| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2000-2001 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify it | 
|  | 5 | * under the terms of version 2 of the GNU General Public License as | 
|  | 6 | * published by the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it would be useful, but | 
|  | 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 11 | * | 
|  | 12 | * Further, this software is distributed without any warranty that it is | 
|  | 13 | * free of the rightful claim of any third person regarding infringement | 
|  | 14 | * or the like.  Any license provided herein, whether implied or | 
|  | 15 | * otherwise, applies only to this software file.  Patent licenses, if | 
|  | 16 | * any, provided herein do not apply to combinations of this program with | 
|  | 17 | * other software, or any other product whatsoever. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License along | 
|  | 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | 
|  | 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
|  | 22 | * | 
|  | 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | 
|  | 24 | * Mountain View, CA  94043, or: | 
|  | 25 | * | 
|  | 26 | * http://www.sgi.com | 
|  | 27 | * | 
|  | 28 | * For further information regarding this notice, see: | 
|  | 29 | * | 
|  | 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | /* | 
|  | 34 | * This file contains the implementation of the xfs_efi_log_item | 
|  | 35 | * and xfs_efd_log_item items. | 
|  | 36 | */ | 
|  | 37 |  | 
|  | 38 | #include "xfs.h" | 
|  | 39 |  | 
|  | 40 | #include "xfs_macros.h" | 
|  | 41 | #include "xfs_types.h" | 
|  | 42 | #include "xfs_inum.h" | 
|  | 43 | #include "xfs_log.h" | 
|  | 44 | #include "xfs_trans.h" | 
|  | 45 | #include "xfs_buf_item.h" | 
|  | 46 | #include "xfs_sb.h" | 
|  | 47 | #include "xfs_dir.h" | 
|  | 48 | #include "xfs_dmapi.h" | 
|  | 49 | #include "xfs_mount.h" | 
|  | 50 | #include "xfs_trans_priv.h" | 
|  | 51 | #include "xfs_extfree_item.h" | 
|  | 52 |  | 
|  | 53 |  | 
|  | 54 | kmem_zone_t	*xfs_efi_zone; | 
|  | 55 | kmem_zone_t	*xfs_efd_zone; | 
|  | 56 |  | 
|  | 57 | STATIC void	xfs_efi_item_unlock(xfs_efi_log_item_t *); | 
|  | 58 | STATIC void	xfs_efi_item_abort(xfs_efi_log_item_t *); | 
|  | 59 | STATIC void	xfs_efd_item_abort(xfs_efd_log_item_t *); | 
|  | 60 |  | 
|  | 61 |  | 
|  | 62 |  | 
|  | 63 | /* | 
|  | 64 | * This returns the number of iovecs needed to log the given efi item. | 
|  | 65 | * We only need 1 iovec for an efi item.  It just logs the efi_log_format | 
|  | 66 | * structure. | 
|  | 67 | */ | 
|  | 68 | /*ARGSUSED*/ | 
|  | 69 | STATIC uint | 
|  | 70 | xfs_efi_item_size(xfs_efi_log_item_t *efip) | 
|  | 71 | { | 
|  | 72 | return 1; | 
|  | 73 | } | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * This is called to fill in the vector of log iovecs for the | 
|  | 77 | * given efi log item. We use only 1 iovec, and we point that | 
|  | 78 | * at the efi_log_format structure embedded in the efi item. | 
|  | 79 | * It is at this point that we assert that all of the extent | 
|  | 80 | * slots in the efi item have been filled. | 
|  | 81 | */ | 
|  | 82 | STATIC void | 
|  | 83 | xfs_efi_item_format(xfs_efi_log_item_t	*efip, | 
|  | 84 | xfs_log_iovec_t	*log_vector) | 
|  | 85 | { | 
|  | 86 | uint	size; | 
|  | 87 |  | 
|  | 88 | ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); | 
|  | 89 |  | 
|  | 90 | efip->efi_format.efi_type = XFS_LI_EFI; | 
|  | 91 |  | 
|  | 92 | size = sizeof(xfs_efi_log_format_t); | 
|  | 93 | size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | 94 | efip->efi_format.efi_size = 1; | 
|  | 95 |  | 
|  | 96 | log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); | 
|  | 97 | log_vector->i_len = size; | 
|  | 98 | ASSERT(size >= sizeof(xfs_efi_log_format_t)); | 
|  | 99 | } | 
|  | 100 |  | 
|  | 101 |  | 
|  | 102 | /* | 
|  | 103 | * Pinning has no meaning for an efi item, so just return. | 
|  | 104 | */ | 
|  | 105 | /*ARGSUSED*/ | 
|  | 106 | STATIC void | 
|  | 107 | xfs_efi_item_pin(xfs_efi_log_item_t *efip) | 
|  | 108 | { | 
|  | 109 | return; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 |  | 
|  | 113 | /* | 
|  | 114 | * While EFIs cannot really be pinned, the unpin operation is the | 
|  | 115 | * last place at which the EFI is manipulated during a transaction. | 
|  | 116 | * Here we coordinate with xfs_efi_cancel() to determine who gets to | 
|  | 117 | * free the EFI. | 
|  | 118 | */ | 
|  | 119 | /*ARGSUSED*/ | 
|  | 120 | STATIC void | 
|  | 121 | xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) | 
|  | 122 | { | 
|  | 123 | int		nexts; | 
|  | 124 | int		size; | 
|  | 125 | xfs_mount_t	*mp; | 
|  | 126 | SPLDECL(s); | 
|  | 127 |  | 
|  | 128 | mp = efip->efi_item.li_mountp; | 
|  | 129 | AIL_LOCK(mp, s); | 
|  | 130 | if (efip->efi_flags & XFS_EFI_CANCELED) { | 
|  | 131 | /* | 
|  | 132 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 133 | */ | 
|  | 134 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | 135 |  | 
|  | 136 | nexts = efip->efi_format.efi_nextents; | 
|  | 137 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 138 | size = sizeof(xfs_efi_log_item_t); | 
|  | 139 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 140 | kmem_free(efip, size); | 
|  | 141 | } else { | 
|  | 142 | kmem_zone_free(xfs_efi_zone, efip); | 
|  | 143 | } | 
|  | 144 | } else { | 
|  | 145 | efip->efi_flags |= XFS_EFI_COMMITTED; | 
|  | 146 | AIL_UNLOCK(mp, s); | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | return; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | /* | 
|  | 153 | * like unpin only we have to also clear the xaction descriptor | 
|  | 154 | * pointing the log item if we free the item.  This routine duplicates | 
|  | 155 | * unpin because efi_flags is protected by the AIL lock.  Freeing | 
|  | 156 | * the descriptor and then calling unpin would force us to drop the AIL | 
|  | 157 | * lock which would open up a race condition. | 
|  | 158 | */ | 
|  | 159 | STATIC void | 
|  | 160 | xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) | 
|  | 161 | { | 
|  | 162 | int		nexts; | 
|  | 163 | int		size; | 
|  | 164 | xfs_mount_t	*mp; | 
|  | 165 | xfs_log_item_desc_t	*lidp; | 
|  | 166 | SPLDECL(s); | 
|  | 167 |  | 
|  | 168 | mp = efip->efi_item.li_mountp; | 
|  | 169 | AIL_LOCK(mp, s); | 
|  | 170 | if (efip->efi_flags & XFS_EFI_CANCELED) { | 
|  | 171 | /* | 
|  | 172 | * free the xaction descriptor pointing to this item | 
|  | 173 | */ | 
|  | 174 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); | 
|  | 175 | xfs_trans_free_item(tp, lidp); | 
|  | 176 | /* | 
|  | 177 | * pull the item off the AIL. | 
|  | 178 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 179 | */ | 
|  | 180 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | 181 | /* | 
|  | 182 | * now free the item itself | 
|  | 183 | */ | 
|  | 184 | nexts = efip->efi_format.efi_nextents; | 
|  | 185 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 186 | size = sizeof(xfs_efi_log_item_t); | 
|  | 187 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 188 | kmem_free(efip, size); | 
|  | 189 | } else { | 
|  | 190 | kmem_zone_free(xfs_efi_zone, efip); | 
|  | 191 | } | 
|  | 192 | } else { | 
|  | 193 | efip->efi_flags |= XFS_EFI_COMMITTED; | 
|  | 194 | AIL_UNLOCK(mp, s); | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | return; | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | /* | 
|  | 201 | * Efi items have no locking or pushing.  However, since EFIs are | 
|  | 202 | * pulled from the AIL when their corresponding EFDs are committed | 
|  | 203 | * to disk, their situation is very similar to being pinned.  Return | 
|  | 204 | * XFS_ITEM_PINNED so that the caller will eventually flush the log. | 
|  | 205 | * This should help in getting the EFI out of the AIL. | 
|  | 206 | */ | 
|  | 207 | /*ARGSUSED*/ | 
|  | 208 | STATIC uint | 
|  | 209 | xfs_efi_item_trylock(xfs_efi_log_item_t *efip) | 
|  | 210 | { | 
|  | 211 | return XFS_ITEM_PINNED; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /* | 
|  | 215 | * Efi items have no locking, so just return. | 
|  | 216 | */ | 
|  | 217 | /*ARGSUSED*/ | 
|  | 218 | STATIC void | 
|  | 219 | xfs_efi_item_unlock(xfs_efi_log_item_t *efip) | 
|  | 220 | { | 
|  | 221 | if (efip->efi_item.li_flags & XFS_LI_ABORTED) | 
|  | 222 | xfs_efi_item_abort(efip); | 
|  | 223 | return; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | /* | 
|  | 227 | * The EFI is logged only once and cannot be moved in the log, so | 
|  | 228 | * simply return the lsn at which it's been logged.  The canceled | 
|  | 229 | * flag is not paid any attention here.  Checking for that is delayed | 
|  | 230 | * until the EFI is unpinned. | 
|  | 231 | */ | 
|  | 232 | /*ARGSUSED*/ | 
|  | 233 | STATIC xfs_lsn_t | 
|  | 234 | xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) | 
|  | 235 | { | 
|  | 236 | return lsn; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | /* | 
|  | 240 | * This is called when the transaction logging the EFI is aborted. | 
|  | 241 | * Free up the EFI and return.  No need to clean up the slot for | 
|  | 242 | * the item in the transaction.  That was done by the unpin code | 
|  | 243 | * which is called prior to this routine in the abort/fs-shutdown path. | 
|  | 244 | */ | 
|  | 245 | STATIC void | 
|  | 246 | xfs_efi_item_abort(xfs_efi_log_item_t *efip) | 
|  | 247 | { | 
|  | 248 | int	nexts; | 
|  | 249 | int	size; | 
|  | 250 |  | 
|  | 251 | nexts = efip->efi_format.efi_nextents; | 
|  | 252 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 253 | size = sizeof(xfs_efi_log_item_t); | 
|  | 254 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 255 | kmem_free(efip, size); | 
|  | 256 | } else { | 
|  | 257 | kmem_zone_free(xfs_efi_zone, efip); | 
|  | 258 | } | 
|  | 259 | return; | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | /* | 
|  | 263 | * There isn't much you can do to push on an efi item.  It is simply | 
|  | 264 | * stuck waiting for all of its corresponding efd items to be | 
|  | 265 | * committed to disk. | 
|  | 266 | */ | 
|  | 267 | /*ARGSUSED*/ | 
|  | 268 | STATIC void | 
|  | 269 | xfs_efi_item_push(xfs_efi_log_item_t *efip) | 
|  | 270 | { | 
|  | 271 | return; | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | /* | 
|  | 275 | * The EFI dependency tracking op doesn't do squat.  It can't because | 
|  | 276 | * it doesn't know where the free extent is coming from.  The dependency | 
|  | 277 | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | 278 | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | 279 | * so the dependency should be recorded there. | 
|  | 280 | */ | 
|  | 281 | /*ARGSUSED*/ | 
|  | 282 | STATIC void | 
|  | 283 | xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) | 
|  | 284 | { | 
|  | 285 | return; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* | 
|  | 289 | * This is the ops vector shared by all efi log items. | 
|  | 290 | */ | 
|  | 291 | struct xfs_item_ops xfs_efi_item_ops = { | 
|  | 292 | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_efi_item_size, | 
|  | 293 | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | 294 | xfs_efi_item_format, | 
|  | 295 | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_efi_item_pin, | 
|  | 296 | .iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, | 
|  | 297 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) | 
|  | 298 | xfs_efi_item_unpin_remove, | 
|  | 299 | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, | 
|  | 300 | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, | 
|  | 301 | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 302 | xfs_efi_item_committed, | 
|  | 303 | .iop_push	= (void(*)(xfs_log_item_t*))xfs_efi_item_push, | 
|  | 304 | .iop_abort	= (void(*)(xfs_log_item_t*))xfs_efi_item_abort, | 
|  | 305 | .iop_pushbuf	= NULL, | 
|  | 306 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 307 | xfs_efi_item_committing | 
|  | 308 | }; | 
|  | 309 |  | 
|  | 310 |  | 
|  | 311 | /* | 
|  | 312 | * Allocate and initialize an efi item with the given number of extents. | 
|  | 313 | */ | 
|  | 314 | xfs_efi_log_item_t * | 
|  | 315 | xfs_efi_init(xfs_mount_t	*mp, | 
|  | 316 | uint		nextents) | 
|  | 317 |  | 
|  | 318 | { | 
|  | 319 | xfs_efi_log_item_t	*efip; | 
|  | 320 | uint			size; | 
|  | 321 |  | 
|  | 322 | ASSERT(nextents > 0); | 
|  | 323 | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 324 | size = (uint)(sizeof(xfs_efi_log_item_t) + | 
|  | 325 | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | 326 | efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); | 
|  | 327 | } else { | 
|  | 328 | efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, | 
|  | 329 | KM_SLEEP); | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | efip->efi_item.li_type = XFS_LI_EFI; | 
|  | 333 | efip->efi_item.li_ops = &xfs_efi_item_ops; | 
|  | 334 | efip->efi_item.li_mountp = mp; | 
|  | 335 | efip->efi_format.efi_nextents = nextents; | 
|  | 336 | efip->efi_format.efi_id = (__psint_t)(void*)efip; | 
|  | 337 |  | 
|  | 338 | return (efip); | 
|  | 339 | } | 
|  | 340 |  | 
|  | 341 | /* | 
|  | 342 | * This is called by the efd item code below to release references to | 
|  | 343 | * the given efi item.  Each efd calls this with the number of | 
|  | 344 | * extents that it has logged, and when the sum of these reaches | 
|  | 345 | * the total number of extents logged by this efi item we can free | 
|  | 346 | * the efi item. | 
|  | 347 | * | 
|  | 348 | * Freeing the efi item requires that we remove it from the AIL. | 
|  | 349 | * We'll use the AIL lock to protect our counters as well as | 
|  | 350 | * the removal from the AIL. | 
|  | 351 | */ | 
|  | 352 | void | 
|  | 353 | xfs_efi_release(xfs_efi_log_item_t	*efip, | 
|  | 354 | uint			nextents) | 
|  | 355 | { | 
|  | 356 | xfs_mount_t	*mp; | 
|  | 357 | int		extents_left; | 
|  | 358 | uint		size; | 
|  | 359 | int		nexts; | 
|  | 360 | SPLDECL(s); | 
|  | 361 |  | 
|  | 362 | mp = efip->efi_item.li_mountp; | 
|  | 363 | ASSERT(efip->efi_next_extent > 0); | 
|  | 364 | ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); | 
|  | 365 |  | 
|  | 366 | AIL_LOCK(mp, s); | 
|  | 367 | ASSERT(efip->efi_next_extent >= nextents); | 
|  | 368 | efip->efi_next_extent -= nextents; | 
|  | 369 | extents_left = efip->efi_next_extent; | 
|  | 370 | if (extents_left == 0) { | 
|  | 371 | /* | 
|  | 372 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 373 | */ | 
|  | 374 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | 375 | } else { | 
|  | 376 | AIL_UNLOCK(mp, s); | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | if (extents_left == 0) { | 
|  | 380 | nexts = efip->efi_format.efi_nextents; | 
|  | 381 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 382 | size = sizeof(xfs_efi_log_item_t); | 
|  | 383 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 384 | kmem_free(efip, size); | 
|  | 385 | } else { | 
|  | 386 | kmem_zone_free(xfs_efi_zone, efip); | 
|  | 387 | } | 
|  | 388 | } | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | /* | 
|  | 392 | * This is called when the transaction that should be committing the | 
|  | 393 | * EFD corresponding to the given EFI is aborted.  The committed and | 
|  | 394 | * canceled flags are used to coordinate the freeing of the EFI and | 
|  | 395 | * the references by the transaction that committed it. | 
|  | 396 | */ | 
|  | 397 | STATIC void | 
|  | 398 | xfs_efi_cancel( | 
|  | 399 | xfs_efi_log_item_t	*efip) | 
|  | 400 | { | 
|  | 401 | int		nexts; | 
|  | 402 | int		size; | 
|  | 403 | xfs_mount_t	*mp; | 
|  | 404 | SPLDECL(s); | 
|  | 405 |  | 
|  | 406 | mp = efip->efi_item.li_mountp; | 
|  | 407 | AIL_LOCK(mp, s); | 
|  | 408 | if (efip->efi_flags & XFS_EFI_COMMITTED) { | 
|  | 409 | /* | 
|  | 410 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 411 | */ | 
|  | 412 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | 413 |  | 
|  | 414 | nexts = efip->efi_format.efi_nextents; | 
|  | 415 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | 416 | size = sizeof(xfs_efi_log_item_t); | 
|  | 417 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 418 | kmem_free(efip, size); | 
|  | 419 | } else { | 
|  | 420 | kmem_zone_free(xfs_efi_zone, efip); | 
|  | 421 | } | 
|  | 422 | } else { | 
|  | 423 | efip->efi_flags |= XFS_EFI_CANCELED; | 
|  | 424 | AIL_UNLOCK(mp, s); | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | return; | 
|  | 428 | } | 
|  | 429 |  | 
|  | 430 |  | 
|  | 431 |  | 
|  | 432 |  | 
|  | 433 |  | 
|  | 434 | /* | 
|  | 435 | * This returns the number of iovecs needed to log the given efd item. | 
|  | 436 | * We only need 1 iovec for an efd item.  It just logs the efd_log_format | 
|  | 437 | * structure. | 
|  | 438 | */ | 
|  | 439 | /*ARGSUSED*/ | 
|  | 440 | STATIC uint | 
|  | 441 | xfs_efd_item_size(xfs_efd_log_item_t *efdp) | 
|  | 442 | { | 
|  | 443 | return 1; | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | /* | 
|  | 447 | * This is called to fill in the vector of log iovecs for the | 
|  | 448 | * given efd log item. We use only 1 iovec, and we point that | 
|  | 449 | * at the efd_log_format structure embedded in the efd item. | 
|  | 450 | * It is at this point that we assert that all of the extent | 
|  | 451 | * slots in the efd item have been filled. | 
|  | 452 | */ | 
|  | 453 | STATIC void | 
|  | 454 | xfs_efd_item_format(xfs_efd_log_item_t	*efdp, | 
|  | 455 | xfs_log_iovec_t	*log_vector) | 
|  | 456 | { | 
|  | 457 | uint	size; | 
|  | 458 |  | 
|  | 459 | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | 
|  | 460 |  | 
|  | 461 | efdp->efd_format.efd_type = XFS_LI_EFD; | 
|  | 462 |  | 
|  | 463 | size = sizeof(xfs_efd_log_format_t); | 
|  | 464 | size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | 
|  | 465 | efdp->efd_format.efd_size = 1; | 
|  | 466 |  | 
|  | 467 | log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); | 
|  | 468 | log_vector->i_len = size; | 
|  | 469 | ASSERT(size >= sizeof(xfs_efd_log_format_t)); | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 |  | 
|  | 473 | /* | 
|  | 474 | * Pinning has no meaning for an efd item, so just return. | 
|  | 475 | */ | 
|  | 476 | /*ARGSUSED*/ | 
|  | 477 | STATIC void | 
|  | 478 | xfs_efd_item_pin(xfs_efd_log_item_t *efdp) | 
|  | 479 | { | 
|  | 480 | return; | 
|  | 481 | } | 
|  | 482 |  | 
|  | 483 |  | 
|  | 484 | /* | 
|  | 485 | * Since pinning has no meaning for an efd item, unpinning does | 
|  | 486 | * not either. | 
|  | 487 | */ | 
|  | 488 | /*ARGSUSED*/ | 
|  | 489 | STATIC void | 
|  | 490 | xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) | 
|  | 491 | { | 
|  | 492 | return; | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | /*ARGSUSED*/ | 
|  | 496 | STATIC void | 
|  | 497 | xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) | 
|  | 498 | { | 
|  | 499 | return; | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | /* | 
|  | 503 | * Efd items have no locking, so just return success. | 
|  | 504 | */ | 
|  | 505 | /*ARGSUSED*/ | 
|  | 506 | STATIC uint | 
|  | 507 | xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) | 
|  | 508 | { | 
|  | 509 | return XFS_ITEM_LOCKED; | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | /* | 
|  | 513 | * Efd items have no locking or pushing, so return failure | 
|  | 514 | * so that the caller doesn't bother with us. | 
|  | 515 | */ | 
|  | 516 | /*ARGSUSED*/ | 
|  | 517 | STATIC void | 
|  | 518 | xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) | 
|  | 519 | { | 
|  | 520 | if (efdp->efd_item.li_flags & XFS_LI_ABORTED) | 
|  | 521 | xfs_efd_item_abort(efdp); | 
|  | 522 | return; | 
|  | 523 | } | 
|  | 524 |  | 
|  | 525 | /* | 
|  | 526 | * When the efd item is committed to disk, all we need to do | 
|  | 527 | * is delete our reference to our partner efi item and then | 
|  | 528 | * free ourselves.  Since we're freeing ourselves we must | 
|  | 529 | * return -1 to keep the transaction code from further referencing | 
|  | 530 | * this item. | 
|  | 531 | */ | 
|  | 532 | /*ARGSUSED*/ | 
|  | 533 | STATIC xfs_lsn_t | 
|  | 534 | xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) | 
|  | 535 | { | 
|  | 536 | uint	size; | 
|  | 537 | int	nexts; | 
|  | 538 |  | 
|  | 539 | /* | 
|  | 540 | * If we got a log I/O error, it's always the case that the LR with the | 
|  | 541 | * EFI got unpinned and freed before the EFD got aborted. | 
|  | 542 | */ | 
|  | 543 | if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) | 
|  | 544 | xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); | 
|  | 545 |  | 
|  | 546 | nexts = efdp->efd_format.efd_nextents; | 
|  | 547 | if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | 548 | size = sizeof(xfs_efd_log_item_t); | 
|  | 549 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 550 | kmem_free(efdp, size); | 
|  | 551 | } else { | 
|  | 552 | kmem_zone_free(xfs_efd_zone, efdp); | 
|  | 553 | } | 
|  | 554 |  | 
|  | 555 | return (xfs_lsn_t)-1; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | /* | 
|  | 559 | * The transaction of which this EFD is a part has been aborted. | 
|  | 560 | * Inform its companion EFI of this fact and then clean up after | 
|  | 561 | * ourselves.  No need to clean up the slot for the item in the | 
|  | 562 | * transaction.  That was done by the unpin code which is called | 
|  | 563 | * prior to this routine in the abort/fs-shutdown path. | 
|  | 564 | */ | 
|  | 565 | STATIC void | 
|  | 566 | xfs_efd_item_abort(xfs_efd_log_item_t *efdp) | 
|  | 567 | { | 
|  | 568 | int	nexts; | 
|  | 569 | int	size; | 
|  | 570 |  | 
|  | 571 | /* | 
|  | 572 | * If we got a log I/O error, it's always the case that the LR with the | 
|  | 573 | * EFI got unpinned and freed before the EFD got aborted. So don't | 
|  | 574 | * reference the EFI at all in that case. | 
|  | 575 | */ | 
|  | 576 | if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) | 
|  | 577 | xfs_efi_cancel(efdp->efd_efip); | 
|  | 578 |  | 
|  | 579 | nexts = efdp->efd_format.efd_nextents; | 
|  | 580 | if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | 581 | size = sizeof(xfs_efd_log_item_t); | 
|  | 582 | size += (nexts - 1) * sizeof(xfs_extent_t); | 
|  | 583 | kmem_free(efdp, size); | 
|  | 584 | } else { | 
|  | 585 | kmem_zone_free(xfs_efd_zone, efdp); | 
|  | 586 | } | 
|  | 587 | return; | 
|  | 588 | } | 
|  | 589 |  | 
|  | 590 | /* | 
|  | 591 | * There isn't much you can do to push on an efd item.  It is simply | 
|  | 592 | * stuck waiting for the log to be flushed to disk. | 
|  | 593 | */ | 
|  | 594 | /*ARGSUSED*/ | 
|  | 595 | STATIC void | 
|  | 596 | xfs_efd_item_push(xfs_efd_log_item_t *efdp) | 
|  | 597 | { | 
|  | 598 | return; | 
|  | 599 | } | 
|  | 600 |  | 
|  | 601 | /* | 
|  | 602 | * The EFD dependency tracking op doesn't do squat.  It can't because | 
|  | 603 | * it doesn't know where the free extent is coming from.  The dependency | 
|  | 604 | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | 605 | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | 606 | * so the dependency should be recorded there. | 
|  | 607 | */ | 
|  | 608 | /*ARGSUSED*/ | 
|  | 609 | STATIC void | 
|  | 610 | xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) | 
|  | 611 | { | 
|  | 612 | return; | 
|  | 613 | } | 
|  | 614 |  | 
|  | 615 | /* | 
|  | 616 | * This is the ops vector shared by all efd log items. | 
|  | 617 | */ | 
|  | 618 | struct xfs_item_ops xfs_efd_item_ops = { | 
|  | 619 | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_efd_item_size, | 
|  | 620 | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | 621 | xfs_efd_item_format, | 
|  | 622 | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_efd_item_pin, | 
|  | 623 | .iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, | 
|  | 624 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) | 
|  | 625 | xfs_efd_item_unpin_remove, | 
|  | 626 | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, | 
|  | 627 | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, | 
|  | 628 | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 629 | xfs_efd_item_committed, | 
|  | 630 | .iop_push	= (void(*)(xfs_log_item_t*))xfs_efd_item_push, | 
|  | 631 | .iop_abort	= (void(*)(xfs_log_item_t*))xfs_efd_item_abort, | 
|  | 632 | .iop_pushbuf	= NULL, | 
|  | 633 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 634 | xfs_efd_item_committing | 
|  | 635 | }; | 
|  | 636 |  | 
|  | 637 |  | 
|  | 638 | /* | 
|  | 639 | * Allocate and initialize an efd item with the given number of extents. | 
|  | 640 | */ | 
|  | 641 | xfs_efd_log_item_t * | 
|  | 642 | xfs_efd_init(xfs_mount_t	*mp, | 
|  | 643 | xfs_efi_log_item_t	*efip, | 
|  | 644 | uint		nextents) | 
|  | 645 |  | 
|  | 646 | { | 
|  | 647 | xfs_efd_log_item_t	*efdp; | 
|  | 648 | uint			size; | 
|  | 649 |  | 
|  | 650 | ASSERT(nextents > 0); | 
|  | 651 | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | 652 | size = (uint)(sizeof(xfs_efd_log_item_t) + | 
|  | 653 | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | 654 | efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); | 
|  | 655 | } else { | 
|  | 656 | efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, | 
|  | 657 | KM_SLEEP); | 
|  | 658 | } | 
|  | 659 |  | 
|  | 660 | efdp->efd_item.li_type = XFS_LI_EFD; | 
|  | 661 | efdp->efd_item.li_ops = &xfs_efd_item_ops; | 
|  | 662 | efdp->efd_item.li_mountp = mp; | 
|  | 663 | efdp->efd_efip = efip; | 
|  | 664 | efdp->efd_format.efd_nextents = nextents; | 
|  | 665 | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | 
|  | 666 |  | 
|  | 667 | return (efdp); | 
|  | 668 | } |