| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* -*- linux-c -*- | 
 | 2 |  * INET		802.1Q VLAN | 
 | 3 |  *		Ethernet-type device handling. | 
 | 4 |  * | 
 | 5 |  * Authors:	Ben Greear <greearb@candelatech.com> | 
 | 6 |  *              Please send support related email to: vlan@scry.wanfear.com | 
 | 7 |  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html | 
 | 8 |  *  | 
 | 9 |  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com> | 
 | 10 |  *                - reset skb->pkt_type on incoming packets when MAC was changed | 
 | 11 |  *                - see that changed MAC is saddr for outgoing packets | 
 | 12 |  *              Oct 20, 2001:  Ard van Breeman: | 
 | 13 |  *                - Fix MC-list, finally. | 
 | 14 |  *                - Flush MC-list on VLAN destroy. | 
 | 15 |  *                 | 
 | 16 |  * | 
 | 17 |  *		This program is free software; you can redistribute it and/or | 
 | 18 |  *		modify it under the terms of the GNU General Public License | 
 | 19 |  *		as published by the Free Software Foundation; either version | 
 | 20 |  *		2 of the License, or (at your option) any later version. | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | #include <linux/module.h> | 
 | 24 | #include <linux/mm.h> | 
 | 25 | #include <linux/in.h> | 
 | 26 | #include <linux/init.h> | 
 | 27 | #include <asm/uaccess.h> /* for copy_from_user */ | 
 | 28 | #include <linux/skbuff.h> | 
 | 29 | #include <linux/netdevice.h> | 
 | 30 | #include <linux/etherdevice.h> | 
 | 31 | #include <net/datalink.h> | 
 | 32 | #include <net/p8022.h> | 
 | 33 | #include <net/arp.h> | 
 | 34 |  | 
 | 35 | #include "vlan.h" | 
 | 36 | #include "vlanproc.h" | 
 | 37 | #include <linux/if_vlan.h> | 
 | 38 | #include <net/ip.h> | 
 | 39 |  | 
 | 40 | /* | 
 | 41 |  *	Rebuild the Ethernet MAC header. This is called after an ARP | 
 | 42 |  *	(or in future other address resolution) has completed on this | 
 | 43 |  *	sk_buff. We now let ARP fill in the other fields. | 
 | 44 |  * | 
 | 45 |  *	This routine CANNOT use cached dst->neigh! | 
 | 46 |  *	Really, it is used only when dst->neigh is wrong. | 
 | 47 |  * | 
 | 48 |  * TODO:  This needs a checkup, I'm ignorant here. --BLG | 
 | 49 |  */ | 
 | 50 | int vlan_dev_rebuild_header(struct sk_buff *skb) | 
 | 51 | { | 
 | 52 | 	struct net_device *dev = skb->dev; | 
 | 53 | 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | 
 | 54 |  | 
 | 55 | 	switch (veth->h_vlan_encapsulated_proto) { | 
 | 56 | #ifdef CONFIG_INET | 
 | 57 | 	case __constant_htons(ETH_P_IP): | 
 | 58 |  | 
 | 59 | 		/* TODO:  Confirm this will work with VLAN headers... */ | 
 | 60 | 		return arp_find(veth->h_dest, skb); | 
 | 61 | #endif	 | 
 | 62 | 	default: | 
 | 63 | 		printk(VLAN_DBG | 
 | 64 | 		       "%s: unable to resolve type %X addresses.\n",  | 
| Alexey Dobriyan | d136fe7 | 2005-12-28 22:27:10 +0300 | [diff] [blame] | 65 | 		       dev->name, ntohs(veth->h_vlan_encapsulated_proto)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | 	  | 
 | 67 | 		memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); | 
 | 68 | 		break; | 
 | 69 | 	}; | 
 | 70 |  | 
 | 71 | 	return 0; | 
 | 72 | } | 
 | 73 |  | 
 | 74 | static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) | 
 | 75 | { | 
 | 76 | 	if (VLAN_DEV_INFO(skb->dev)->flags & 1) { | 
 | 77 | 		if (skb_shared(skb) || skb_cloned(skb)) { | 
 | 78 | 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | 
 | 79 | 			kfree_skb(skb); | 
 | 80 | 			skb = nskb; | 
 | 81 | 		} | 
 | 82 | 		if (skb) { | 
 | 83 | 			/* Lifted from Gleb's VLAN code... */ | 
 | 84 | 			memmove(skb->data - ETH_HLEN, | 
 | 85 | 				skb->data - VLAN_ETH_HLEN, 12); | 
 | 86 | 			skb->mac.raw += VLAN_HLEN; | 
 | 87 | 		} | 
 | 88 | 	} | 
 | 89 |  | 
 | 90 | 	return skb; | 
 | 91 | } | 
 | 92 |  | 
 | 93 | /* | 
 | 94 |  *	Determine the packet's protocol ID. The rule here is that we  | 
 | 95 |  *	assume 802.3 if the type field is short enough to be a length. | 
 | 96 |  *	This is normal practice and works for any 'now in use' protocol. | 
 | 97 |  * | 
 | 98 |  *  Also, at this point we assume that we ARE dealing exclusively with | 
 | 99 |  *  VLAN packets, or packets that should be made into VLAN packets based | 
 | 100 |  *  on a default VLAN ID. | 
 | 101 |  * | 
 | 102 |  *  NOTE:  Should be similar to ethernet/eth.c. | 
 | 103 |  * | 
 | 104 |  *  SANITY NOTE:  This method is called when a packet is moving up the stack | 
 | 105 |  *                towards userland.  To get here, it would have already passed | 
 | 106 |  *                through the ethernet/eth.c eth_type_trans() method. | 
 | 107 |  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be | 
 | 108 |  *                 stored UNALIGNED in the memory.  RISC systems don't like | 
 | 109 |  *                 such cases very much... | 
 | 110 |  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned, | 
 | 111 |  *                 so there doesn't need to be any of the unaligned stuff.  It has | 
 | 112 |  *                 been commented out now...  --Ben | 
 | 113 |  * | 
 | 114 |  */ | 
 | 115 | int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, | 
| David S. Miller | f2ccd8f | 2005-08-09 19:34:12 -0700 | [diff] [blame] | 116 |                   struct packet_type* ptype, struct net_device *orig_dev) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 117 | { | 
 | 118 | 	unsigned char *rawp = NULL; | 
 | 119 | 	struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); | 
 | 120 | 	unsigned short vid; | 
 | 121 | 	struct net_device_stats *stats; | 
 | 122 | 	unsigned short vlan_TCI; | 
| Alexey Dobriyan | 3c3f8f2 | 2005-09-19 15:41:28 -0700 | [diff] [blame] | 123 | 	__be16 proto; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 |  | 
 | 125 | 	/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ | 
 | 126 | 	vlan_TCI = ntohs(vhdr->h_vlan_TCI); | 
 | 127 |  | 
 | 128 | 	vid = (vlan_TCI & VLAN_VID_MASK); | 
 | 129 |  | 
 | 130 | #ifdef VLAN_DEBUG | 
 | 131 | 	printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", | 
 | 132 | 		__FUNCTION__, skb, vid); | 
 | 133 | #endif | 
 | 134 |  | 
 | 135 | 	/* Ok, we will find the correct VLAN device, strip the header, | 
 | 136 | 	 * and then go on as usual. | 
 | 137 | 	 */ | 
 | 138 |  | 
 | 139 | 	/* We have 12 bits of vlan ID. | 
 | 140 | 	 * | 
 | 141 | 	 * We must not drop allow preempt until we hold a | 
 | 142 | 	 * reference to the device (netif_rx does that) or we | 
 | 143 | 	 * fail. | 
 | 144 | 	 */ | 
 | 145 |  | 
 | 146 | 	rcu_read_lock(); | 
 | 147 | 	skb->dev = __find_vlan_dev(dev, vid); | 
 | 148 | 	if (!skb->dev) { | 
 | 149 | 		rcu_read_unlock(); | 
 | 150 |  | 
 | 151 | #ifdef VLAN_DEBUG | 
 | 152 | 		printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", | 
 | 153 | 			__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); | 
 | 154 | #endif | 
 | 155 | 		kfree_skb(skb); | 
 | 156 | 		return -1; | 
 | 157 | 	} | 
 | 158 |  | 
 | 159 | 	skb->dev->last_rx = jiffies; | 
 | 160 |  | 
 | 161 | 	/* Bump the rx counters for the VLAN device. */ | 
 | 162 | 	stats = vlan_dev_get_stats(skb->dev); | 
 | 163 | 	stats->rx_packets++; | 
 | 164 | 	stats->rx_bytes += skb->len; | 
 | 165 |  | 
| Herbert Xu | cbb042f | 2006-03-20 22:43:56 -0800 | [diff] [blame] | 166 | 	/* Take off the VLAN header (4 bytes currently) */ | 
 | 167 | 	skb_pull_rcsum(skb, VLAN_HLEN); | 
| Stephen Hemminger | a388442 | 2005-12-14 16:23:16 -0800 | [diff] [blame] | 168 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 169 | 	/* Ok, lets check to make sure the device (dev) we | 
 | 170 | 	 * came in on is what this VLAN is attached to. | 
 | 171 | 	 */ | 
 | 172 |  | 
 | 173 | 	if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { | 
 | 174 | 		rcu_read_unlock(); | 
 | 175 |  | 
 | 176 | #ifdef VLAN_DEBUG | 
 | 177 | 		printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n", | 
 | 178 | 			__FUNCTION__, skb, dev->name,  | 
 | 179 | 			VLAN_DEV_INFO(skb->dev)->real_dev->name,  | 
 | 180 | 			skb->dev->name); | 
 | 181 | #endif | 
 | 182 | 		kfree_skb(skb); | 
 | 183 | 		stats->rx_errors++; | 
 | 184 | 		return -1; | 
 | 185 | 	} | 
 | 186 |  | 
 | 187 | 	/* | 
 | 188 | 	 * Deal with ingress priority mapping. | 
 | 189 | 	 */ | 
 | 190 | 	skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); | 
 | 191 |  | 
 | 192 | #ifdef VLAN_DEBUG | 
 | 193 | 	printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n", | 
 | 194 | 		__FUNCTION__, (unsigned long)(skb->priority),  | 
 | 195 | 		ntohs(vhdr->h_vlan_TCI)); | 
 | 196 | #endif | 
 | 197 |  | 
 | 198 | 	/* The ethernet driver already did the pkt_type calculations | 
 | 199 | 	 * for us... | 
 | 200 | 	 */ | 
 | 201 | 	switch (skb->pkt_type) { | 
 | 202 | 	case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ | 
 | 203 | 		// stats->broadcast ++; // no such counter :-( | 
 | 204 | 		break; | 
 | 205 |  | 
 | 206 | 	case PACKET_MULTICAST: | 
 | 207 | 		stats->multicast++; | 
 | 208 | 		break; | 
 | 209 |  | 
 | 210 | 	case PACKET_OTHERHOST:  | 
 | 211 | 		/* Our lower layer thinks this is not local, let's make sure. | 
 | 212 | 		 * This allows the VLAN to have a different MAC than the underlying | 
 | 213 | 		 * device, and still route correctly. | 
 | 214 | 		 */ | 
| Kris Katterjohn | d3f4a68 | 2006-01-09 16:01:43 -0800 | [diff] [blame] | 215 | 		if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 216 | 			/* It is for our (changed) MAC-address! */ | 
 | 217 | 			skb->pkt_type = PACKET_HOST; | 
 | 218 | 		} | 
 | 219 | 		break; | 
 | 220 | 	default: | 
 | 221 | 		break; | 
 | 222 | 	}; | 
 | 223 |  | 
 | 224 | 	/*  Was a VLAN packet, grab the encapsulated protocol, which the layer | 
 | 225 | 	 * three protocols care about. | 
 | 226 | 	 */ | 
 | 227 | 	/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ | 
 | 228 | 	proto = vhdr->h_vlan_encapsulated_proto; | 
 | 229 |  | 
 | 230 | 	skb->protocol = proto; | 
 | 231 | 	if (ntohs(proto) >= 1536) { | 
 | 232 | 		/* place it back on the queue to be handled by | 
 | 233 | 		 * true layer 3 protocols. | 
 | 234 | 		 */ | 
 | 235 |  | 
 | 236 | 		/* See if we are configured to re-write the VLAN header | 
 | 237 | 		 * to make it look like ethernet... | 
 | 238 | 		 */ | 
 | 239 | 		skb = vlan_check_reorder_header(skb); | 
 | 240 |  | 
 | 241 | 		/* Can be null if skb-clone fails when re-ordering */ | 
 | 242 | 		if (skb) { | 
 | 243 | 			netif_rx(skb); | 
 | 244 | 		} else { | 
 | 245 | 			/* TODO:  Add a more specific counter here. */ | 
 | 246 | 			stats->rx_errors++; | 
 | 247 | 		} | 
 | 248 | 		rcu_read_unlock(); | 
 | 249 | 		return 0; | 
 | 250 | 	} | 
 | 251 |  | 
 | 252 | 	rawp = skb->data; | 
 | 253 |  | 
 | 254 | 	/* | 
 | 255 | 	 * This is a magic hack to spot IPX packets. Older Novell breaks | 
 | 256 | 	 * the protocol design and runs IPX over 802.3 without an 802.2 LLC | 
 | 257 | 	 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This | 
 | 258 | 	 * won't work for fault tolerant netware but does for the rest. | 
 | 259 | 	 */ | 
 | 260 | 	if (*(unsigned short *)rawp == 0xFFFF) { | 
 | 261 | 		skb->protocol = __constant_htons(ETH_P_802_3); | 
 | 262 | 		/* place it back on the queue to be handled by true layer 3 protocols. | 
 | 263 | 		 */ | 
 | 264 |  | 
 | 265 | 		/* See if we are configured to re-write the VLAN header | 
 | 266 | 		 * to make it look like ethernet... | 
 | 267 | 		 */ | 
 | 268 | 		skb = vlan_check_reorder_header(skb); | 
 | 269 |  | 
 | 270 | 		/* Can be null if skb-clone fails when re-ordering */ | 
 | 271 | 		if (skb) { | 
 | 272 | 			netif_rx(skb); | 
 | 273 | 		} else { | 
 | 274 | 			/* TODO:  Add a more specific counter here. */ | 
 | 275 | 			stats->rx_errors++; | 
 | 276 | 		} | 
 | 277 | 		rcu_read_unlock(); | 
 | 278 | 		return 0; | 
 | 279 | 	} | 
 | 280 |  | 
 | 281 | 	/* | 
 | 282 | 	 *	Real 802.2 LLC | 
 | 283 | 	 */ | 
 | 284 | 	skb->protocol = __constant_htons(ETH_P_802_2); | 
 | 285 | 	/* place it back on the queue to be handled by upper layer protocols. | 
 | 286 | 	 */ | 
 | 287 |  | 
 | 288 | 	/* See if we are configured to re-write the VLAN header | 
 | 289 | 	 * to make it look like ethernet... | 
 | 290 | 	 */ | 
 | 291 | 	skb = vlan_check_reorder_header(skb); | 
 | 292 |  | 
 | 293 | 	/* Can be null if skb-clone fails when re-ordering */ | 
 | 294 | 	if (skb) { | 
 | 295 | 		netif_rx(skb); | 
 | 296 | 	} else { | 
 | 297 | 		/* TODO:  Add a more specific counter here. */ | 
 | 298 | 		stats->rx_errors++; | 
 | 299 | 	} | 
 | 300 | 	rcu_read_unlock(); | 
 | 301 | 	return 0; | 
 | 302 | } | 
 | 303 |  | 
 | 304 | static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, | 
 | 305 | 							  struct sk_buff* skb) | 
 | 306 | { | 
 | 307 | 	struct vlan_priority_tci_mapping *mp = | 
 | 308 | 		VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; | 
 | 309 |  | 
 | 310 | 	while (mp) { | 
 | 311 | 		if (mp->priority == skb->priority) { | 
 | 312 | 			return mp->vlan_qos; /* This should already be shifted to mask | 
 | 313 | 					      * correctly with the VLAN's TCI | 
 | 314 | 					      */ | 
 | 315 | 		} | 
 | 316 | 		mp = mp->next; | 
 | 317 | 	} | 
 | 318 | 	return 0; | 
 | 319 | } | 
 | 320 |  | 
 | 321 | /* | 
 | 322 |  *	Create the VLAN header for an arbitrary protocol layer  | 
 | 323 |  * | 
 | 324 |  *	saddr=NULL	means use device source address | 
 | 325 |  *	daddr=NULL	means leave destination address (eg unresolved arp) | 
 | 326 |  * | 
 | 327 |  *  This is called when the SKB is moving down the stack towards the | 
 | 328 |  *  physical devices. | 
 | 329 |  */ | 
 | 330 | int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, | 
 | 331 |                          unsigned short type, void *daddr, void *saddr, | 
 | 332 |                          unsigned len) | 
 | 333 | { | 
 | 334 | 	struct vlan_hdr *vhdr; | 
 | 335 | 	unsigned short veth_TCI = 0; | 
 | 336 | 	int rc = 0; | 
 | 337 | 	int build_vlan_header = 0; | 
 | 338 | 	struct net_device *vdev = dev; /* save this for the bottom of the method */ | 
 | 339 |  | 
 | 340 | #ifdef VLAN_DEBUG | 
 | 341 | 	printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", | 
 | 342 | 		__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); | 
 | 343 | #endif | 
 | 344 |  | 
 | 345 | 	/* build vlan header only if re_order_header flag is NOT set.  This | 
 | 346 | 	 * fixes some programs that get confused when they see a VLAN device | 
 | 347 | 	 * sending a frame that is VLAN encoded (the consensus is that the VLAN | 
 | 348 | 	 * device should look completely like an Ethernet device when the | 
 | 349 | 	 * REORDER_HEADER flag is set)	The drawback to this is some extra  | 
 | 350 | 	 * header shuffling in the hard_start_xmit.  Users can turn off this | 
 | 351 | 	 * REORDER behaviour with the vconfig tool. | 
 | 352 | 	 */ | 
 | 353 | 	build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); | 
 | 354 |  | 
 | 355 | 	if (build_vlan_header) { | 
 | 356 | 		vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); | 
 | 357 |  | 
 | 358 | 		/* build the four bytes that make this a VLAN header. */ | 
 | 359 |  | 
 | 360 | 		/* Now, construct the second two bytes. This field looks something | 
 | 361 | 		 * like: | 
 | 362 | 		 * usr_priority: 3 bits	 (high bits) | 
 | 363 | 		 * CFI		 1 bit | 
 | 364 | 		 * VLAN ID	 12 bits (low bits) | 
 | 365 | 		 * | 
 | 366 | 		 */ | 
 | 367 | 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
 | 368 | 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
 | 369 |  | 
 | 370 | 		vhdr->h_vlan_TCI = htons(veth_TCI); | 
 | 371 |  | 
 | 372 | 		/* | 
 | 373 | 		 *  Set the protocol type. | 
 | 374 | 		 *  For a packet of type ETH_P_802_3 we put the length in here instead. | 
 | 375 | 		 *  It is up to the 802.2 layer to carry protocol information. | 
 | 376 | 		 */ | 
 | 377 |  | 
 | 378 | 		if (type != ETH_P_802_3) { | 
 | 379 | 			vhdr->h_vlan_encapsulated_proto = htons(type); | 
 | 380 | 		} else { | 
 | 381 | 			vhdr->h_vlan_encapsulated_proto = htons(len); | 
 | 382 | 		} | 
 | 383 | 	} | 
 | 384 |  | 
 | 385 | 	/* Before delegating work to the lower layer, enter our MAC-address */ | 
 | 386 | 	if (saddr == NULL) | 
 | 387 | 		saddr = dev->dev_addr; | 
 | 388 |  | 
 | 389 | 	dev = VLAN_DEV_INFO(dev)->real_dev; | 
 | 390 |  | 
 | 391 | 	/* MPLS can send us skbuffs w/out enough space.	 This check will grow the | 
 | 392 | 	 * skb if it doesn't have enough headroom.  Not a beautiful solution, so | 
 | 393 | 	 * I'll tick a counter so that users can know it's happening...	 If they | 
 | 394 | 	 * care... | 
 | 395 | 	 */ | 
 | 396 |  | 
 | 397 | 	/* NOTE:  This may still break if the underlying device is not the final | 
 | 398 | 	 * device (and thus there are more headers to add...)  It should work for | 
 | 399 | 	 * good-ole-ethernet though. | 
 | 400 | 	 */ | 
 | 401 | 	if (skb_headroom(skb) < dev->hard_header_len) { | 
 | 402 | 		struct sk_buff *sk_tmp = skb; | 
 | 403 | 		skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); | 
 | 404 | 		kfree_skb(sk_tmp); | 
 | 405 | 		if (skb == NULL) { | 
 | 406 | 			struct net_device_stats *stats = vlan_dev_get_stats(vdev); | 
 | 407 | 			stats->tx_dropped++; | 
 | 408 | 			return -ENOMEM; | 
 | 409 | 		} | 
 | 410 | 		VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; | 
 | 411 | #ifdef VLAN_DEBUG | 
 | 412 | 		printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); | 
 | 413 | #endif | 
 | 414 | 	} | 
 | 415 |  | 
 | 416 | 	if (build_vlan_header) { | 
 | 417 | 		/* Now make the underlying real hard header */ | 
 | 418 | 		rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); | 
 | 419 |  | 
 | 420 | 		if (rc > 0) { | 
 | 421 | 			rc += VLAN_HLEN; | 
 | 422 | 		} else if (rc < 0) { | 
 | 423 | 			rc -= VLAN_HLEN; | 
 | 424 | 		} | 
 | 425 | 	} else { | 
 | 426 | 		/* If here, then we'll just make a normal looking ethernet frame, | 
 | 427 | 		 * but, the hard_start_xmit method will insert the tag (it has to | 
 | 428 | 		 * be able to do this for bridged and other skbs that don't come | 
 | 429 | 		 * down the protocol stack in an orderly manner. | 
 | 430 | 		 */ | 
 | 431 | 		rc = dev->hard_header(skb, dev, type, daddr, saddr, len); | 
 | 432 | 	} | 
 | 433 |  | 
 | 434 | 	return rc; | 
 | 435 | } | 
 | 436 |  | 
 | 437 | int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | 438 | { | 
 | 439 | 	struct net_device_stats *stats = vlan_dev_get_stats(dev); | 
 | 440 | 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | 
 | 441 |  | 
 | 442 | 	/* Handle non-VLAN frames if they are sent to us, for example by DHCP. | 
 | 443 | 	 * | 
 | 444 | 	 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING | 
 | 445 | 	 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... | 
 | 446 | 	 */ | 
 | 447 |  | 
 | 448 | 	if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { | 
 | 449 | 		int orig_headroom = skb_headroom(skb); | 
 | 450 | 		unsigned short veth_TCI; | 
 | 451 |  | 
 | 452 | 		/* This is not a VLAN frame...but we can fix that! */ | 
 | 453 | 		VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; | 
 | 454 |  | 
 | 455 | #ifdef VLAN_DEBUG | 
 | 456 | 		printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", | 
 | 457 | 			__FUNCTION__, htons(veth->h_vlan_proto)); | 
 | 458 | #endif | 
 | 459 | 		/* Construct the second two bytes. This field looks something | 
 | 460 | 		 * like: | 
 | 461 | 		 * usr_priority: 3 bits	 (high bits) | 
 | 462 | 		 * CFI		 1 bit | 
 | 463 | 		 * VLAN ID	 12 bits (low bits) | 
 | 464 | 		 */ | 
 | 465 | 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
 | 466 | 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
 | 467 |  | 
 | 468 | 		skb = __vlan_put_tag(skb, veth_TCI); | 
 | 469 | 		if (!skb) { | 
 | 470 | 			stats->tx_dropped++; | 
 | 471 | 			return 0; | 
 | 472 | 		} | 
 | 473 |  | 
 | 474 | 		if (orig_headroom < VLAN_HLEN) { | 
 | 475 | 			VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; | 
 | 476 | 		} | 
 | 477 | 	} | 
 | 478 |  | 
 | 479 | #ifdef VLAN_DEBUG | 
 | 480 | 	printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", | 
 | 481 | 		__FUNCTION__, skb, skb->dev->name); | 
 | 482 | 	printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", | 
 | 483 | 	       veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], | 
 | 484 | 	       veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], | 
 | 485 | 	       veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); | 
 | 486 | #endif | 
 | 487 |  | 
 | 488 | 	stats->tx_packets++; /* for statics only */ | 
 | 489 | 	stats->tx_bytes += skb->len; | 
 | 490 |  | 
 | 491 | 	skb->dev = VLAN_DEV_INFO(dev)->real_dev; | 
 | 492 | 	dev_queue_xmit(skb); | 
 | 493 |  | 
 | 494 | 	return 0; | 
 | 495 | } | 
 | 496 |  | 
 | 497 | int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | 498 | { | 
 | 499 | 	struct net_device_stats *stats = vlan_dev_get_stats(dev); | 
 | 500 | 	unsigned short veth_TCI; | 
 | 501 |  | 
 | 502 | 	/* Construct the second two bytes. This field looks something | 
 | 503 | 	 * like: | 
 | 504 | 	 * usr_priority: 3 bits	 (high bits) | 
 | 505 | 	 * CFI		 1 bit | 
 | 506 | 	 * VLAN ID	 12 bits (low bits) | 
 | 507 | 	 */ | 
 | 508 | 	veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
 | 509 | 	veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
 | 510 | 	skb = __vlan_hwaccel_put_tag(skb, veth_TCI); | 
 | 511 |  | 
 | 512 | 	stats->tx_packets++; | 
 | 513 | 	stats->tx_bytes += skb->len; | 
 | 514 |  | 
 | 515 | 	skb->dev = VLAN_DEV_INFO(dev)->real_dev; | 
 | 516 | 	dev_queue_xmit(skb); | 
 | 517 |  | 
 | 518 | 	return 0; | 
 | 519 | } | 
 | 520 |  | 
 | 521 | int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) | 
 | 522 | { | 
 | 523 | 	/* TODO: gotta make sure the underlying layer can handle it, | 
 | 524 | 	 * maybe an IFF_VLAN_CAPABLE flag for devices? | 
 | 525 | 	 */ | 
 | 526 | 	if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) | 
 | 527 | 		return -ERANGE; | 
 | 528 |  | 
 | 529 | 	dev->mtu = new_mtu; | 
 | 530 |  | 
 | 531 | 	return 0; | 
 | 532 | } | 
 | 533 |  | 
 | 534 | int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | 
 | 535 | { | 
 | 536 | 	struct net_device *dev = dev_get_by_name(dev_name); | 
 | 537 |  | 
 | 538 | 	if (dev) { | 
 | 539 | 		if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
 | 540 | 			/* see if a priority mapping exists.. */ | 
 | 541 | 			VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; | 
 | 542 | 			dev_put(dev); | 
 | 543 | 			return 0; | 
 | 544 | 		} | 
 | 545 |  | 
 | 546 | 		dev_put(dev); | 
 | 547 | 	} | 
 | 548 | 	return -EINVAL; | 
 | 549 | } | 
 | 550 |  | 
 | 551 | int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | 
 | 552 | { | 
 | 553 | 	struct net_device *dev = dev_get_by_name(dev_name); | 
 | 554 | 	struct vlan_priority_tci_mapping *mp = NULL; | 
 | 555 | 	struct vlan_priority_tci_mapping *np; | 
 | 556 |     | 
 | 557 | 	if (dev) { | 
 | 558 | 		if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
 | 559 | 			/* See if a priority mapping exists.. */ | 
 | 560 | 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | 
 | 561 | 			while (mp) { | 
 | 562 | 				if (mp->priority == skb_prio) { | 
 | 563 | 					mp->vlan_qos = ((vlan_prio << 13) & 0xE000); | 
 | 564 | 					dev_put(dev); | 
 | 565 | 					return 0; | 
 | 566 | 				} | 
 | 567 | 				mp = mp->next; | 
 | 568 | 			} | 
 | 569 |  | 
 | 570 | 			/* Create a new mapping then. */ | 
 | 571 | 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | 
 | 572 | 			np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); | 
 | 573 | 			if (np) { | 
 | 574 | 				np->next = mp; | 
 | 575 | 				np->priority = skb_prio; | 
 | 576 | 				np->vlan_qos = ((vlan_prio << 13) & 0xE000); | 
 | 577 | 				VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; | 
 | 578 | 				dev_put(dev); | 
 | 579 | 				return 0; | 
 | 580 | 			} else { | 
 | 581 | 				dev_put(dev); | 
 | 582 | 				return -ENOBUFS; | 
 | 583 | 			} | 
 | 584 | 		} | 
 | 585 | 		dev_put(dev); | 
 | 586 | 	} | 
 | 587 | 	return -EINVAL; | 
 | 588 | } | 
 | 589 |  | 
 | 590 | /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ | 
 | 591 | int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) | 
 | 592 | { | 
 | 593 | 	struct net_device *dev = dev_get_by_name(dev_name); | 
 | 594 |  | 
 | 595 | 	if (dev) { | 
 | 596 | 		if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
 | 597 | 			/* verify flag is supported */ | 
 | 598 | 			if (flag == 1) { | 
 | 599 | 				if (flag_val) { | 
 | 600 | 					VLAN_DEV_INFO(dev)->flags |= 1; | 
 | 601 | 				} else { | 
 | 602 | 					VLAN_DEV_INFO(dev)->flags &= ~1; | 
 | 603 | 				} | 
 | 604 | 				dev_put(dev); | 
 | 605 | 				return 0; | 
 | 606 | 			} else { | 
 | 607 | 				printk(KERN_ERR  "%s: flag %i is not valid.\n", | 
 | 608 | 					__FUNCTION__, (int)(flag)); | 
 | 609 | 				dev_put(dev); | 
 | 610 | 				return -EINVAL; | 
 | 611 | 			} | 
 | 612 | 		} else { | 
 | 613 | 			printk(KERN_ERR  | 
 | 614 | 			       "%s: %s is not a vlan device, priv_flags: %hX.\n", | 
 | 615 | 			       __FUNCTION__, dev->name, dev->priv_flags); | 
 | 616 | 			dev_put(dev); | 
 | 617 | 		} | 
 | 618 | 	} else { | 
 | 619 | 		printk(KERN_ERR  "%s: Could not find device: %s\n",  | 
 | 620 | 			__FUNCTION__, dev_name); | 
 | 621 | 	} | 
 | 622 |  | 
 | 623 | 	return -EINVAL; | 
 | 624 | } | 
 | 625 |  | 
 | 626 |  | 
 | 627 | int vlan_dev_get_realdev_name(const char *dev_name, char* result) | 
 | 628 | { | 
 | 629 | 	struct net_device *dev = dev_get_by_name(dev_name); | 
 | 630 | 	int rv = 0; | 
 | 631 | 	if (dev) { | 
 | 632 | 		if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
 | 633 | 			strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); | 
 | 634 | 			rv = 0; | 
 | 635 | 		} else { | 
 | 636 | 			rv = -EINVAL; | 
 | 637 | 		} | 
 | 638 | 		dev_put(dev); | 
 | 639 | 	} else { | 
 | 640 | 		rv = -ENODEV; | 
 | 641 | 	} | 
 | 642 | 	return rv; | 
 | 643 | } | 
 | 644 |  | 
 | 645 | int vlan_dev_get_vid(const char *dev_name, unsigned short* result) | 
 | 646 | { | 
 | 647 | 	struct net_device *dev = dev_get_by_name(dev_name); | 
 | 648 | 	int rv = 0; | 
 | 649 | 	if (dev) { | 
 | 650 | 		if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
 | 651 | 			*result = VLAN_DEV_INFO(dev)->vlan_id; | 
 | 652 | 			rv = 0; | 
 | 653 | 		} else { | 
 | 654 | 			rv = -EINVAL; | 
 | 655 | 		} | 
 | 656 | 		dev_put(dev); | 
 | 657 | 	} else { | 
 | 658 | 		rv = -ENODEV; | 
 | 659 | 	} | 
 | 660 | 	return rv; | 
 | 661 | } | 
 | 662 |  | 
 | 663 |  | 
 | 664 | int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) | 
 | 665 | { | 
 | 666 | 	struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); | 
 | 667 | 	int i; | 
 | 668 |  | 
 | 669 | 	if (netif_running(dev)) | 
 | 670 | 		return -EBUSY; | 
 | 671 |  | 
 | 672 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 | 673 |  | 
 | 674 | 	printk("%s: Setting MAC address to ", dev->name); | 
 | 675 | 	for (i = 0; i < 6; i++) | 
 | 676 | 		printk(" %2.2x", dev->dev_addr[i]); | 
 | 677 | 	printk(".\n"); | 
 | 678 |  | 
 | 679 | 	if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, | 
 | 680 | 		   dev->dev_addr, | 
 | 681 | 		   dev->addr_len) != 0) { | 
 | 682 | 		if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { | 
 | 683 | 			int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; | 
 | 684 |  | 
 | 685 | 			/* Increment our in-use promiscuity counter */ | 
 | 686 | 			dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); | 
 | 687 |  | 
 | 688 | 			/* Make PROMISC visible to the user. */ | 
 | 689 | 			flgs |= IFF_PROMISC; | 
 | 690 | 			printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n", | 
 | 691 | 			       dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | 
 | 692 | 			dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); | 
 | 693 | 		} | 
 | 694 | 	} else { | 
 | 695 | 		printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n", | 
 | 696 | 		       dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | 
 | 697 | 	} | 
 | 698 |  | 
 | 699 | 	return 0; | 
 | 700 | } | 
 | 701 |  | 
 | 702 | static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, | 
 | 703 |                                   struct dev_mc_list *dmi2) | 
 | 704 | { | 
 | 705 | 	return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && | 
 | 706 | 		(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); | 
 | 707 | } | 
 | 708 |  | 
 | 709 | /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is | 
 | 710 |  *  an entire list, and we'll iterate through it. | 
 | 711 |  */ | 
 | 712 | static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) | 
 | 713 | { | 
 | 714 | 	struct dev_mc_list *idmi; | 
 | 715 |  | 
 | 716 | 	for (idmi = mc_list; idmi != NULL; ) { | 
 | 717 | 		if (vlan_dmi_equals(dmi, idmi)) { | 
 | 718 | 			if (dmi->dmi_users > idmi->dmi_users) | 
 | 719 | 				return 1; | 
 | 720 | 			else | 
 | 721 | 				return 0; | 
 | 722 | 		} else { | 
 | 723 | 			idmi = idmi->next; | 
 | 724 | 		} | 
 | 725 | 	} | 
 | 726 |  | 
 | 727 | 	return 1; | 
 | 728 | } | 
 | 729 |  | 
 | 730 | static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) | 
 | 731 | { | 
 | 732 | 	struct dev_mc_list *dmi = mc_list; | 
 | 733 | 	struct dev_mc_list *next; | 
 | 734 |  | 
 | 735 | 	while(dmi) { | 
 | 736 | 		next = dmi->next; | 
 | 737 | 		kfree(dmi); | 
 | 738 | 		dmi = next; | 
 | 739 | 	} | 
 | 740 | } | 
 | 741 |  | 
 | 742 | static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) | 
 | 743 | { | 
 | 744 | 	struct dev_mc_list *dmi, *new_dmi; | 
 | 745 |  | 
 | 746 | 	vlan_destroy_mc_list(vlan_info->old_mc_list); | 
 | 747 | 	vlan_info->old_mc_list = NULL; | 
 | 748 |  | 
 | 749 | 	for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { | 
 | 750 | 		new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); | 
 | 751 | 		if (new_dmi == NULL) { | 
 | 752 | 			printk(KERN_ERR "vlan: cannot allocate memory. " | 
 | 753 | 			       "Multicast may not work properly from now.\n"); | 
 | 754 | 			return; | 
 | 755 | 		} | 
 | 756 |  | 
 | 757 | 		/* Copy whole structure, then make new 'next' pointer */ | 
 | 758 | 		*new_dmi = *dmi; | 
 | 759 | 		new_dmi->next = vlan_info->old_mc_list; | 
 | 760 | 		vlan_info->old_mc_list = new_dmi; | 
 | 761 | 	} | 
 | 762 | } | 
 | 763 |  | 
 | 764 | static void vlan_flush_mc_list(struct net_device *dev) | 
 | 765 | { | 
 | 766 | 	struct dev_mc_list *dmi = dev->mc_list; | 
 | 767 |  | 
 | 768 | 	while (dmi) { | 
 | 769 | 		printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", | 
 | 770 | 		       dev->name, | 
 | 771 | 		       dmi->dmi_addr[0], | 
 | 772 | 		       dmi->dmi_addr[1], | 
 | 773 | 		       dmi->dmi_addr[2], | 
 | 774 | 		       dmi->dmi_addr[3], | 
 | 775 | 		       dmi->dmi_addr[4], | 
 | 776 | 		       dmi->dmi_addr[5]); | 
 | 777 | 		dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
 | 778 | 		dmi = dev->mc_list; | 
 | 779 | 	} | 
 | 780 |  | 
 | 781 | 	/* dev->mc_list is NULL by the time we get here. */ | 
 | 782 | 	vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); | 
 | 783 | 	VLAN_DEV_INFO(dev)->old_mc_list = NULL; | 
 | 784 | } | 
 | 785 |  | 
 | 786 | int vlan_dev_open(struct net_device *dev) | 
 | 787 | { | 
 | 788 | 	if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) | 
 | 789 | 		return -ENETDOWN; | 
 | 790 |  | 
 | 791 | 	return 0; | 
 | 792 | } | 
 | 793 |  | 
 | 794 | int vlan_dev_stop(struct net_device *dev) | 
 | 795 | { | 
 | 796 | 	vlan_flush_mc_list(dev); | 
 | 797 | 	return 0; | 
 | 798 | } | 
 | 799 |  | 
 | 800 | int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
 | 801 | { | 
 | 802 | 	struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; | 
 | 803 | 	struct ifreq ifrr; | 
 | 804 | 	int err = -EOPNOTSUPP; | 
 | 805 |  | 
 | 806 | 	strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); | 
 | 807 | 	ifrr.ifr_ifru = ifr->ifr_ifru; | 
 | 808 |  | 
 | 809 | 	switch(cmd) { | 
 | 810 | 	case SIOCGMIIPHY: | 
 | 811 | 	case SIOCGMIIREG: | 
 | 812 | 	case SIOCSMIIREG: | 
 | 813 | 		if (real_dev->do_ioctl && netif_device_present(real_dev))  | 
 | 814 | 			err = real_dev->do_ioctl(real_dev, &ifrr, cmd); | 
 | 815 | 		break; | 
 | 816 |  | 
 | 817 | 	case SIOCETHTOOL: | 
 | 818 | 		err = dev_ethtool(&ifrr); | 
 | 819 | 	} | 
 | 820 |  | 
 | 821 | 	if (!err)  | 
 | 822 | 		ifr->ifr_ifru = ifrr.ifr_ifru; | 
 | 823 |  | 
 | 824 | 	return err; | 
 | 825 | } | 
 | 826 |  | 
 | 827 | /** Taken from Gleb + Lennert's VLAN code, and modified... */ | 
 | 828 | void vlan_dev_set_multicast_list(struct net_device *vlan_dev) | 
 | 829 | { | 
 | 830 | 	struct dev_mc_list *dmi; | 
 | 831 | 	struct net_device *real_dev; | 
 | 832 | 	int inc; | 
 | 833 |  | 
 | 834 | 	if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { | 
 | 835 | 		/* Then it's a real vlan device, as far as we can tell.. */ | 
 | 836 | 		real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; | 
 | 837 |  | 
 | 838 | 		/* compare the current promiscuity to the last promisc we had.. */ | 
 | 839 | 		inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; | 
 | 840 | 		if (inc) { | 
 | 841 | 			printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", | 
 | 842 | 			       vlan_dev->name, inc); | 
 | 843 | 			dev_set_promiscuity(real_dev, inc); /* found in dev.c */ | 
 | 844 | 			VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; | 
 | 845 | 		} | 
 | 846 |  | 
 | 847 | 		inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; | 
 | 848 | 		if (inc) { | 
 | 849 | 			printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", | 
 | 850 | 			       vlan_dev->name, inc); | 
 | 851 | 			dev_set_allmulti(real_dev, inc); /* dev.c */ | 
 | 852 | 			VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; | 
 | 853 | 		} | 
 | 854 |  | 
 | 855 | 		/* looking for addresses to add to master's list */ | 
 | 856 | 		for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { | 
 | 857 | 			if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { | 
 | 858 | 				dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
 | 859 | 				printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", | 
 | 860 | 				       vlan_dev->name, | 
 | 861 | 				       dmi->dmi_addr[0], | 
 | 862 | 				       dmi->dmi_addr[1], | 
 | 863 | 				       dmi->dmi_addr[2], | 
 | 864 | 				       dmi->dmi_addr[3], | 
 | 865 | 				       dmi->dmi_addr[4], | 
 | 866 | 				       dmi->dmi_addr[5]); | 
 | 867 | 			} | 
 | 868 | 		} | 
 | 869 |  | 
 | 870 | 		/* looking for addresses to delete from master's list */ | 
 | 871 | 		for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { | 
 | 872 | 			if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { | 
 | 873 | 				/* if we think we should add it to the new list, then we should really | 
 | 874 | 				 * delete it from the real list on the underlying device. | 
 | 875 | 				 */ | 
 | 876 | 				dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
 | 877 | 				printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", | 
 | 878 | 				       vlan_dev->name, | 
 | 879 | 				       dmi->dmi_addr[0], | 
 | 880 | 				       dmi->dmi_addr[1], | 
 | 881 | 				       dmi->dmi_addr[2], | 
 | 882 | 				       dmi->dmi_addr[3], | 
 | 883 | 				       dmi->dmi_addr[4], | 
 | 884 | 				       dmi->dmi_addr[5]); | 
 | 885 | 			} | 
 | 886 | 		} | 
 | 887 |  | 
 | 888 | 		/* save multicast list */ | 
 | 889 | 		vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); | 
 | 890 | 	} | 
 | 891 | } |