| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Basic one-word fraction declaration and manipulation. | 
|  | 3 | */ | 
|  | 4 |  | 
|  | 5 | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f | 
|  | 6 | #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f) | 
|  | 7 | #define _FP_FRAC_SET_1(X,I)	(X##_f = I) | 
|  | 8 | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
|  | 9 | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
|  | 10 | #define _FP_FRAC_WORD_1(X,w)	(X##_f) | 
|  | 11 |  | 
|  | 12 | #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I) | 
|  | 13 | #define _FP_FRAC_SLL_1(X,N)			\ | 
|  | 14 | do {						\ | 
|  | 15 | if (__builtin_constant_p(N) && (N) == 1)	\ | 
|  | 16 | X##_f += X##_f;				\ | 
|  | 17 | else					\ | 
|  | 18 | X##_f <<= (N);				\ | 
|  | 19 | } while (0) | 
|  | 20 | #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N) | 
|  | 21 |  | 
|  | 22 | /* Right shift with sticky-lsb.  */ | 
|  | 23 | #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz) | 
|  | 24 |  | 
|  | 25 | #define __FP_FRAC_SRS_1(X,N,sz)						\ | 
|  | 26 | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\ | 
|  | 27 | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
|  | 28 |  | 
|  | 29 | #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f) | 
|  | 30 | #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f) | 
|  | 31 | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f) | 
|  | 32 |  | 
|  | 33 | /* Predicates */ | 
|  | 34 | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0) | 
|  | 35 | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
|  | 36 | #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs) | 
|  | 37 | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
|  | 38 | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
|  | 39 | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
|  | 40 |  | 
|  | 41 | #define _FP_ZEROFRAC_1		0 | 
|  | 42 | #define _FP_MINFRAC_1		1 | 
|  | 43 |  | 
|  | 44 | /* | 
|  | 45 | * Unpack the raw bits of a native fp value.  Do not classify or | 
|  | 46 | * normalize the data. | 
|  | 47 | */ | 
|  | 48 |  | 
|  | 49 | #define _FP_UNPACK_RAW_1(fs, X, val)				\ | 
|  | 50 | do {								\ | 
|  | 51 | union _FP_UNION_##fs _flo; _flo.flt = (val);		\ | 
|  | 52 | \ | 
|  | 53 | X##_f = _flo.bits.frac;					\ | 
|  | 54 | X##_e = _flo.bits.exp;					\ | 
|  | 55 | X##_s = _flo.bits.sign;					\ | 
|  | 56 | } while (0) | 
|  | 57 |  | 
|  | 58 |  | 
|  | 59 | /* | 
|  | 60 | * Repack the raw bits of a native fp value. | 
|  | 61 | */ | 
|  | 62 |  | 
|  | 63 | #define _FP_PACK_RAW_1(fs, val, X)				\ | 
|  | 64 | do {								\ | 
|  | 65 | union _FP_UNION_##fs _flo;					\ | 
|  | 66 | \ | 
|  | 67 | _flo.bits.frac = X##_f;					\ | 
|  | 68 | _flo.bits.exp  = X##_e;					\ | 
|  | 69 | _flo.bits.sign = X##_s;					\ | 
|  | 70 | \ | 
|  | 71 | (val) = _flo.flt;						\ | 
|  | 72 | } while (0) | 
|  | 73 |  | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * Multiplication algorithms: | 
|  | 77 | */ | 
|  | 78 |  | 
|  | 79 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 80 | multiplication immediately.  */ | 
|  | 81 |  | 
|  | 82 | #define _FP_MUL_MEAT_1_imm(fs, R, X, Y)					\ | 
|  | 83 | do {									\ | 
|  | 84 | R##_f = X##_f * Y##_f;						\ | 
|  | 85 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 86 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 87 | at either 2B or 2B-1.  */					\ | 
|  | 88 | _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
|  | 89 | } while (0) | 
|  | 90 |  | 
|  | 91 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  | 92 |  | 
|  | 93 | #define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit)				\ | 
|  | 94 | do {									\ | 
|  | 95 | _FP_W_TYPE _Z_f0, _Z_f1;						\ | 
|  | 96 | doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\ | 
|  | 97 | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | 98 | were (bit B), we know that the msb of the of the product is	\ | 
|  | 99 | at either 2B or 2B-1.  */					\ | 
|  | 100 | _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
|  | 101 | R##_f = _Z_f0;							\ | 
|  | 102 | } while (0) | 
|  | 103 |  | 
|  | 104 | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
|  | 105 |  | 
|  | 106 | #define _FP_MUL_MEAT_1_hard(fs, R, X, Y)				\ | 
|  | 107 | do {									\ | 
|  | 108 | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\ | 
|  | 109 | \ | 
|  | 110 | /* split the words in half */					\ | 
|  | 111 | _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | 112 | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | 113 | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | 114 | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | 115 | \ | 
|  | 116 | /* multiply the pieces */						\ | 
|  | 117 | _z_f0 = _xl * _yl;							\ | 
|  | 118 | _a_f0 = _xh * _yl;							\ | 
|  | 119 | _a_f1 = _xl * _yh;							\ | 
|  | 120 | _z_f1 = _xh * _yh;							\ | 
|  | 121 | \ | 
|  | 122 | /* reassemble into two full words */				\ | 
|  | 123 | if ((_a_f0 += _a_f1) < _a_f1)					\ | 
|  | 124 | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\ | 
|  | 125 | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\ | 
|  | 126 | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\ | 
|  | 127 | _FP_FRAC_ADD_2(_z, _z, _a);						\ | 
|  | 128 | \ | 
|  | 129 | /* normalize */							\ | 
|  | 130 | _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs);	\ | 
|  | 131 | R##_f = _z_f0;							\ | 
|  | 132 | } while (0) | 
|  | 133 |  | 
|  | 134 |  | 
|  | 135 | /* | 
|  | 136 | * Division algorithms: | 
|  | 137 | */ | 
|  | 138 |  | 
|  | 139 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | 140 | division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
|  | 141 | C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
|  | 142 | choose will depend on what the compiler does with divrem4.  */ | 
|  | 143 |  | 
|  | 144 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\ | 
|  | 145 | do {							\ | 
|  | 146 | _FP_W_TYPE _q, _r;					\ | 
|  | 147 | X##_f <<= (X##_f < Y##_f				\ | 
|  | 148 | ? R##_e--, _FP_WFRACBITS_##fs		\ | 
|  | 149 | : _FP_WFRACBITS_##fs - 1);		\ | 
|  | 150 | doit(_q, _r, X##_f, Y##_f);				\ | 
|  | 151 | R##_f = _q | (_r != 0);				\ | 
|  | 152 | } while (0) | 
|  | 153 |  | 
|  | 154 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
|  | 155 | that may be useful in this situation.  This first is for a primitive | 
|  | 156 | that requires normalization, the second for one that does not.  Look | 
|  | 157 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
|  | 158 |  | 
|  | 159 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
|  | 160 | do {									\ | 
|  | 161 | _FP_W_TYPE _nh, _nl, _q, _r;					\ | 
|  | 162 | \ | 
|  | 163 | /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
|  | 164 | Y##_f <<= _FP_WFRACXBITS_##fs - 1;					\ | 
|  | 165 | \ | 
|  | 166 | /* Shift X op correspondingly high, that is, up one full word.  */	\ | 
|  | 167 | if (X##_f <= Y##_f)							\ | 
|  | 168 | {									\ | 
|  | 169 | _nl = 0;							\ | 
|  | 170 | _nh = X##_f;							\ | 
|  | 171 | }									\ | 
|  | 172 | else								\ | 
|  | 173 | {									\ | 
|  | 174 | R##_e++;							\ | 
|  | 175 | _nl = X##_f << (_FP_W_TYPE_SIZE-1);				\ | 
|  | 176 | _nh = X##_f >> 1;						\ | 
|  | 177 | }									\ | 
|  | 178 | \ | 
|  | 179 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);				\ | 
|  | 180 | R##_f = _q | (_r != 0);						\ | 
|  | 181 | } while (0) | 
|  | 182 |  | 
|  | 183 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\ | 
|  | 184 | do {							\ | 
|  | 185 | _FP_W_TYPE _nh, _nl, _q, _r;			\ | 
|  | 186 | if (X##_f < Y##_f)					\ | 
|  | 187 | {							\ | 
|  | 188 | R##_e--;					\ | 
|  | 189 | _nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
|  | 190 | _nh = X##_f >> _FP_WFRACXBITS_##fs;		\ | 
|  | 191 | }							\ | 
|  | 192 | else						\ | 
|  | 193 | {							\ | 
|  | 194 | _nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
|  | 195 | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
|  | 196 | }							\ | 
|  | 197 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\ | 
|  | 198 | R##_f = _q | (_r != 0);				\ | 
|  | 199 | } while (0) | 
|  | 200 |  | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * Square root algorithms: | 
|  | 204 | * We have just one right now, maybe Newton approximation | 
|  | 205 | * should be added for those machines where division is fast. | 
|  | 206 | */ | 
|  | 207 |  | 
|  | 208 | #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\ | 
|  | 209 | do {							\ | 
|  | 210 | while (q)						\ | 
|  | 211 | {							\ | 
|  | 212 | T##_f = S##_f + q;				\ | 
|  | 213 | if (T##_f <= X##_f)				\ | 
|  | 214 | {						\ | 
|  | 215 | S##_f = T##_f + q;				\ | 
|  | 216 | X##_f -= T##_f;				\ | 
|  | 217 | R##_f += q;					\ | 
|  | 218 | }						\ | 
|  | 219 | _FP_FRAC_SLL_1(X, 1);				\ | 
|  | 220 | q >>= 1;					\ | 
|  | 221 | }							\ | 
|  | 222 | } while (0) | 
|  | 223 |  | 
|  | 224 | /* | 
|  | 225 | * Assembly/disassembly for converting to/from integral types. | 
|  | 226 | * No shifting or overflow handled here. | 
|  | 227 | */ | 
|  | 228 |  | 
|  | 229 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f) | 
|  | 230 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r) | 
|  | 231 |  | 
|  | 232 |  | 
|  | 233 | /* | 
|  | 234 | * Convert FP values between word sizes | 
|  | 235 | */ | 
|  | 236 |  | 
|  | 237 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\ | 
|  | 238 | do {									\ | 
|  | 239 | D##_f = S##_f;							\ | 
|  | 240 | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\ | 
|  | 241 | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\ | 
|  | 242 | _FP_WFRACBITS_##sfs);				\ | 
|  | 243 | else								\ | 
|  | 244 | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\ | 
|  | 245 | } while (0) |