blob: 6299c080f6e2e3ce9e003a28314278f0eaa5a974 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11#include <linux/init.h>
12
13#include <linux/mm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070014#include <linux/delay.h>
15#include <linux/spinlock.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include <linux/kernel_stat.h>
17#include <linux/mc146818rtc.h>
18#include <linux/cache.h>
19#include <linux/interrupt.h>
Zwane Mwaikambof3705132005-06-25 14:54:50 -070020#include <linux/cpu.h>
Alexey Dobriyan129f6942005-06-23 00:08:33 -070021#include <linux/module.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23#include <asm/mtrr.h>
24#include <asm/tlbflush.h>
25#include <mach_apic.h>
26
27/*
28 * Some notes on x86 processor bugs affecting SMP operation:
29 *
30 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
31 * The Linux implications for SMP are handled as follows:
32 *
33 * Pentium III / [Xeon]
34 * None of the E1AP-E3AP errata are visible to the user.
35 *
36 * E1AP. see PII A1AP
37 * E2AP. see PII A2AP
38 * E3AP. see PII A3AP
39 *
40 * Pentium II / [Xeon]
41 * None of the A1AP-A3AP errata are visible to the user.
42 *
43 * A1AP. see PPro 1AP
44 * A2AP. see PPro 2AP
45 * A3AP. see PPro 7AP
46 *
47 * Pentium Pro
48 * None of 1AP-9AP errata are visible to the normal user,
49 * except occasional delivery of 'spurious interrupt' as trap #15.
50 * This is very rare and a non-problem.
51 *
52 * 1AP. Linux maps APIC as non-cacheable
53 * 2AP. worked around in hardware
54 * 3AP. fixed in C0 and above steppings microcode update.
55 * Linux does not use excessive STARTUP_IPIs.
56 * 4AP. worked around in hardware
57 * 5AP. symmetric IO mode (normal Linux operation) not affected.
58 * 'noapic' mode has vector 0xf filled out properly.
59 * 6AP. 'noapic' mode might be affected - fixed in later steppings
60 * 7AP. We do not assume writes to the LVT deassering IRQs
61 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
62 * 9AP. We do not use mixed mode
63 *
64 * Pentium
65 * There is a marginal case where REP MOVS on 100MHz SMP
66 * machines with B stepping processors can fail. XXX should provide
67 * an L1cache=Writethrough or L1cache=off option.
68 *
69 * B stepping CPUs may hang. There are hardware work arounds
70 * for this. We warn about it in case your board doesn't have the work
71 * arounds. Basically thats so I can tell anyone with a B stepping
72 * CPU and SMP problems "tough".
73 *
74 * Specific items [From Pentium Processor Specification Update]
75 *
76 * 1AP. Linux doesn't use remote read
77 * 2AP. Linux doesn't trust APIC errors
78 * 3AP. We work around this
79 * 4AP. Linux never generated 3 interrupts of the same priority
80 * to cause a lost local interrupt.
81 * 5AP. Remote read is never used
82 * 6AP. not affected - worked around in hardware
83 * 7AP. not affected - worked around in hardware
84 * 8AP. worked around in hardware - we get explicit CS errors if not
85 * 9AP. only 'noapic' mode affected. Might generate spurious
86 * interrupts, we log only the first one and count the
87 * rest silently.
88 * 10AP. not affected - worked around in hardware
89 * 11AP. Linux reads the APIC between writes to avoid this, as per
90 * the documentation. Make sure you preserve this as it affects
91 * the C stepping chips too.
92 * 12AP. not affected - worked around in hardware
93 * 13AP. not affected - worked around in hardware
94 * 14AP. we always deassert INIT during bootup
95 * 15AP. not affected - worked around in hardware
96 * 16AP. not affected - worked around in hardware
97 * 17AP. not affected - worked around in hardware
98 * 18AP. not affected - worked around in hardware
99 * 19AP. not affected - worked around in BIOS
100 *
101 * If this sounds worrying believe me these bugs are either ___RARE___,
102 * or are signal timing bugs worked around in hardware and there's
103 * about nothing of note with C stepping upwards.
104 */
105
106DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
107
108/*
109 * the following functions deal with sending IPIs between CPUs.
110 *
111 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
112 */
113
114static inline int __prepare_ICR (unsigned int shortcut, int vector)
115{
Keith Owens45486f82006-06-26 13:59:41 +0200116 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
117
118 switch (vector) {
119 default:
120 icr |= APIC_DM_FIXED | vector;
121 break;
122 case NMI_VECTOR:
123 icr |= APIC_DM_NMI;
124 break;
125 }
126 return icr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127}
128
129static inline int __prepare_ICR2 (unsigned int mask)
130{
131 return SET_APIC_DEST_FIELD(mask);
132}
133
134void __send_IPI_shortcut(unsigned int shortcut, int vector)
135{
136 /*
137 * Subtle. In the case of the 'never do double writes' workaround
138 * we have to lock out interrupts to be safe. As we don't care
139 * of the value read we use an atomic rmw access to avoid costly
140 * cli/sti. Otherwise we use an even cheaper single atomic write
141 * to the APIC.
142 */
143 unsigned int cfg;
144
145 /*
146 * Wait for idle.
147 */
148 apic_wait_icr_idle();
149
150 /*
151 * No need to touch the target chip field
152 */
153 cfg = __prepare_ICR(shortcut, vector);
154
155 /*
156 * Send the IPI. The write to APIC_ICR fires this off.
157 */
158 apic_write_around(APIC_ICR, cfg);
159}
160
161void fastcall send_IPI_self(int vector)
162{
163 __send_IPI_shortcut(APIC_DEST_SELF, vector);
164}
165
166/*
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200167 * This is used to send an IPI with no shorthand notation (the destination is
168 * specified in bits 56 to 63 of the ICR).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169 */
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200170static inline void __send_IPI_dest_field(unsigned long mask, int vector)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700171{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 unsigned long cfg;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174 /*
175 * Wait for idle.
176 */
Fernando Luis [** ISO-8859-1 charset **] VázquezCaof5efb412007-05-02 19:27:18 +0200177 if (unlikely(vector == NMI_VECTOR))
178 safe_apic_wait_icr_idle();
179 else
180 apic_wait_icr_idle();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181
182 /*
183 * prepare target chip field
184 */
185 cfg = __prepare_ICR2(mask);
186 apic_write_around(APIC_ICR2, cfg);
187
188 /*
189 * program the ICR
190 */
191 cfg = __prepare_ICR(0, vector);
192
193 /*
194 * Send the IPI. The write to APIC_ICR fires this off.
195 */
196 apic_write_around(APIC_ICR, cfg);
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200197}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200199/*
200 * This is only used on smaller machines.
201 */
202void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
203{
204 unsigned long mask = cpus_addr(cpumask)[0];
205 unsigned long flags;
206
207 local_irq_save(flags);
208 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
209 __send_IPI_dest_field(mask, vector);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210 local_irq_restore(flags);
211}
212
213void send_IPI_mask_sequence(cpumask_t mask, int vector)
214{
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200215 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216 unsigned int query_cpu;
217
218 /*
219 * Hack. The clustered APIC addressing mode doesn't allow us to send
220 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
221 * should be modified to do 1 message per cluster ID - mbligh
222 */
223
224 local_irq_save(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700225 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
226 if (cpu_isset(query_cpu, mask)) {
Fernando Luis [** ISO-8859-1 charset **] VázquezCao45ae5e92007-05-02 19:27:18 +0200227 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
228 vector);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229 }
230 }
231 local_irq_restore(flags);
232}
233
234#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
235
236/*
237 * Smarter SMP flushing macros.
238 * c/o Linus Torvalds.
239 *
240 * These mean you can really definitely utterly forget about
241 * writing to user space from interrupts. (Its not allowed anyway).
242 *
243 * Optimizations Manfred Spraul <manfred@colorfullife.com>
244 */
245
246static cpumask_t flush_cpumask;
247static struct mm_struct * flush_mm;
248static unsigned long flush_va;
249static DEFINE_SPINLOCK(tlbstate_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250
251/*
252 * We cannot call mmdrop() because we are in interrupt context,
253 * instead update mm->cpu_vm_mask.
254 *
255 * We need to reload %cr3 since the page tables may be going
256 * away from under us..
257 */
258static inline void leave_mm (unsigned long cpu)
259{
260 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
261 BUG();
262 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
263 load_cr3(swapper_pg_dir);
264}
265
266/*
267 *
268 * The flush IPI assumes that a thread switch happens in this order:
269 * [cpu0: the cpu that switches]
270 * 1) switch_mm() either 1a) or 1b)
271 * 1a) thread switch to a different mm
272 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
273 * Stop ipi delivery for the old mm. This is not synchronized with
274 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
275 * for the wrong mm, and in the worst case we perform a superflous
276 * tlb flush.
277 * 1a2) set cpu_tlbstate to TLBSTATE_OK
278 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
279 * was in lazy tlb mode.
280 * 1a3) update cpu_tlbstate[].active_mm
281 * Now cpu0 accepts tlb flushes for the new mm.
282 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
283 * Now the other cpus will send tlb flush ipis.
284 * 1a4) change cr3.
285 * 1b) thread switch without mm change
286 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
287 * flush ipis.
288 * 1b1) set cpu_tlbstate to TLBSTATE_OK
289 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
290 * Atomically set the bit [other cpus will start sending flush ipis],
291 * and test the bit.
292 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
293 * 2) switch %%esp, ie current
294 *
295 * The interrupt must handle 2 special cases:
296 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
297 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
298 * runs in kernel space, the cpu could load tlb entries for user space
299 * pages.
300 *
301 * The good news is that cpu_tlbstate is local to each cpu, no
302 * write/read ordering problems.
303 */
304
305/*
306 * TLB flush IPI:
307 *
308 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
309 * 2) Leave the mm if we are in the lazy tlb mode.
310 */
311
312fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
313{
314 unsigned long cpu;
315
316 cpu = get_cpu();
317
318 if (!cpu_isset(cpu, flush_cpumask))
319 goto out;
320 /*
321 * This was a BUG() but until someone can quote me the
322 * line from the intel manual that guarantees an IPI to
323 * multiple CPUs is retried _only_ on the erroring CPUs
324 * its staying as a return
325 *
326 * BUG();
327 */
328
329 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
330 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
Jeremy Fitzhardinged4c10472007-05-02 19:27:15 +0200331 if (flush_va == TLB_FLUSH_ALL)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700332 local_flush_tlb();
333 else
334 __flush_tlb_one(flush_va);
335 } else
336 leave_mm(cpu);
337 }
338 ack_APIC_irq();
339 smp_mb__before_clear_bit();
340 cpu_clear(cpu, flush_cpumask);
341 smp_mb__after_clear_bit();
342out:
343 put_cpu_no_resched();
344}
345
Jeremy Fitzhardinged4c10472007-05-02 19:27:15 +0200346void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
347 unsigned long va)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348{
Jeremy Fitzhardinged4c10472007-05-02 19:27:15 +0200349 cpumask_t cpumask = *cpumaskp;
350
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351 /*
352 * A couple of (to be removed) sanity checks:
353 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354 * - current CPU must not be in mask
355 * - mask must exist :)
356 */
357 BUG_ON(cpus_empty(cpumask));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
359 BUG_ON(!mm);
360
Keshavamurthy, Anil Se8a72ff2007-05-02 19:27:18 +0200361#ifdef CONFIG_HOTPLUG_CPU
Zwane Mwaikambof3705132005-06-25 14:54:50 -0700362 /* If a CPU which we ran on has gone down, OK. */
363 cpus_and(cpumask, cpumask, cpu_online_map);
Keshavamurthy, Anil Se8a72ff2007-05-02 19:27:18 +0200364 if (unlikely(cpus_empty(cpumask)))
Zwane Mwaikambof3705132005-06-25 14:54:50 -0700365 return;
Keshavamurthy, Anil Se8a72ff2007-05-02 19:27:18 +0200366#endif
Zwane Mwaikambof3705132005-06-25 14:54:50 -0700367
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 /*
369 * i'm not happy about this global shared spinlock in the
370 * MM hot path, but we'll see how contended it is.
Andi Kleen8c40ad02007-02-13 13:26:23 +0100371 * AK: x86-64 has a faster method that could be ported.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372 */
373 spin_lock(&tlbstate_lock);
374
375 flush_mm = mm;
376 flush_va = va;
Keshavamurthy, Anil S1bdae452007-05-02 19:27:18 +0200377 cpus_or(flush_cpumask, cpumask, flush_cpumask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378 /*
379 * We have to send the IPI only to
380 * CPUs affected.
381 */
382 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
383
384 while (!cpus_empty(flush_cpumask))
385 /* nothing. lockup detection does not belong here */
Andi Kleen8c40ad02007-02-13 13:26:23 +0100386 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387
388 flush_mm = NULL;
389 flush_va = 0;
390 spin_unlock(&tlbstate_lock);
391}
392
393void flush_tlb_current_task(void)
394{
395 struct mm_struct *mm = current->mm;
396 cpumask_t cpu_mask;
397
398 preempt_disable();
399 cpu_mask = mm->cpu_vm_mask;
400 cpu_clear(smp_processor_id(), cpu_mask);
401
402 local_flush_tlb();
403 if (!cpus_empty(cpu_mask))
Jeremy Fitzhardinged4c10472007-05-02 19:27:15 +0200404 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405 preempt_enable();
406}
407
408void flush_tlb_mm (struct mm_struct * mm)
409{
410 cpumask_t cpu_mask;
411
412 preempt_disable();
413 cpu_mask = mm->cpu_vm_mask;
414 cpu_clear(smp_processor_id(), cpu_mask);
415
416 if (current->active_mm == mm) {
417 if (current->mm)
418 local_flush_tlb();
419 else
420 leave_mm(smp_processor_id());
421 }
422 if (!cpus_empty(cpu_mask))
Jeremy Fitzhardinged4c10472007-05-02 19:27:15 +0200423 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
Hugh Dickinsbb49b322007-05-16 22:11:18 -0700424
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 preempt_enable();
426}
427
428void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
429{
430 struct mm_struct *mm = vma->vm_mm;
431 cpumask_t cpu_mask;
432
433 preempt_disable();
434 cpu_mask = mm->cpu_vm_mask;
435 cpu_clear(smp_processor_id(), cpu_mask);
436
437 if (current->active_mm == mm) {
438 if(current->mm)
439 __flush_tlb_one(va);
440 else
441 leave_mm(smp_processor_id());
442 }
443
444 if (!cpus_empty(cpu_mask))
445 flush_tlb_others(cpu_mask, mm, va);
446
447 preempt_enable();
448}
Alexey Dobriyan129f6942005-06-23 00:08:33 -0700449EXPORT_SYMBOL(flush_tlb_page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450
451static void do_flush_tlb_all(void* info)
452{
453 unsigned long cpu = smp_processor_id();
454
455 __flush_tlb_all();
456 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
457 leave_mm(cpu);
458}
459
460void flush_tlb_all(void)
461{
462 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
463}
464
465/*
466 * this function sends a 'reschedule' IPI to another CPU.
467 * it goes straight through and wastes no time serializing
468 * anything. Worst case is that we lose a reschedule ...
469 */
Jeremy Fitzhardinge297d9c02007-05-15 01:41:48 -0700470static void native_smp_send_reschedule(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471{
Zwane Mwaikambof3705132005-06-25 14:54:50 -0700472 WARN_ON(cpu_is_offline(cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
474}
475
476/*
477 * Structure and data for smp_call_function(). This is designed to minimise
478 * static memory requirements. It also looks cleaner.
479 */
480static DEFINE_SPINLOCK(call_lock);
481
482struct call_data_struct {
483 void (*func) (void *info);
484 void *info;
485 atomic_t started;
486 atomic_t finished;
487 int wait;
488};
489
Li Shaohua6fe940d2005-06-25 14:54:53 -0700490void lock_ipi_call_lock(void)
491{
492 spin_lock_irq(&call_lock);
493}
494
495void unlock_ipi_call_lock(void)
496{
497 spin_unlock_irq(&call_lock);
498}
499
Andrew Morton78eef012006-03-22 00:08:16 -0800500static struct call_data_struct *call_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501
Jan Beulich9964cf72007-05-02 19:27:05 +0200502static void __smp_call_function(void (*func) (void *info), void *info,
503 int nonatomic, int wait)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504{
505 struct call_data_struct data;
Jan Beulich9964cf72007-05-02 19:27:05 +0200506 int cpus = num_online_cpus() - 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507
Jan Beulich9964cf72007-05-02 19:27:05 +0200508 if (!cpus)
509 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510
511 data.func = func;
512 data.info = info;
513 atomic_set(&data.started, 0);
514 data.wait = wait;
515 if (wait)
516 atomic_set(&data.finished, 0);
517
Linus Torvalds1da177e2005-04-16 15:20:36 -0700518 call_data = &data;
519 mb();
520
521 /* Send a message to all other CPUs and wait for them to respond */
522 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
523
524 /* Wait for response */
525 while (atomic_read(&data.started) != cpus)
526 cpu_relax();
527
528 if (wait)
529 while (atomic_read(&data.finished) != cpus)
530 cpu_relax();
Jan Beulich9964cf72007-05-02 19:27:05 +0200531}
532
Jeremy Fitzhardinge19d17432007-05-02 19:27:06 +0200533
534/**
535 * smp_call_function_mask(): Run a function on a set of other CPUs.
536 * @mask: The set of cpus to run on. Must not include the current cpu.
537 * @func: The function to run. This must be fast and non-blocking.
538 * @info: An arbitrary pointer to pass to the function.
539 * @wait: If true, wait (atomically) until function has completed on other CPUs.
540 *
Jeremy Fitzhardinged479d2c2007-05-02 19:27:12 +0200541 * Returns 0 on success, else a negative status code.
542 *
543 * If @wait is true, then returns once @func has returned; otherwise
544 * it returns just before the target cpu calls @func.
Jeremy Fitzhardinge19d17432007-05-02 19:27:06 +0200545 *
546 * You must not call this function with disabled interrupts or from a
547 * hardware interrupt handler or from a bottom half handler.
548 */
Jeremy Fitzhardinge297d9c02007-05-15 01:41:48 -0700549static int
550native_smp_call_function_mask(cpumask_t mask,
551 void (*func)(void *), void *info,
552 int wait)
Jeremy Fitzhardinge19d17432007-05-02 19:27:06 +0200553{
554 struct call_data_struct data;
555 cpumask_t allbutself;
556 int cpus;
557
558 /* Can deadlock when called with interrupts disabled */
559 WARN_ON(irqs_disabled());
560
561 /* Holding any lock stops cpus from going down. */
562 spin_lock(&call_lock);
563
564 allbutself = cpu_online_map;
565 cpu_clear(smp_processor_id(), allbutself);
566
567 cpus_and(mask, mask, allbutself);
568 cpus = cpus_weight(mask);
569
570 if (!cpus) {
571 spin_unlock(&call_lock);
572 return 0;
573 }
574
575 data.func = func;
576 data.info = info;
577 atomic_set(&data.started, 0);
578 data.wait = wait;
579 if (wait)
580 atomic_set(&data.finished, 0);
581
582 call_data = &data;
583 mb();
584
585 /* Send a message to other CPUs */
586 if (cpus_equal(mask, allbutself))
587 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
588 else
589 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
590
591 /* Wait for response */
592 while (atomic_read(&data.started) != cpus)
593 cpu_relax();
594
595 if (wait)
596 while (atomic_read(&data.finished) != cpus)
597 cpu_relax();
598 spin_unlock(&call_lock);
599
600 return 0;
601}
602
Linus Torvalds1da177e2005-04-16 15:20:36 -0700603static void stop_this_cpu (void * dummy)
604{
Jan Beulich9964cf72007-05-02 19:27:05 +0200605 local_irq_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700606 /*
607 * Remove this CPU:
608 */
609 cpu_clear(smp_processor_id(), cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610 disable_local_APIC();
611 if (cpu_data[smp_processor_id()].hlt_works_ok)
Zachary Amsden4bb0d3e2005-09-03 15:56:36 -0700612 for(;;) halt();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613 for (;;);
614}
615
616/*
617 * this function calls the 'stop' function on all other CPUs in the system.
618 */
619
Jeremy Fitzhardinge297d9c02007-05-15 01:41:48 -0700620static void native_smp_send_stop(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621{
Jan Beulich9964cf72007-05-02 19:27:05 +0200622 /* Don't deadlock on the call lock in panic */
623 int nolock = !spin_trylock(&call_lock);
624 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700625
Jan Beulich9964cf72007-05-02 19:27:05 +0200626 local_irq_save(flags);
627 __smp_call_function(stop_this_cpu, NULL, 0, 0);
628 if (!nolock)
629 spin_unlock(&call_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 disable_local_APIC();
Jan Beulich9964cf72007-05-02 19:27:05 +0200631 local_irq_restore(flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632}
633
634/*
635 * Reschedule call back. Nothing to do,
636 * all the work is done automatically when
637 * we return from the interrupt.
638 */
639fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
640{
641 ack_APIC_irq();
642}
643
644fastcall void smp_call_function_interrupt(struct pt_regs *regs)
645{
646 void (*func) (void *info) = call_data->func;
647 void *info = call_data->info;
648 int wait = call_data->wait;
649
650 ack_APIC_irq();
651 /*
652 * Notify initiating CPU that I've grabbed the data and am
653 * about to execute the function
654 */
655 mb();
656 atomic_inc(&call_data->started);
657 /*
658 * At this point the info structure may be out of scope unless wait==1
659 */
660 irq_enter();
661 (*func)(info);
662 irq_exit();
663
664 if (wait) {
665 mb();
666 atomic_inc(&call_data->finished);
667 }
668}
669
Fernando Vazquezdc2bc762006-09-30 23:29:07 -0700670static int convert_apicid_to_cpu(int apic_id)
671{
672 int i;
673
674 for (i = 0; i < NR_CPUS; i++) {
675 if (x86_cpu_to_apicid[i] == apic_id)
676 return i;
677 }
678 return -1;
679}
680
681int safe_smp_processor_id(void)
682{
683 int apicid, cpuid;
684
685 if (!boot_cpu_has(X86_FEATURE_APIC))
686 return 0;
687
688 apicid = hard_smp_processor_id();
689 if (apicid == BAD_APICID)
690 return 0;
691
692 cpuid = convert_apicid_to_cpu(apicid);
693
694 return cpuid >= 0 ? cpuid : 0;
695}
Jeremy Fitzhardinge01a2f432007-05-02 19:27:11 +0200696
697struct smp_ops smp_ops = {
698 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
699 .smp_prepare_cpus = native_smp_prepare_cpus,
700 .cpu_up = native_cpu_up,
701 .smp_cpus_done = native_smp_cpus_done,
702
703 .smp_send_stop = native_smp_send_stop,
704 .smp_send_reschedule = native_smp_send_reschedule,
705 .smp_call_function_mask = native_smp_call_function_mask,
706};