Glauber Costa | c048fdf | 2008-03-03 14:12:54 -0300 | [diff] [blame^] | 1 | #include <linux/init.h> |
| 2 | |
| 3 | #include <linux/mm.h> |
| 4 | #include <linux/delay.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | #include <linux/smp.h> |
| 7 | #include <linux/kernel_stat.h> |
| 8 | #include <linux/mc146818rtc.h> |
| 9 | #include <linux/interrupt.h> |
| 10 | |
| 11 | #include <asm/mtrr.h> |
| 12 | #include <asm/pgalloc.h> |
| 13 | #include <asm/tlbflush.h> |
| 14 | #include <asm/mach_apic.h> |
| 15 | #include <asm/mmu_context.h> |
| 16 | #include <asm/proto.h> |
| 17 | #include <asm/apicdef.h> |
| 18 | #include <asm/idle.h> |
| 19 | /* |
| 20 | * Smarter SMP flushing macros. |
| 21 | * c/o Linus Torvalds. |
| 22 | * |
| 23 | * These mean you can really definitely utterly forget about |
| 24 | * writing to user space from interrupts. (Its not allowed anyway). |
| 25 | * |
| 26 | * Optimizations Manfred Spraul <manfred@colorfullife.com> |
| 27 | * |
| 28 | * More scalable flush, from Andi Kleen |
| 29 | * |
| 30 | * To avoid global state use 8 different call vectors. |
| 31 | * Each CPU uses a specific vector to trigger flushes on other |
| 32 | * CPUs. Depending on the received vector the target CPUs look into |
| 33 | * the right per cpu variable for the flush data. |
| 34 | * |
| 35 | * With more than 8 CPUs they are hashed to the 8 available |
| 36 | * vectors. The limited global vector space forces us to this right now. |
| 37 | * In future when interrupts are split into per CPU domains this could be |
| 38 | * fixed, at the cost of triggering multiple IPIs in some cases. |
| 39 | */ |
| 40 | |
| 41 | union smp_flush_state { |
| 42 | struct { |
| 43 | cpumask_t flush_cpumask; |
| 44 | struct mm_struct *flush_mm; |
| 45 | unsigned long flush_va; |
| 46 | spinlock_t tlbstate_lock; |
| 47 | }; |
| 48 | char pad[SMP_CACHE_BYTES]; |
| 49 | } ____cacheline_aligned; |
| 50 | |
| 51 | /* State is put into the per CPU data section, but padded |
| 52 | to a full cache line because other CPUs can access it and we don't |
| 53 | want false sharing in the per cpu data segment. */ |
| 54 | static DEFINE_PER_CPU(union smp_flush_state, flush_state); |
| 55 | |
| 56 | /* |
| 57 | * We cannot call mmdrop() because we are in interrupt context, |
| 58 | * instead update mm->cpu_vm_mask. |
| 59 | */ |
| 60 | void leave_mm(int cpu) |
| 61 | { |
| 62 | if (read_pda(mmu_state) == TLBSTATE_OK) |
| 63 | BUG(); |
| 64 | cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask); |
| 65 | load_cr3(swapper_pg_dir); |
| 66 | } |
| 67 | EXPORT_SYMBOL_GPL(leave_mm); |
| 68 | |
| 69 | /* |
| 70 | * |
| 71 | * The flush IPI assumes that a thread switch happens in this order: |
| 72 | * [cpu0: the cpu that switches] |
| 73 | * 1) switch_mm() either 1a) or 1b) |
| 74 | * 1a) thread switch to a different mm |
| 75 | * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); |
| 76 | * Stop ipi delivery for the old mm. This is not synchronized with |
| 77 | * the other cpus, but smp_invalidate_interrupt ignore flush ipis |
| 78 | * for the wrong mm, and in the worst case we perform a superfluous |
| 79 | * tlb flush. |
| 80 | * 1a2) set cpu mmu_state to TLBSTATE_OK |
| 81 | * Now the smp_invalidate_interrupt won't call leave_mm if cpu0 |
| 82 | * was in lazy tlb mode. |
| 83 | * 1a3) update cpu active_mm |
| 84 | * Now cpu0 accepts tlb flushes for the new mm. |
| 85 | * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); |
| 86 | * Now the other cpus will send tlb flush ipis. |
| 87 | * 1a4) change cr3. |
| 88 | * 1b) thread switch without mm change |
| 89 | * cpu active_mm is correct, cpu0 already handles |
| 90 | * flush ipis. |
| 91 | * 1b1) set cpu mmu_state to TLBSTATE_OK |
| 92 | * 1b2) test_and_set the cpu bit in cpu_vm_mask. |
| 93 | * Atomically set the bit [other cpus will start sending flush ipis], |
| 94 | * and test the bit. |
| 95 | * 1b3) if the bit was 0: leave_mm was called, flush the tlb. |
| 96 | * 2) switch %%esp, ie current |
| 97 | * |
| 98 | * The interrupt must handle 2 special cases: |
| 99 | * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. |
| 100 | * - the cpu performs speculative tlb reads, i.e. even if the cpu only |
| 101 | * runs in kernel space, the cpu could load tlb entries for user space |
| 102 | * pages. |
| 103 | * |
| 104 | * The good news is that cpu mmu_state is local to each cpu, no |
| 105 | * write/read ordering problems. |
| 106 | */ |
| 107 | |
| 108 | /* |
| 109 | * TLB flush IPI: |
| 110 | * |
| 111 | * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. |
| 112 | * 2) Leave the mm if we are in the lazy tlb mode. |
| 113 | * |
| 114 | * Interrupts are disabled. |
| 115 | */ |
| 116 | |
| 117 | asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs) |
| 118 | { |
| 119 | int cpu; |
| 120 | int sender; |
| 121 | union smp_flush_state *f; |
| 122 | |
| 123 | cpu = smp_processor_id(); |
| 124 | /* |
| 125 | * orig_rax contains the negated interrupt vector. |
| 126 | * Use that to determine where the sender put the data. |
| 127 | */ |
| 128 | sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; |
| 129 | f = &per_cpu(flush_state, sender); |
| 130 | |
| 131 | if (!cpu_isset(cpu, f->flush_cpumask)) |
| 132 | goto out; |
| 133 | /* |
| 134 | * This was a BUG() but until someone can quote me the |
| 135 | * line from the intel manual that guarantees an IPI to |
| 136 | * multiple CPUs is retried _only_ on the erroring CPUs |
| 137 | * its staying as a return |
| 138 | * |
| 139 | * BUG(); |
| 140 | */ |
| 141 | |
| 142 | if (f->flush_mm == read_pda(active_mm)) { |
| 143 | if (read_pda(mmu_state) == TLBSTATE_OK) { |
| 144 | if (f->flush_va == TLB_FLUSH_ALL) |
| 145 | local_flush_tlb(); |
| 146 | else |
| 147 | __flush_tlb_one(f->flush_va); |
| 148 | } else |
| 149 | leave_mm(cpu); |
| 150 | } |
| 151 | out: |
| 152 | ack_APIC_irq(); |
| 153 | cpu_clear(cpu, f->flush_cpumask); |
| 154 | add_pda(irq_tlb_count, 1); |
| 155 | } |
| 156 | |
| 157 | void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm, |
| 158 | unsigned long va) |
| 159 | { |
| 160 | int sender; |
| 161 | union smp_flush_state *f; |
| 162 | cpumask_t cpumask = *cpumaskp; |
| 163 | |
| 164 | /* Caller has disabled preemption */ |
| 165 | sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; |
| 166 | f = &per_cpu(flush_state, sender); |
| 167 | |
| 168 | /* |
| 169 | * Could avoid this lock when |
| 170 | * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is |
| 171 | * probably not worth checking this for a cache-hot lock. |
| 172 | */ |
| 173 | spin_lock(&f->tlbstate_lock); |
| 174 | |
| 175 | f->flush_mm = mm; |
| 176 | f->flush_va = va; |
| 177 | cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask); |
| 178 | |
| 179 | /* |
| 180 | * We have to send the IPI only to |
| 181 | * CPUs affected. |
| 182 | */ |
| 183 | send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender); |
| 184 | |
| 185 | while (!cpus_empty(f->flush_cpumask)) |
| 186 | cpu_relax(); |
| 187 | |
| 188 | f->flush_mm = NULL; |
| 189 | f->flush_va = 0; |
| 190 | spin_unlock(&f->tlbstate_lock); |
| 191 | } |
| 192 | |
| 193 | int __cpuinit init_smp_flush(void) |
| 194 | { |
| 195 | int i; |
| 196 | |
| 197 | for_each_cpu_mask(i, cpu_possible_map) { |
| 198 | spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock); |
| 199 | } |
| 200 | return 0; |
| 201 | } |
| 202 | core_initcall(init_smp_flush); |
| 203 | |
| 204 | void flush_tlb_current_task(void) |
| 205 | { |
| 206 | struct mm_struct *mm = current->mm; |
| 207 | cpumask_t cpu_mask; |
| 208 | |
| 209 | preempt_disable(); |
| 210 | cpu_mask = mm->cpu_vm_mask; |
| 211 | cpu_clear(smp_processor_id(), cpu_mask); |
| 212 | |
| 213 | local_flush_tlb(); |
| 214 | if (!cpus_empty(cpu_mask)) |
| 215 | flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); |
| 216 | preempt_enable(); |
| 217 | } |
| 218 | |
| 219 | void flush_tlb_mm(struct mm_struct *mm) |
| 220 | { |
| 221 | cpumask_t cpu_mask; |
| 222 | |
| 223 | preempt_disable(); |
| 224 | cpu_mask = mm->cpu_vm_mask; |
| 225 | cpu_clear(smp_processor_id(), cpu_mask); |
| 226 | |
| 227 | if (current->active_mm == mm) { |
| 228 | if (current->mm) |
| 229 | local_flush_tlb(); |
| 230 | else |
| 231 | leave_mm(smp_processor_id()); |
| 232 | } |
| 233 | if (!cpus_empty(cpu_mask)) |
| 234 | flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); |
| 235 | |
| 236 | preempt_enable(); |
| 237 | } |
| 238 | |
| 239 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) |
| 240 | { |
| 241 | struct mm_struct *mm = vma->vm_mm; |
| 242 | cpumask_t cpu_mask; |
| 243 | |
| 244 | preempt_disable(); |
| 245 | cpu_mask = mm->cpu_vm_mask; |
| 246 | cpu_clear(smp_processor_id(), cpu_mask); |
| 247 | |
| 248 | if (current->active_mm == mm) { |
| 249 | if (current->mm) |
| 250 | __flush_tlb_one(va); |
| 251 | else |
| 252 | leave_mm(smp_processor_id()); |
| 253 | } |
| 254 | |
| 255 | if (!cpus_empty(cpu_mask)) |
| 256 | flush_tlb_others(cpu_mask, mm, va); |
| 257 | |
| 258 | preempt_enable(); |
| 259 | } |
| 260 | |
| 261 | static void do_flush_tlb_all(void *info) |
| 262 | { |
| 263 | unsigned long cpu = smp_processor_id(); |
| 264 | |
| 265 | __flush_tlb_all(); |
| 266 | if (read_pda(mmu_state) == TLBSTATE_LAZY) |
| 267 | leave_mm(cpu); |
| 268 | } |
| 269 | |
| 270 | void flush_tlb_all(void) |
| 271 | { |
| 272 | on_each_cpu(do_flush_tlb_all, NULL, 1, 1); |
| 273 | } |