blob: a3ca55150745976d0fcc263f382db56f1f61c14b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*!**************************************************************************
2*!
3*! FILE NAME : kgdb.c
4*!
5*! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6*! It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7*!
8*!---------------------------------------------------------------------------
9*! HISTORY
10*!
11*! DATE NAME CHANGES
12*! ---- ---- -------
13*! Apr 26 1999 Hendrik Ruijter Initial version.
14*! May 6 1999 Hendrik Ruijter Removed call to strlen in libc and removed
15*! struct assignment as it generates calls to
16*! memcpy in libc.
17*! Jun 17 1999 Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18*! Jul 21 1999 Bjorn Wesen eLinux port
19*!
Linus Torvalds1da177e2005-04-16 15:20:36 -070020*!---------------------------------------------------------------------------
21*!
Linus Torvalds1da177e2005-04-16 15:20:36 -070022*! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23*!
24*!**************************************************************************/
25/* @(#) cris_stub.c 1.3 06/17/99 */
26
27/*
28 * kgdb usage notes:
29 * -----------------
30 *
31 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32 * built with different gcc flags: "-g" is added to get debug infos, and
33 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35 * before compresion. Such a kernel will behave just as usually, except if
36 * given a "debug=<device>" command line option. (Only serial devices are
37 * allowed for <device>, i.e. no printers or the like; possible values are
38 * machine depedend and are the same as for the usual debug device, the one
39 * for logging kernel messages.) If that option is given and the device can be
40 * initialized, the kernel will connect to the remote gdb in trap_init(). The
41 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42 * implementation.
43 *
44 * To start a debugging session, start that gdb with the debugging kernel
45 * image (the one with the symbols, vmlinux.debug) named on the command line.
46 * This file will be used by gdb to get symbol and debugging infos about the
47 * kernel. Next, select remote debug mode by
48 * target remote <device>
49 * where <device> is the name of the serial device over which the debugged
50 * machine is connected. Maybe you have to adjust the baud rate by
51 * set remotebaud <rate>
52 * or also other parameters with stty:
53 * shell stty ... </dev/...
54 * If the kernel to debug has already booted, it waited for gdb and now
55 * connects, and you'll see a breakpoint being reported. If the kernel isn't
56 * running yet, start it now. The order of gdb and the kernel doesn't matter.
57 * Another thing worth knowing about in the getting-started phase is how to
58 * debug the remote protocol itself. This is activated with
59 * set remotedebug 1
60 * gdb will then print out each packet sent or received. You'll also get some
61 * messages about the gdb stub on the console of the debugged machine.
62 *
63 * If all that works, you can use lots of the usual debugging techniques on
64 * the kernel, e.g. inspecting and changing variables/memory, setting
65 * breakpoints, single stepping and so on. It's also possible to interrupt the
66 * debugged kernel by pressing C-c in gdb. Have fun! :-)
67 *
68 * The gdb stub is entered (and thus the remote gdb gets control) in the
69 * following situations:
70 *
71 * - If breakpoint() is called. This is just after kgdb initialization, or if
72 * a breakpoint() call has been put somewhere into the kernel source.
73 * (Breakpoints can of course also be set the usual way in gdb.)
74 * In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75 *
76 * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77 * are entered. All the CPU exceptions are mapped to (more or less..., see
78 * the hard_trap_info array below) appropriate signal, which are reported
79 * to gdb. die_if_kernel() is usually called after some kind of access
80 * error and thus is reported as SIGSEGV.
81 *
82 * - When panic() is called. This is reported as SIGABRT.
83 *
84 * - If C-c is received over the serial line, which is treated as
85 * SIGINT.
86 *
87 * Of course, all these signals are just faked for gdb, since there is no
88 * signal concept as such for the kernel. It also isn't possible --obviously--
89 * to set signal handlers from inside gdb, or restart the kernel with a
90 * signal.
91 *
92 * Current limitations:
93 *
94 * - While the kernel is stopped, interrupts are disabled for safety reasons
95 * (i.e., variables not changing magically or the like). But this also
96 * means that the clock isn't running anymore, and that interrupts from the
97 * hardware may get lost/not be served in time. This can cause some device
98 * errors...
99 *
100 * - When single-stepping, only one instruction of the current thread is
101 * executed, but interrupts are allowed for that time and will be serviced
102 * if pending. Be prepared for that.
103 *
104 * - All debugging happens in kernel virtual address space. There's no way to
105 * access physical memory not mapped in kernel space, or to access user
106 * space. A way to work around this is using get_user_long & Co. in gdb
107 * expressions, but only for the current process.
108 *
109 * - Interrupting the kernel only works if interrupts are currently allowed,
110 * and the interrupt of the serial line isn't blocked by some other means
111 * (IPL too high, disabled, ...)
112 *
113 * - The gdb stub is currently not reentrant, i.e. errors that happen therein
114 * (e.g. accessing invalid memory) may not be caught correctly. This could
115 * be removed in future by introducing a stack of struct registers.
116 *
117 */
118
119/*
120 * To enable debugger support, two things need to happen. One, a
121 * call to kgdb_init() is necessary in order to allow any breakpoints
122 * or error conditions to be properly intercepted and reported to gdb.
123 * Two, a breakpoint needs to be generated to begin communication. This
124 * is most easily accomplished by a call to breakpoint().
125 *
126 * The following gdb commands are supported:
127 *
128 * command function Return value
129 *
130 * g return the value of the CPU registers hex data or ENN
131 * G set the value of the CPU registers OK or ENN
132 *
133 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
134 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
135 *
136 * c Resume at current address SNN ( signal NN)
137 * cAA..AA Continue at address AA..AA SNN
138 *
139 * s Step one instruction SNN
140 * sAA..AA Step one instruction from AA..AA SNN
141 *
142 * k kill
143 *
144 * ? What was the last sigval ? SNN (signal NN)
145 *
146 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
147 * baud rate
148 *
149 * All commands and responses are sent with a packet which includes a
150 * checksum. A packet consists of
151 *
152 * $<packet info>#<checksum>.
153 *
154 * where
155 * <packet info> :: <characters representing the command or response>
156 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157 *
158 * When a packet is received, it is first acknowledged with either '+' or '-'.
159 * '+' indicates a successful transfer. '-' indicates a failed transfer.
160 *
161 * Example:
162 *
163 * Host: Reply:
164 * $m0,10#2a +$00010203040506070809101112131415#42
165 *
166 */
167
168
169#include <linux/string.h>
170#include <linux/signal.h>
171#include <linux/kernel.h>
172#include <linux/delay.h>
173#include <linux/linkage.h>
Mikael Starvik7cf32ca2005-07-27 11:44:38 -0700174#include <linux/reboot.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175
176#include <asm/setup.h>
177#include <asm/ptrace.h>
178
179#include <asm/arch/svinto.h>
180#include <asm/irq.h>
181
182static int kgdb_started = 0;
183
184/********************************* Register image ****************************/
185/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186 Reference", p. 1-1, with the additional register definitions of the
187 ETRAX 100LX in cris-opc.h.
188 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189 pointer, SP, and R15 is the program counter, PC.
190 There are 16 special registers, P0-P15, where three of the unimplemented
191 registers, P0, P4 and P8, are reserved as zero-registers. A read from
192 any of these registers returns zero and a write has no effect. */
193
194typedef
195struct register_image
196{
197 /* Offset */
198 unsigned int r0; /* 0x00 */
199 unsigned int r1; /* 0x04 */
200 unsigned int r2; /* 0x08 */
201 unsigned int r3; /* 0x0C */
202 unsigned int r4; /* 0x10 */
203 unsigned int r5; /* 0x14 */
204 unsigned int r6; /* 0x18 */
205 unsigned int r7; /* 0x1C */
206 unsigned int r8; /* 0x20 Frame pointer */
207 unsigned int r9; /* 0x24 */
208 unsigned int r10; /* 0x28 */
209 unsigned int r11; /* 0x2C */
210 unsigned int r12; /* 0x30 */
211 unsigned int r13; /* 0x34 */
212 unsigned int sp; /* 0x38 Stack pointer */
213 unsigned int pc; /* 0x3C Program counter */
214
215 unsigned char p0; /* 0x40 8-bit zero-register */
216 unsigned char vr; /* 0x41 Version register */
217
218 unsigned short p4; /* 0x42 16-bit zero-register */
219 unsigned short ccr; /* 0x44 Condition code register */
220
221 unsigned int mof; /* 0x46 Multiply overflow register */
222
223 unsigned int p8; /* 0x4A 32-bit zero-register */
224 unsigned int ibr; /* 0x4E Interrupt base register */
225 unsigned int irp; /* 0x52 Interrupt return pointer */
226 unsigned int srp; /* 0x56 Subroutine return pointer */
227 unsigned int bar; /* 0x5A Breakpoint address register */
228 unsigned int dccr; /* 0x5E Double condition code register */
229 unsigned int brp; /* 0x62 Breakpoint return pointer (pc in caller) */
230 unsigned int usp; /* 0x66 User mode stack pointer */
231} registers;
232
233/************** Prototypes for local library functions ***********************/
234
235/* Copy of strcpy from libc. */
236static char *gdb_cris_strcpy (char *s1, const char *s2);
237
238/* Copy of strlen from libc. */
239static int gdb_cris_strlen (const char *s);
240
241/* Copy of memchr from libc. */
242static void *gdb_cris_memchr (const void *s, int c, int n);
243
244/* Copy of strtol from libc. Does only support base 16. */
245static int gdb_cris_strtol (const char *s, char **endptr, int base);
246
247/********************** Prototypes for local functions. **********************/
248/* Copy the content of a register image into another. The size n is
249 the size of the register image. Due to struct assignment generation of
250 memcpy in libc. */
251static void copy_registers (registers *dptr, registers *sptr, int n);
252
253/* Copy the stored registers from the stack. Put the register contents
254 of thread thread_id in the struct reg. */
255static void copy_registers_from_stack (int thread_id, registers *reg);
256
257/* Copy the registers to the stack. Put the register contents of thread
258 thread_id from struct reg to the stack. */
259static void copy_registers_to_stack (int thread_id, registers *reg);
260
261/* Write a value to a specified register regno in the register image
262 of the current thread. */
263static int write_register (int regno, char *val);
264
265/* Write a value to a specified register in the stack of a thread other
266 than the current thread. */
267static write_stack_register (int thread_id, int regno, char *valptr);
268
269/* Read a value from a specified register in the register image. Returns the
270 status of the read operation. The register value is returned in valptr. */
271static int read_register (char regno, unsigned int *valptr);
272
273/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
274int getDebugChar (void);
275
276/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
277void putDebugChar (int val);
278
279void enableDebugIRQ (void);
280
281/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
282 represented by int x. */
283static char highhex (int x);
284
285/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
286 represented by int x. */
287static char lowhex (int x);
288
289/* Returns the integer equivalent of a hexadecimal character. */
290static int hex (char ch);
291
292/* Convert the memory, pointed to by mem into hexadecimal representation.
293 Put the result in buf, and return a pointer to the last character
294 in buf (null). */
295static char *mem2hex (char *buf, unsigned char *mem, int count);
296
297/* Convert the array, in hexadecimal representation, pointed to by buf into
298 binary representation. Put the result in mem, and return a pointer to
299 the character after the last byte written. */
300static unsigned char *hex2mem (unsigned char *mem, char *buf, int count);
301
302/* Put the content of the array, in binary representation, pointed to by buf
303 into memory pointed to by mem, and return a pointer to
304 the character after the last byte written. */
305static unsigned char *bin2mem (unsigned char *mem, unsigned char *buf, int count);
306
307/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
308 returned. */
309static void getpacket (char *buffer);
310
311/* Send $<data>#<checksum> from the <data> in the array buffer. */
312static void putpacket (char *buffer);
313
314/* Build and send a response packet in order to inform the host the
315 stub is stopped. */
316static void stub_is_stopped (int sigval);
317
318/* All expected commands are sent from remote.c. Send a response according
319 to the description in remote.c. */
320static void handle_exception (int sigval);
321
322/* Performs a complete re-start from scratch. ETRAX specific. */
323static void kill_restart (void);
324
325/******************** Prototypes for global functions. ***********************/
326
327/* The string str is prepended with the GDB printout token and sent. */
328void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
329
330/* The hook for both static (compiled) and dynamic breakpoints set by GDB.
331 ETRAX 100 specific. */
332void handle_breakpoint (void); /* used by irq.c */
333
334/* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
335void handle_interrupt (void); /* used by irq.c */
336
337/* A static breakpoint to be used at startup. */
338void breakpoint (void); /* called by init/main.c */
339
340/* From osys_int.c, executing_task contains the number of the current
341 executing task in osys. Does not know of object-oriented threads. */
342extern unsigned char executing_task;
343
344/* The number of characters used for a 64 bit thread identifier. */
345#define HEXCHARS_IN_THREAD_ID 16
346
347/* Avoid warning as the internal_stack is not used in the C-code. */
348#define USEDVAR(name) { if (name) { ; } }
349#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }
350
351/********************************** Packet I/O ******************************/
352/* BUFMAX defines the maximum number of characters in
353 inbound/outbound buffers */
354#define BUFMAX 512
355
356/* Run-length encoding maximum length. Send 64 at most. */
357#define RUNLENMAX 64
358
359/* Definition of all valid hexadecimal characters */
360static const char hexchars[] = "0123456789abcdef";
361
362/* The inbound/outbound buffers used in packet I/O */
363static char remcomInBuffer[BUFMAX];
364static char remcomOutBuffer[BUFMAX];
365
366/* Error and warning messages. */
367enum error_type
368{
369 SUCCESS, E01, E02, E03, E04, E05, E06, E07
370};
371static char *error_message[] =
372{
373 "",
374 "E01 Set current or general thread - H[c,g] - internal error.",
375 "E02 Change register content - P - cannot change read-only register.",
376 "E03 Thread is not alive.", /* T, not used. */
377 "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
378 "E05 Change register content - P - the register is not implemented..",
379 "E06 Change memory content - M - internal error.",
380 "E07 Change register content - P - the register is not stored on the stack"
381};
382/********************************* Register image ****************************/
383/* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
384 Reference", p. 1-1, with the additional register definitions of the
385 ETRAX 100LX in cris-opc.h.
386 There are 16 general 32-bit registers, R0-R15, where R14 is the stack
387 pointer, SP, and R15 is the program counter, PC.
388 There are 16 special registers, P0-P15, where three of the unimplemented
389 registers, P0, P4 and P8, are reserved as zero-registers. A read from
390 any of these registers returns zero and a write has no effect. */
391enum register_name
392{
393 R0, R1, R2, R3,
394 R4, R5, R6, R7,
395 R8, R9, R10, R11,
396 R12, R13, SP, PC,
397 P0, VR, P2, P3,
398 P4, CCR, P6, MOF,
399 P8, IBR, IRP, SRP,
400 BAR, DCCR, BRP, USP
401};
402
403/* The register sizes of the registers in register_name. An unimplemented register
404 is designated by size 0 in this array. */
405static int register_size[] =
406{
407 4, 4, 4, 4,
408 4, 4, 4, 4,
409 4, 4, 4, 4,
410 4, 4, 4, 4,
411 1, 1, 0, 0,
412 2, 2, 0, 4,
413 4, 4, 4, 4,
414 4, 4, 4, 4
415};
416
417/* Contains the register image of the executing thread in the assembler
418 part of the code in order to avoid horrible addressing modes. */
419static registers reg;
420
421/* FIXME: Should this be used? Delete otherwise. */
422/* Contains the assumed consistency state of the register image. Uses the
423 enum error_type for state information. */
424static int consistency_status = SUCCESS;
425
426/********************************** Handle exceptions ************************/
427/* The variable reg contains the register image associated with the
428 current_thread_c variable. It is a complete register image created at
429 entry. The reg_g contains a register image of a task where the general
430 registers are taken from the stack and all special registers are taken
431 from the executing task. It is associated with current_thread_g and used
432 in order to provide access mainly for 'g', 'G' and 'P'.
433*/
434
435/* Need two task id pointers in order to handle Hct and Hgt commands. */
436static int current_thread_c = 0;
437static int current_thread_g = 0;
438
439/* Need two register images in order to handle Hct and Hgt commands. The
440 variable reg_g is in addition to reg above. */
441static registers reg_g;
442
443/********************************** Breakpoint *******************************/
444/* Use an internal stack in the breakpoint and interrupt response routines */
445#define INTERNAL_STACK_SIZE 1024
446static char internal_stack[INTERNAL_STACK_SIZE];
447
448/* Due to the breakpoint return pointer, a state variable is needed to keep
449 track of whether it is a static (compiled) or dynamic (gdb-invoked)
450 breakpoint to be handled. A static breakpoint uses the content of register
451 BRP as it is whereas a dynamic breakpoint requires subtraction with 2
452 in order to execute the instruction. The first breakpoint is static. */
453static unsigned char is_dyn_brkp = 0;
454
455/********************************* String library ****************************/
456/* Single-step over library functions creates trap loops. */
457
458/* Copy char s2[] to s1[]. */
459static char*
460gdb_cris_strcpy (char *s1, const char *s2)
461{
462 char *s = s1;
463
464 for (s = s1; (*s++ = *s2++) != '\0'; )
465 ;
466 return (s1);
467}
468
469/* Find length of s[]. */
470static int
471gdb_cris_strlen (const char *s)
472{
473 const char *sc;
474
475 for (sc = s; *sc != '\0'; sc++)
476 ;
477 return (sc - s);
478}
479
480/* Find first occurrence of c in s[n]. */
481static void*
482gdb_cris_memchr (const void *s, int c, int n)
483{
484 const unsigned char uc = c;
485 const unsigned char *su;
486
487 for (su = s; 0 < n; ++su, --n)
488 if (*su == uc)
489 return ((void *)su);
490 return (NULL);
491}
492/******************************* Standard library ****************************/
493/* Single-step over library functions creates trap loops. */
494/* Convert string to long. */
495static int
496gdb_cris_strtol (const char *s, char **endptr, int base)
497{
498 char *s1;
499 char *sd;
500 int x = 0;
501
502 for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
503 x = x * base + (sd - hexchars);
504
505 if (endptr)
506 {
507 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
508 *endptr = s1;
509 }
510
511 return x;
512}
513
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514/********************************* Register image ****************************/
515/* Copy the content of a register image into another. The size n is
516 the size of the register image. Due to struct assignment generation of
517 memcpy in libc. */
518static void
519copy_registers (registers *dptr, registers *sptr, int n)
520{
521 unsigned char *dreg;
522 unsigned char *sreg;
523
524 for (dreg = (unsigned char*)dptr, sreg = (unsigned char*)sptr; n > 0; n--)
525 *dreg++ = *sreg++;
526}
527
528#ifdef PROCESS_SUPPORT
529/* Copy the stored registers from the stack. Put the register contents
530 of thread thread_id in the struct reg. */
531static void
532copy_registers_from_stack (int thread_id, registers *regptr)
533{
534 int j;
535 stack_registers *s = (stack_registers *)stack_list[thread_id];
536 unsigned int *d = (unsigned int *)regptr;
537
538 for (j = 13; j >= 0; j--)
539 *d++ = s->r[j];
540 regptr->sp = (unsigned int)stack_list[thread_id];
541 regptr->pc = s->pc;
542 regptr->dccr = s->dccr;
543 regptr->srp = s->srp;
544}
545
546/* Copy the registers to the stack. Put the register contents of thread
547 thread_id from struct reg to the stack. */
548static void
549copy_registers_to_stack (int thread_id, registers *regptr)
550{
551 int i;
552 stack_registers *d = (stack_registers *)stack_list[thread_id];
553 unsigned int *s = (unsigned int *)regptr;
554
555 for (i = 0; i < 14; i++) {
556 d->r[i] = *s++;
557 }
558 d->pc = regptr->pc;
559 d->dccr = regptr->dccr;
560 d->srp = regptr->srp;
561}
562#endif
563
564/* Write a value to a specified register in the register image of the current
565 thread. Returns status code SUCCESS, E02 or E05. */
566static int
567write_register (int regno, char *val)
568{
569 int status = SUCCESS;
570 registers *current_reg = &reg;
571
572 if (regno >= R0 && regno <= PC) {
573 /* 32-bit register with simple offset. */
574 hex2mem ((unsigned char *)current_reg + regno * sizeof(unsigned int),
575 val, sizeof(unsigned int));
576 }
577 else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
578 /* Do not support read-only registers. */
579 status = E02;
580 }
581 else if (regno == CCR) {
582 /* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
583 and P7 (MOF) is 32 bits in ETRAX 100LX. */
584 hex2mem ((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
585 val, sizeof(unsigned short));
586 }
587 else if (regno >= MOF && regno <= USP) {
588 /* 32 bit register with complex offset. (P8 has been taken care of.) */
589 hex2mem ((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
590 val, sizeof(unsigned int));
591 }
592 else {
593 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
594 status = E05;
595 }
596 return status;
597}
598
599#ifdef PROCESS_SUPPORT
600/* Write a value to a specified register in the stack of a thread other
601 than the current thread. Returns status code SUCCESS or E07. */
602static int
603write_stack_register (int thread_id, int regno, char *valptr)
604{
605 int status = SUCCESS;
606 stack_registers *d = (stack_registers *)stack_list[thread_id];
607 unsigned int val;
608
609 hex2mem ((unsigned char *)&val, valptr, sizeof(unsigned int));
610 if (regno >= R0 && regno < SP) {
611 d->r[regno] = val;
612 }
613 else if (regno == SP) {
614 stack_list[thread_id] = val;
615 }
616 else if (regno == PC) {
617 d->pc = val;
618 }
619 else if (regno == SRP) {
620 d->srp = val;
621 }
622 else if (regno == DCCR) {
623 d->dccr = val;
624 }
625 else {
626 /* Do not support registers in the current thread. */
627 status = E07;
628 }
629 return status;
630}
631#endif
632
633/* Read a value from a specified register in the register image. Returns the
634 value in the register or -1 for non-implemented registers.
635 Should check consistency_status after a call which may be E05 after changes
636 in the implementation. */
637static int
638read_register (char regno, unsigned int *valptr)
639{
640 registers *current_reg = &reg;
641
642 if (regno >= R0 && regno <= PC) {
643 /* 32-bit register with simple offset. */
644 *valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
645 return SUCCESS;
646 }
647 else if (regno == P0 || regno == VR) {
648 /* 8 bit register with complex offset. */
649 *valptr = (unsigned int)(*(unsigned char *)
650 ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
651 return SUCCESS;
652 }
653 else if (regno == P4 || regno == CCR) {
654 /* 16 bit register with complex offset. */
655 *valptr = (unsigned int)(*(unsigned short *)
656 ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
657 return SUCCESS;
658 }
659 else if (regno >= MOF && regno <= USP) {
660 /* 32 bit register with complex offset. */
661 *valptr = *(unsigned int *)((char *)&(current_reg->p8)
662 + (regno-P8) * sizeof(unsigned int));
663 return SUCCESS;
664 }
665 else {
666 /* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
667 consistency_status = E05;
668 return E05;
669 }
670}
671
672/********************************** Packet I/O ******************************/
673/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
674 represented by int x. */
675static inline char
676highhex(int x)
677{
678 return hexchars[(x >> 4) & 0xf];
679}
680
681/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
682 represented by int x. */
683static inline char
684lowhex(int x)
685{
686 return hexchars[x & 0xf];
687}
688
689/* Returns the integer equivalent of a hexadecimal character. */
690static int
691hex (char ch)
692{
693 if ((ch >= 'a') && (ch <= 'f'))
694 return (ch - 'a' + 10);
695 if ((ch >= '0') && (ch <= '9'))
696 return (ch - '0');
697 if ((ch >= 'A') && (ch <= 'F'))
698 return (ch - 'A' + 10);
699 return (-1);
700}
701
702/* Convert the memory, pointed to by mem into hexadecimal representation.
703 Put the result in buf, and return a pointer to the last character
704 in buf (null). */
705
706static int do_printk = 0;
707
708static char *
709mem2hex(char *buf, unsigned char *mem, int count)
710{
711 int i;
712 int ch;
713
714 if (mem == NULL) {
715 /* Bogus read from m0. FIXME: What constitutes a valid address? */
716 for (i = 0; i < count; i++) {
717 *buf++ = '0';
718 *buf++ = '0';
719 }
720 } else {
721 /* Valid mem address. */
722 for (i = 0; i < count; i++) {
723 ch = *mem++;
724 *buf++ = highhex (ch);
725 *buf++ = lowhex (ch);
726 }
727 }
728
729 /* Terminate properly. */
730 *buf = '\0';
731 return (buf);
732}
733
734/* Convert the array, in hexadecimal representation, pointed to by buf into
735 binary representation. Put the result in mem, and return a pointer to
736 the character after the last byte written. */
737static unsigned char*
738hex2mem (unsigned char *mem, char *buf, int count)
739{
740 int i;
741 unsigned char ch;
742 for (i = 0; i < count; i++) {
743 ch = hex (*buf++) << 4;
744 ch = ch + hex (*buf++);
745 *mem++ = ch;
746 }
747 return (mem);
748}
749
750/* Put the content of the array, in binary representation, pointed to by buf
751 into memory pointed to by mem, and return a pointer to the character after
752 the last byte written.
753 Gdb will escape $, #, and the escape char (0x7d). */
754static unsigned char*
755bin2mem (unsigned char *mem, unsigned char *buf, int count)
756{
757 int i;
758 unsigned char *next;
759 for (i = 0; i < count; i++) {
760 /* Check for any escaped characters. Be paranoid and
761 only unescape chars that should be escaped. */
762 if (*buf == 0x7d) {
763 next = buf + 1;
764 if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
765 {
766 buf++;
767 *buf += 0x20;
768 }
769 }
770 *mem++ = *buf++;
771 }
772 return (mem);
773}
774
775/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
776 returned. */
777static void
778getpacket (char *buffer)
779{
780 unsigned char checksum;
781 unsigned char xmitcsum;
782 int i;
783 int count;
784 char ch;
785 do {
786 while ((ch = getDebugChar ()) != '$')
787 /* Wait for the start character $ and ignore all other characters */;
788 checksum = 0;
789 xmitcsum = -1;
790 count = 0;
791 /* Read until a # or the end of the buffer is reached */
792 while (count < BUFMAX) {
793 ch = getDebugChar ();
794 if (ch == '#')
795 break;
796 checksum = checksum + ch;
797 buffer[count] = ch;
798 count = count + 1;
799 }
800 buffer[count] = '\0';
801
802 if (ch == '#') {
803 xmitcsum = hex (getDebugChar ()) << 4;
804 xmitcsum += hex (getDebugChar ());
805 if (checksum != xmitcsum) {
806 /* Wrong checksum */
807 putDebugChar ('-');
808 }
809 else {
810 /* Correct checksum */
811 putDebugChar ('+');
812 /* If sequence characters are received, reply with them */
813 if (buffer[2] == ':') {
814 putDebugChar (buffer[0]);
815 putDebugChar (buffer[1]);
816 /* Remove the sequence characters from the buffer */
817 count = gdb_cris_strlen (buffer);
818 for (i = 3; i <= count; i++)
819 buffer[i - 3] = buffer[i];
820 }
821 }
822 }
823 } while (checksum != xmitcsum);
824}
825
826/* Send $<data>#<checksum> from the <data> in the array buffer. */
827
828static void
829putpacket(char *buffer)
830{
831 int checksum;
832 int runlen;
833 int encode;
834
835 do {
836 char *src = buffer;
837 putDebugChar ('$');
838 checksum = 0;
839 while (*src) {
840 /* Do run length encoding */
841 putDebugChar (*src);
842 checksum += *src;
843 runlen = 0;
844 while (runlen < RUNLENMAX && *src == src[runlen]) {
845 runlen++;
846 }
847 if (runlen > 3) {
848 /* Got a useful amount */
849 putDebugChar ('*');
850 checksum += '*';
851 encode = runlen + ' ' - 4;
852 putDebugChar (encode);
853 checksum += encode;
854 src += runlen;
855 }
856 else {
857 src++;
858 }
859 }
860 putDebugChar ('#');
861 putDebugChar (highhex (checksum));
862 putDebugChar (lowhex (checksum));
863 } while(kgdb_started && (getDebugChar() != '+'));
864}
865
866/* The string str is prepended with the GDB printout token and sent. Required
867 in traditional implementations. */
868void
869putDebugString (const unsigned char *str, int length)
870{
871 remcomOutBuffer[0] = 'O';
872 mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
873 putpacket(remcomOutBuffer);
874}
875
876/********************************** Handle exceptions ************************/
877/* Build and send a response packet in order to inform the host the
878 stub is stopped. TAAn...:r...;n...:r...;n...:r...;
879 AA = signal number
880 n... = register number (hex)
881 r... = register contents
882 n... = `thread'
883 r... = thread process ID. This is a hex integer.
884 n... = other string not starting with valid hex digit.
885 gdb should ignore this n,r pair and go on to the next.
886 This way we can extend the protocol. */
887static void
888stub_is_stopped(int sigval)
889{
890 char *ptr = remcomOutBuffer;
891 int regno;
892
893 unsigned int reg_cont;
894 int status;
895
896 /* Send trap type (converted to signal) */
897
898 *ptr++ = 'T';
899 *ptr++ = highhex (sigval);
900 *ptr++ = lowhex (sigval);
901
902 /* Send register contents. We probably only need to send the
903 * PC, frame pointer and stack pointer here. Other registers will be
Jean Delvarec03983a2007-10-19 23:22:55 +0200904 * explicitly asked for. But for now, send all.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905 */
906
907 for (regno = R0; regno <= USP; regno++) {
908 /* Store n...:r...; for the registers in the buffer. */
909
910 status = read_register (regno, &reg_cont);
911
912 if (status == SUCCESS) {
913
914 *ptr++ = highhex (regno);
915 *ptr++ = lowhex (regno);
916 *ptr++ = ':';
917
918 ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
919 register_size[regno]);
920 *ptr++ = ';';
921 }
922
923 }
924
925#ifdef PROCESS_SUPPORT
926 /* Store the registers of the executing thread. Assume that both step,
927 continue, and register content requests are with respect to this
928 thread. The executing task is from the operating system scheduler. */
929
930 current_thread_c = executing_task;
931 current_thread_g = executing_task;
932
933 /* A struct assignment translates into a libc memcpy call. Avoid
934 all libc functions in order to prevent recursive break points. */
935 copy_registers (&reg_g, &reg, sizeof(registers));
936
937 /* Store thread:r...; with the executing task TID. */
938 gdb_cris_strcpy (&remcomOutBuffer[pos], "thread:");
939 pos += gdb_cris_strlen ("thread:");
940 remcomOutBuffer[pos++] = highhex (executing_task);
941 remcomOutBuffer[pos++] = lowhex (executing_task);
942 gdb_cris_strcpy (&remcomOutBuffer[pos], ";");
943#endif
944
945 /* null-terminate and send it off */
946
947 *ptr = 0;
948
949 putpacket (remcomOutBuffer);
950}
951
952/* All expected commands are sent from remote.c. Send a response according
953 to the description in remote.c. */
954static void
955handle_exception (int sigval)
956{
957 /* Avoid warning of not used. */
958
959 USEDFUN(handle_exception);
960 USEDVAR(internal_stack[0]);
961
962 /* Send response. */
963
964 stub_is_stopped (sigval);
965
966 for (;;) {
967 remcomOutBuffer[0] = '\0';
968 getpacket (remcomInBuffer);
969 switch (remcomInBuffer[0]) {
970 case 'g':
971 /* Read registers: g
972 Success: Each byte of register data is described by two hex digits.
973 Registers are in the internal order for GDB, and the bytes
974 in a register are in the same order the machine uses.
975 Failure: void. */
976
977 {
978#ifdef PROCESS_SUPPORT
979 /* Use the special register content in the executing thread. */
980 copy_registers (&reg_g, &reg, sizeof(registers));
981 /* Replace the content available on the stack. */
982 if (current_thread_g != executing_task) {
983 copy_registers_from_stack (current_thread_g, &reg_g);
984 }
985 mem2hex ((unsigned char *)remcomOutBuffer, (unsigned char *)&reg_g, sizeof(registers));
986#else
987 mem2hex(remcomOutBuffer, (char *)&reg, sizeof(registers));
988#endif
989 }
990 break;
991
992 case 'G':
993 /* Write registers. GXX..XX
994 Each byte of register data is described by two hex digits.
995 Success: OK
996 Failure: void. */
997#ifdef PROCESS_SUPPORT
998 hex2mem ((unsigned char *)&reg_g, &remcomInBuffer[1], sizeof(registers));
999 if (current_thread_g == executing_task) {
1000 copy_registers (&reg, &reg_g, sizeof(registers));
1001 }
1002 else {
1003 copy_registers_to_stack(current_thread_g, &reg_g);
1004 }
1005#else
1006 hex2mem((char *)&reg, &remcomInBuffer[1], sizeof(registers));
1007#endif
1008 gdb_cris_strcpy (remcomOutBuffer, "OK");
1009 break;
1010
1011 case 'P':
1012 /* Write register. Pn...=r...
1013 Write register n..., hex value without 0x, with value r...,
1014 which contains a hex value without 0x and two hex digits
1015 for each byte in the register (target byte order). P1f=11223344 means
1016 set register 31 to 44332211.
1017 Success: OK
1018 Failure: E02, E05 */
1019 {
1020 char *suffix;
1021 int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
1022 int status;
1023#ifdef PROCESS_SUPPORT
1024 if (current_thread_g != executing_task)
1025 status = write_stack_register (current_thread_g, regno, suffix+1);
1026 else
1027#endif
1028 status = write_register (regno, suffix+1);
1029
1030 switch (status) {
1031 case E02:
1032 /* Do not support read-only registers. */
1033 gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
1034 break;
1035 case E05:
1036 /* Do not support non-existing registers. */
1037 gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
1038 break;
1039 case E07:
1040 /* Do not support non-existing registers on the stack. */
1041 gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
1042 break;
1043 default:
1044 /* Valid register number. */
1045 gdb_cris_strcpy (remcomOutBuffer, "OK");
1046 break;
1047 }
1048 }
1049 break;
1050
1051 case 'm':
1052 /* Read from memory. mAA..AA,LLLL
1053 AA..AA is the address and LLLL is the length.
1054 Success: XX..XX is the memory content. Can be fewer bytes than
1055 requested if only part of the data may be read. m6000120a,6c means
1056 retrieve 108 byte from base address 6000120a.
1057 Failure: void. */
1058 {
1059 char *suffix;
1060 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1061 &suffix, 16); int length = gdb_cris_strtol(suffix+1, 0, 16);
1062
1063 mem2hex(remcomOutBuffer, addr, length);
1064 }
1065 break;
1066
1067 case 'X':
1068 /* Write to memory. XAA..AA,LLLL:XX..XX
1069 AA..AA is the start address, LLLL is the number of bytes, and
1070 XX..XX is the binary data.
1071 Success: OK
1072 Failure: void. */
1073 case 'M':
1074 /* Write to memory. MAA..AA,LLLL:XX..XX
1075 AA..AA is the start address, LLLL is the number of bytes, and
1076 XX..XX is the hexadecimal data.
1077 Success: OK
1078 Failure: void. */
1079 {
1080 char *lenptr;
1081 char *dataptr;
1082 unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
1083 &lenptr, 16);
1084 int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
1085 if (*lenptr == ',' && *dataptr == ':') {
1086 if (remcomInBuffer[0] == 'M') {
1087 hex2mem(addr, dataptr + 1, length);
1088 }
1089 else /* X */ {
1090 bin2mem(addr, dataptr + 1, length);
1091 }
1092 gdb_cris_strcpy (remcomOutBuffer, "OK");
1093 }
1094 else {
1095 gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
1096 }
1097 }
1098 break;
1099
1100 case 'c':
1101 /* Continue execution. cAA..AA
1102 AA..AA is the address where execution is resumed. If AA..AA is
1103 omitted, resume at the present address.
1104 Success: return to the executing thread.
1105 Failure: will never know. */
1106 if (remcomInBuffer[1] != '\0') {
1107 reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1108 }
1109 enableDebugIRQ();
1110 return;
1111
1112 case 's':
1113 /* Step. sAA..AA
1114 AA..AA is the address where execution is resumed. If AA..AA is
1115 omitted, resume at the present address. Success: return to the
1116 executing thread. Failure: will never know.
1117
1118 Should never be invoked. The single-step is implemented on
1119 the host side. If ever invoked, it is an internal error E04. */
1120 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1121 putpacket (remcomOutBuffer);
1122 return;
1123
1124 case '?':
1125 /* The last signal which caused a stop. ?
1126 Success: SAA, where AA is the signal number.
1127 Failure: void. */
1128 remcomOutBuffer[0] = 'S';
1129 remcomOutBuffer[1] = highhex (sigval);
1130 remcomOutBuffer[2] = lowhex (sigval);
1131 remcomOutBuffer[3] = 0;
1132 break;
1133
1134 case 'D':
1135 /* Detach from host. D
1136 Success: OK, and return to the executing thread.
1137 Failure: will never know */
1138 putpacket ("OK");
1139 return;
1140
1141 case 'k':
1142 case 'r':
1143 /* kill request or reset request.
1144 Success: restart of target.
1145 Failure: will never know. */
1146 kill_restart ();
1147 break;
1148
1149 case 'C':
1150 case 'S':
1151 case '!':
1152 case 'R':
1153 case 'd':
1154 /* Continue with signal sig. Csig;AA..AA
1155 Step with signal sig. Ssig;AA..AA
1156 Use the extended remote protocol. !
1157 Restart the target system. R0
1158 Toggle debug flag. d
1159 Search backwards. tAA:PP,MM
1160 Not supported: E04 */
1161 gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
1162 break;
1163#ifdef PROCESS_SUPPORT
1164
1165 case 'T':
1166 /* Thread alive. TXX
1167 Is thread XX alive?
1168 Success: OK, thread XX is alive.
1169 Failure: E03, thread XX is dead. */
1170 {
1171 int thread_id = (int)gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
1172 /* Cannot tell whether it is alive or not. */
1173 if (thread_id >= 0 && thread_id < number_of_tasks)
1174 gdb_cris_strcpy (remcomOutBuffer, "OK");
1175 }
1176 break;
1177
1178 case 'H':
1179 /* Set thread for subsequent operations: Hct
1180 c = 'c' for thread used in step and continue;
1181 t can be -1 for all threads.
1182 c = 'g' for thread used in other operations.
1183 t = 0 means pick any thread.
1184 Success: OK
1185 Failure: E01 */
1186 {
1187 int thread_id = gdb_cris_strtol (&remcomInBuffer[2], 0, 16);
1188 if (remcomInBuffer[1] == 'c') {
1189 /* c = 'c' for thread used in step and continue */
1190 /* Do not change current_thread_c here. It would create a mess in
1191 the scheduler. */
1192 gdb_cris_strcpy (remcomOutBuffer, "OK");
1193 }
1194 else if (remcomInBuffer[1] == 'g') {
1195 /* c = 'g' for thread used in other operations.
1196 t = 0 means pick any thread. Impossible since the scheduler does
1197 not allow that. */
1198 if (thread_id >= 0 && thread_id < number_of_tasks) {
1199 current_thread_g = thread_id;
1200 gdb_cris_strcpy (remcomOutBuffer, "OK");
1201 }
1202 else {
1203 /* Not expected - send an error message. */
1204 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1205 }
1206 }
1207 else {
1208 /* Not expected - send an error message. */
1209 gdb_cris_strcpy (remcomOutBuffer, error_message[E01]);
1210 }
1211 }
1212 break;
1213
1214 case 'q':
1215 case 'Q':
1216 /* Query of general interest. qXXXX
1217 Set general value XXXX. QXXXX=yyyy */
1218 {
1219 int pos;
1220 int nextpos;
1221 int thread_id;
1222
1223 switch (remcomInBuffer[1]) {
1224 case 'C':
1225 /* Identify the remote current thread. */
1226 gdb_cris_strcpy (&remcomOutBuffer[0], "QC");
1227 remcomOutBuffer[2] = highhex (current_thread_c);
1228 remcomOutBuffer[3] = lowhex (current_thread_c);
1229 remcomOutBuffer[4] = '\0';
1230 break;
1231 case 'L':
1232 gdb_cris_strcpy (&remcomOutBuffer[0], "QM");
1233 /* Reply with number of threads. */
1234 if (os_is_started()) {
1235 remcomOutBuffer[2] = highhex (number_of_tasks);
1236 remcomOutBuffer[3] = lowhex (number_of_tasks);
1237 }
1238 else {
1239 remcomOutBuffer[2] = highhex (0);
1240 remcomOutBuffer[3] = lowhex (1);
1241 }
1242 /* Done with the reply. */
1243 remcomOutBuffer[4] = lowhex (1);
1244 pos = 5;
1245 /* Expects the argument thread id. */
1246 for (; pos < (5 + HEXCHARS_IN_THREAD_ID); pos++)
1247 remcomOutBuffer[pos] = remcomInBuffer[pos];
1248 /* Reply with the thread identifiers. */
1249 if (os_is_started()) {
1250 /* Store the thread identifiers of all tasks. */
1251 for (thread_id = 0; thread_id < number_of_tasks; thread_id++) {
1252 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1253 for (; pos < nextpos; pos ++)
1254 remcomOutBuffer[pos] = lowhex (0);
1255 remcomOutBuffer[pos++] = lowhex (thread_id);
1256 }
1257 }
1258 else {
1259 /* Store the thread identifier of the boot task. */
1260 nextpos = pos + HEXCHARS_IN_THREAD_ID - 1;
1261 for (; pos < nextpos; pos ++)
1262 remcomOutBuffer[pos] = lowhex (0);
1263 remcomOutBuffer[pos++] = lowhex (current_thread_c);
1264 }
1265 remcomOutBuffer[pos] = '\0';
1266 break;
1267 default:
1268 /* Not supported: "" */
1269 /* Request information about section offsets: qOffsets. */
1270 remcomOutBuffer[0] = 0;
1271 break;
1272 }
1273 }
1274 break;
1275#endif /* PROCESS_SUPPORT */
1276
1277 default:
1278 /* The stub should ignore other request and send an empty
1279 response ($#<checksum>). This way we can extend the protocol and GDB
1280 can tell whether the stub it is talking to uses the old or the new. */
1281 remcomOutBuffer[0] = 0;
1282 break;
1283 }
1284 putpacket(remcomOutBuffer);
1285 }
1286}
1287
Mikael Starvik7cf32ca2005-07-27 11:44:38 -07001288/* Performs a complete re-start from scratch. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289static void
1290kill_restart ()
1291{
Mikael Starvik7cf32ca2005-07-27 11:44:38 -07001292 machine_restart("");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293}
1294
1295/********************************** Breakpoint *******************************/
1296/* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
1297 An internal stack is used by the stub. The register image of the caller is
1298 stored in the structure register_image.
1299 Interactive communication with the host is handled by handle_exception and
1300 finally the register image is restored. */
1301
1302void kgdb_handle_breakpoint(void);
1303
1304asm ("
1305 .global kgdb_handle_breakpoint
1306kgdb_handle_breakpoint:
1307;;
1308;; Response to the break-instruction
1309;;
1310;; Create a register image of the caller
1311;;
1312 move $dccr,[reg+0x5E] ; Save the flags in DCCR before disable interrupts
1313 di ; Disable interrupts
1314 move.d $r0,[reg] ; Save R0
1315 move.d $r1,[reg+0x04] ; Save R1
1316 move.d $r2,[reg+0x08] ; Save R2
1317 move.d $r3,[reg+0x0C] ; Save R3
1318 move.d $r4,[reg+0x10] ; Save R4
1319 move.d $r5,[reg+0x14] ; Save R5
1320 move.d $r6,[reg+0x18] ; Save R6
1321 move.d $r7,[reg+0x1C] ; Save R7
1322 move.d $r8,[reg+0x20] ; Save R8
1323 move.d $r9,[reg+0x24] ; Save R9
1324 move.d $r10,[reg+0x28] ; Save R10
1325 move.d $r11,[reg+0x2C] ; Save R11
1326 move.d $r12,[reg+0x30] ; Save R12
1327 move.d $r13,[reg+0x34] ; Save R13
1328 move.d $sp,[reg+0x38] ; Save SP (R14)
1329;; Due to the old assembler-versions BRP might not be recognized
1330 .word 0xE670 ; move brp,$r0
1331 subq 2,$r0 ; Set to address of previous instruction.
1332 move.d $r0,[reg+0x3c] ; Save the address in PC (R15)
1333 clear.b [reg+0x40] ; Clear P0
1334 move $vr,[reg+0x41] ; Save special register P1
1335 clear.w [reg+0x42] ; Clear P4
1336 move $ccr,[reg+0x44] ; Save special register CCR
1337 move $mof,[reg+0x46] ; P7
1338 clear.d [reg+0x4A] ; Clear P8
1339 move $ibr,[reg+0x4E] ; P9,
1340 move $irp,[reg+0x52] ; P10,
1341 move $srp,[reg+0x56] ; P11,
1342 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1343 ; P13, register DCCR already saved
1344;; Due to the old assembler-versions BRP might not be recognized
1345 .word 0xE670 ; move brp,r0
1346;; Static (compiled) breakpoints must return to the next instruction in order
1347;; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction
1348;; in order to execute it when execution is continued.
1349 test.b [is_dyn_brkp] ; Is this a dynamic breakpoint?
1350 beq is_static ; No, a static breakpoint
1351 nop
1352 subq 2,$r0 ; rerun the instruction the break replaced
1353is_static:
1354 moveq 1,$r1
1355 move.b $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint
1356 move.d $r0,[reg+0x62] ; Save the return address in BRP
1357 move $usp,[reg+0x66] ; USP
1358;;
1359;; Handle the communication
1360;;
1361 move.d internal_stack+1020,$sp ; Use the internal stack which grows upward
1362 moveq 5,$r10 ; SIGTRAP
1363 jsr handle_exception ; Interactive routine
1364;;
1365;; Return to the caller
1366;;
1367 move.d [reg],$r0 ; Restore R0
1368 move.d [reg+0x04],$r1 ; Restore R1
1369 move.d [reg+0x08],$r2 ; Restore R2
1370 move.d [reg+0x0C],$r3 ; Restore R3
1371 move.d [reg+0x10],$r4 ; Restore R4
1372 move.d [reg+0x14],$r5 ; Restore R5
1373 move.d [reg+0x18],$r6 ; Restore R6
1374 move.d [reg+0x1C],$r7 ; Restore R7
1375 move.d [reg+0x20],$r8 ; Restore R8
1376 move.d [reg+0x24],$r9 ; Restore R9
1377 move.d [reg+0x28],$r10 ; Restore R10
1378 move.d [reg+0x2C],$r11 ; Restore R11
1379 move.d [reg+0x30],$r12 ; Restore R12
1380 move.d [reg+0x34],$r13 ; Restore R13
1381;;
1382;; FIXME: Which registers should be restored?
1383;;
1384 move.d [reg+0x38],$sp ; Restore SP (R14)
1385 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1386 move [reg+0x5E],$dccr ; Restore DCCR
1387 move [reg+0x66],$usp ; Restore USP
1388 jump [reg+0x62] ; A jump to the content in register BRP works.
1389 nop ;
1390");
1391
1392/* The hook for an interrupt generated by GDB. An internal stack is used
1393 by the stub. The register image of the caller is stored in the structure
1394 register_image. Interactive communication with the host is handled by
1395 handle_exception and finally the register image is restored. Due to the
1396 old assembler which does not recognise the break instruction and the
1397 breakpoint return pointer hex-code is used. */
1398
1399void kgdb_handle_serial(void);
1400
1401asm ("
1402 .global kgdb_handle_serial
1403kgdb_handle_serial:
1404;;
1405;; Response to a serial interrupt
1406;;
1407
1408 move $dccr,[reg+0x5E] ; Save the flags in DCCR
1409 di ; Disable interrupts
1410 move.d $r0,[reg] ; Save R0
1411 move.d $r1,[reg+0x04] ; Save R1
1412 move.d $r2,[reg+0x08] ; Save R2
1413 move.d $r3,[reg+0x0C] ; Save R3
1414 move.d $r4,[reg+0x10] ; Save R4
1415 move.d $r5,[reg+0x14] ; Save R5
1416 move.d $r6,[reg+0x18] ; Save R6
1417 move.d $r7,[reg+0x1C] ; Save R7
1418 move.d $r8,[reg+0x20] ; Save R8
1419 move.d $r9,[reg+0x24] ; Save R9
1420 move.d $r10,[reg+0x28] ; Save R10
1421 move.d $r11,[reg+0x2C] ; Save R11
1422 move.d $r12,[reg+0x30] ; Save R12
1423 move.d $r13,[reg+0x34] ; Save R13
1424 move.d $sp,[reg+0x38] ; Save SP (R14)
1425 move $irp,[reg+0x3c] ; Save the address in PC (R15)
1426 clear.b [reg+0x40] ; Clear P0
1427 move $vr,[reg+0x41] ; Save special register P1,
1428 clear.w [reg+0x42] ; Clear P4
1429 move $ccr,[reg+0x44] ; Save special register CCR
1430 move $mof,[reg+0x46] ; P7
1431 clear.d [reg+0x4A] ; Clear P8
1432 move $ibr,[reg+0x4E] ; P9,
1433 move $irp,[reg+0x52] ; P10,
1434 move $srp,[reg+0x56] ; P11,
1435 move $dtp0,[reg+0x5A] ; P12, register BAR, assembler might not know BAR
1436 ; P13, register DCCR already saved
1437;; Due to the old assembler-versions BRP might not be recognized
1438 .word 0xE670 ; move brp,r0
1439 move.d $r0,[reg+0x62] ; Save the return address in BRP
1440 move $usp,[reg+0x66] ; USP
1441
1442;; get the serial character (from debugport.c) and check if it is a ctrl-c
1443
1444 jsr getDebugChar
1445 cmp.b 3, $r10
1446 bne goback
1447 nop
1448
Mikael Starvik7cf32ca2005-07-27 11:44:38 -07001449 move.d [reg+0x5E], $r10 ; Get DCCR
1450 btstq 8, $r10 ; Test the U-flag.
1451 bmi goback
1452 nop
1453
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454;;
1455;; Handle the communication
1456;;
1457 move.d internal_stack+1020,$sp ; Use the internal stack
1458 moveq 2,$r10 ; SIGINT
1459 jsr handle_exception ; Interactive routine
1460
1461goback:
1462;;
1463;; Return to the caller
1464;;
1465 move.d [reg],$r0 ; Restore R0
1466 move.d [reg+0x04],$r1 ; Restore R1
1467 move.d [reg+0x08],$r2 ; Restore R2
1468 move.d [reg+0x0C],$r3 ; Restore R3
1469 move.d [reg+0x10],$r4 ; Restore R4
1470 move.d [reg+0x14],$r5 ; Restore R5
1471 move.d [reg+0x18],$r6 ; Restore R6
1472 move.d [reg+0x1C],$r7 ; Restore R7
1473 move.d [reg+0x20],$r8 ; Restore R8
1474 move.d [reg+0x24],$r9 ; Restore R9
1475 move.d [reg+0x28],$r10 ; Restore R10
1476 move.d [reg+0x2C],$r11 ; Restore R11
1477 move.d [reg+0x30],$r12 ; Restore R12
1478 move.d [reg+0x34],$r13 ; Restore R13
1479;;
1480;; FIXME: Which registers should be restored?
1481;;
1482 move.d [reg+0x38],$sp ; Restore SP (R14)
1483 move [reg+0x56],$srp ; Restore the subroutine return pointer.
1484 move [reg+0x5E],$dccr ; Restore DCCR
1485 move [reg+0x66],$usp ; Restore USP
1486 reti ; Return from the interrupt routine
1487 nop
1488");
1489
1490/* Use this static breakpoint in the start-up only. */
1491
1492void
1493breakpoint(void)
1494{
1495 kgdb_started = 1;
1496 is_dyn_brkp = 0; /* This is a static, not a dynamic breakpoint. */
1497 __asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1498}
1499
1500/* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1501
1502void
1503kgdb_init(void)
1504{
1505 /* could initialize debug port as well but it's done in head.S already... */
1506
1507 /* breakpoint handler is now set in irq.c */
1508 set_int_vector(8, kgdb_handle_serial);
1509
1510 enableDebugIRQ();
1511}
1512
1513/****************************** End of file **********************************/