| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2008, 2009 Intel Corporation | 
|  | 3 | * Authors: Andi Kleen, Fengguang Wu | 
|  | 4 | * | 
|  | 5 | * This software may be redistributed and/or modified under the terms of | 
|  | 6 | * the GNU General Public License ("GPL") version 2 only as published by the | 
|  | 7 | * Free Software Foundation. | 
|  | 8 | * | 
|  | 9 | * High level machine check handler. Handles pages reported by the | 
|  | 10 | * hardware as being corrupted usually due to a 2bit ECC memory or cache | 
|  | 11 | * failure. | 
|  | 12 | * | 
|  | 13 | * Handles page cache pages in various states.	The tricky part | 
|  | 14 | * here is that we can access any page asynchronous to other VM | 
|  | 15 | * users, because memory failures could happen anytime and anywhere, | 
|  | 16 | * possibly violating some of their assumptions. This is why this code | 
|  | 17 | * has to be extremely careful. Generally it tries to use normal locking | 
|  | 18 | * rules, as in get the standard locks, even if that means the | 
|  | 19 | * error handling takes potentially a long time. | 
|  | 20 | * | 
|  | 21 | * The operation to map back from RMAP chains to processes has to walk | 
|  | 22 | * the complete process list and has non linear complexity with the number | 
|  | 23 | * mappings. In short it can be quite slow. But since memory corruptions | 
|  | 24 | * are rare we hope to get away with this. | 
|  | 25 | */ | 
|  | 26 |  | 
|  | 27 | /* | 
|  | 28 | * Notebook: | 
|  | 29 | * - hugetlb needs more code | 
|  | 30 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | 
|  | 31 | * - pass bad pages to kdump next kernel | 
|  | 32 | */ | 
|  | 33 | #define DEBUG 1		/* remove me in 2.6.34 */ | 
|  | 34 | #include <linux/kernel.h> | 
|  | 35 | #include <linux/mm.h> | 
|  | 36 | #include <linux/page-flags.h> | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 37 | #include <linux/kernel-page-flags.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 38 | #include <linux/sched.h> | 
| Hugh Dickins | 01e00f8 | 2009-10-13 15:02:11 +0100 | [diff] [blame] | 39 | #include <linux/ksm.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 40 | #include <linux/rmap.h> | 
|  | 41 | #include <linux/pagemap.h> | 
|  | 42 | #include <linux/swap.h> | 
|  | 43 | #include <linux/backing-dev.h> | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 44 | #include <linux/migrate.h> | 
|  | 45 | #include <linux/page-isolation.h> | 
|  | 46 | #include <linux/suspend.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 47 | #include <linux/slab.h> | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 48 | #include "internal.h" | 
|  | 49 |  | 
|  | 50 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 
|  | 51 |  | 
|  | 52 | int sysctl_memory_failure_recovery __read_mostly = 1; | 
|  | 53 |  | 
|  | 54 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); | 
|  | 55 |  | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 56 | #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) | 
|  | 57 |  | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 58 | u32 hwpoison_filter_enable = 0; | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 59 | u32 hwpoison_filter_dev_major = ~0U; | 
|  | 60 | u32 hwpoison_filter_dev_minor = ~0U; | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 61 | u64 hwpoison_filter_flags_mask; | 
|  | 62 | u64 hwpoison_filter_flags_value; | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 63 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 64 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); | 
|  | 65 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 66 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); | 
|  | 67 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 68 |  | 
|  | 69 | static int hwpoison_filter_dev(struct page *p) | 
|  | 70 | { | 
|  | 71 | struct address_space *mapping; | 
|  | 72 | dev_t dev; | 
|  | 73 |  | 
|  | 74 | if (hwpoison_filter_dev_major == ~0U && | 
|  | 75 | hwpoison_filter_dev_minor == ~0U) | 
|  | 76 | return 0; | 
|  | 77 |  | 
|  | 78 | /* | 
|  | 79 | * page_mapping() does not accept slab page | 
|  | 80 | */ | 
|  | 81 | if (PageSlab(p)) | 
|  | 82 | return -EINVAL; | 
|  | 83 |  | 
|  | 84 | mapping = page_mapping(p); | 
|  | 85 | if (mapping == NULL || mapping->host == NULL) | 
|  | 86 | return -EINVAL; | 
|  | 87 |  | 
|  | 88 | dev = mapping->host->i_sb->s_dev; | 
|  | 89 | if (hwpoison_filter_dev_major != ~0U && | 
|  | 90 | hwpoison_filter_dev_major != MAJOR(dev)) | 
|  | 91 | return -EINVAL; | 
|  | 92 | if (hwpoison_filter_dev_minor != ~0U && | 
|  | 93 | hwpoison_filter_dev_minor != MINOR(dev)) | 
|  | 94 | return -EINVAL; | 
|  | 95 |  | 
|  | 96 | return 0; | 
|  | 97 | } | 
|  | 98 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 99 | static int hwpoison_filter_flags(struct page *p) | 
|  | 100 | { | 
|  | 101 | if (!hwpoison_filter_flags_mask) | 
|  | 102 | return 0; | 
|  | 103 |  | 
|  | 104 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | 
|  | 105 | hwpoison_filter_flags_value) | 
|  | 106 | return 0; | 
|  | 107 | else | 
|  | 108 | return -EINVAL; | 
|  | 109 | } | 
|  | 110 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 111 | /* | 
|  | 112 | * This allows stress tests to limit test scope to a collection of tasks | 
|  | 113 | * by putting them under some memcg. This prevents killing unrelated/important | 
|  | 114 | * processes such as /sbin/init. Note that the target task may share clean | 
|  | 115 | * pages with init (eg. libc text), which is harmless. If the target task | 
|  | 116 | * share _dirty_ pages with another task B, the test scheme must make sure B | 
|  | 117 | * is also included in the memcg. At last, due to race conditions this filter | 
|  | 118 | * can only guarantee that the page either belongs to the memcg tasks, or is | 
|  | 119 | * a freed page. | 
|  | 120 | */ | 
|  | 121 | #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
|  | 122 | u64 hwpoison_filter_memcg; | 
|  | 123 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | 
|  | 124 | static int hwpoison_filter_task(struct page *p) | 
|  | 125 | { | 
|  | 126 | struct mem_cgroup *mem; | 
|  | 127 | struct cgroup_subsys_state *css; | 
|  | 128 | unsigned long ino; | 
|  | 129 |  | 
|  | 130 | if (!hwpoison_filter_memcg) | 
|  | 131 | return 0; | 
|  | 132 |  | 
|  | 133 | mem = try_get_mem_cgroup_from_page(p); | 
|  | 134 | if (!mem) | 
|  | 135 | return -EINVAL; | 
|  | 136 |  | 
|  | 137 | css = mem_cgroup_css(mem); | 
|  | 138 | /* root_mem_cgroup has NULL dentries */ | 
|  | 139 | if (!css->cgroup->dentry) | 
|  | 140 | return -EINVAL; | 
|  | 141 |  | 
|  | 142 | ino = css->cgroup->dentry->d_inode->i_ino; | 
|  | 143 | css_put(css); | 
|  | 144 |  | 
|  | 145 | if (ino != hwpoison_filter_memcg) | 
|  | 146 | return -EINVAL; | 
|  | 147 |  | 
|  | 148 | return 0; | 
|  | 149 | } | 
|  | 150 | #else | 
|  | 151 | static int hwpoison_filter_task(struct page *p) { return 0; } | 
|  | 152 | #endif | 
|  | 153 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 154 | int hwpoison_filter(struct page *p) | 
|  | 155 | { | 
| Haicheng Li | 1bfe5fe | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 156 | if (!hwpoison_filter_enable) | 
|  | 157 | return 0; | 
|  | 158 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 159 | if (hwpoison_filter_dev(p)) | 
|  | 160 | return -EINVAL; | 
|  | 161 |  | 
| Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 162 | if (hwpoison_filter_flags(p)) | 
|  | 163 | return -EINVAL; | 
|  | 164 |  | 
| Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 165 | if (hwpoison_filter_task(p)) | 
|  | 166 | return -EINVAL; | 
|  | 167 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 168 | return 0; | 
|  | 169 | } | 
| Andi Kleen | 27df506 | 2009-12-21 19:56:42 +0100 | [diff] [blame] | 170 | #else | 
|  | 171 | int hwpoison_filter(struct page *p) | 
|  | 172 | { | 
|  | 173 | return 0; | 
|  | 174 | } | 
|  | 175 | #endif | 
|  | 176 |  | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 177 | EXPORT_SYMBOL_GPL(hwpoison_filter); | 
|  | 178 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 179 | /* | 
|  | 180 | * Send all the processes who have the page mapped an ``action optional'' | 
|  | 181 | * signal. | 
|  | 182 | */ | 
|  | 183 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, | 
|  | 184 | unsigned long pfn) | 
|  | 185 | { | 
|  | 186 | struct siginfo si; | 
|  | 187 | int ret; | 
|  | 188 |  | 
|  | 189 | printk(KERN_ERR | 
|  | 190 | "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", | 
|  | 191 | pfn, t->comm, t->pid); | 
|  | 192 | si.si_signo = SIGBUS; | 
|  | 193 | si.si_errno = 0; | 
|  | 194 | si.si_code = BUS_MCEERR_AO; | 
|  | 195 | si.si_addr = (void *)addr; | 
|  | 196 | #ifdef __ARCH_SI_TRAPNO | 
|  | 197 | si.si_trapno = trapno; | 
|  | 198 | #endif | 
|  | 199 | si.si_addr_lsb = PAGE_SHIFT; | 
|  | 200 | /* | 
|  | 201 | * Don't use force here, it's convenient if the signal | 
|  | 202 | * can be temporarily blocked. | 
|  | 203 | * This could cause a loop when the user sets SIGBUS | 
|  | 204 | * to SIG_IGN, but hopefully noone will do that? | 
|  | 205 | */ | 
|  | 206 | ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */ | 
|  | 207 | if (ret < 0) | 
|  | 208 | printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", | 
|  | 209 | t->comm, t->pid, ret); | 
|  | 210 | return ret; | 
|  | 211 | } | 
|  | 212 |  | 
|  | 213 | /* | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 214 | * When a unknown page type is encountered drain as many buffers as possible | 
|  | 215 | * in the hope to turn the page into a LRU or free page, which we can handle. | 
|  | 216 | */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 217 | void shake_page(struct page *p, int access) | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 218 | { | 
|  | 219 | if (!PageSlab(p)) { | 
|  | 220 | lru_add_drain_all(); | 
|  | 221 | if (PageLRU(p)) | 
|  | 222 | return; | 
|  | 223 | drain_all_pages(); | 
|  | 224 | if (PageLRU(p) || is_free_buddy_page(p)) | 
|  | 225 | return; | 
|  | 226 | } | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 227 |  | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 228 | /* | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 229 | * Only all shrink_slab here (which would also | 
|  | 230 | * shrink other caches) if access is not potentially fatal. | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 231 | */ | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 232 | if (access) { | 
|  | 233 | int nr; | 
|  | 234 | do { | 
|  | 235 | nr = shrink_slab(1000, GFP_KERNEL, 1000); | 
|  | 236 | if (page_count(p) == 0) | 
|  | 237 | break; | 
|  | 238 | } while (nr > 10); | 
|  | 239 | } | 
| Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 240 | } | 
|  | 241 | EXPORT_SYMBOL_GPL(shake_page); | 
|  | 242 |  | 
|  | 243 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 244 | * Kill all processes that have a poisoned page mapped and then isolate | 
|  | 245 | * the page. | 
|  | 246 | * | 
|  | 247 | * General strategy: | 
|  | 248 | * Find all processes having the page mapped and kill them. | 
|  | 249 | * But we keep a page reference around so that the page is not | 
|  | 250 | * actually freed yet. | 
|  | 251 | * Then stash the page away | 
|  | 252 | * | 
|  | 253 | * There's no convenient way to get back to mapped processes | 
|  | 254 | * from the VMAs. So do a brute-force search over all | 
|  | 255 | * running processes. | 
|  | 256 | * | 
|  | 257 | * Remember that machine checks are not common (or rather | 
|  | 258 | * if they are common you have other problems), so this shouldn't | 
|  | 259 | * be a performance issue. | 
|  | 260 | * | 
|  | 261 | * Also there are some races possible while we get from the | 
|  | 262 | * error detection to actually handle it. | 
|  | 263 | */ | 
|  | 264 |  | 
|  | 265 | struct to_kill { | 
|  | 266 | struct list_head nd; | 
|  | 267 | struct task_struct *tsk; | 
|  | 268 | unsigned long addr; | 
|  | 269 | unsigned addr_valid:1; | 
|  | 270 | }; | 
|  | 271 |  | 
|  | 272 | /* | 
|  | 273 | * Failure handling: if we can't find or can't kill a process there's | 
|  | 274 | * not much we can do.	We just print a message and ignore otherwise. | 
|  | 275 | */ | 
|  | 276 |  | 
|  | 277 | /* | 
|  | 278 | * Schedule a process for later kill. | 
|  | 279 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | 
|  | 280 | * TBD would GFP_NOIO be enough? | 
|  | 281 | */ | 
|  | 282 | static void add_to_kill(struct task_struct *tsk, struct page *p, | 
|  | 283 | struct vm_area_struct *vma, | 
|  | 284 | struct list_head *to_kill, | 
|  | 285 | struct to_kill **tkc) | 
|  | 286 | { | 
|  | 287 | struct to_kill *tk; | 
|  | 288 |  | 
|  | 289 | if (*tkc) { | 
|  | 290 | tk = *tkc; | 
|  | 291 | *tkc = NULL; | 
|  | 292 | } else { | 
|  | 293 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); | 
|  | 294 | if (!tk) { | 
|  | 295 | printk(KERN_ERR | 
|  | 296 | "MCE: Out of memory while machine check handling\n"); | 
|  | 297 | return; | 
|  | 298 | } | 
|  | 299 | } | 
|  | 300 | tk->addr = page_address_in_vma(p, vma); | 
|  | 301 | tk->addr_valid = 1; | 
|  | 302 |  | 
|  | 303 | /* | 
|  | 304 | * In theory we don't have to kill when the page was | 
|  | 305 | * munmaped. But it could be also a mremap. Since that's | 
|  | 306 | * likely very rare kill anyways just out of paranoia, but use | 
|  | 307 | * a SIGKILL because the error is not contained anymore. | 
|  | 308 | */ | 
|  | 309 | if (tk->addr == -EFAULT) { | 
|  | 310 | pr_debug("MCE: Unable to find user space address %lx in %s\n", | 
|  | 311 | page_to_pfn(p), tsk->comm); | 
|  | 312 | tk->addr_valid = 0; | 
|  | 313 | } | 
|  | 314 | get_task_struct(tsk); | 
|  | 315 | tk->tsk = tsk; | 
|  | 316 | list_add_tail(&tk->nd, to_kill); | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | /* | 
|  | 320 | * Kill the processes that have been collected earlier. | 
|  | 321 | * | 
|  | 322 | * Only do anything when DOIT is set, otherwise just free the list | 
|  | 323 | * (this is used for clean pages which do not need killing) | 
|  | 324 | * Also when FAIL is set do a force kill because something went | 
|  | 325 | * wrong earlier. | 
|  | 326 | */ | 
|  | 327 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, | 
|  | 328 | int fail, unsigned long pfn) | 
|  | 329 | { | 
|  | 330 | struct to_kill *tk, *next; | 
|  | 331 |  | 
|  | 332 | list_for_each_entry_safe (tk, next, to_kill, nd) { | 
|  | 333 | if (doit) { | 
|  | 334 | /* | 
| André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 335 | * In case something went wrong with munmapping | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 336 | * make sure the process doesn't catch the | 
|  | 337 | * signal and then access the memory. Just kill it. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 338 | */ | 
|  | 339 | if (fail || tk->addr_valid == 0) { | 
|  | 340 | printk(KERN_ERR | 
|  | 341 | "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", | 
|  | 342 | pfn, tk->tsk->comm, tk->tsk->pid); | 
|  | 343 | force_sig(SIGKILL, tk->tsk); | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | /* | 
|  | 347 | * In theory the process could have mapped | 
|  | 348 | * something else on the address in-between. We could | 
|  | 349 | * check for that, but we need to tell the | 
|  | 350 | * process anyways. | 
|  | 351 | */ | 
|  | 352 | else if (kill_proc_ao(tk->tsk, tk->addr, trapno, | 
|  | 353 | pfn) < 0) | 
|  | 354 | printk(KERN_ERR | 
|  | 355 | "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", | 
|  | 356 | pfn, tk->tsk->comm, tk->tsk->pid); | 
|  | 357 | } | 
|  | 358 | put_task_struct(tk->tsk); | 
|  | 359 | kfree(tk); | 
|  | 360 | } | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | static int task_early_kill(struct task_struct *tsk) | 
|  | 364 | { | 
|  | 365 | if (!tsk->mm) | 
|  | 366 | return 0; | 
|  | 367 | if (tsk->flags & PF_MCE_PROCESS) | 
|  | 368 | return !!(tsk->flags & PF_MCE_EARLY); | 
|  | 369 | return sysctl_memory_failure_early_kill; | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | /* | 
|  | 373 | * Collect processes when the error hit an anonymous page. | 
|  | 374 | */ | 
|  | 375 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, | 
|  | 376 | struct to_kill **tkc) | 
|  | 377 | { | 
|  | 378 | struct vm_area_struct *vma; | 
|  | 379 | struct task_struct *tsk; | 
|  | 380 | struct anon_vma *av; | 
|  | 381 |  | 
|  | 382 | read_lock(&tasklist_lock); | 
|  | 383 | av = page_lock_anon_vma(page); | 
|  | 384 | if (av == NULL)	/* Not actually mapped anymore */ | 
|  | 385 | goto out; | 
|  | 386 | for_each_process (tsk) { | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 387 | struct anon_vma_chain *vmac; | 
|  | 388 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 389 | if (!task_early_kill(tsk)) | 
|  | 390 | continue; | 
| Rik van Riel | 5beb493 | 2010-03-05 13:42:07 -0800 | [diff] [blame] | 391 | list_for_each_entry(vmac, &av->head, same_anon_vma) { | 
|  | 392 | vma = vmac->vma; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 393 | if (!page_mapped_in_vma(page, vma)) | 
|  | 394 | continue; | 
|  | 395 | if (vma->vm_mm == tsk->mm) | 
|  | 396 | add_to_kill(tsk, page, vma, to_kill, tkc); | 
|  | 397 | } | 
|  | 398 | } | 
|  | 399 | page_unlock_anon_vma(av); | 
|  | 400 | out: | 
|  | 401 | read_unlock(&tasklist_lock); | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 | /* | 
|  | 405 | * Collect processes when the error hit a file mapped page. | 
|  | 406 | */ | 
|  | 407 | static void collect_procs_file(struct page *page, struct list_head *to_kill, | 
|  | 408 | struct to_kill **tkc) | 
|  | 409 | { | 
|  | 410 | struct vm_area_struct *vma; | 
|  | 411 | struct task_struct *tsk; | 
|  | 412 | struct prio_tree_iter iter; | 
|  | 413 | struct address_space *mapping = page->mapping; | 
|  | 414 |  | 
|  | 415 | /* | 
|  | 416 | * A note on the locking order between the two locks. | 
|  | 417 | * We don't rely on this particular order. | 
|  | 418 | * If you have some other code that needs a different order | 
|  | 419 | * feel free to switch them around. Or add a reverse link | 
|  | 420 | * from mm_struct to task_struct, then this could be all | 
|  | 421 | * done without taking tasklist_lock and looping over all tasks. | 
|  | 422 | */ | 
|  | 423 |  | 
|  | 424 | read_lock(&tasklist_lock); | 
|  | 425 | spin_lock(&mapping->i_mmap_lock); | 
|  | 426 | for_each_process(tsk) { | 
|  | 427 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | 428 |  | 
|  | 429 | if (!task_early_kill(tsk)) | 
|  | 430 | continue; | 
|  | 431 |  | 
|  | 432 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, | 
|  | 433 | pgoff) { | 
|  | 434 | /* | 
|  | 435 | * Send early kill signal to tasks where a vma covers | 
|  | 436 | * the page but the corrupted page is not necessarily | 
|  | 437 | * mapped it in its pte. | 
|  | 438 | * Assume applications who requested early kill want | 
|  | 439 | * to be informed of all such data corruptions. | 
|  | 440 | */ | 
|  | 441 | if (vma->vm_mm == tsk->mm) | 
|  | 442 | add_to_kill(tsk, page, vma, to_kill, tkc); | 
|  | 443 | } | 
|  | 444 | } | 
|  | 445 | spin_unlock(&mapping->i_mmap_lock); | 
|  | 446 | read_unlock(&tasklist_lock); | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | /* | 
|  | 450 | * Collect the processes who have the corrupted page mapped to kill. | 
|  | 451 | * This is done in two steps for locking reasons. | 
|  | 452 | * First preallocate one tokill structure outside the spin locks, | 
|  | 453 | * so that we can kill at least one process reasonably reliable. | 
|  | 454 | */ | 
|  | 455 | static void collect_procs(struct page *page, struct list_head *tokill) | 
|  | 456 | { | 
|  | 457 | struct to_kill *tk; | 
|  | 458 |  | 
|  | 459 | if (!page->mapping) | 
|  | 460 | return; | 
|  | 461 |  | 
|  | 462 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); | 
|  | 463 | if (!tk) | 
|  | 464 | return; | 
|  | 465 | if (PageAnon(page)) | 
|  | 466 | collect_procs_anon(page, tokill, &tk); | 
|  | 467 | else | 
|  | 468 | collect_procs_file(page, tokill, &tk); | 
|  | 469 | kfree(tk); | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 | /* | 
|  | 473 | * Error handlers for various types of pages. | 
|  | 474 | */ | 
|  | 475 |  | 
|  | 476 | enum outcome { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 477 | IGNORED,	/* Error: cannot be handled */ | 
|  | 478 | FAILED,		/* Error: handling failed */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 479 | DELAYED,	/* Will be handled later */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 480 | RECOVERED,	/* Successfully recovered */ | 
|  | 481 | }; | 
|  | 482 |  | 
|  | 483 | static const char *action_name[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 484 | [IGNORED] = "Ignored", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 485 | [FAILED] = "Failed", | 
|  | 486 | [DELAYED] = "Delayed", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 487 | [RECOVERED] = "Recovered", | 
|  | 488 | }; | 
|  | 489 |  | 
|  | 490 | /* | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 491 | * XXX: It is possible that a page is isolated from LRU cache, | 
|  | 492 | * and then kept in swap cache or failed to remove from page cache. | 
|  | 493 | * The page count will stop it from being freed by unpoison. | 
|  | 494 | * Stress tests should be aware of this memory leak problem. | 
|  | 495 | */ | 
|  | 496 | static int delete_from_lru_cache(struct page *p) | 
|  | 497 | { | 
|  | 498 | if (!isolate_lru_page(p)) { | 
|  | 499 | /* | 
|  | 500 | * Clear sensible page flags, so that the buddy system won't | 
|  | 501 | * complain when the page is unpoison-and-freed. | 
|  | 502 | */ | 
|  | 503 | ClearPageActive(p); | 
|  | 504 | ClearPageUnevictable(p); | 
|  | 505 | /* | 
|  | 506 | * drop the page count elevated by isolate_lru_page() | 
|  | 507 | */ | 
|  | 508 | page_cache_release(p); | 
|  | 509 | return 0; | 
|  | 510 | } | 
|  | 511 | return -EIO; | 
|  | 512 | } | 
|  | 513 |  | 
|  | 514 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 515 | * Error hit kernel page. | 
|  | 516 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | 
|  | 517 | * could be more sophisticated. | 
|  | 518 | */ | 
|  | 519 | static int me_kernel(struct page *p, unsigned long pfn) | 
|  | 520 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 521 | return IGNORED; | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | /* | 
|  | 525 | * Page in unknown state. Do nothing. | 
|  | 526 | */ | 
|  | 527 | static int me_unknown(struct page *p, unsigned long pfn) | 
|  | 528 | { | 
|  | 529 | printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); | 
|  | 530 | return FAILED; | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 534 | * Clean (or cleaned) page cache page. | 
|  | 535 | */ | 
|  | 536 | static int me_pagecache_clean(struct page *p, unsigned long pfn) | 
|  | 537 | { | 
|  | 538 | int err; | 
|  | 539 | int ret = FAILED; | 
|  | 540 | struct address_space *mapping; | 
|  | 541 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 542 | delete_from_lru_cache(p); | 
|  | 543 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 544 | /* | 
|  | 545 | * For anonymous pages we're done the only reference left | 
|  | 546 | * should be the one m_f() holds. | 
|  | 547 | */ | 
|  | 548 | if (PageAnon(p)) | 
|  | 549 | return RECOVERED; | 
|  | 550 |  | 
|  | 551 | /* | 
|  | 552 | * Now truncate the page in the page cache. This is really | 
|  | 553 | * more like a "temporary hole punch" | 
|  | 554 | * Don't do this for block devices when someone else | 
|  | 555 | * has a reference, because it could be file system metadata | 
|  | 556 | * and that's not safe to truncate. | 
|  | 557 | */ | 
|  | 558 | mapping = page_mapping(p); | 
|  | 559 | if (!mapping) { | 
|  | 560 | /* | 
|  | 561 | * Page has been teared down in the meanwhile | 
|  | 562 | */ | 
|  | 563 | return FAILED; | 
|  | 564 | } | 
|  | 565 |  | 
|  | 566 | /* | 
|  | 567 | * Truncation is a bit tricky. Enable it per file system for now. | 
|  | 568 | * | 
|  | 569 | * Open: to take i_mutex or not for this? Right now we don't. | 
|  | 570 | */ | 
|  | 571 | if (mapping->a_ops->error_remove_page) { | 
|  | 572 | err = mapping->a_ops->error_remove_page(mapping, p); | 
|  | 573 | if (err != 0) { | 
|  | 574 | printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", | 
|  | 575 | pfn, err); | 
|  | 576 | } else if (page_has_private(p) && | 
|  | 577 | !try_to_release_page(p, GFP_NOIO)) { | 
|  | 578 | pr_debug("MCE %#lx: failed to release buffers\n", pfn); | 
|  | 579 | } else { | 
|  | 580 | ret = RECOVERED; | 
|  | 581 | } | 
|  | 582 | } else { | 
|  | 583 | /* | 
|  | 584 | * If the file system doesn't support it just invalidate | 
|  | 585 | * This fails on dirty or anything with private pages | 
|  | 586 | */ | 
|  | 587 | if (invalidate_inode_page(p)) | 
|  | 588 | ret = RECOVERED; | 
|  | 589 | else | 
|  | 590 | printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", | 
|  | 591 | pfn); | 
|  | 592 | } | 
|  | 593 | return ret; | 
|  | 594 | } | 
|  | 595 |  | 
|  | 596 | /* | 
|  | 597 | * Dirty cache page page | 
|  | 598 | * Issues: when the error hit a hole page the error is not properly | 
|  | 599 | * propagated. | 
|  | 600 | */ | 
|  | 601 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) | 
|  | 602 | { | 
|  | 603 | struct address_space *mapping = page_mapping(p); | 
|  | 604 |  | 
|  | 605 | SetPageError(p); | 
|  | 606 | /* TBD: print more information about the file. */ | 
|  | 607 | if (mapping) { | 
|  | 608 | /* | 
|  | 609 | * IO error will be reported by write(), fsync(), etc. | 
|  | 610 | * who check the mapping. | 
|  | 611 | * This way the application knows that something went | 
|  | 612 | * wrong with its dirty file data. | 
|  | 613 | * | 
|  | 614 | * There's one open issue: | 
|  | 615 | * | 
|  | 616 | * The EIO will be only reported on the next IO | 
|  | 617 | * operation and then cleared through the IO map. | 
|  | 618 | * Normally Linux has two mechanisms to pass IO error | 
|  | 619 | * first through the AS_EIO flag in the address space | 
|  | 620 | * and then through the PageError flag in the page. | 
|  | 621 | * Since we drop pages on memory failure handling the | 
|  | 622 | * only mechanism open to use is through AS_AIO. | 
|  | 623 | * | 
|  | 624 | * This has the disadvantage that it gets cleared on | 
|  | 625 | * the first operation that returns an error, while | 
|  | 626 | * the PageError bit is more sticky and only cleared | 
|  | 627 | * when the page is reread or dropped.  If an | 
|  | 628 | * application assumes it will always get error on | 
|  | 629 | * fsync, but does other operations on the fd before | 
|  | 630 | * and the page is dropped inbetween then the error | 
|  | 631 | * will not be properly reported. | 
|  | 632 | * | 
|  | 633 | * This can already happen even without hwpoisoned | 
|  | 634 | * pages: first on metadata IO errors (which only | 
|  | 635 | * report through AS_EIO) or when the page is dropped | 
|  | 636 | * at the wrong time. | 
|  | 637 | * | 
|  | 638 | * So right now we assume that the application DTRT on | 
|  | 639 | * the first EIO, but we're not worse than other parts | 
|  | 640 | * of the kernel. | 
|  | 641 | */ | 
|  | 642 | mapping_set_error(mapping, EIO); | 
|  | 643 | } | 
|  | 644 |  | 
|  | 645 | return me_pagecache_clean(p, pfn); | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | /* | 
|  | 649 | * Clean and dirty swap cache. | 
|  | 650 | * | 
|  | 651 | * Dirty swap cache page is tricky to handle. The page could live both in page | 
|  | 652 | * cache and swap cache(ie. page is freshly swapped in). So it could be | 
|  | 653 | * referenced concurrently by 2 types of PTEs: | 
|  | 654 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | 
|  | 655 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, | 
|  | 656 | * and then | 
|  | 657 | *      - clear dirty bit to prevent IO | 
|  | 658 | *      - remove from LRU | 
|  | 659 | *      - but keep in the swap cache, so that when we return to it on | 
|  | 660 | *        a later page fault, we know the application is accessing | 
|  | 661 | *        corrupted data and shall be killed (we installed simple | 
|  | 662 | *        interception code in do_swap_page to catch it). | 
|  | 663 | * | 
|  | 664 | * Clean swap cache pages can be directly isolated. A later page fault will | 
|  | 665 | * bring in the known good data from disk. | 
|  | 666 | */ | 
|  | 667 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) | 
|  | 668 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 669 | ClearPageDirty(p); | 
|  | 670 | /* Trigger EIO in shmem: */ | 
|  | 671 | ClearPageUptodate(p); | 
|  | 672 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 673 | if (!delete_from_lru_cache(p)) | 
|  | 674 | return DELAYED; | 
|  | 675 | else | 
|  | 676 | return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 677 | } | 
|  | 678 |  | 
|  | 679 | static int me_swapcache_clean(struct page *p, unsigned long pfn) | 
|  | 680 | { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 681 | delete_from_swap_cache(p); | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 682 |  | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 683 | if (!delete_from_lru_cache(p)) | 
|  | 684 | return RECOVERED; | 
|  | 685 | else | 
|  | 686 | return FAILED; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 687 | } | 
|  | 688 |  | 
|  | 689 | /* | 
|  | 690 | * Huge pages. Needs work. | 
|  | 691 | * Issues: | 
|  | 692 | * No rmap support so we cannot find the original mapper. In theory could walk | 
|  | 693 | * all MMs and look for the mappings, but that would be non atomic and racy. | 
|  | 694 | * Need rmap for hugepages for this. Alternatively we could employ a heuristic, | 
|  | 695 | * like just walking the current process and hoping it has it mapped (that | 
|  | 696 | * should be usually true for the common "shared database cache" case) | 
|  | 697 | * Should handle free huge pages and dequeue them too, but this needs to | 
|  | 698 | * handle huge page accounting correctly. | 
|  | 699 | */ | 
|  | 700 | static int me_huge_page(struct page *p, unsigned long pfn) | 
|  | 701 | { | 
|  | 702 | return FAILED; | 
|  | 703 | } | 
|  | 704 |  | 
|  | 705 | /* | 
|  | 706 | * Various page states we can handle. | 
|  | 707 | * | 
|  | 708 | * A page state is defined by its current page->flags bits. | 
|  | 709 | * The table matches them in order and calls the right handler. | 
|  | 710 | * | 
|  | 711 | * This is quite tricky because we can access page at any time | 
|  | 712 | * in its live cycle, so all accesses have to be extremly careful. | 
|  | 713 | * | 
|  | 714 | * This is not complete. More states could be added. | 
|  | 715 | * For any missing state don't attempt recovery. | 
|  | 716 | */ | 
|  | 717 |  | 
|  | 718 | #define dirty		(1UL << PG_dirty) | 
|  | 719 | #define sc		(1UL << PG_swapcache) | 
|  | 720 | #define unevict		(1UL << PG_unevictable) | 
|  | 721 | #define mlock		(1UL << PG_mlocked) | 
|  | 722 | #define writeback	(1UL << PG_writeback) | 
|  | 723 | #define lru		(1UL << PG_lru) | 
|  | 724 | #define swapbacked	(1UL << PG_swapbacked) | 
|  | 725 | #define head		(1UL << PG_head) | 
|  | 726 | #define tail		(1UL << PG_tail) | 
|  | 727 | #define compound	(1UL << PG_compound) | 
|  | 728 | #define slab		(1UL << PG_slab) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 729 | #define reserved	(1UL << PG_reserved) | 
|  | 730 |  | 
|  | 731 | static struct page_state { | 
|  | 732 | unsigned long mask; | 
|  | 733 | unsigned long res; | 
|  | 734 | char *msg; | 
|  | 735 | int (*action)(struct page *p, unsigned long pfn); | 
|  | 736 | } error_states[] = { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 737 | { reserved,	reserved,	"reserved kernel",	me_kernel }, | 
| Wu Fengguang | 95d01fc | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 738 | /* | 
|  | 739 | * free pages are specially detected outside this table: | 
|  | 740 | * PG_buddy pages only make a small fraction of all free pages. | 
|  | 741 | */ | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 742 |  | 
|  | 743 | /* | 
|  | 744 | * Could in theory check if slab page is free or if we can drop | 
|  | 745 | * currently unused objects without touching them. But just | 
|  | 746 | * treat it as standard kernel for now. | 
|  | 747 | */ | 
|  | 748 | { slab,		slab,		"kernel slab",	me_kernel }, | 
|  | 749 |  | 
|  | 750 | #ifdef CONFIG_PAGEFLAGS_EXTENDED | 
|  | 751 | { head,		head,		"huge",		me_huge_page }, | 
|  | 752 | { tail,		tail,		"huge",		me_huge_page }, | 
|  | 753 | #else | 
|  | 754 | { compound,	compound,	"huge",		me_huge_page }, | 
|  | 755 | #endif | 
|  | 756 |  | 
|  | 757 | { sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty }, | 
|  | 758 | { sc|dirty,	sc,		"swapcache",	me_swapcache_clean }, | 
|  | 759 |  | 
|  | 760 | { unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty}, | 
|  | 761 | { unevict,	unevict,	"unevictable LRU", me_pagecache_clean}, | 
|  | 762 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 763 | { mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty }, | 
|  | 764 | { mlock,	mlock,		"mlocked LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 765 |  | 
|  | 766 | { lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty }, | 
|  | 767 | { lru|dirty,	lru,		"clean LRU",	me_pagecache_clean }, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 768 |  | 
|  | 769 | /* | 
|  | 770 | * Catchall entry: must be at end. | 
|  | 771 | */ | 
|  | 772 | { 0,		0,		"unknown page state",	me_unknown }, | 
|  | 773 | }; | 
|  | 774 |  | 
| Andi Kleen | 2326c46 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 775 | #undef dirty | 
|  | 776 | #undef sc | 
|  | 777 | #undef unevict | 
|  | 778 | #undef mlock | 
|  | 779 | #undef writeback | 
|  | 780 | #undef lru | 
|  | 781 | #undef swapbacked | 
|  | 782 | #undef head | 
|  | 783 | #undef tail | 
|  | 784 | #undef compound | 
|  | 785 | #undef slab | 
|  | 786 | #undef reserved | 
|  | 787 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 788 | static void action_result(unsigned long pfn, char *msg, int result) | 
|  | 789 | { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 790 | struct page *page = pfn_to_page(pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 791 |  | 
|  | 792 | printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", | 
|  | 793 | pfn, | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 794 | PageDirty(page) ? "dirty " : "", | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 795 | msg, action_name[result]); | 
|  | 796 | } | 
|  | 797 |  | 
|  | 798 | static int page_action(struct page_state *ps, struct page *p, | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 799 | unsigned long pfn) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 800 | { | 
|  | 801 | int result; | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 802 | int count; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 803 |  | 
|  | 804 | result = ps->action(p, pfn); | 
|  | 805 | action_result(pfn, ps->msg, result); | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 806 |  | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 807 | count = page_count(p) - 1; | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 808 | if (ps->action == me_swapcache_dirty && result == DELAYED) | 
|  | 809 | count--; | 
|  | 810 | if (count != 0) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 811 | printk(KERN_ERR | 
|  | 812 | "MCE %#lx: %s page still referenced by %d users\n", | 
| Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 813 | pfn, ps->msg, count); | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 814 | result = FAILED; | 
|  | 815 | } | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 816 |  | 
|  | 817 | /* Could do more checks here if page looks ok */ | 
|  | 818 | /* | 
|  | 819 | * Could adjust zone counters here to correct for the missing page. | 
|  | 820 | */ | 
|  | 821 |  | 
| Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 822 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 823 | } | 
|  | 824 |  | 
|  | 825 | #define N_UNMAP_TRIES 5 | 
|  | 826 |  | 
|  | 827 | /* | 
|  | 828 | * Do all that is necessary to remove user space mappings. Unmap | 
|  | 829 | * the pages and send SIGBUS to the processes if the data was dirty. | 
|  | 830 | */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 831 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 832 | int trapno) | 
|  | 833 | { | 
|  | 834 | enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; | 
|  | 835 | struct address_space *mapping; | 
|  | 836 | LIST_HEAD(tokill); | 
|  | 837 | int ret; | 
|  | 838 | int i; | 
|  | 839 | int kill = 1; | 
|  | 840 |  | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 841 | if (PageReserved(p) || PageSlab(p)) | 
|  | 842 | return SWAP_SUCCESS; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 843 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 844 | /* | 
|  | 845 | * This check implies we don't kill processes if their pages | 
|  | 846 | * are in the swap cache early. Those are always late kills. | 
|  | 847 | */ | 
|  | 848 | if (!page_mapped(p)) | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 849 | return SWAP_SUCCESS; | 
|  | 850 |  | 
|  | 851 | if (PageCompound(p) || PageKsm(p)) | 
|  | 852 | return SWAP_FAIL; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 853 |  | 
|  | 854 | if (PageSwapCache(p)) { | 
|  | 855 | printk(KERN_ERR | 
|  | 856 | "MCE %#lx: keeping poisoned page in swap cache\n", pfn); | 
|  | 857 | ttu |= TTU_IGNORE_HWPOISON; | 
|  | 858 | } | 
|  | 859 |  | 
|  | 860 | /* | 
|  | 861 | * Propagate the dirty bit from PTEs to struct page first, because we | 
|  | 862 | * need this to decide if we should kill or just drop the page. | 
| Wu Fengguang | db0480b | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 863 | * XXX: the dirty test could be racy: set_page_dirty() may not always | 
|  | 864 | * be called inside page lock (it's recommended but not enforced). | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 865 | */ | 
|  | 866 | mapping = page_mapping(p); | 
|  | 867 | if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { | 
|  | 868 | if (page_mkclean(p)) { | 
|  | 869 | SetPageDirty(p); | 
|  | 870 | } else { | 
|  | 871 | kill = 0; | 
|  | 872 | ttu |= TTU_IGNORE_HWPOISON; | 
|  | 873 | printk(KERN_INFO | 
|  | 874 | "MCE %#lx: corrupted page was clean: dropped without side effects\n", | 
|  | 875 | pfn); | 
|  | 876 | } | 
|  | 877 | } | 
|  | 878 |  | 
|  | 879 | /* | 
|  | 880 | * First collect all the processes that have the page | 
|  | 881 | * mapped in dirty form.  This has to be done before try_to_unmap, | 
|  | 882 | * because ttu takes the rmap data structures down. | 
|  | 883 | * | 
|  | 884 | * Error handling: We ignore errors here because | 
|  | 885 | * there's nothing that can be done. | 
|  | 886 | */ | 
|  | 887 | if (kill) | 
|  | 888 | collect_procs(p, &tokill); | 
|  | 889 |  | 
|  | 890 | /* | 
|  | 891 | * try_to_unmap can fail temporarily due to races. | 
|  | 892 | * Try a few times (RED-PEN better strategy?) | 
|  | 893 | */ | 
|  | 894 | for (i = 0; i < N_UNMAP_TRIES; i++) { | 
|  | 895 | ret = try_to_unmap(p, ttu); | 
|  | 896 | if (ret == SWAP_SUCCESS) | 
|  | 897 | break; | 
|  | 898 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret); | 
|  | 899 | } | 
|  | 900 |  | 
|  | 901 | if (ret != SWAP_SUCCESS) | 
|  | 902 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 
|  | 903 | pfn, page_mapcount(p)); | 
|  | 904 |  | 
|  | 905 | /* | 
|  | 906 | * Now that the dirty bit has been propagated to the | 
|  | 907 | * struct page and all unmaps done we can decide if | 
|  | 908 | * killing is needed or not.  Only kill when the page | 
|  | 909 | * was dirty, otherwise the tokill list is merely | 
|  | 910 | * freed.  When there was a problem unmapping earlier | 
|  | 911 | * use a more force-full uncatchable kill to prevent | 
|  | 912 | * any accesses to the poisoned memory. | 
|  | 913 | */ | 
|  | 914 | kill_procs_ao(&tokill, !!PageDirty(p), trapno, | 
|  | 915 | ret != SWAP_SUCCESS, pfn); | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 916 |  | 
|  | 917 | return ret; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 918 | } | 
|  | 919 |  | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 920 | int __memory_failure(unsigned long pfn, int trapno, int flags) | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 921 | { | 
|  | 922 | struct page_state *ps; | 
|  | 923 | struct page *p; | 
|  | 924 | int res; | 
|  | 925 |  | 
|  | 926 | if (!sysctl_memory_failure_recovery) | 
|  | 927 | panic("Memory failure from trap %d on page %lx", trapno, pfn); | 
|  | 928 |  | 
|  | 929 | if (!pfn_valid(pfn)) { | 
| Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 930 | printk(KERN_ERR | 
|  | 931 | "MCE %#lx: memory outside kernel control\n", | 
|  | 932 | pfn); | 
|  | 933 | return -ENXIO; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 934 | } | 
|  | 935 |  | 
|  | 936 | p = pfn_to_page(pfn); | 
|  | 937 | if (TestSetPageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 938 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 939 | return 0; | 
|  | 940 | } | 
|  | 941 |  | 
|  | 942 | atomic_long_add(1, &mce_bad_pages); | 
|  | 943 |  | 
|  | 944 | /* | 
|  | 945 | * We need/can do nothing about count=0 pages. | 
|  | 946 | * 1) it's a free page, and therefore in safe hand: | 
|  | 947 | *    prep_new_page() will be the gate keeper. | 
|  | 948 | * 2) it's part of a non-compound high order page. | 
|  | 949 | *    Implies some kernel user: cannot stop them from | 
|  | 950 | *    R/W the page; let's pray that the page has been | 
|  | 951 | *    used and will be freed some time later. | 
|  | 952 | * In fact it's dangerous to directly bump up page count from 0, | 
|  | 953 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | 
|  | 954 | */ | 
| Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 955 | if (!(flags & MF_COUNT_INCREASED) && | 
|  | 956 | !get_page_unless_zero(compound_head(p))) { | 
| Wu Fengguang | 8d22ba1 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 957 | if (is_free_buddy_page(p)) { | 
|  | 958 | action_result(pfn, "free buddy", DELAYED); | 
|  | 959 | return 0; | 
|  | 960 | } else { | 
|  | 961 | action_result(pfn, "high order kernel", IGNORED); | 
|  | 962 | return -EBUSY; | 
|  | 963 | } | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 964 | } | 
|  | 965 |  | 
|  | 966 | /* | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 967 | * We ignore non-LRU pages for good reasons. | 
|  | 968 | * - PG_locked is only well defined for LRU pages and a few others | 
|  | 969 | * - to avoid races with __set_page_locked() | 
|  | 970 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) | 
|  | 971 | * The check (unnecessarily) ignores LRU pages being isolated and | 
|  | 972 | * walked by the page reclaim code, however that's not a big loss. | 
|  | 973 | */ | 
|  | 974 | if (!PageLRU(p)) | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 975 | shake_page(p, 0); | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 976 | if (!PageLRU(p)) { | 
| Andi Kleen | 0474a60 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 977 | /* | 
|  | 978 | * shake_page could have turned it free. | 
|  | 979 | */ | 
|  | 980 | if (is_free_buddy_page(p)) { | 
|  | 981 | action_result(pfn, "free buddy, 2nd try", DELAYED); | 
|  | 982 | return 0; | 
|  | 983 | } | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 984 | action_result(pfn, "non LRU", IGNORED); | 
|  | 985 | put_page(p); | 
|  | 986 | return -EBUSY; | 
|  | 987 | } | 
| Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 988 |  | 
|  | 989 | /* | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 990 | * Lock the page and wait for writeback to finish. | 
|  | 991 | * It's very difficult to mess with pages currently under IO | 
|  | 992 | * and in many cases impossible, so we just avoid it here. | 
|  | 993 | */ | 
|  | 994 | lock_page_nosync(p); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 995 |  | 
|  | 996 | /* | 
|  | 997 | * unpoison always clear PG_hwpoison inside page lock | 
|  | 998 | */ | 
|  | 999 | if (!PageHWPoison(p)) { | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1000 | printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1001 | res = 0; | 
|  | 1002 | goto out; | 
|  | 1003 | } | 
| Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 1004 | if (hwpoison_filter(p)) { | 
|  | 1005 | if (TestClearPageHWPoison(p)) | 
|  | 1006 | atomic_long_dec(&mce_bad_pages); | 
|  | 1007 | unlock_page(p); | 
|  | 1008 | put_page(p); | 
|  | 1009 | return 0; | 
|  | 1010 | } | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1011 |  | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1012 | wait_on_page_writeback(p); | 
|  | 1013 |  | 
|  | 1014 | /* | 
|  | 1015 | * Now take care of user space mappings. | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1016 | * Abort on fail: __remove_from_page_cache() assumes unmapped page. | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1017 | */ | 
| Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1018 | if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { | 
|  | 1019 | printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); | 
|  | 1020 | res = -EBUSY; | 
|  | 1021 | goto out; | 
|  | 1022 | } | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1023 |  | 
|  | 1024 | /* | 
|  | 1025 | * Torn down by someone else? | 
|  | 1026 | */ | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1027 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1028 | action_result(pfn, "already truncated LRU", IGNORED); | 
| Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1029 | res = -EBUSY; | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1030 | goto out; | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | res = -EBUSY; | 
|  | 1034 | for (ps = error_states;; ps++) { | 
| Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1035 | if ((p->flags & ps->mask) == ps->res) { | 
| Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 1036 | res = page_action(ps, p, pfn); | 
| Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1037 | break; | 
|  | 1038 | } | 
|  | 1039 | } | 
|  | 1040 | out: | 
|  | 1041 | unlock_page(p); | 
|  | 1042 | return res; | 
|  | 1043 | } | 
|  | 1044 | EXPORT_SYMBOL_GPL(__memory_failure); | 
|  | 1045 |  | 
|  | 1046 | /** | 
|  | 1047 | * memory_failure - Handle memory failure of a page. | 
|  | 1048 | * @pfn: Page Number of the corrupted page | 
|  | 1049 | * @trapno: Trap number reported in the signal to user space. | 
|  | 1050 | * | 
|  | 1051 | * This function is called by the low level machine check code | 
|  | 1052 | * of an architecture when it detects hardware memory corruption | 
|  | 1053 | * of a page. It tries its best to recover, which includes | 
|  | 1054 | * dropping pages, killing processes etc. | 
|  | 1055 | * | 
|  | 1056 | * The function is primarily of use for corruptions that | 
|  | 1057 | * happen outside the current execution context (e.g. when | 
|  | 1058 | * detected by a background scrubber) | 
|  | 1059 | * | 
|  | 1060 | * Must run in process context (e.g. a work queue) with interrupts | 
|  | 1061 | * enabled and no spinlocks hold. | 
|  | 1062 | */ | 
|  | 1063 | void memory_failure(unsigned long pfn, int trapno) | 
|  | 1064 | { | 
|  | 1065 | __memory_failure(pfn, trapno, 0); | 
|  | 1066 | } | 
| Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1067 |  | 
|  | 1068 | /** | 
|  | 1069 | * unpoison_memory - Unpoison a previously poisoned page | 
|  | 1070 | * @pfn: Page number of the to be unpoisoned page | 
|  | 1071 | * | 
|  | 1072 | * Software-unpoison a page that has been poisoned by | 
|  | 1073 | * memory_failure() earlier. | 
|  | 1074 | * | 
|  | 1075 | * This is only done on the software-level, so it only works | 
|  | 1076 | * for linux injected failures, not real hardware failures | 
|  | 1077 | * | 
|  | 1078 | * Returns 0 for success, otherwise -errno. | 
|  | 1079 | */ | 
|  | 1080 | int unpoison_memory(unsigned long pfn) | 
|  | 1081 | { | 
|  | 1082 | struct page *page; | 
|  | 1083 | struct page *p; | 
|  | 1084 | int freeit = 0; | 
|  | 1085 |  | 
|  | 1086 | if (!pfn_valid(pfn)) | 
|  | 1087 | return -ENXIO; | 
|  | 1088 |  | 
|  | 1089 | p = pfn_to_page(pfn); | 
|  | 1090 | page = compound_head(p); | 
|  | 1091 |  | 
|  | 1092 | if (!PageHWPoison(p)) { | 
|  | 1093 | pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); | 
|  | 1094 | return 0; | 
|  | 1095 | } | 
|  | 1096 |  | 
|  | 1097 | if (!get_page_unless_zero(page)) { | 
|  | 1098 | if (TestClearPageHWPoison(p)) | 
|  | 1099 | atomic_long_dec(&mce_bad_pages); | 
|  | 1100 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); | 
|  | 1101 | return 0; | 
|  | 1102 | } | 
|  | 1103 |  | 
|  | 1104 | lock_page_nosync(page); | 
|  | 1105 | /* | 
|  | 1106 | * This test is racy because PG_hwpoison is set outside of page lock. | 
|  | 1107 | * That's acceptable because that won't trigger kernel panic. Instead, | 
|  | 1108 | * the PG_hwpoison page will be caught and isolated on the entrance to | 
|  | 1109 | * the free buddy page pool. | 
|  | 1110 | */ | 
|  | 1111 | if (TestClearPageHWPoison(p)) { | 
|  | 1112 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); | 
|  | 1113 | atomic_long_dec(&mce_bad_pages); | 
|  | 1114 | freeit = 1; | 
|  | 1115 | } | 
|  | 1116 | unlock_page(page); | 
|  | 1117 |  | 
|  | 1118 | put_page(page); | 
|  | 1119 | if (freeit) | 
|  | 1120 | put_page(page); | 
|  | 1121 |  | 
|  | 1122 | return 0; | 
|  | 1123 | } | 
|  | 1124 | EXPORT_SYMBOL(unpoison_memory); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1125 |  | 
|  | 1126 | static struct page *new_page(struct page *p, unsigned long private, int **x) | 
|  | 1127 | { | 
| Andi Kleen | 12686d1 | 2009-12-16 12:20:01 +0100 | [diff] [blame] | 1128 | int nid = page_to_nid(p); | 
|  | 1129 | return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | 
| Andi Kleen | facb601 | 2009-12-16 12:20:00 +0100 | [diff] [blame] | 1130 | } | 
|  | 1131 |  | 
|  | 1132 | /* | 
|  | 1133 | * Safely get reference count of an arbitrary page. | 
|  | 1134 | * Returns 0 for a free page, -EIO for a zero refcount page | 
|  | 1135 | * that is not free, and 1 for any other page type. | 
|  | 1136 | * For 1 the page is returned with increased page count, otherwise not. | 
|  | 1137 | */ | 
|  | 1138 | static int get_any_page(struct page *p, unsigned long pfn, int flags) | 
|  | 1139 | { | 
|  | 1140 | int ret; | 
|  | 1141 |  | 
|  | 1142 | if (flags & MF_COUNT_INCREASED) | 
|  | 1143 | return 1; | 
|  | 1144 |  | 
|  | 1145 | /* | 
|  | 1146 | * The lock_system_sleep prevents a race with memory hotplug, | 
|  | 1147 | * because the isolation assumes there's only a single user. | 
|  | 1148 | * This is a big hammer, a better would be nicer. | 
|  | 1149 | */ | 
|  | 1150 | lock_system_sleep(); | 
|  | 1151 |  | 
|  | 1152 | /* | 
|  | 1153 | * Isolate the page, so that it doesn't get reallocated if it | 
|  | 1154 | * was free. | 
|  | 1155 | */ | 
|  | 1156 | set_migratetype_isolate(p); | 
|  | 1157 | if (!get_page_unless_zero(compound_head(p))) { | 
|  | 1158 | if (is_free_buddy_page(p)) { | 
|  | 1159 | pr_debug("get_any_page: %#lx free buddy page\n", pfn); | 
|  | 1160 | /* Set hwpoison bit while page is still isolated */ | 
|  | 1161 | SetPageHWPoison(p); | 
|  | 1162 | ret = 0; | 
|  | 1163 | } else { | 
|  | 1164 | pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", | 
|  | 1165 | pfn, p->flags); | 
|  | 1166 | ret = -EIO; | 
|  | 1167 | } | 
|  | 1168 | } else { | 
|  | 1169 | /* Not a free page */ | 
|  | 1170 | ret = 1; | 
|  | 1171 | } | 
|  | 1172 | unset_migratetype_isolate(p); | 
|  | 1173 | unlock_system_sleep(); | 
|  | 1174 | return ret; | 
|  | 1175 | } | 
|  | 1176 |  | 
|  | 1177 | /** | 
|  | 1178 | * soft_offline_page - Soft offline a page. | 
|  | 1179 | * @page: page to offline | 
|  | 1180 | * @flags: flags. Same as memory_failure(). | 
|  | 1181 | * | 
|  | 1182 | * Returns 0 on success, otherwise negated errno. | 
|  | 1183 | * | 
|  | 1184 | * Soft offline a page, by migration or invalidation, | 
|  | 1185 | * without killing anything. This is for the case when | 
|  | 1186 | * a page is not corrupted yet (so it's still valid to access), | 
|  | 1187 | * but has had a number of corrected errors and is better taken | 
|  | 1188 | * out. | 
|  | 1189 | * | 
|  | 1190 | * The actual policy on when to do that is maintained by | 
|  | 1191 | * user space. | 
|  | 1192 | * | 
|  | 1193 | * This should never impact any application or cause data loss, | 
|  | 1194 | * however it might take some time. | 
|  | 1195 | * | 
|  | 1196 | * This is not a 100% solution for all memory, but tries to be | 
|  | 1197 | * ``good enough'' for the majority of memory. | 
|  | 1198 | */ | 
|  | 1199 | int soft_offline_page(struct page *page, int flags) | 
|  | 1200 | { | 
|  | 1201 | int ret; | 
|  | 1202 | unsigned long pfn = page_to_pfn(page); | 
|  | 1203 |  | 
|  | 1204 | ret = get_any_page(page, pfn, flags); | 
|  | 1205 | if (ret < 0) | 
|  | 1206 | return ret; | 
|  | 1207 | if (ret == 0) | 
|  | 1208 | goto done; | 
|  | 1209 |  | 
|  | 1210 | /* | 
|  | 1211 | * Page cache page we can handle? | 
|  | 1212 | */ | 
|  | 1213 | if (!PageLRU(page)) { | 
|  | 1214 | /* | 
|  | 1215 | * Try to free it. | 
|  | 1216 | */ | 
|  | 1217 | put_page(page); | 
|  | 1218 | shake_page(page, 1); | 
|  | 1219 |  | 
|  | 1220 | /* | 
|  | 1221 | * Did it turn free? | 
|  | 1222 | */ | 
|  | 1223 | ret = get_any_page(page, pfn, 0); | 
|  | 1224 | if (ret < 0) | 
|  | 1225 | return ret; | 
|  | 1226 | if (ret == 0) | 
|  | 1227 | goto done; | 
|  | 1228 | } | 
|  | 1229 | if (!PageLRU(page)) { | 
|  | 1230 | pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", | 
|  | 1231 | pfn, page->flags); | 
|  | 1232 | return -EIO; | 
|  | 1233 | } | 
|  | 1234 |  | 
|  | 1235 | lock_page(page); | 
|  | 1236 | wait_on_page_writeback(page); | 
|  | 1237 |  | 
|  | 1238 | /* | 
|  | 1239 | * Synchronized using the page lock with memory_failure() | 
|  | 1240 | */ | 
|  | 1241 | if (PageHWPoison(page)) { | 
|  | 1242 | unlock_page(page); | 
|  | 1243 | put_page(page); | 
|  | 1244 | pr_debug("soft offline: %#lx page already poisoned\n", pfn); | 
|  | 1245 | return -EBUSY; | 
|  | 1246 | } | 
|  | 1247 |  | 
|  | 1248 | /* | 
|  | 1249 | * Try to invalidate first. This should work for | 
|  | 1250 | * non dirty unmapped page cache pages. | 
|  | 1251 | */ | 
|  | 1252 | ret = invalidate_inode_page(page); | 
|  | 1253 | unlock_page(page); | 
|  | 1254 |  | 
|  | 1255 | /* | 
|  | 1256 | * Drop count because page migration doesn't like raised | 
|  | 1257 | * counts. The page could get re-allocated, but if it becomes | 
|  | 1258 | * LRU the isolation will just fail. | 
|  | 1259 | * RED-PEN would be better to keep it isolated here, but we | 
|  | 1260 | * would need to fix isolation locking first. | 
|  | 1261 | */ | 
|  | 1262 | put_page(page); | 
|  | 1263 | if (ret == 1) { | 
|  | 1264 | ret = 0; | 
|  | 1265 | pr_debug("soft_offline: %#lx: invalidated\n", pfn); | 
|  | 1266 | goto done; | 
|  | 1267 | } | 
|  | 1268 |  | 
|  | 1269 | /* | 
|  | 1270 | * Simple invalidation didn't work. | 
|  | 1271 | * Try to migrate to a new page instead. migrate.c | 
|  | 1272 | * handles a large number of cases for us. | 
|  | 1273 | */ | 
|  | 1274 | ret = isolate_lru_page(page); | 
|  | 1275 | if (!ret) { | 
|  | 1276 | LIST_HEAD(pagelist); | 
|  | 1277 |  | 
|  | 1278 | list_add(&page->lru, &pagelist); | 
|  | 1279 | ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | 
|  | 1280 | if (ret) { | 
|  | 1281 | pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | 
|  | 1282 | pfn, ret, page->flags); | 
|  | 1283 | if (ret > 0) | 
|  | 1284 | ret = -EIO; | 
|  | 1285 | } | 
|  | 1286 | } else { | 
|  | 1287 | pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", | 
|  | 1288 | pfn, ret, page_count(page), page->flags); | 
|  | 1289 | } | 
|  | 1290 | if (ret) | 
|  | 1291 | return ret; | 
|  | 1292 |  | 
|  | 1293 | done: | 
|  | 1294 | atomic_long_add(1, &mce_bad_pages); | 
|  | 1295 | SetPageHWPoison(page); | 
|  | 1296 | /* keep elevated page count for bad page */ | 
|  | 1297 | return ret; | 
|  | 1298 | } |