| Joachim Fritschi | b9f535f | 2006-06-20 20:59:16 +1000 | [diff] [blame] | 1 | /*************************************************************************** | 
 | 2 | *   Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de>        * | 
 | 3 | *                                                                         * | 
 | 4 | *   This program is free software; you can redistribute it and/or modify  * | 
 | 5 | *   it under the terms of the GNU General Public License as published by  * | 
 | 6 | *   the Free Software Foundation; either version 2 of the License, or     * | 
 | 7 | *   (at your option) any later version.                                   * | 
 | 8 | *                                                                         * | 
 | 9 | *   This program is distributed in the hope that it will be useful,       * | 
 | 10 | *   but WITHOUT ANY WARRANTY; without even the implied warranty of        * | 
 | 11 | *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         * | 
 | 12 | *   GNU General Public License for more details.                          * | 
 | 13 | *                                                                         * | 
 | 14 | *   You should have received a copy of the GNU General Public License     * | 
 | 15 | *   along with this program; if not, write to the                         * | 
 | 16 | *   Free Software Foundation, Inc.,                                       * | 
 | 17 | *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             * | 
 | 18 | ***************************************************************************/ | 
 | 19 |  | 
 | 20 | .file "twofish-i586-asm.S" | 
 | 21 | .text | 
 | 22 |  | 
 | 23 | #include <asm/asm-offsets.h> | 
 | 24 |  | 
 | 25 | /* return adress at 0 */ | 
 | 26 |  | 
 | 27 | #define in_blk    12  /* input byte array address parameter*/ | 
 | 28 | #define out_blk   8  /* output byte array address parameter*/ | 
 | 29 | #define tfm       4  /* Twofish context structure */ | 
 | 30 |  | 
 | 31 | #define a_offset	0 | 
 | 32 | #define b_offset	4 | 
 | 33 | #define c_offset	8 | 
 | 34 | #define d_offset	12 | 
 | 35 |  | 
 | 36 | /* Structure of the crypto context struct*/ | 
 | 37 |  | 
 | 38 | #define s0	0	/* S0 Array 256 Words each */ | 
 | 39 | #define s1	1024	/* S1 Array */ | 
 | 40 | #define s2	2048	/* S2 Array */ | 
 | 41 | #define s3	3072	/* S3 Array */ | 
 | 42 | #define w	4096	/* 8 whitening keys (word) */ | 
 | 43 | #define k	4128	/* key 1-32 ( word ) */ | 
 | 44 |  | 
 | 45 | /* define a few register aliases to allow macro substitution */ | 
 | 46 |  | 
 | 47 | #define R0D    %eax | 
 | 48 | #define R0B    %al | 
 | 49 | #define R0H    %ah | 
 | 50 |  | 
 | 51 | #define R1D    %ebx | 
 | 52 | #define R1B    %bl | 
 | 53 | #define R1H    %bh | 
 | 54 |  | 
 | 55 | #define R2D    %ecx | 
 | 56 | #define R2B    %cl | 
 | 57 | #define R2H    %ch | 
 | 58 |  | 
 | 59 | #define R3D    %edx | 
 | 60 | #define R3B    %dl | 
 | 61 | #define R3H    %dh | 
 | 62 |  | 
 | 63 |  | 
 | 64 | /* performs input whitening */ | 
 | 65 | #define input_whitening(src,context,offset)\ | 
 | 66 | 	xor	w+offset(context),	src; | 
 | 67 |  | 
 | 68 | /* performs input whitening */ | 
 | 69 | #define output_whitening(src,context,offset)\ | 
 | 70 | 	xor	w+16+offset(context),	src; | 
 | 71 |  | 
 | 72 | /* | 
 | 73 |  * a input register containing a (rotated 16) | 
 | 74 |  * b input register containing b | 
 | 75 |  * c input register containing c | 
 | 76 |  * d input register containing d (already rol $1) | 
 | 77 |  * operations on a and b are interleaved to increase performance | 
 | 78 |  */ | 
 | 79 | #define encrypt_round(a,b,c,d,round)\ | 
 | 80 | 	push	d ## D;\ | 
 | 81 | 	movzx	b ## B,		%edi;\ | 
 | 82 | 	mov	s1(%ebp,%edi,4),d ## D;\ | 
 | 83 | 	movzx	a ## B,		%edi;\ | 
 | 84 | 	mov	s2(%ebp,%edi,4),%esi;\ | 
 | 85 | 	movzx	b ## H,		%edi;\ | 
 | 86 | 	ror	$16,		b ## D;\ | 
 | 87 | 	xor	s2(%ebp,%edi,4),d ## D;\ | 
 | 88 | 	movzx	a ## H,		%edi;\ | 
 | 89 | 	ror	$16,		a ## D;\ | 
 | 90 | 	xor	s3(%ebp,%edi,4),%esi;\ | 
 | 91 | 	movzx	b ## B,		%edi;\ | 
 | 92 | 	xor	s3(%ebp,%edi,4),d ## D;\ | 
 | 93 | 	movzx	a ## B,		%edi;\ | 
 | 94 | 	xor	(%ebp,%edi,4),	%esi;\ | 
 | 95 | 	movzx	b ## H,		%edi;\ | 
 | 96 | 	ror	$15,		b ## D;\ | 
 | 97 | 	xor	(%ebp,%edi,4),	d ## D;\ | 
 | 98 | 	movzx	a ## H,		%edi;\ | 
 | 99 | 	xor	s1(%ebp,%edi,4),%esi;\ | 
 | 100 | 	pop	%edi;\ | 
 | 101 | 	add	d ## D,		%esi;\ | 
 | 102 | 	add	%esi,		d ## D;\ | 
 | 103 | 	add	k+round(%ebp),	%esi;\ | 
 | 104 | 	xor	%esi,		c ## D;\ | 
 | 105 | 	rol	$15,		c ## D;\ | 
 | 106 | 	add	k+4+round(%ebp),d ## D;\ | 
 | 107 | 	xor	%edi,		d ## D; | 
 | 108 |  | 
 | 109 | /* | 
 | 110 |  * a input register containing a (rotated 16) | 
 | 111 |  * b input register containing b | 
 | 112 |  * c input register containing c | 
 | 113 |  * d input register containing d (already rol $1) | 
 | 114 |  * operations on a and b are interleaved to increase performance | 
 | 115 |  * last round has different rotations for the output preparation | 
 | 116 |  */ | 
 | 117 | #define encrypt_last_round(a,b,c,d,round)\ | 
 | 118 | 	push	d ## D;\ | 
 | 119 | 	movzx	b ## B,		%edi;\ | 
 | 120 | 	mov	s1(%ebp,%edi,4),d ## D;\ | 
 | 121 | 	movzx	a ## B,		%edi;\ | 
 | 122 | 	mov	s2(%ebp,%edi,4),%esi;\ | 
 | 123 | 	movzx	b ## H,		%edi;\ | 
 | 124 | 	ror	$16,		b ## D;\ | 
 | 125 | 	xor	s2(%ebp,%edi,4),d ## D;\ | 
 | 126 | 	movzx	a ## H,		%edi;\ | 
 | 127 | 	ror	$16,		a ## D;\ | 
 | 128 | 	xor	s3(%ebp,%edi,4),%esi;\ | 
 | 129 | 	movzx	b ## B,		%edi;\ | 
 | 130 | 	xor	s3(%ebp,%edi,4),d ## D;\ | 
 | 131 | 	movzx	a ## B,		%edi;\ | 
 | 132 | 	xor	(%ebp,%edi,4),	%esi;\ | 
 | 133 | 	movzx	b ## H,		%edi;\ | 
 | 134 | 	ror	$16,		b ## D;\ | 
 | 135 | 	xor	(%ebp,%edi,4),	d ## D;\ | 
 | 136 | 	movzx	a ## H,		%edi;\ | 
 | 137 | 	xor	s1(%ebp,%edi,4),%esi;\ | 
 | 138 | 	pop	%edi;\ | 
 | 139 | 	add	d ## D,		%esi;\ | 
 | 140 | 	add	%esi,		d ## D;\ | 
 | 141 | 	add	k+round(%ebp),	%esi;\ | 
 | 142 | 	xor	%esi,		c ## D;\ | 
 | 143 | 	ror	$1,		c ## D;\ | 
 | 144 | 	add	k+4+round(%ebp),d ## D;\ | 
 | 145 | 	xor	%edi,		d ## D; | 
 | 146 |  | 
 | 147 | /* | 
 | 148 |  * a input register containing a | 
 | 149 |  * b input register containing b (rotated 16) | 
 | 150 |  * c input register containing c | 
 | 151 |  * d input register containing d (already rol $1) | 
 | 152 |  * operations on a and b are interleaved to increase performance | 
 | 153 |  */ | 
 | 154 | #define decrypt_round(a,b,c,d,round)\ | 
 | 155 | 	push	c ## D;\ | 
 | 156 | 	movzx	a ## B,		%edi;\ | 
 | 157 | 	mov	(%ebp,%edi,4),	c ## D;\ | 
 | 158 | 	movzx	b ## B,		%edi;\ | 
 | 159 | 	mov	s3(%ebp,%edi,4),%esi;\ | 
 | 160 | 	movzx	a ## H,		%edi;\ | 
 | 161 | 	ror	$16,		a ## D;\ | 
 | 162 | 	xor	s1(%ebp,%edi,4),c ## D;\ | 
 | 163 | 	movzx	b ## H,		%edi;\ | 
 | 164 | 	ror	$16,		b ## D;\ | 
 | 165 | 	xor	(%ebp,%edi,4),	%esi;\ | 
 | 166 | 	movzx	a ## B,		%edi;\ | 
 | 167 | 	xor	s2(%ebp,%edi,4),c ## D;\ | 
 | 168 | 	movzx	b ## B,		%edi;\ | 
 | 169 | 	xor	s1(%ebp,%edi,4),%esi;\ | 
 | 170 | 	movzx	a ## H,		%edi;\ | 
 | 171 | 	ror	$15,		a ## D;\ | 
 | 172 | 	xor	s3(%ebp,%edi,4),c ## D;\ | 
 | 173 | 	movzx	b ## H,		%edi;\ | 
 | 174 | 	xor	s2(%ebp,%edi,4),%esi;\ | 
 | 175 | 	pop	%edi;\ | 
 | 176 | 	add	%esi,		c ## D;\ | 
 | 177 | 	add	c ## D,		%esi;\ | 
 | 178 | 	add	k+round(%ebp),	c ## D;\ | 
 | 179 | 	xor	%edi,		c ## D;\ | 
 | 180 | 	add	k+4+round(%ebp),%esi;\ | 
 | 181 | 	xor	%esi,		d ## D;\ | 
 | 182 | 	rol	$15,		d ## D; | 
 | 183 |  | 
 | 184 | /* | 
 | 185 |  * a input register containing a | 
 | 186 |  * b input register containing b (rotated 16) | 
 | 187 |  * c input register containing c | 
 | 188 |  * d input register containing d (already rol $1) | 
 | 189 |  * operations on a and b are interleaved to increase performance | 
 | 190 |  * last round has different rotations for the output preparation | 
 | 191 |  */ | 
 | 192 | #define decrypt_last_round(a,b,c,d,round)\ | 
 | 193 | 	push	c ## D;\ | 
 | 194 | 	movzx	a ## B,		%edi;\ | 
 | 195 | 	mov	(%ebp,%edi,4),	c ## D;\ | 
 | 196 | 	movzx	b ## B,		%edi;\ | 
 | 197 | 	mov	s3(%ebp,%edi,4),%esi;\ | 
 | 198 | 	movzx	a ## H,		%edi;\ | 
 | 199 | 	ror	$16,		a ## D;\ | 
 | 200 | 	xor	s1(%ebp,%edi,4),c ## D;\ | 
 | 201 | 	movzx	b ## H,		%edi;\ | 
 | 202 | 	ror	$16,		b ## D;\ | 
 | 203 | 	xor	(%ebp,%edi,4),	%esi;\ | 
 | 204 | 	movzx	a ## B,		%edi;\ | 
 | 205 | 	xor	s2(%ebp,%edi,4),c ## D;\ | 
 | 206 | 	movzx	b ## B,		%edi;\ | 
 | 207 | 	xor	s1(%ebp,%edi,4),%esi;\ | 
 | 208 | 	movzx	a ## H,		%edi;\ | 
 | 209 | 	ror	$16,		a ## D;\ | 
 | 210 | 	xor	s3(%ebp,%edi,4),c ## D;\ | 
 | 211 | 	movzx	b ## H,		%edi;\ | 
 | 212 | 	xor	s2(%ebp,%edi,4),%esi;\ | 
 | 213 | 	pop	%edi;\ | 
 | 214 | 	add	%esi,		c ## D;\ | 
 | 215 | 	add	c ## D,		%esi;\ | 
 | 216 | 	add	k+round(%ebp),	c ## D;\ | 
 | 217 | 	xor	%edi,		c ## D;\ | 
 | 218 | 	add	k+4+round(%ebp),%esi;\ | 
 | 219 | 	xor	%esi,		d ## D;\ | 
 | 220 | 	ror	$1,		d ## D; | 
 | 221 |  | 
 | 222 | .align 4 | 
 | 223 | .global twofish_enc_blk | 
 | 224 | .global twofish_dec_blk | 
 | 225 |  | 
 | 226 | twofish_enc_blk: | 
 | 227 | 	push	%ebp			/* save registers according to calling convention*/ | 
 | 228 | 	push    %ebx | 
 | 229 | 	push    %esi | 
 | 230 | 	push    %edi | 
 | 231 |  | 
 | 232 | 	mov	tfm + 16(%esp),	%ebp	/* abuse the base pointer: set new base bointer to the crypto tfm */ | 
 | 233 | 	add	$crypto_tfm_ctx_offset, %ebp	/* ctx adress */ | 
 | 234 | 	mov     in_blk+16(%esp),%edi	/* input adress in edi */ | 
 | 235 |  | 
 | 236 | 	mov	(%edi),		%eax | 
 | 237 | 	mov	b_offset(%edi),	%ebx | 
 | 238 | 	mov	c_offset(%edi),	%ecx | 
 | 239 | 	mov	d_offset(%edi),	%edx | 
 | 240 | 	input_whitening(%eax,%ebp,a_offset) | 
 | 241 | 	ror	$16,	%eax | 
 | 242 | 	input_whitening(%ebx,%ebp,b_offset) | 
 | 243 | 	input_whitening(%ecx,%ebp,c_offset) | 
 | 244 | 	input_whitening(%edx,%ebp,d_offset) | 
 | 245 | 	rol	$1,	%edx | 
 | 246 |  | 
 | 247 | 	encrypt_round(R0,R1,R2,R3,0); | 
 | 248 | 	encrypt_round(R2,R3,R0,R1,8); | 
 | 249 | 	encrypt_round(R0,R1,R2,R3,2*8); | 
 | 250 | 	encrypt_round(R2,R3,R0,R1,3*8); | 
 | 251 | 	encrypt_round(R0,R1,R2,R3,4*8); | 
 | 252 | 	encrypt_round(R2,R3,R0,R1,5*8); | 
 | 253 | 	encrypt_round(R0,R1,R2,R3,6*8); | 
 | 254 | 	encrypt_round(R2,R3,R0,R1,7*8); | 
 | 255 | 	encrypt_round(R0,R1,R2,R3,8*8); | 
 | 256 | 	encrypt_round(R2,R3,R0,R1,9*8); | 
 | 257 | 	encrypt_round(R0,R1,R2,R3,10*8); | 
 | 258 | 	encrypt_round(R2,R3,R0,R1,11*8); | 
 | 259 | 	encrypt_round(R0,R1,R2,R3,12*8); | 
 | 260 | 	encrypt_round(R2,R3,R0,R1,13*8); | 
 | 261 | 	encrypt_round(R0,R1,R2,R3,14*8); | 
 | 262 | 	encrypt_last_round(R2,R3,R0,R1,15*8); | 
 | 263 |  | 
 | 264 | 	output_whitening(%eax,%ebp,c_offset) | 
 | 265 | 	output_whitening(%ebx,%ebp,d_offset) | 
 | 266 | 	output_whitening(%ecx,%ebp,a_offset) | 
 | 267 | 	output_whitening(%edx,%ebp,b_offset) | 
 | 268 | 	mov	out_blk+16(%esp),%edi; | 
 | 269 | 	mov	%eax,		c_offset(%edi) | 
 | 270 | 	mov	%ebx,		d_offset(%edi) | 
 | 271 | 	mov	%ecx,		(%edi) | 
 | 272 | 	mov	%edx,		b_offset(%edi) | 
 | 273 |  | 
 | 274 | 	pop	%edi | 
 | 275 | 	pop	%esi | 
 | 276 | 	pop	%ebx | 
 | 277 | 	pop	%ebp | 
 | 278 | 	mov	$1,	%eax | 
 | 279 | 	ret | 
 | 280 |  | 
 | 281 | twofish_dec_blk: | 
 | 282 | 	push	%ebp			/* save registers according to calling convention*/ | 
 | 283 | 	push    %ebx | 
 | 284 | 	push    %esi | 
 | 285 | 	push    %edi | 
 | 286 |  | 
 | 287 |  | 
 | 288 | 	mov	tfm + 16(%esp),	%ebp	/* abuse the base pointer: set new base bointer to the crypto tfm */ | 
 | 289 | 	add	$crypto_tfm_ctx_offset, %ebp	/* ctx adress */ | 
 | 290 | 	mov     in_blk+16(%esp),%edi	/* input adress in edi */ | 
 | 291 |  | 
 | 292 | 	mov	(%edi),		%eax | 
 | 293 | 	mov	b_offset(%edi),	%ebx | 
 | 294 | 	mov	c_offset(%edi),	%ecx | 
 | 295 | 	mov	d_offset(%edi),	%edx | 
 | 296 | 	output_whitening(%eax,%ebp,a_offset) | 
 | 297 | 	output_whitening(%ebx,%ebp,b_offset) | 
 | 298 | 	ror	$16,	%ebx | 
 | 299 | 	output_whitening(%ecx,%ebp,c_offset) | 
 | 300 | 	output_whitening(%edx,%ebp,d_offset) | 
 | 301 | 	rol	$1,	%ecx | 
 | 302 |  | 
 | 303 | 	decrypt_round(R0,R1,R2,R3,15*8); | 
 | 304 | 	decrypt_round(R2,R3,R0,R1,14*8); | 
 | 305 | 	decrypt_round(R0,R1,R2,R3,13*8); | 
 | 306 | 	decrypt_round(R2,R3,R0,R1,12*8); | 
 | 307 | 	decrypt_round(R0,R1,R2,R3,11*8); | 
 | 308 | 	decrypt_round(R2,R3,R0,R1,10*8); | 
 | 309 | 	decrypt_round(R0,R1,R2,R3,9*8); | 
 | 310 | 	decrypt_round(R2,R3,R0,R1,8*8); | 
 | 311 | 	decrypt_round(R0,R1,R2,R3,7*8); | 
 | 312 | 	decrypt_round(R2,R3,R0,R1,6*8); | 
 | 313 | 	decrypt_round(R0,R1,R2,R3,5*8); | 
 | 314 | 	decrypt_round(R2,R3,R0,R1,4*8); | 
 | 315 | 	decrypt_round(R0,R1,R2,R3,3*8); | 
 | 316 | 	decrypt_round(R2,R3,R0,R1,2*8); | 
 | 317 | 	decrypt_round(R0,R1,R2,R3,1*8); | 
 | 318 | 	decrypt_last_round(R2,R3,R0,R1,0); | 
 | 319 |  | 
 | 320 | 	input_whitening(%eax,%ebp,c_offset) | 
 | 321 | 	input_whitening(%ebx,%ebp,d_offset) | 
 | 322 | 	input_whitening(%ecx,%ebp,a_offset) | 
 | 323 | 	input_whitening(%edx,%ebp,b_offset) | 
 | 324 | 	mov	out_blk+16(%esp),%edi; | 
 | 325 | 	mov	%eax,		c_offset(%edi) | 
 | 326 | 	mov	%ebx,		d_offset(%edi) | 
 | 327 | 	mov	%ecx,		(%edi) | 
 | 328 | 	mov	%edx,		b_offset(%edi) | 
 | 329 |  | 
 | 330 | 	pop	%edi | 
 | 331 | 	pop	%esi | 
 | 332 | 	pop	%ebx | 
 | 333 | 	pop	%ebp | 
 | 334 | 	mov	$1,	%eax | 
 | 335 | 	ret |