john stultz | c37e7bb | 2007-02-16 01:28:19 -0800 | [diff] [blame^] | 1 | #include <linux/kernel.h> |
| 2 | #include <linux/sched.h> |
| 3 | #include <linux/interrupt.h> |
| 4 | #include <linux/init.h> |
| 5 | #include <linux/clocksource.h> |
| 6 | #include <linux/time.h> |
| 7 | #include <linux/acpi.h> |
| 8 | #include <linux/cpufreq.h> |
| 9 | |
| 10 | #include <asm/timex.h> |
| 11 | |
| 12 | int notsc __initdata = 0; |
| 13 | |
| 14 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| 15 | EXPORT_SYMBOL(cpu_khz); |
| 16 | |
| 17 | /* |
| 18 | * do_gettimeoffset() returns microseconds since last timer interrupt was |
| 19 | * triggered by hardware. A memory read of HPET is slower than a register read |
| 20 | * of TSC, but much more reliable. It's also synchronized to the timer |
| 21 | * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a |
| 22 | * timer interrupt has happened already, but vxtime.trigger wasn't updated yet. |
| 23 | * This is not a problem, because jiffies hasn't updated either. They are bound |
| 24 | * together by xtime_lock. |
| 25 | */ |
| 26 | |
| 27 | unsigned int do_gettimeoffset_tsc(void) |
| 28 | { |
| 29 | unsigned long t; |
| 30 | unsigned long x; |
| 31 | t = get_cycles_sync(); |
| 32 | if (t < vxtime.last_tsc) |
| 33 | t = vxtime.last_tsc; /* hack */ |
| 34 | x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE; |
| 35 | return x; |
| 36 | } |
| 37 | |
| 38 | static unsigned int cyc2ns_scale __read_mostly; |
| 39 | |
| 40 | void set_cyc2ns_scale(unsigned long khz) |
| 41 | { |
| 42 | cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz; |
| 43 | } |
| 44 | |
| 45 | unsigned long long cycles_2_ns(unsigned long long cyc) |
| 46 | { |
| 47 | return (cyc * cyc2ns_scale) >> NS_SCALE; |
| 48 | } |
| 49 | |
| 50 | unsigned long long sched_clock(void) |
| 51 | { |
| 52 | unsigned long a = 0; |
| 53 | |
| 54 | /* Could do CPU core sync here. Opteron can execute rdtsc speculatively, |
| 55 | * which means it is not completely exact and may not be monotonous |
| 56 | * between CPUs. But the errors should be too small to matter for |
| 57 | * scheduling purposes. |
| 58 | */ |
| 59 | |
| 60 | rdtscll(a); |
| 61 | return cycles_2_ns(a); |
| 62 | } |
| 63 | |
| 64 | #ifdef CONFIG_CPU_FREQ |
| 65 | |
| 66 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| 67 | * changes. |
| 68 | * |
| 69 | * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| 70 | * not that important because current Opteron setups do not support |
| 71 | * scaling on SMP anyroads. |
| 72 | * |
| 73 | * Should fix up last_tsc too. Currently gettimeofday in the |
| 74 | * first tick after the change will be slightly wrong. |
| 75 | */ |
| 76 | |
| 77 | #include <linux/workqueue.h> |
| 78 | |
| 79 | static unsigned int cpufreq_delayed_issched = 0; |
| 80 | static unsigned int cpufreq_init = 0; |
| 81 | static struct work_struct cpufreq_delayed_get_work; |
| 82 | |
| 83 | static void handle_cpufreq_delayed_get(struct work_struct *v) |
| 84 | { |
| 85 | unsigned int cpu; |
| 86 | for_each_online_cpu(cpu) { |
| 87 | cpufreq_get(cpu); |
| 88 | } |
| 89 | cpufreq_delayed_issched = 0; |
| 90 | } |
| 91 | |
| 92 | /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries |
| 93 | * to verify the CPU frequency the timing core thinks the CPU is running |
| 94 | * at is still correct. |
| 95 | */ |
| 96 | void cpufreq_delayed_get(void) |
| 97 | { |
| 98 | static int warned; |
| 99 | if (cpufreq_init && !cpufreq_delayed_issched) { |
| 100 | cpufreq_delayed_issched = 1; |
| 101 | if (!warned) { |
| 102 | warned = 1; |
| 103 | printk(KERN_DEBUG "Losing some ticks... " |
| 104 | "checking if CPU frequency changed.\n"); |
| 105 | } |
| 106 | schedule_work(&cpufreq_delayed_get_work); |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | static unsigned int ref_freq = 0; |
| 111 | static unsigned long loops_per_jiffy_ref = 0; |
| 112 | |
| 113 | static unsigned long cpu_khz_ref = 0; |
| 114 | |
| 115 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 116 | void *data) |
| 117 | { |
| 118 | struct cpufreq_freqs *freq = data; |
| 119 | unsigned long *lpj, dummy; |
| 120 | |
| 121 | if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC)) |
| 122 | return 0; |
| 123 | |
| 124 | lpj = &dummy; |
| 125 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 126 | #ifdef CONFIG_SMP |
| 127 | lpj = &cpu_data[freq->cpu].loops_per_jiffy; |
| 128 | #else |
| 129 | lpj = &boot_cpu_data.loops_per_jiffy; |
| 130 | #endif |
| 131 | |
| 132 | if (!ref_freq) { |
| 133 | ref_freq = freq->old; |
| 134 | loops_per_jiffy_ref = *lpj; |
| 135 | cpu_khz_ref = cpu_khz; |
| 136 | } |
| 137 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| 138 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| 139 | (val == CPUFREQ_RESUMECHANGE)) { |
| 140 | *lpj = |
| 141 | cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| 142 | |
| 143 | cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); |
| 144 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 145 | vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz; |
| 146 | } |
| 147 | |
| 148 | set_cyc2ns_scale(cpu_khz_ref); |
| 149 | |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | static struct notifier_block time_cpufreq_notifier_block = { |
| 154 | .notifier_call = time_cpufreq_notifier |
| 155 | }; |
| 156 | |
| 157 | static int __init cpufreq_tsc(void) |
| 158 | { |
| 159 | INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get); |
| 160 | if (!cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 161 | CPUFREQ_TRANSITION_NOTIFIER)) |
| 162 | cpufreq_init = 1; |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | core_initcall(cpufreq_tsc); |
| 167 | |
| 168 | #endif |
| 169 | |
| 170 | static int tsc_unstable = 0; |
| 171 | |
| 172 | void mark_tsc_unstable(void) |
| 173 | { |
| 174 | tsc_unstable = 1; |
| 175 | } |
| 176 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| 177 | |
| 178 | /* |
| 179 | * Make an educated guess if the TSC is trustworthy and synchronized |
| 180 | * over all CPUs. |
| 181 | */ |
| 182 | __cpuinit int unsynchronized_tsc(void) |
| 183 | { |
| 184 | if (tsc_unstable) |
| 185 | return 1; |
| 186 | |
| 187 | #ifdef CONFIG_SMP |
| 188 | if (apic_is_clustered_box()) |
| 189 | return 1; |
| 190 | #endif |
| 191 | /* Most intel systems have synchronized TSCs except for |
| 192 | multi node systems */ |
| 193 | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { |
| 194 | #ifdef CONFIG_ACPI |
| 195 | /* But TSC doesn't tick in C3 so don't use it there */ |
| 196 | if (acpi_gbl_FADT.header.length > 0 && acpi_gbl_FADT.C3latency < 1000) |
| 197 | return 1; |
| 198 | #endif |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | /* Assume multi socket systems are not synchronized */ |
| 203 | return num_present_cpus() > 1; |
| 204 | } |
| 205 | |
| 206 | int __init notsc_setup(char *s) |
| 207 | { |
| 208 | notsc = 1; |
| 209 | return 1; |
| 210 | } |
| 211 | |
| 212 | __setup("notsc", notsc_setup); |