)
297 hw->mac.fc = e1000_fc_tx_pause;
298 else if (!pause->rx_pause && !pause->tx_pause)
299 hw->mac.fc = e1000_fc_none;
300
301 hw->mac.original_fc = hw->mac.fc;
302
303 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
304 if (netif_running(adapter->netdev)) {
305 e1000e_down(adapter);
306 e1000e_up(adapter);
307 } else {
308 e1000e_reset(adapter);
309 }
310 } else {
311 retval = ((hw->media_type == e1000_media_type_fiber) ?
312 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
313 }
314
315 clear_bit(__E1000_RESETTING, &adapter->state);
316 return retval;
317}
318
319static u32 e1000_get_rx_csum(struct net_device *netdev)
320{
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
323}
324
325static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
326{
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328
329 if (data)
330 adapter->flags |= FLAG_RX_CSUM_ENABLED;
331 else
332 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
333
334 if (netif_running(netdev))
335 e1000e_reinit_locked(adapter);
336 else
337 e1000e_reset(adapter);
338 return 0;
339}
340
341static u32 e1000_get_tx_csum(struct net_device *netdev)
342{
343 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
344}
345
346static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
347{
348 if (data)
349 netdev->features |= NETIF_F_HW_CSUM;
350 else
351 netdev->features &= ~NETIF_F_HW_CSUM;
352
353 return 0;
354}
355
356static int e1000_set_tso(struct net_device *netdev, u32 data)
357{
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359
360 if (data) {
361 netdev->features |= NETIF_F_TSO;
362 netdev->features |= NETIF_F_TSO6;
363 } else {
364 netdev->features &= ~NETIF_F_TSO;
365 netdev->features &= ~NETIF_F_TSO6;
366 }
367
368 ndev_info(netdev, "TSO is %s\n",
369 data ? "Enabled" : "Disabled");
370 adapter->flags |= FLAG_TSO_FORCE;
371 return 0;
372}
373
374static u32 e1000_get_msglevel(struct net_device *netdev)
375{
376 struct e1000_adapter *adapter = netdev_priv(netdev);
377 return adapter->msg_enable;
378}
379
380static void e1000_set_msglevel(struct net_device *netdev, u32 data)
381{
382 struct e1000_adapter *adapter = netdev_priv(netdev);
383 adapter->msg_enable = data;
384}
385
386static int e1000_get_regs_len(struct net_device *netdev)
387{
388#define E1000_REGS_LEN 32 /* overestimate */
389 return E1000_REGS_LEN * sizeof(u32);
390}
391
392static void e1000_get_regs(struct net_device *netdev,
393 struct ethtool_regs *regs, void *p)
394{
395 struct e1000_adapter *adapter = netdev_priv(netdev);
396 struct e1000_hw *hw = &adapter->hw;
397 u32 *regs_buff = p;
398 u16 phy_data;
399 u8 revision_id;
400
401 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
402
403 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
404
405 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
406
407 regs_buff[0] = er32(CTRL);
408 regs_buff[1] = er32(STATUS);
409
410 regs_buff[2] = er32(RCTL);
411 regs_buff[3] = er32(RDLEN);
412 regs_buff[4] = er32(RDH);
413 regs_buff[5] = er32(RDT);
414 regs_buff[6] = er32(RDTR);
415
416 regs_buff[7] = er32(TCTL);
417 regs_buff[8] = er32(TDLEN);
418 regs_buff[9] = er32(TDH);
419 regs_buff[10] = er32(TDT);
420 regs_buff[11] = er32(TIDV);
421
422 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
423 if (hw->phy.type == e1000_phy_m88) {
424 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
425 regs_buff[13] = (u32)phy_data; /* cable length */
426 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
430 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
431 regs_buff[18] = regs_buff[13]; /* cable polarity */
432 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
433 regs_buff[20] = regs_buff[17]; /* polarity correction */
434 /* phy receive errors */
435 regs_buff[22] = adapter->phy_stats.receive_errors;
436 regs_buff[23] = regs_buff[13]; /* mdix mode */
437 }
438 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
439 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
440 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
441 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
442}
443
444static int e1000_get_eeprom_len(struct net_device *netdev)
445{
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 return adapter->hw.nvm.word_size * 2;
448}
449
450static int e1000_get_eeprom(struct net_device *netdev,
451 struct ethtool_eeprom *eeprom, u8 *bytes)
452{
453 struct e1000_adapter *adapter = netdev_priv(netdev);
454 struct e1000_hw *hw = &adapter->hw;
455 u16 *eeprom_buff;
456 int first_word;
457 int last_word;
458 int ret_val = 0;
459 u16 i;
460
461 if (eeprom->len == 0)
462 return -EINVAL;
463
464 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
465
466 first_word = eeprom->offset >> 1;
467 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469 eeprom_buff = kmalloc(sizeof(u16) *
470 (last_word - first_word + 1), GFP_KERNEL);
471 if (!eeprom_buff)
472 return -ENOMEM;
473
474 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
475 ret_val = e1000_read_nvm(hw, first_word,
476 last_word - first_word + 1,
477 eeprom_buff);
478 } else {
479 for (i = 0; i < last_word - first_word + 1; i++) {
480 ret_val = e1000_read_nvm(hw, first_word + i, 1,
481 &eeprom_buff[i]);
482 if (ret_val)
483 break;
484 }
485 }
486
487 /* Device's eeprom is always little-endian, word addressable */
488 for (i = 0; i < last_word - first_word + 1; i++)
489 le16_to_cpus(&eeprom_buff[i]);
490
491 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
492 kfree(eeprom_buff);
493
494 return ret_val;
495}
496
497static int e1000_set_eeprom(struct net_device *netdev,
498 struct ethtool_eeprom *eeprom, u8 *bytes)
499{
500 struct e1000_adapter *adapter = netdev_priv(netdev);
501 struct e1000_hw *hw = &adapter->hw;
502 u16 *eeprom_buff;
503 void *ptr;
504 int max_len;
505 int first_word;
506 int last_word;
507 int ret_val = 0;
508 u16 i;
509
510 if (eeprom->len == 0)
511 return -EOPNOTSUPP;
512
513 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
514 return -EFAULT;
515
516 max_len = hw->nvm.word_size * 2;
517
518 first_word = eeprom->offset >> 1;
519 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
520 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
521 if (!eeprom_buff)
522 return -ENOMEM;
523
524 ptr = (void *)eeprom_buff;
525
526 if (eeprom->offset & 1) {
527 /* need read/modify/write of first changed EEPROM word */
528 /* only the second byte of the word is being modified */
529 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
530 ptr++;
531 }
532 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
533 /* need read/modify/write of last changed EEPROM word */
534 /* only the first byte of the word is being modified */
535 ret_val = e1000_read_nvm(hw, last_word, 1,
536 &eeprom_buff[last_word - first_word]);
537
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i = 0; i < last_word - first_word + 1; i++)
540 le16_to_cpus(&eeprom_buff[i]);
541
542 memcpy(ptr, bytes, eeprom->len);
543
544 for (i = 0; i < last_word - first_word + 1; i++)
545 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547 ret_val = e1000_write_nvm(hw, first_word,
548 last_word - first_word + 1, eeprom_buff);
549
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 controllers */
552 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
553 (hw->mac.type == e1000_82573)))
554 e1000e_update_nvm_checksum(hw);
555
556 kfree(eeprom_buff);
557 return ret_val;
558}
559
560static void e1000_get_drvinfo(struct net_device *netdev,
561 struct ethtool_drvinfo *drvinfo)
562{
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 char firmware_version[32];
565 u16 eeprom_data;
566
567 strncpy(drvinfo->driver, e1000e_driver_name, 32);
568 strncpy(drvinfo->version, e1000e_driver_version, 32);
569
570 /* EEPROM image version # is reported as firmware version # for
571 * PCI-E controllers */
572 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
573 sprintf(firmware_version, "%d.%d-%d",
574 (eeprom_data & 0xF000) >> 12,
575 (eeprom_data & 0x0FF0) >> 4,
576 eeprom_data & 0x000F);
577
578 strncpy(drvinfo->fw_version, firmware_version, 32);
579 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700580 drvinfo->regdump_len = e1000_get_regs_len(netdev);
581 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
582}
583
584static void e1000_get_ringparam(struct net_device *netdev,
585 struct ethtool_ringparam *ring)
586{
587 struct e1000_adapter *adapter = netdev_priv(netdev);
588 struct e1000_ring *tx_ring = adapter->tx_ring;
589 struct e1000_ring *rx_ring = adapter->rx_ring;
590
591 ring->rx_max_pending = E1000_MAX_RXD;
592 ring->tx_max_pending = E1000_MAX_TXD;
593 ring->rx_mini_max_pending = 0;
594 ring->rx_jumbo_max_pending = 0;
595 ring->rx_pending = rx_ring->count;
596 ring->tx_pending = tx_ring->count;
597 ring->rx_mini_pending = 0;
598 ring->rx_jumbo_pending = 0;
599}
600
601static int e1000_set_ringparam(struct net_device *netdev,
602 struct ethtool_ringparam *ring)
603{
604 struct e1000_adapter *adapter = netdev_priv(netdev);
605 struct e1000_ring *tx_ring, *tx_old;
606 struct e1000_ring *rx_ring, *rx_old;
607 int err;
608
609 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
610 return -EINVAL;
611
612 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
613 msleep(1);
614
615 if (netif_running(adapter->netdev))
616 e1000e_down(adapter);
617
618 tx_old = adapter->tx_ring;
619 rx_old = adapter->rx_ring;
620
621 err = -ENOMEM;
622 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
623 if (!tx_ring)
624 goto err_alloc_tx;
625
626 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
627 if (!rx_ring)
628 goto err_alloc_rx;
629
630 adapter->tx_ring = tx_ring;
631 adapter->rx_ring = rx_ring;
632
633 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
634 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
635 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
636
637 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
638 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
639 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
640
641 if (netif_running(adapter->netdev)) {
642 /* Try to get new resources before deleting old */
643 err = e1000e_setup_rx_resources(adapter);
644 if (err)
645 goto err_setup_rx;
646 err = e1000e_setup_tx_resources(adapter);
647 if (err)
648 goto err_setup_tx;
649
650 /* save the new, restore the old in order to free it,
651 * then restore the new back again */
652 adapter->rx_ring = rx_old;
653 adapter->tx_ring = tx_old;
654 e1000e_free_rx_resources(adapter);
655 e1000e_free_tx_resources(adapter);
656 kfree(tx_old);
657 kfree(rx_old);
658 adapter->rx_ring = rx_ring;
659 adapter->tx_ring = tx_ring;
660 err = e1000e_up(adapter);
661 if (err)
662 goto err_setup;
663 }
664
665 clear_bit(__E1000_RESETTING, &adapter->state);
666 return 0;
667err_setup_tx:
668 e1000e_free_rx_resources(adapter);
669err_setup_rx:
670 adapter->rx_ring = rx_old;
671 adapter->tx_ring = tx_old;
672 kfree(rx_ring);
673err_alloc_rx:
674 kfree(tx_ring);
675err_alloc_tx:
676 e1000e_up(adapter);
677err_setup:
678 clear_bit(__E1000_RESETTING, &adapter->state);
679 return err;
680}
681
682#define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
683#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
684{ \
685 u32 _pat; \
686 u32 _value; \
687 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
688 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
689 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
690 (_test[_pat] & writeable)); \
691 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
692 if (_value != (_test[_pat] & writeable & mask)) { \
693 ndev_err(netdev, "pattern test reg %04X " \
694 "failed: got 0x%08X expected 0x%08X\n", \
695 reg + offset, \
696 value, (_test[_pat] & writeable & mask)); \
697 *data = reg; \
698 return 1; \
699 } \
700 } \
701}
702
703#define REG_SET_AND_CHECK(R, M, W) \
704{ \
705 u32 _value; \
706 __ew32(hw, R, W & M); \
707 _value = __er32(hw, R); \
708 if ((W & M) != (_value & M)) { \
709 ndev_err(netdev, "set/check reg %04X test failed: " \
710 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
711 (W & M)); \
712 *data = R; \
713 return 1; \
714 } \
715}
716
717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
718{
719 struct e1000_hw *hw = &adapter->hw;
720 struct e1000_mac_info *mac = &adapter->hw.mac;
721 struct net_device *netdev = adapter->netdev;
722 u32 value;
723 u32 before;
724 u32 after;
725 u32 i;
726 u32 toggle;
727
728 /* The status register is Read Only, so a write should fail.
729 * Some bits that get toggled are ignored.
730 */
731 switch (mac->type) {
732 /* there are several bits on newer hardware that are r/w */
733 case e1000_82571:
734 case e1000_82572:
735 case e1000_80003es2lan:
736 toggle = 0x7FFFF3FF;
737 break;
738 case e1000_82573:
739 case e1000_ich8lan:
740 case e1000_ich9lan:
741 toggle = 0x7FFFF033;
742 break;
743 default:
744 toggle = 0xFFFFF833;
745 break;
746 }
747
748 before = er32(STATUS);
749 value = (er32(STATUS) & toggle);
750 ew32(STATUS, toggle);
751 after = er32(STATUS) & toggle;
752 if (value != after) {
753 ndev_err(netdev, "failed STATUS register test got: "
754 "0x%08X expected: 0x%08X\n", after, value);
755 *data = 1;
756 return 1;
757 }
758 /* restore previous status */
759 ew32(STATUS, before);
760
761 if ((mac->type != e1000_ich8lan) &&
762 (mac->type != e1000_ich9lan)) {
763 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
767 }
768
769 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
770 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
772 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
773 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
775 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
779
780 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
781
782 before = (((mac->type == e1000_ich8lan) ||
783 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
784 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
785 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
786
787 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF);
788 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF);
789 REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF);
790 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF);
791
792 for (i = 0; i < mac->mta_reg_count; i++)
793 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
794
795 *data = 0;
796 return 0;
797}
798
799static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
800{
801 u16 temp;
802 u16 checksum = 0;
803 u16 i;
804
805 *data = 0;
806 /* Read and add up the contents of the EEPROM */
807 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
808 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
809 *data = 1;
810 break;
811 }
812 checksum += temp;
813 }
814
815 /* If Checksum is not Correct return error else test passed */
816 if ((checksum != (u16) NVM_SUM) && !(*data))
817 *data = 2;
818
819 return *data;
820}
821
822static irqreturn_t e1000_test_intr(int irq, void *data)
823{
824 struct net_device *netdev = (struct net_device *) data;
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 struct e1000_hw *hw = &adapter->hw;
827
828 adapter->test_icr |= er32(ICR);
829
830 return IRQ_HANDLED;
831}
832
833static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
834{
835 struct net_device *netdev = adapter->netdev;
836 struct e1000_hw *hw = &adapter->hw;
837 u32 mask;
838 u32 shared_int = 1;
839 u32 irq = adapter->pdev->irq;
840 int i;
841
842 *data = 0;
843
844 /* NOTE: we don't test MSI interrupts here, yet */
845 /* Hook up test interrupt handler just for this test */
846 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
847 netdev)) {
848 shared_int = 0;
849 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
850 netdev->name, netdev)) {
851 *data = 1;
852 return -1;
853 }
854 ndev_info(netdev, "testing %s interrupt\n",
855 (shared_int ? "shared" : "unshared"));
856
857 /* Disable all the interrupts */
858 ew32(IMC, 0xFFFFFFFF);
859 msleep(10);
860
861 /* Test each interrupt */
862 for (i = 0; i < 10; i++) {
863
864 if (((adapter->hw.mac.type == e1000_ich8lan) ||
865 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
866 continue;
867
868 /* Interrupt to test */
869 mask = 1 << i;
870
871 if (!shared_int) {
872 /* Disable the interrupt to be reported in
873 * the cause register and then force the same
874 * interrupt and see if one gets posted. If
875 * an interrupt was posted to the bus, the
876 * test failed.
877 */
878 adapter->test_icr = 0;
879 ew32(IMC, mask);
880 ew32(ICS, mask);
881 msleep(10);
882
883 if (adapter->test_icr & mask) {
884 *data = 3;
885 break;
886 }
887 }
888
889 /* Enable the interrupt to be reported in
890 * the cause register and then force the same
891 * interrupt and see if one gets posted. If
892 * an interrupt was not posted to the bus, the
893 * test failed.
894 */
895 adapter->test_icr = 0;
896 ew32(IMS, mask);
897 ew32(ICS, mask);
898 msleep(10);
899
900 if (!(adapter->test_icr & mask)) {
901 *data = 4;
902 break;
903 }
904
905 if (!shared_int) {
906 /* Disable the other interrupts to be reported in
907 * the cause register and then force the other
908 * interrupts and see if any get posted. If
909 * an interrupt was posted to the bus, the
910 * test failed.
911 */
912 adapter->test_icr = 0;
913 ew32(IMC, ~mask & 0x00007FFF);
914 ew32(ICS, ~mask & 0x00007FFF);
915 msleep(10);
916
917 if (adapter->test_icr) {
918 *data = 5;
919 break;
920 }
921 }
922 }
923
924 /* Disable all the interrupts */
925 ew32(IMC, 0xFFFFFFFF);
926 msleep(10);
927
928 /* Unhook test interrupt handler */
929 free_irq(irq, netdev);
930
931 return *data;
932}
933
934static void e1000_free_desc_rings(struct e1000_adapter *adapter)
935{
936 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
937 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
938 struct pci_dev *pdev = adapter->pdev;
939 int i;
940
941 if (tx_ring->desc && tx_ring->buffer_info) {
942 for (i = 0; i < tx_ring->count; i++) {
943 if (tx_ring->buffer_info[i].dma)
944 pci_unmap_single(pdev,
945 tx_ring->buffer_info[i].dma,
946 tx_ring->buffer_info[i].length,
947 PCI_DMA_TODEVICE);
948 if (tx_ring->buffer_info[i].skb)
949 dev_kfree_skb(tx_ring->buffer_info[i].skb);
950 }
951 }
952
953 if (rx_ring->desc && rx_ring->buffer_info) {
954 for (i = 0; i < rx_ring->count; i++) {
955 if (rx_ring->buffer_info[i].dma)
956 pci_unmap_single(pdev,
957 rx_ring->buffer_info[i].dma,
958 2048, PCI_DMA_FROMDEVICE);
959 if (rx_ring->buffer_info[i].skb)
960 dev_kfree_skb(rx_ring->buffer_info[i].skb);
961 }
962 }
963
964 if (tx_ring->desc) {
965 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
966 tx_ring->dma);
967 tx_ring->desc = NULL;
968 }
969 if (rx_ring->desc) {
970 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
971 rx_ring->dma);
972 rx_ring->desc = NULL;
973 }
974
975 kfree(tx_ring->buffer_info);
976 tx_ring->buffer_info = NULL;
977 kfree(rx_ring->buffer_info);
978 rx_ring->buffer_info = NULL;
979}
980
981static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
982{
983 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
984 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
985 struct pci_dev *pdev = adapter->pdev;
986 struct e1000_hw *hw = &adapter->hw;
987 u32 rctl;
988 int size;
989 int i;
990 int ret_val;
991
992 /* Setup Tx descriptor ring and Tx buffers */
993
994 if (!tx_ring->count)
995 tx_ring->count = E1000_DEFAULT_TXD;
996
997 size = tx_ring->count * sizeof(struct e1000_buffer);
998 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
999 if (!tx_ring->buffer_info) {
1000 ret_val = 1;
1001 goto err_nomem;
1002 }
1003 memset(tx_ring->buffer_info, 0, size);
1004
1005 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1006 tx_ring->size = ALIGN(tx_ring->size, 4096);
1007 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1008 &tx_ring->dma, GFP_KERNEL);
1009 if (!tx_ring->desc) {
1010 ret_val = 2;
1011 goto err_nomem;
1012 }
1013 memset(tx_ring->desc, 0, tx_ring->size);
1014 tx_ring->next_to_use = 0;
1015 tx_ring->next_to_clean = 0;
1016
1017 ew32(TDBAL,
1018 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1019 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1020 ew32(TDLEN,
1021 tx_ring->count * sizeof(struct e1000_tx_desc));
1022 ew32(TDH, 0);
1023 ew32(TDT, 0);
1024 ew32(TCTL,
1025 E1000_TCTL_PSP | E1000_TCTL_EN |
1026 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1027 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1028
1029 for (i = 0; i < tx_ring->count; i++) {
1030 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1031 struct sk_buff *skb;
1032 unsigned int skb_size = 1024;
1033
1034 skb = alloc_skb(skb_size, GFP_KERNEL);
1035 if (!skb) {
1036 ret_val = 3;
1037 goto err_nomem;
1038 }
1039 skb_put(skb, skb_size);
1040 tx_ring->buffer_info[i].skb = skb;
1041 tx_ring->buffer_info[i].length = skb->len;
1042 tx_ring->buffer_info[i].dma =
1043 pci_map_single(pdev, skb->data, skb->len,
1044 PCI_DMA_TODEVICE);
1045 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1046 ret_val = 4;
1047 goto err_nomem;
1048 }
1049 tx_desc->buffer_addr = cpu_to_le64(
1050 tx_ring->buffer_info[i].dma);
1051 tx_desc->lower.data = cpu_to_le32(skb->len);
1052 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1053 E1000_TXD_CMD_IFCS |
1054 E1000_TXD_CMD_RPS);
1055 tx_desc->upper.data = 0;
1056 }
1057
1058 /* Setup Rx descriptor ring and Rx buffers */
1059
1060 if (!rx_ring->count)
1061 rx_ring->count = E1000_DEFAULT_RXD;
1062
1063 size = rx_ring->count * sizeof(struct e1000_buffer);
1064 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1065 if (!rx_ring->buffer_info) {
1066 ret_val = 5;
1067 goto err_nomem;
1068 }
1069 memset(rx_ring->buffer_info, 0, size);
1070
1071 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1072 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1073 &rx_ring->dma, GFP_KERNEL);
1074 if (!rx_ring->desc) {
1075 ret_val = 6;
1076 goto err_nomem;
1077 }
1078 memset(rx_ring->desc, 0, rx_ring->size);
1079 rx_ring->next_to_use = 0;
1080 rx_ring->next_to_clean = 0;
1081
1082 rctl = er32(RCTL);
1083 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1085 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1086 ew32(RDLEN, rx_ring->size);
1087 ew32(RDH, 0);
1088 ew32(RDT, 0);
1089 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1092 ew32(RCTL, rctl);
1093
1094 for (i = 0; i < rx_ring->count; i++) {
1095 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1096 struct sk_buff *skb;
1097
1098 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1099 if (!skb) {
1100 ret_val = 7;
1101 goto err_nomem;
1102 }
1103 skb_reserve(skb, NET_IP_ALIGN);
1104 rx_ring->buffer_info[i].skb = skb;
1105 rx_ring->buffer_info[i].dma =
1106 pci_map_single(pdev, skb->data, 2048,
1107 PCI_DMA_FROMDEVICE);
1108 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1109 ret_val = 8;
1110 goto err_nomem;
1111 }
1112 rx_desc->buffer_addr =
1113 cpu_to_le64(rx_ring->buffer_info[i].dma);
1114 memset(skb->data, 0x00, skb->len);
1115 }
1116
1117 return 0;
1118
1119err_nomem:
1120 e1000_free_desc_rings(adapter);
1121 return ret_val;
1122}
1123
1124static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125{
1126 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1127 e1e_wphy(&adapter->hw, 29, 0x001F);
1128 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1129 e1e_wphy(&adapter->hw, 29, 0x001A);
1130 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1131}
1132
1133static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1134{
1135 struct e1000_hw *hw = &adapter->hw;
1136 u32 ctrl_reg = 0;
1137 u32 stat_reg = 0;
1138
1139 adapter->hw.mac.autoneg = 0;
1140
1141 if (adapter->hw.phy.type == e1000_phy_m88) {
1142 /* Auto-MDI/MDIX Off */
1143 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1144 /* reset to update Auto-MDI/MDIX */
1145 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1146 /* autoneg off */
1147 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1148 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1149 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1150
1151 ctrl_reg = er32(CTRL);
1152
1153 if (adapter->hw.phy.type == e1000_phy_ife) {
1154 /* force 100, set loopback */
1155 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1156
1157 /* Now set up the MAC to the same speed/duplex as the PHY. */
1158 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1159 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1160 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1161 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1162 E1000_CTRL_FD); /* Force Duplex to FULL */
1163 } else {
1164 /* force 1000, set loopback */
1165 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1166
1167 /* Now set up the MAC to the same speed/duplex as the PHY. */
1168 ctrl_reg = er32(CTRL);
1169 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1170 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1171 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1172 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1173 E1000_CTRL_FD); /* Force Duplex to FULL */
1174 }
1175
1176 if (adapter->hw.media_type == e1000_media_type_copper &&
1177 adapter->hw.phy.type == e1000_phy_m88) {
1178 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1179 } else {
1180 /* Set the ILOS bit on the fiber Nic if half duplex link is
1181 * detected. */
1182 stat_reg = er32(STATUS);
1183 if ((stat_reg & E1000_STATUS_FD) == 0)
1184 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1185 }
1186
1187 ew32(CTRL, ctrl_reg);
1188
1189 /* Disable the receiver on the PHY so when a cable is plugged in, the
1190 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1191 */
1192 if (adapter->hw.phy.type == e1000_phy_m88)
1193 e1000_phy_disable_receiver(adapter);
1194
1195 udelay(500);
1196
1197 return 0;
1198}
1199
1200static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1201{
1202 struct e1000_hw *hw = &adapter->hw;
1203 u32 ctrl = er32(CTRL);
1204 int link = 0;
1205
1206 /* special requirements for 82571/82572 fiber adapters */
1207
1208 /* jump through hoops to make sure link is up because serdes
1209 * link is hardwired up */
1210 ctrl |= E1000_CTRL_SLU;
1211 ew32(CTRL, ctrl);
1212
1213 /* disable autoneg */
1214 ctrl = er32(TXCW);
1215 ctrl &= ~(1 << 31);
1216 ew32(TXCW, ctrl);
1217
1218 link = (er32(STATUS) & E1000_STATUS_LU);
1219
1220 if (!link) {
1221 /* set invert loss of signal */
1222 ctrl = er32(CTRL);
1223 ctrl |= E1000_CTRL_ILOS;
1224 ew32(CTRL, ctrl);
1225 }
1226
1227 /* special write to serdes control register to enable SerDes analog
1228 * loopback */
1229#define E1000_SERDES_LB_ON 0x410
1230 ew32(SCTL, E1000_SERDES_LB_ON);
1231 msleep(10);
1232
1233 return 0;
1234}
1235
1236/* only call this for fiber/serdes connections to es2lan */
1237static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1238{
1239 struct e1000_hw *hw = &adapter->hw;
1240 u32 ctrlext = er32(CTRL_EXT);
1241 u32 ctrl = er32(CTRL);
1242
1243 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1244 on mac_type 80003es2lan) */
1245 adapter->tx_fifo_head = ctrlext;
1246
1247 /* clear the serdes mode bits, putting the device into mac loopback */
1248 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1249 ew32(CTRL_EXT, ctrlext);
1250
1251 /* force speed to 1000/FD, link up */
1252 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1253 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1254 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1255 ew32(CTRL, ctrl);
1256
1257 /* set mac loopback */
1258 ctrl = er32(RCTL);
1259 ctrl |= E1000_RCTL_LBM_MAC;
1260 ew32(RCTL, ctrl);
1261
1262 /* set testing mode parameters (no need to reset later) */
1263#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1264#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1265 ew32(KMRNCTRLSTA,
1266 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1267
1268 return 0;
1269}
1270
1271static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1272{
1273 struct e1000_hw *hw = &adapter->hw;
1274 u32 rctl;
1275
1276 if (hw->media_type == e1000_media_type_fiber ||
1277 hw->media_type == e1000_media_type_internal_serdes) {
1278 switch (hw->mac.type) {
1279 case e1000_80003es2lan:
1280 return e1000_set_es2lan_mac_loopback(adapter);
1281 break;
1282 case e1000_82571:
1283 case e1000_82572:
1284 return e1000_set_82571_fiber_loopback(adapter);
1285 break;
1286 default:
1287 rctl = er32(RCTL);
1288 rctl |= E1000_RCTL_LBM_TCVR;
1289 ew32(RCTL, rctl);
1290 return 0;
1291 }
1292 } else if (hw->media_type == e1000_media_type_copper) {
1293 return e1000_integrated_phy_loopback(adapter);
1294 }
1295
1296 return 7;
1297}
1298
1299static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1300{
1301 struct e1000_hw *hw = &adapter->hw;
1302 u32 rctl;
1303 u16 phy_reg;
1304
1305 rctl = er32(RCTL);
1306 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1307 ew32(RCTL, rctl);
1308
1309 switch (hw->mac.type) {
1310 case e1000_80003es2lan:
1311 if (hw->media_type == e1000_media_type_fiber ||
1312 hw->media_type == e1000_media_type_internal_serdes) {
1313 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1314 ew32(CTRL_EXT,
1315 adapter->tx_fifo_head);
1316 adapter->tx_fifo_head = 0;
1317 }
1318 /* fall through */
1319 case e1000_82571:
1320 case e1000_82572:
1321 if (hw->media_type == e1000_media_type_fiber ||
1322 hw->media_type == e1000_media_type_internal_serdes) {
1323#define E1000_SERDES_LB_OFF 0x400
1324 ew32(SCTL, E1000_SERDES_LB_OFF);
1325 msleep(10);
1326 break;
1327 }
1328 /* Fall Through */
1329 default:
1330 hw->mac.autoneg = 1;
1331 if (hw->phy.type == e1000_phy_gg82563)
1332 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1333 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1334 if (phy_reg & MII_CR_LOOPBACK) {
1335 phy_reg &= ~MII_CR_LOOPBACK;
1336 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1337 e1000e_commit_phy(hw);
1338 }
1339 break;
1340 }
1341}
1342
1343static void e1000_create_lbtest_frame(struct sk_buff *skb,
1344 unsigned int frame_size)
1345{
1346 memset(skb->data, 0xFF, frame_size);
1347 frame_size &= ~1;
1348 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1349 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1350 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1351}
1352
1353static int e1000_check_lbtest_frame(struct sk_buff *skb,
1354 unsigned int frame_size)
1355{
1356 frame_size &= ~1;
1357 if (*(skb->data + 3) == 0xFF)
1358 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1359 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1360 return 0;
1361 return 13;
1362}
1363
1364static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1365{
1366 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1367 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1368 struct pci_dev *pdev = adapter->pdev;
1369 struct e1000_hw *hw = &adapter->hw;
1370 int i, j, k, l;
1371 int lc;
1372 int good_cnt;
1373 int ret_val = 0;
1374 unsigned long time;
1375
1376 ew32(RDT, rx_ring->count - 1);
1377
1378 /* Calculate the loop count based on the largest descriptor ring
1379 * The idea is to wrap the largest ring a number of times using 64
1380 * send/receive pairs during each loop
1381 */
1382
1383 if (rx_ring->count <= tx_ring->count)
1384 lc = ((tx_ring->count / 64) * 2) + 1;
1385 else
1386 lc = ((rx_ring->count / 64) * 2) + 1;
1387
1388 k = 0;
1389 l = 0;
1390 for (j = 0; j <= lc; j++) { /* loop count loop */
1391 for (i = 0; i < 64; i++) { /* send the packets */
1392 e1000_create_lbtest_frame(
1393 tx_ring->buffer_info[i].skb, 1024);
1394 pci_dma_sync_single_for_device(pdev,
1395 tx_ring->buffer_info[k].dma,
1396 tx_ring->buffer_info[k].length,
1397 PCI_DMA_TODEVICE);
1398 k++;
1399 if (k == tx_ring->count)
1400 k = 0;
1401 }
1402 ew32(TDT, k);
1403 msleep(200);
1404 time = jiffies; /* set the start time for the receive */
1405 good_cnt = 0;
1406 do { /* receive the sent packets */
1407 pci_dma_sync_single_for_cpu(pdev,
1408 rx_ring->buffer_info[l].dma, 2048,
1409 PCI_DMA_FROMDEVICE);
1410
1411 ret_val = e1000_check_lbtest_frame(
1412 rx_ring->buffer_info[l].skb, 1024);
1413 if (!ret_val)
1414 good_cnt++;
1415 l++;
1416 if (l == rx_ring->count)
1417 l = 0;
1418 /* time + 20 msecs (200 msecs on 2.4) is more than
1419 * enough time to complete the receives, if it's
1420 * exceeded, break and error off
1421 */
1422 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1423 if (good_cnt != 64) {
1424 ret_val = 13; /* ret_val is the same as mis-compare */
1425 break;
1426 }
1427 if (jiffies >= (time + 2)) {
1428 ret_val = 14; /* error code for time out error */
1429 break;
1430 }
1431 } /* end loop count loop */
1432 return ret_val;
1433}
1434
1435static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1436{
1437 /* PHY loopback cannot be performed if SoL/IDER
1438 * sessions are active */
1439 if (e1000_check_reset_block(&adapter->hw)) {
1440 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1441 "when SoL/IDER is active.\n");
1442 *data = 0;
1443 goto out;
1444 }
1445
1446 *data = e1000_setup_desc_rings(adapter);
1447 if (data)
1448 goto out;
1449
1450 *data = e1000_setup_loopback_test(adapter);
1451 if (data)
1452 goto err_loopback;
1453
1454 *data = e1000_run_loopback_test(adapter);
1455 e1000_loopback_cleanup(adapter);
1456
1457err_loopback:
1458 e1000_free_desc_rings(adapter);
1459out:
1460 return *data;
1461}
1462
1463static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1464{
1465 struct e1000_hw *hw = &adapter->hw;
1466
1467 *data = 0;
1468 if (hw->media_type == e1000_media_type_internal_serdes) {
1469 int i = 0;
1470 hw->mac.serdes_has_link = 0;
1471
1472 /* On some blade server designs, link establishment
1473 * could take as long as 2-3 minutes */
1474 do {
1475 hw->mac.ops.check_for_link(hw);
1476 if (hw->mac.serdes_has_link)
1477 return *data;
1478 msleep(20);
1479 } while (i++ < 3750);
1480
1481 *data = 1;
1482 } else {
1483 hw->mac.ops.check_for_link(hw);
1484 if (hw->mac.autoneg)
1485 msleep(4000);
1486
1487 if (!(er32(STATUS) &
1488 E1000_STATUS_LU))
1489 *data = 1;
1490 }
1491 return *data;
1492}
1493
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001494static int e1000e_get_sset_count(struct net_device *netdev, int sset)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001495{
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001496 switch (sset) {
1497 case ETH_SS_TEST:
1498 return E1000_TEST_LEN;
1499 case ETH_SS_STATS:
1500 return E1000_STATS_LEN;
1501 default:
1502 return -EOPNOTSUPP;
1503 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001504}
1505
1506static void e1000_diag_test(struct net_device *netdev,
1507 struct ethtool_test *eth_test, u64 *data)
1508{
1509 struct e1000_adapter *adapter = netdev_priv(netdev);
1510 u16 autoneg_advertised;
1511 u8 forced_speed_duplex;
1512 u8 autoneg;
1513 bool if_running = netif_running(netdev);
1514
1515 set_bit(__E1000_TESTING, &adapter->state);
1516 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1517 /* Offline tests */
1518
1519 /* save speed, duplex, autoneg settings */
1520 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1521 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1522 autoneg = adapter->hw.mac.autoneg;
1523
1524 ndev_info(netdev, "offline testing starting\n");
1525
1526 /* Link test performed before hardware reset so autoneg doesn't
1527 * interfere with test result */
1528 if (e1000_link_test(adapter, &data[4]))
1529 eth_test->flags |= ETH_TEST_FL_FAILED;
1530
1531 if (if_running)
1532 /* indicate we're in test mode */
1533 dev_close(netdev);
1534 else
1535 e1000e_reset(adapter);
1536
1537 if (e1000_reg_test(adapter, &data[0]))
1538 eth_test->flags |= ETH_TEST_FL_FAILED;
1539
1540 e1000e_reset(adapter);
1541 if (e1000_eeprom_test(adapter, &data[1]))
1542 eth_test->flags |= ETH_TEST_FL_FAILED;
1543
1544 e1000e_reset(adapter);
1545 if (e1000_intr_test(adapter, &data[2]))
1546 eth_test->flags |= ETH_TEST_FL_FAILED;
1547
1548 e1000e_reset(adapter);
1549 /* make sure the phy is powered up */
1550 e1000e_power_up_phy(adapter);
1551 if (e1000_loopback_test(adapter, &data[3]))
1552 eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554 /* restore speed, duplex, autoneg settings */
1555 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1556 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1557 adapter->hw.mac.autoneg = autoneg;
1558
1559 /* force this routine to wait until autoneg complete/timeout */
1560 adapter->hw.phy.wait_for_link = 1;
1561 e1000e_reset(adapter);
1562 adapter->hw.phy.wait_for_link = 0;
1563
1564 clear_bit(__E1000_TESTING, &adapter->state);
1565 if (if_running)
1566 dev_open(netdev);
1567 } else {
1568 ndev_info(netdev, "online testing starting\n");
1569 /* Online tests */
1570 if (e1000_link_test(adapter, &data[4]))
1571 eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573 /* Online tests aren't run; pass by default */
1574 data[0] = 0;
1575 data[1] = 0;
1576 data[2] = 0;
1577 data[3] = 0;
1578
1579 clear_bit(__E1000_TESTING, &adapter->state);
1580 }
1581 msleep_interruptible(4 * 1000);
1582}
1583
1584static void e1000_get_wol(struct net_device *netdev,
1585 struct ethtool_wolinfo *wol)
1586{
1587 struct e1000_adapter *adapter = netdev_priv(netdev);
1588
1589 wol->supported = 0;
1590 wol->wolopts = 0;
1591
1592 if (!(adapter->flags & FLAG_HAS_WOL))
1593 return;
1594
1595 wol->supported = WAKE_UCAST | WAKE_MCAST |
1596 WAKE_BCAST | WAKE_MAGIC;
1597
1598 /* apply any specific unsupported masks here */
1599 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1600 wol->supported &= ~WAKE_UCAST;
1601
1602 if (adapter->wol & E1000_WUFC_EX)
1603 ndev_err(netdev, "Interface does not support "
1604 "directed (unicast) frame wake-up packets\n");
1605 }
1606
1607 if (adapter->wol & E1000_WUFC_EX)
1608 wol->wolopts |= WAKE_UCAST;
1609 if (adapter->wol & E1000_WUFC_MC)
1610 wol->wolopts |= WAKE_MCAST;
1611 if (adapter->wol & E1000_WUFC_BC)
1612 wol->wolopts |= WAKE_BCAST;
1613 if (adapter->wol & E1000_WUFC_MAG)
1614 wol->wolopts |= WAKE_MAGIC;
1615}
1616
1617static int e1000_set_wol(struct net_device *netdev,
1618 struct ethtool_wolinfo *wol)
1619{
1620 struct e1000_adapter *adapter = netdev_priv(netdev);
1621
1622 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1623 return -EOPNOTSUPP;
1624
1625 if (!(adapter->flags & FLAG_HAS_WOL))
1626 return wol->wolopts ? -EOPNOTSUPP : 0;
1627
1628 /* these settings will always override what we currently have */
1629 adapter->wol = 0;
1630
1631 if (wol->wolopts & WAKE_UCAST)
1632 adapter->wol |= E1000_WUFC_EX;
1633 if (wol->wolopts & WAKE_MCAST)
1634 adapter->wol |= E1000_WUFC_MC;
1635 if (wol->wolopts & WAKE_BCAST)
1636 adapter->wol |= E1000_WUFC_BC;
1637 if (wol->wolopts & WAKE_MAGIC)
1638 adapter->wol |= E1000_WUFC_MAG;
1639
1640 return 0;
1641}
1642
1643/* toggle LED 4 times per second = 2 "blinks" per second */
1644#define E1000_ID_INTERVAL (HZ/4)
1645
1646/* bit defines for adapter->led_status */
1647#define E1000_LED_ON 0
1648
1649static void e1000_led_blink_callback(unsigned long data)
1650{
1651 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1652
1653 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1654 adapter->hw.mac.ops.led_off(&adapter->hw);
1655 else
1656 adapter->hw.mac.ops.led_on(&adapter->hw);
1657
1658 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1659}
1660
1661static int e1000_phys_id(struct net_device *netdev, u32 data)
1662{
1663 struct e1000_adapter *adapter = netdev_priv(netdev);
1664
1665 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1666 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1667
1668 if (adapter->hw.phy.type == e1000_phy_ife) {
1669 if (!adapter->blink_timer.function) {
1670 init_timer(&adapter->blink_timer);
1671 adapter->blink_timer.function =
1672 e1000_led_blink_callback;
1673 adapter->blink_timer.data = (unsigned long) adapter;
1674 }
1675 mod_timer(&adapter->blink_timer, jiffies);
1676 msleep_interruptible(data * 1000);
1677 del_timer_sync(&adapter->blink_timer);
1678 e1e_wphy(&adapter->hw,
1679 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1680 } else {
1681 e1000e_blink_led(&adapter->hw);
1682 msleep_interruptible(data * 1000);
1683 }
1684
1685 adapter->hw.mac.ops.led_off(&adapter->hw);
1686 clear_bit(E1000_LED_ON, &adapter->led_status);
1687 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1688
1689 return 0;
1690}
1691
1692static int e1000_nway_reset(struct net_device *netdev)
1693{
1694 struct e1000_adapter *adapter = netdev_priv(netdev);
1695 if (netif_running(netdev))
1696 e1000e_reinit_locked(adapter);
1697 return 0;
1698}
1699
Auke Kokbc7f75f2007-09-17 12:30:59 -07001700static void e1000_get_ethtool_stats(struct net_device *netdev,
1701 struct ethtool_stats *stats,
1702 u64 *data)
1703{
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1705 int i;
1706
1707 e1000e_update_stats(adapter);
1708 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1709 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1710 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1711 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1712 }
1713}
1714
1715static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1716 u8 *data)
1717{
1718 u8 *p = data;
1719 int i;
1720
1721 switch (stringset) {
1722 case ETH_SS_TEST:
1723 memcpy(data, *e1000_gstrings_test,
1724 E1000_TEST_LEN*ETH_GSTRING_LEN);
1725 break;
1726 case ETH_SS_STATS:
1727 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1728 memcpy(p, e1000_gstrings_stats[i].stat_string,
1729 ETH_GSTRING_LEN);
1730 p += ETH_GSTRING_LEN;
1731 }
1732 break;
1733 }
1734}
1735
1736static const struct ethtool_ops e1000_ethtool_ops = {
1737 .get_settings = e1000_get_settings,
1738 .set_settings = e1000_set_settings,
1739 .get_drvinfo = e1000_get_drvinfo,
1740 .get_regs_len = e1000_get_regs_len,
1741 .get_regs = e1000_get_regs,
1742 .get_wol = e1000_get_wol,
1743 .set_wol = e1000_set_wol,
1744 .get_msglevel = e1000_get_msglevel,
1745 .set_msglevel = e1000_set_msglevel,
1746 .nway_reset = e1000_nway_reset,
1747 .get_link = ethtool_op_get_link,
1748 .get_eeprom_len = e1000_get_eeprom_len,
1749 .get_eeprom = e1000_get_eeprom,
1750 .set_eeprom = e1000_set_eeprom,
1751 .get_ringparam = e1000_get_ringparam,
1752 .set_ringparam = e1000_set_ringparam,
1753 .get_pauseparam = e1000_get_pauseparam,
1754 .set_pauseparam = e1000_set_pauseparam,
1755 .get_rx_csum = e1000_get_rx_csum,
1756 .set_rx_csum = e1000_set_rx_csum,
1757 .get_tx_csum = e1000_get_tx_csum,
1758 .set_tx_csum = e1000_set_tx_csum,
1759 .get_sg = ethtool_op_get_sg,
1760 .set_sg = ethtool_op_set_sg,
1761 .get_tso = ethtool_op_get_tso,
1762 .set_tso = e1000_set_tso,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001763 .self_test = e1000_diag_test,
1764 .get_strings = e1000_get_strings,
1765 .phys_id = e1000_phys_id,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001766 .get_ethtool_stats = e1000_get_ethtool_stats,
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001767 .get_sset_count = e1000e_get_sset_count,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001768};
1769
1770void e1000e_set_ethtool_ops(struct net_device *netdev)
1771{
1772 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1773}