| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * linux/mm/slab.c | 
|  | 3 | * Written by Mark Hemment, 1996/97. | 
|  | 4 | * (markhe@nextd.demon.co.uk) | 
|  | 5 | * | 
|  | 6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | 
|  | 7 | * | 
|  | 8 | * Major cleanup, different bufctl logic, per-cpu arrays | 
|  | 9 | *	(c) 2000 Manfred Spraul | 
|  | 10 | * | 
|  | 11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | 
|  | 12 | * 	(c) 2002 Manfred Spraul | 
|  | 13 | * | 
|  | 14 | * An implementation of the Slab Allocator as described in outline in; | 
|  | 15 | *	UNIX Internals: The New Frontiers by Uresh Vahalia | 
|  | 16 | *	Pub: Prentice Hall	ISBN 0-13-101908-2 | 
|  | 17 | * or with a little more detail in; | 
|  | 18 | *	The Slab Allocator: An Object-Caching Kernel Memory Allocator | 
|  | 19 | *	Jeff Bonwick (Sun Microsystems). | 
|  | 20 | *	Presented at: USENIX Summer 1994 Technical Conference | 
|  | 21 | * | 
|  | 22 | * The memory is organized in caches, one cache for each object type. | 
|  | 23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | 
|  | 24 | * Each cache consists out of many slabs (they are small (usually one | 
|  | 25 | * page long) and always contiguous), and each slab contains multiple | 
|  | 26 | * initialized objects. | 
|  | 27 | * | 
|  | 28 | * This means, that your constructor is used only for newly allocated | 
|  | 29 | * slabs and you must pass objects with the same intializations to | 
|  | 30 | * kmem_cache_free. | 
|  | 31 | * | 
|  | 32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | 
|  | 33 | * normal). If you need a special memory type, then must create a new | 
|  | 34 | * cache for that memory type. | 
|  | 35 | * | 
|  | 36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | 
|  | 37 | *   full slabs with 0 free objects | 
|  | 38 | *   partial slabs | 
|  | 39 | *   empty slabs with no allocated objects | 
|  | 40 | * | 
|  | 41 | * If partial slabs exist, then new allocations come from these slabs, | 
|  | 42 | * otherwise from empty slabs or new slabs are allocated. | 
|  | 43 | * | 
|  | 44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | 
|  | 45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | 
|  | 46 | * | 
|  | 47 | * Each cache has a short per-cpu head array, most allocs | 
|  | 48 | * and frees go into that array, and if that array overflows, then 1/2 | 
|  | 49 | * of the entries in the array are given back into the global cache. | 
|  | 50 | * The head array is strictly LIFO and should improve the cache hit rates. | 
|  | 51 | * On SMP, it additionally reduces the spinlock operations. | 
|  | 52 | * | 
|  | 53 | * The c_cpuarray may not be read with enabled local interrupts - | 
|  | 54 | * it's changed with a smp_call_function(). | 
|  | 55 | * | 
|  | 56 | * SMP synchronization: | 
|  | 57 | *  constructors and destructors are called without any locking. | 
|  | 58 | *  Several members in kmem_cache_t and struct slab never change, they | 
|  | 59 | *	are accessed without any locking. | 
|  | 60 | *  The per-cpu arrays are never accessed from the wrong cpu, no locking, | 
|  | 61 | *  	and local interrupts are disabled so slab code is preempt-safe. | 
|  | 62 | *  The non-constant members are protected with a per-cache irq spinlock. | 
|  | 63 | * | 
|  | 64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | 
|  | 65 | * in 2000 - many ideas in the current implementation are derived from | 
|  | 66 | * his patch. | 
|  | 67 | * | 
|  | 68 | * Further notes from the original documentation: | 
|  | 69 | * | 
|  | 70 | * 11 April '97.  Started multi-threading - markhe | 
|  | 71 | *	The global cache-chain is protected by the semaphore 'cache_chain_sem'. | 
|  | 72 | *	The sem is only needed when accessing/extending the cache-chain, which | 
|  | 73 | *	can never happen inside an interrupt (kmem_cache_create(), | 
|  | 74 | *	kmem_cache_shrink() and kmem_cache_reap()). | 
|  | 75 | * | 
|  | 76 | *	At present, each engine can be growing a cache.  This should be blocked. | 
|  | 77 | * | 
|  | 78 | */ | 
|  | 79 |  | 
|  | 80 | #include	<linux/config.h> | 
|  | 81 | #include	<linux/slab.h> | 
|  | 82 | #include	<linux/mm.h> | 
|  | 83 | #include	<linux/swap.h> | 
|  | 84 | #include	<linux/cache.h> | 
|  | 85 | #include	<linux/interrupt.h> | 
|  | 86 | #include	<linux/init.h> | 
|  | 87 | #include	<linux/compiler.h> | 
|  | 88 | #include	<linux/seq_file.h> | 
|  | 89 | #include	<linux/notifier.h> | 
|  | 90 | #include	<linux/kallsyms.h> | 
|  | 91 | #include	<linux/cpu.h> | 
|  | 92 | #include	<linux/sysctl.h> | 
|  | 93 | #include	<linux/module.h> | 
|  | 94 | #include	<linux/rcupdate.h> | 
| Paulo Marques | 543537b | 2005-06-23 00:09:02 -0700 | [diff] [blame] | 95 | #include	<linux/string.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 |  | 
|  | 97 | #include	<asm/uaccess.h> | 
|  | 98 | #include	<asm/cacheflush.h> | 
|  | 99 | #include	<asm/tlbflush.h> | 
|  | 100 | #include	<asm/page.h> | 
|  | 101 |  | 
|  | 102 | /* | 
|  | 103 | * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL, | 
|  | 104 | *		  SLAB_RED_ZONE & SLAB_POISON. | 
|  | 105 | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | 106 | * | 
|  | 107 | * STATS	- 1 to collect stats for /proc/slabinfo. | 
|  | 108 | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | 109 | * | 
|  | 110 | * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | 
|  | 111 | */ | 
|  | 112 |  | 
|  | 113 | #ifdef CONFIG_DEBUG_SLAB | 
|  | 114 | #define	DEBUG		1 | 
|  | 115 | #define	STATS		1 | 
|  | 116 | #define	FORCED_DEBUG	1 | 
|  | 117 | #else | 
|  | 118 | #define	DEBUG		0 | 
|  | 119 | #define	STATS		0 | 
|  | 120 | #define	FORCED_DEBUG	0 | 
|  | 121 | #endif | 
|  | 122 |  | 
|  | 123 |  | 
|  | 124 | /* Shouldn't this be in a header file somewhere? */ | 
|  | 125 | #define	BYTES_PER_WORD		sizeof(void *) | 
|  | 126 |  | 
|  | 127 | #ifndef cache_line_size | 
|  | 128 | #define cache_line_size()	L1_CACHE_BYTES | 
|  | 129 | #endif | 
|  | 130 |  | 
|  | 131 | #ifndef ARCH_KMALLOC_MINALIGN | 
|  | 132 | /* | 
|  | 133 | * Enforce a minimum alignment for the kmalloc caches. | 
|  | 134 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | 
|  | 135 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | 
|  | 136 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | 
|  | 137 | * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that. | 
|  | 138 | * Note that this flag disables some debug features. | 
|  | 139 | */ | 
|  | 140 | #define ARCH_KMALLOC_MINALIGN 0 | 
|  | 141 | #endif | 
|  | 142 |  | 
|  | 143 | #ifndef ARCH_SLAB_MINALIGN | 
|  | 144 | /* | 
|  | 145 | * Enforce a minimum alignment for all caches. | 
|  | 146 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | 
|  | 147 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | 
|  | 148 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | 
|  | 149 | * some debug features. | 
|  | 150 | */ | 
|  | 151 | #define ARCH_SLAB_MINALIGN 0 | 
|  | 152 | #endif | 
|  | 153 |  | 
|  | 154 | #ifndef ARCH_KMALLOC_FLAGS | 
|  | 155 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 
|  | 156 | #endif | 
|  | 157 |  | 
|  | 158 | /* Legal flag mask for kmem_cache_create(). */ | 
|  | 159 | #if DEBUG | 
|  | 160 | # define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \ | 
|  | 161 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ | 
|  | 162 | SLAB_NO_REAP | SLAB_CACHE_DMA | \ | 
|  | 163 | SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \ | 
|  | 164 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
|  | 165 | SLAB_DESTROY_BY_RCU) | 
|  | 166 | #else | 
|  | 167 | # define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \ | 
|  | 168 | SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \ | 
|  | 169 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ | 
|  | 170 | SLAB_DESTROY_BY_RCU) | 
|  | 171 | #endif | 
|  | 172 |  | 
|  | 173 | /* | 
|  | 174 | * kmem_bufctl_t: | 
|  | 175 | * | 
|  | 176 | * Bufctl's are used for linking objs within a slab | 
|  | 177 | * linked offsets. | 
|  | 178 | * | 
|  | 179 | * This implementation relies on "struct page" for locating the cache & | 
|  | 180 | * slab an object belongs to. | 
|  | 181 | * This allows the bufctl structure to be small (one int), but limits | 
|  | 182 | * the number of objects a slab (not a cache) can contain when off-slab | 
|  | 183 | * bufctls are used. The limit is the size of the largest general cache | 
|  | 184 | * that does not use off-slab slabs. | 
|  | 185 | * For 32bit archs with 4 kB pages, is this 56. | 
|  | 186 | * This is not serious, as it is only for large objects, when it is unwise | 
|  | 187 | * to have too many per slab. | 
|  | 188 | * Note: This limit can be raised by introducing a general cache whose size | 
|  | 189 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | 
|  | 190 | */ | 
|  | 191 |  | 
|  | 192 | #define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0) | 
|  | 193 | #define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1) | 
|  | 194 | #define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2) | 
|  | 195 |  | 
|  | 196 | /* Max number of objs-per-slab for caches which use off-slab slabs. | 
|  | 197 | * Needed to avoid a possible looping condition in cache_grow(). | 
|  | 198 | */ | 
|  | 199 | static unsigned long offslab_limit; | 
|  | 200 |  | 
|  | 201 | /* | 
|  | 202 | * struct slab | 
|  | 203 | * | 
|  | 204 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | 
|  | 205 | * for a slab, or allocated from an general cache. | 
|  | 206 | * Slabs are chained into three list: fully used, partial, fully free slabs. | 
|  | 207 | */ | 
|  | 208 | struct slab { | 
|  | 209 | struct list_head	list; | 
|  | 210 | unsigned long		colouroff; | 
|  | 211 | void			*s_mem;		/* including colour offset */ | 
|  | 212 | unsigned int		inuse;		/* num of objs active in slab */ | 
|  | 213 | kmem_bufctl_t		free; | 
|  | 214 | }; | 
|  | 215 |  | 
|  | 216 | /* | 
|  | 217 | * struct slab_rcu | 
|  | 218 | * | 
|  | 219 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | 
|  | 220 | * arrange for kmem_freepages to be called via RCU.  This is useful if | 
|  | 221 | * we need to approach a kernel structure obliquely, from its address | 
|  | 222 | * obtained without the usual locking.  We can lock the structure to | 
|  | 223 | * stabilize it and check it's still at the given address, only if we | 
|  | 224 | * can be sure that the memory has not been meanwhile reused for some | 
|  | 225 | * other kind of object (which our subsystem's lock might corrupt). | 
|  | 226 | * | 
|  | 227 | * rcu_read_lock before reading the address, then rcu_read_unlock after | 
|  | 228 | * taking the spinlock within the structure expected at that address. | 
|  | 229 | * | 
|  | 230 | * We assume struct slab_rcu can overlay struct slab when destroying. | 
|  | 231 | */ | 
|  | 232 | struct slab_rcu { | 
|  | 233 | struct rcu_head		head; | 
|  | 234 | kmem_cache_t		*cachep; | 
|  | 235 | void			*addr; | 
|  | 236 | }; | 
|  | 237 |  | 
|  | 238 | /* | 
|  | 239 | * struct array_cache | 
|  | 240 | * | 
|  | 241 | * Per cpu structures | 
|  | 242 | * Purpose: | 
|  | 243 | * - LIFO ordering, to hand out cache-warm objects from _alloc | 
|  | 244 | * - reduce the number of linked list operations | 
|  | 245 | * - reduce spinlock operations | 
|  | 246 | * | 
|  | 247 | * The limit is stored in the per-cpu structure to reduce the data cache | 
|  | 248 | * footprint. | 
|  | 249 | * | 
|  | 250 | */ | 
|  | 251 | struct array_cache { | 
|  | 252 | unsigned int avail; | 
|  | 253 | unsigned int limit; | 
|  | 254 | unsigned int batchcount; | 
|  | 255 | unsigned int touched; | 
|  | 256 | }; | 
|  | 257 |  | 
|  | 258 | /* bootstrap: The caches do not work without cpuarrays anymore, | 
|  | 259 | * but the cpuarrays are allocated from the generic caches... | 
|  | 260 | */ | 
|  | 261 | #define BOOT_CPUCACHE_ENTRIES	1 | 
|  | 262 | struct arraycache_init { | 
|  | 263 | struct array_cache cache; | 
|  | 264 | void * entries[BOOT_CPUCACHE_ENTRIES]; | 
|  | 265 | }; | 
|  | 266 |  | 
|  | 267 | /* | 
|  | 268 | * The slab lists of all objects. | 
|  | 269 | * Hopefully reduce the internal fragmentation | 
|  | 270 | * NUMA: The spinlock could be moved from the kmem_cache_t | 
|  | 271 | * into this structure, too. Figure out what causes | 
|  | 272 | * fewer cross-node spinlock operations. | 
|  | 273 | */ | 
|  | 274 | struct kmem_list3 { | 
|  | 275 | struct list_head	slabs_partial;	/* partial list first, better asm code */ | 
|  | 276 | struct list_head	slabs_full; | 
|  | 277 | struct list_head	slabs_free; | 
|  | 278 | unsigned long	free_objects; | 
|  | 279 | int		free_touched; | 
|  | 280 | unsigned long	next_reap; | 
|  | 281 | struct array_cache	*shared; | 
|  | 282 | }; | 
|  | 283 |  | 
|  | 284 | #define LIST3_INIT(parent) \ | 
|  | 285 | { \ | 
|  | 286 | .slabs_full	= LIST_HEAD_INIT(parent.slabs_full), \ | 
|  | 287 | .slabs_partial	= LIST_HEAD_INIT(parent.slabs_partial), \ | 
|  | 288 | .slabs_free	= LIST_HEAD_INIT(parent.slabs_free) \ | 
|  | 289 | } | 
|  | 290 | #define list3_data(cachep) \ | 
|  | 291 | (&(cachep)->lists) | 
|  | 292 |  | 
|  | 293 | /* NUMA: per-node */ | 
|  | 294 | #define list3_data_ptr(cachep, ptr) \ | 
|  | 295 | list3_data(cachep) | 
|  | 296 |  | 
|  | 297 | /* | 
|  | 298 | * kmem_cache_t | 
|  | 299 | * | 
|  | 300 | * manages a cache. | 
|  | 301 | */ | 
|  | 302 |  | 
|  | 303 | struct kmem_cache_s { | 
|  | 304 | /* 1) per-cpu data, touched during every alloc/free */ | 
|  | 305 | struct array_cache	*array[NR_CPUS]; | 
|  | 306 | unsigned int		batchcount; | 
|  | 307 | unsigned int		limit; | 
|  | 308 | /* 2) touched by every alloc & free from the backend */ | 
|  | 309 | struct kmem_list3	lists; | 
|  | 310 | /* NUMA: kmem_3list_t	*nodelists[MAX_NUMNODES] */ | 
|  | 311 | unsigned int		objsize; | 
|  | 312 | unsigned int	 	flags;	/* constant flags */ | 
|  | 313 | unsigned int		num;	/* # of objs per slab */ | 
|  | 314 | unsigned int		free_limit; /* upper limit of objects in the lists */ | 
|  | 315 | spinlock_t		spinlock; | 
|  | 316 |  | 
|  | 317 | /* 3) cache_grow/shrink */ | 
|  | 318 | /* order of pgs per slab (2^n) */ | 
|  | 319 | unsigned int		gfporder; | 
|  | 320 |  | 
|  | 321 | /* force GFP flags, e.g. GFP_DMA */ | 
|  | 322 | unsigned int		gfpflags; | 
|  | 323 |  | 
|  | 324 | size_t			colour;		/* cache colouring range */ | 
|  | 325 | unsigned int		colour_off;	/* colour offset */ | 
|  | 326 | unsigned int		colour_next;	/* cache colouring */ | 
|  | 327 | kmem_cache_t		*slabp_cache; | 
|  | 328 | unsigned int		slab_size; | 
|  | 329 | unsigned int		dflags;		/* dynamic flags */ | 
|  | 330 |  | 
|  | 331 | /* constructor func */ | 
|  | 332 | void (*ctor)(void *, kmem_cache_t *, unsigned long); | 
|  | 333 |  | 
|  | 334 | /* de-constructor func */ | 
|  | 335 | void (*dtor)(void *, kmem_cache_t *, unsigned long); | 
|  | 336 |  | 
|  | 337 | /* 4) cache creation/removal */ | 
|  | 338 | const char		*name; | 
|  | 339 | struct list_head	next; | 
|  | 340 |  | 
|  | 341 | /* 5) statistics */ | 
|  | 342 | #if STATS | 
|  | 343 | unsigned long		num_active; | 
|  | 344 | unsigned long		num_allocations; | 
|  | 345 | unsigned long		high_mark; | 
|  | 346 | unsigned long		grown; | 
|  | 347 | unsigned long		reaped; | 
|  | 348 | unsigned long 		errors; | 
|  | 349 | unsigned long		max_freeable; | 
|  | 350 | unsigned long		node_allocs; | 
|  | 351 | atomic_t		allochit; | 
|  | 352 | atomic_t		allocmiss; | 
|  | 353 | atomic_t		freehit; | 
|  | 354 | atomic_t		freemiss; | 
|  | 355 | #endif | 
|  | 356 | #if DEBUG | 
|  | 357 | int			dbghead; | 
|  | 358 | int			reallen; | 
|  | 359 | #endif | 
|  | 360 | }; | 
|  | 361 |  | 
|  | 362 | #define CFLGS_OFF_SLAB		(0x80000000UL) | 
|  | 363 | #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB) | 
|  | 364 |  | 
|  | 365 | #define BATCHREFILL_LIMIT	16 | 
|  | 366 | /* Optimization question: fewer reaps means less | 
|  | 367 | * probability for unnessary cpucache drain/refill cycles. | 
|  | 368 | * | 
|  | 369 | * OTHO the cpuarrays can contain lots of objects, | 
|  | 370 | * which could lock up otherwise freeable slabs. | 
|  | 371 | */ | 
|  | 372 | #define REAPTIMEOUT_CPUC	(2*HZ) | 
|  | 373 | #define REAPTIMEOUT_LIST3	(4*HZ) | 
|  | 374 |  | 
|  | 375 | #if STATS | 
|  | 376 | #define	STATS_INC_ACTIVE(x)	((x)->num_active++) | 
|  | 377 | #define	STATS_DEC_ACTIVE(x)	((x)->num_active--) | 
|  | 378 | #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++) | 
|  | 379 | #define	STATS_INC_GROWN(x)	((x)->grown++) | 
|  | 380 | #define	STATS_INC_REAPED(x)	((x)->reaped++) | 
|  | 381 | #define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \ | 
|  | 382 | (x)->high_mark = (x)->num_active; \ | 
|  | 383 | } while (0) | 
|  | 384 | #define	STATS_INC_ERR(x)	((x)->errors++) | 
|  | 385 | #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++) | 
|  | 386 | #define	STATS_SET_FREEABLE(x, i) \ | 
|  | 387 | do { if ((x)->max_freeable < i) \ | 
|  | 388 | (x)->max_freeable = i; \ | 
|  | 389 | } while (0) | 
|  | 390 |  | 
|  | 391 | #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit) | 
|  | 392 | #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss) | 
|  | 393 | #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit) | 
|  | 394 | #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss) | 
|  | 395 | #else | 
|  | 396 | #define	STATS_INC_ACTIVE(x)	do { } while (0) | 
|  | 397 | #define	STATS_DEC_ACTIVE(x)	do { } while (0) | 
|  | 398 | #define	STATS_INC_ALLOCED(x)	do { } while (0) | 
|  | 399 | #define	STATS_INC_GROWN(x)	do { } while (0) | 
|  | 400 | #define	STATS_INC_REAPED(x)	do { } while (0) | 
|  | 401 | #define	STATS_SET_HIGH(x)	do { } while (0) | 
|  | 402 | #define	STATS_INC_ERR(x)	do { } while (0) | 
|  | 403 | #define	STATS_INC_NODEALLOCS(x)	do { } while (0) | 
|  | 404 | #define	STATS_SET_FREEABLE(x, i) \ | 
|  | 405 | do { } while (0) | 
|  | 406 |  | 
|  | 407 | #define STATS_INC_ALLOCHIT(x)	do { } while (0) | 
|  | 408 | #define STATS_INC_ALLOCMISS(x)	do { } while (0) | 
|  | 409 | #define STATS_INC_FREEHIT(x)	do { } while (0) | 
|  | 410 | #define STATS_INC_FREEMISS(x)	do { } while (0) | 
|  | 411 | #endif | 
|  | 412 |  | 
|  | 413 | #if DEBUG | 
|  | 414 | /* Magic nums for obj red zoning. | 
|  | 415 | * Placed in the first word before and the first word after an obj. | 
|  | 416 | */ | 
|  | 417 | #define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */ | 
|  | 418 | #define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */ | 
|  | 419 |  | 
|  | 420 | /* ...and for poisoning */ | 
|  | 421 | #define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */ | 
|  | 422 | #define POISON_FREE	0x6b	/* for use-after-free poisoning */ | 
|  | 423 | #define	POISON_END	0xa5	/* end-byte of poisoning */ | 
|  | 424 |  | 
|  | 425 | /* memory layout of objects: | 
|  | 426 | * 0		: objp | 
|  | 427 | * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that | 
|  | 428 | * 		the end of an object is aligned with the end of the real | 
|  | 429 | * 		allocation. Catches writes behind the end of the allocation. | 
|  | 430 | * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1: | 
|  | 431 | * 		redzone word. | 
|  | 432 | * cachep->dbghead: The real object. | 
|  | 433 | * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 
|  | 434 | * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long] | 
|  | 435 | */ | 
|  | 436 | static int obj_dbghead(kmem_cache_t *cachep) | 
|  | 437 | { | 
|  | 438 | return cachep->dbghead; | 
|  | 439 | } | 
|  | 440 |  | 
|  | 441 | static int obj_reallen(kmem_cache_t *cachep) | 
|  | 442 | { | 
|  | 443 | return cachep->reallen; | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp) | 
|  | 447 | { | 
|  | 448 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | 449 | return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD); | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) | 
|  | 453 | { | 
|  | 454 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | 455 | if (cachep->flags & SLAB_STORE_USER) | 
|  | 456 | return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); | 
|  | 457 | return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | static void **dbg_userword(kmem_cache_t *cachep, void *objp) | 
|  | 461 | { | 
|  | 462 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 
|  | 463 | return (void**)(objp+cachep->objsize-BYTES_PER_WORD); | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | #else | 
|  | 467 |  | 
|  | 468 | #define obj_dbghead(x)			0 | 
|  | 469 | #define obj_reallen(cachep)		(cachep->objsize) | 
|  | 470 | #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;}) | 
|  | 471 | #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;}) | 
|  | 472 | #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;}) | 
|  | 473 |  | 
|  | 474 | #endif | 
|  | 475 |  | 
|  | 476 | /* | 
|  | 477 | * Maximum size of an obj (in 2^order pages) | 
|  | 478 | * and absolute limit for the gfp order. | 
|  | 479 | */ | 
|  | 480 | #if defined(CONFIG_LARGE_ALLOCS) | 
|  | 481 | #define	MAX_OBJ_ORDER	13	/* up to 32Mb */ | 
|  | 482 | #define	MAX_GFP_ORDER	13	/* up to 32Mb */ | 
|  | 483 | #elif defined(CONFIG_MMU) | 
|  | 484 | #define	MAX_OBJ_ORDER	5	/* 32 pages */ | 
|  | 485 | #define	MAX_GFP_ORDER	5	/* 32 pages */ | 
|  | 486 | #else | 
|  | 487 | #define	MAX_OBJ_ORDER	8	/* up to 1Mb */ | 
|  | 488 | #define	MAX_GFP_ORDER	8	/* up to 1Mb */ | 
|  | 489 | #endif | 
|  | 490 |  | 
|  | 491 | /* | 
|  | 492 | * Do not go above this order unless 0 objects fit into the slab. | 
|  | 493 | */ | 
|  | 494 | #define	BREAK_GFP_ORDER_HI	1 | 
|  | 495 | #define	BREAK_GFP_ORDER_LO	0 | 
|  | 496 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | 
|  | 497 |  | 
|  | 498 | /* Macros for storing/retrieving the cachep and or slab from the | 
|  | 499 | * global 'mem_map'. These are used to find the slab an obj belongs to. | 
|  | 500 | * With kfree(), these are used to find the cache which an obj belongs to. | 
|  | 501 | */ | 
|  | 502 | #define	SET_PAGE_CACHE(pg,x)  ((pg)->lru.next = (struct list_head *)(x)) | 
|  | 503 | #define	GET_PAGE_CACHE(pg)    ((kmem_cache_t *)(pg)->lru.next) | 
|  | 504 | #define	SET_PAGE_SLAB(pg,x)   ((pg)->lru.prev = (struct list_head *)(x)) | 
|  | 505 | #define	GET_PAGE_SLAB(pg)     ((struct slab *)(pg)->lru.prev) | 
|  | 506 |  | 
|  | 507 | /* These are the default caches for kmalloc. Custom caches can have other sizes. */ | 
|  | 508 | struct cache_sizes malloc_sizes[] = { | 
|  | 509 | #define CACHE(x) { .cs_size = (x) }, | 
|  | 510 | #include <linux/kmalloc_sizes.h> | 
|  | 511 | CACHE(ULONG_MAX) | 
|  | 512 | #undef CACHE | 
|  | 513 | }; | 
|  | 514 | EXPORT_SYMBOL(malloc_sizes); | 
|  | 515 |  | 
|  | 516 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | 
|  | 517 | struct cache_names { | 
|  | 518 | char *name; | 
|  | 519 | char *name_dma; | 
|  | 520 | }; | 
|  | 521 |  | 
|  | 522 | static struct cache_names __initdata cache_names[] = { | 
|  | 523 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | 
|  | 524 | #include <linux/kmalloc_sizes.h> | 
|  | 525 | { NULL, } | 
|  | 526 | #undef CACHE | 
|  | 527 | }; | 
|  | 528 |  | 
|  | 529 | static struct arraycache_init initarray_cache __initdata = | 
|  | 530 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
|  | 531 | static struct arraycache_init initarray_generic = | 
|  | 532 | { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
|  | 533 |  | 
|  | 534 | /* internal cache of cache description objs */ | 
|  | 535 | static kmem_cache_t cache_cache = { | 
|  | 536 | .lists		= LIST3_INIT(cache_cache.lists), | 
|  | 537 | .batchcount	= 1, | 
|  | 538 | .limit		= BOOT_CPUCACHE_ENTRIES, | 
|  | 539 | .objsize	= sizeof(kmem_cache_t), | 
|  | 540 | .flags		= SLAB_NO_REAP, | 
|  | 541 | .spinlock	= SPIN_LOCK_UNLOCKED, | 
|  | 542 | .name		= "kmem_cache", | 
|  | 543 | #if DEBUG | 
|  | 544 | .reallen	= sizeof(kmem_cache_t), | 
|  | 545 | #endif | 
|  | 546 | }; | 
|  | 547 |  | 
|  | 548 | /* Guard access to the cache-chain. */ | 
|  | 549 | static struct semaphore	cache_chain_sem; | 
|  | 550 | static struct list_head cache_chain; | 
|  | 551 |  | 
|  | 552 | /* | 
|  | 553 | * vm_enough_memory() looks at this to determine how many | 
|  | 554 | * slab-allocated pages are possibly freeable under pressure | 
|  | 555 | * | 
|  | 556 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | 
|  | 557 | */ | 
|  | 558 | atomic_t slab_reclaim_pages; | 
|  | 559 | EXPORT_SYMBOL(slab_reclaim_pages); | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * chicken and egg problem: delay the per-cpu array allocation | 
|  | 563 | * until the general caches are up. | 
|  | 564 | */ | 
|  | 565 | static enum { | 
|  | 566 | NONE, | 
|  | 567 | PARTIAL, | 
|  | 568 | FULL | 
|  | 569 | } g_cpucache_up; | 
|  | 570 |  | 
|  | 571 | static DEFINE_PER_CPU(struct work_struct, reap_work); | 
|  | 572 |  | 
|  | 573 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); | 
|  | 574 | static void enable_cpucache (kmem_cache_t *cachep); | 
|  | 575 | static void cache_reap (void *unused); | 
|  | 576 |  | 
|  | 577 | static inline void **ac_entry(struct array_cache *ac) | 
|  | 578 | { | 
|  | 579 | return (void**)(ac+1); | 
|  | 580 | } | 
|  | 581 |  | 
|  | 582 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | 
|  | 583 | { | 
|  | 584 | return cachep->array[smp_processor_id()]; | 
|  | 585 | } | 
|  | 586 |  | 
| Alexey Dobriyan | 0db925a | 2005-07-07 17:56:58 -0700 | [diff] [blame] | 587 | static inline kmem_cache_t *__find_general_cachep(size_t size, | 
|  | 588 | unsigned int __nocast gfpflags) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 589 | { | 
|  | 590 | struct cache_sizes *csizep = malloc_sizes; | 
|  | 591 |  | 
|  | 592 | #if DEBUG | 
|  | 593 | /* This happens if someone tries to call | 
|  | 594 | * kmem_cache_create(), or __kmalloc(), before | 
|  | 595 | * the generic caches are initialized. | 
|  | 596 | */ | 
|  | 597 | BUG_ON(csizep->cs_cachep == NULL); | 
|  | 598 | #endif | 
|  | 599 | while (size > csizep->cs_size) | 
|  | 600 | csizep++; | 
|  | 601 |  | 
|  | 602 | /* | 
|  | 603 | * Really subtile: The last entry with cs->cs_size==ULONG_MAX | 
|  | 604 | * has cs_{dma,}cachep==NULL. Thus no special case | 
|  | 605 | * for large kmalloc calls required. | 
|  | 606 | */ | 
|  | 607 | if (unlikely(gfpflags & GFP_DMA)) | 
|  | 608 | return csizep->cs_dmacachep; | 
|  | 609 | return csizep->cs_cachep; | 
|  | 610 | } | 
|  | 611 |  | 
| Alexey Dobriyan | 0db925a | 2005-07-07 17:56:58 -0700 | [diff] [blame] | 612 | kmem_cache_t *kmem_find_general_cachep(size_t size, | 
|  | 613 | unsigned int __nocast gfpflags) | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 614 | { | 
|  | 615 | return __find_general_cachep(size, gfpflags); | 
|  | 616 | } | 
|  | 617 | EXPORT_SYMBOL(kmem_find_general_cachep); | 
|  | 618 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 619 | /* Cal the num objs, wastage, and bytes left over for a given slab size. */ | 
|  | 620 | static void cache_estimate(unsigned long gfporder, size_t size, size_t align, | 
|  | 621 | int flags, size_t *left_over, unsigned int *num) | 
|  | 622 | { | 
|  | 623 | int i; | 
|  | 624 | size_t wastage = PAGE_SIZE<<gfporder; | 
|  | 625 | size_t extra = 0; | 
|  | 626 | size_t base = 0; | 
|  | 627 |  | 
|  | 628 | if (!(flags & CFLGS_OFF_SLAB)) { | 
|  | 629 | base = sizeof(struct slab); | 
|  | 630 | extra = sizeof(kmem_bufctl_t); | 
|  | 631 | } | 
|  | 632 | i = 0; | 
|  | 633 | while (i*size + ALIGN(base+i*extra, align) <= wastage) | 
|  | 634 | i++; | 
|  | 635 | if (i > 0) | 
|  | 636 | i--; | 
|  | 637 |  | 
|  | 638 | if (i > SLAB_LIMIT) | 
|  | 639 | i = SLAB_LIMIT; | 
|  | 640 |  | 
|  | 641 | *num = i; | 
|  | 642 | wastage -= i*size; | 
|  | 643 | wastage -= ALIGN(base+i*extra, align); | 
|  | 644 | *left_over = wastage; | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg) | 
|  | 648 |  | 
|  | 649 | static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) | 
|  | 650 | { | 
|  | 651 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 
|  | 652 | function, cachep->name, msg); | 
|  | 653 | dump_stack(); | 
|  | 654 | } | 
|  | 655 |  | 
|  | 656 | /* | 
|  | 657 | * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz | 
|  | 658 | * via the workqueue/eventd. | 
|  | 659 | * Add the CPU number into the expiration time to minimize the possibility of | 
|  | 660 | * the CPUs getting into lockstep and contending for the global cache chain | 
|  | 661 | * lock. | 
|  | 662 | */ | 
|  | 663 | static void __devinit start_cpu_timer(int cpu) | 
|  | 664 | { | 
|  | 665 | struct work_struct *reap_work = &per_cpu(reap_work, cpu); | 
|  | 666 |  | 
|  | 667 | /* | 
|  | 668 | * When this gets called from do_initcalls via cpucache_init(), | 
|  | 669 | * init_workqueues() has already run, so keventd will be setup | 
|  | 670 | * at that time. | 
|  | 671 | */ | 
|  | 672 | if (keventd_up() && reap_work->func == NULL) { | 
|  | 673 | INIT_WORK(reap_work, cache_reap, NULL); | 
|  | 674 | schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu); | 
|  | 675 | } | 
|  | 676 | } | 
|  | 677 |  | 
|  | 678 | static struct array_cache *alloc_arraycache(int cpu, int entries, | 
|  | 679 | int batchcount) | 
|  | 680 | { | 
|  | 681 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | 
|  | 682 | struct array_cache *nc = NULL; | 
|  | 683 |  | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 684 | if (cpu == -1) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 685 | nc = kmalloc(memsize, GFP_KERNEL); | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 686 | else | 
|  | 687 | nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu)); | 
|  | 688 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 689 | if (nc) { | 
|  | 690 | nc->avail = 0; | 
|  | 691 | nc->limit = entries; | 
|  | 692 | nc->batchcount = batchcount; | 
|  | 693 | nc->touched = 0; | 
|  | 694 | } | 
|  | 695 | return nc; | 
|  | 696 | } | 
|  | 697 |  | 
|  | 698 | static int __devinit cpuup_callback(struct notifier_block *nfb, | 
|  | 699 | unsigned long action, void *hcpu) | 
|  | 700 | { | 
|  | 701 | long cpu = (long)hcpu; | 
|  | 702 | kmem_cache_t* cachep; | 
|  | 703 |  | 
|  | 704 | switch (action) { | 
|  | 705 | case CPU_UP_PREPARE: | 
|  | 706 | down(&cache_chain_sem); | 
|  | 707 | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | 708 | struct array_cache *nc; | 
|  | 709 |  | 
|  | 710 | nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); | 
|  | 711 | if (!nc) | 
|  | 712 | goto bad; | 
|  | 713 |  | 
|  | 714 | spin_lock_irq(&cachep->spinlock); | 
|  | 715 | cachep->array[cpu] = nc; | 
|  | 716 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | 
|  | 717 | + cachep->num; | 
|  | 718 | spin_unlock_irq(&cachep->spinlock); | 
|  | 719 |  | 
|  | 720 | } | 
|  | 721 | up(&cache_chain_sem); | 
|  | 722 | break; | 
|  | 723 | case CPU_ONLINE: | 
|  | 724 | start_cpu_timer(cpu); | 
|  | 725 | break; | 
|  | 726 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 727 | case CPU_DEAD: | 
|  | 728 | /* fall thru */ | 
|  | 729 | case CPU_UP_CANCELED: | 
|  | 730 | down(&cache_chain_sem); | 
|  | 731 |  | 
|  | 732 | list_for_each_entry(cachep, &cache_chain, next) { | 
|  | 733 | struct array_cache *nc; | 
|  | 734 |  | 
|  | 735 | spin_lock_irq(&cachep->spinlock); | 
|  | 736 | /* cpu is dead; no one can alloc from it. */ | 
|  | 737 | nc = cachep->array[cpu]; | 
|  | 738 | cachep->array[cpu] = NULL; | 
|  | 739 | cachep->free_limit -= cachep->batchcount; | 
|  | 740 | free_block(cachep, ac_entry(nc), nc->avail); | 
|  | 741 | spin_unlock_irq(&cachep->spinlock); | 
|  | 742 | kfree(nc); | 
|  | 743 | } | 
|  | 744 | up(&cache_chain_sem); | 
|  | 745 | break; | 
|  | 746 | #endif | 
|  | 747 | } | 
|  | 748 | return NOTIFY_OK; | 
|  | 749 | bad: | 
|  | 750 | up(&cache_chain_sem); | 
|  | 751 | return NOTIFY_BAD; | 
|  | 752 | } | 
|  | 753 |  | 
|  | 754 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | 
|  | 755 |  | 
|  | 756 | /* Initialisation. | 
|  | 757 | * Called after the gfp() functions have been enabled, and before smp_init(). | 
|  | 758 | */ | 
|  | 759 | void __init kmem_cache_init(void) | 
|  | 760 | { | 
|  | 761 | size_t left_over; | 
|  | 762 | struct cache_sizes *sizes; | 
|  | 763 | struct cache_names *names; | 
|  | 764 |  | 
|  | 765 | /* | 
|  | 766 | * Fragmentation resistance on low memory - only use bigger | 
|  | 767 | * page orders on machines with more than 32MB of memory. | 
|  | 768 | */ | 
|  | 769 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | 
|  | 770 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | 
|  | 771 |  | 
|  | 772 |  | 
|  | 773 | /* Bootstrap is tricky, because several objects are allocated | 
|  | 774 | * from caches that do not exist yet: | 
|  | 775 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | 
|  | 776 | *    structures of all caches, except cache_cache itself: cache_cache | 
|  | 777 | *    is statically allocated. | 
|  | 778 | *    Initially an __init data area is used for the head array, it's | 
|  | 779 | *    replaced with a kmalloc allocated array at the end of the bootstrap. | 
|  | 780 | * 2) Create the first kmalloc cache. | 
|  | 781 | *    The kmem_cache_t for the new cache is allocated normally. An __init | 
|  | 782 | *    data area is used for the head array. | 
|  | 783 | * 3) Create the remaining kmalloc caches, with minimally sized head arrays. | 
|  | 784 | * 4) Replace the __init data head arrays for cache_cache and the first | 
|  | 785 | *    kmalloc cache with kmalloc allocated arrays. | 
|  | 786 | * 5) Resize the head arrays of the kmalloc caches to their final sizes. | 
|  | 787 | */ | 
|  | 788 |  | 
|  | 789 | /* 1) create the cache_cache */ | 
|  | 790 | init_MUTEX(&cache_chain_sem); | 
|  | 791 | INIT_LIST_HEAD(&cache_chain); | 
|  | 792 | list_add(&cache_cache.next, &cache_chain); | 
|  | 793 | cache_cache.colour_off = cache_line_size(); | 
|  | 794 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | 
|  | 795 |  | 
|  | 796 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | 
|  | 797 |  | 
|  | 798 | cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, | 
|  | 799 | &left_over, &cache_cache.num); | 
|  | 800 | if (!cache_cache.num) | 
|  | 801 | BUG(); | 
|  | 802 |  | 
|  | 803 | cache_cache.colour = left_over/cache_cache.colour_off; | 
|  | 804 | cache_cache.colour_next = 0; | 
|  | 805 | cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + | 
|  | 806 | sizeof(struct slab), cache_line_size()); | 
|  | 807 |  | 
|  | 808 | /* 2+3) create the kmalloc caches */ | 
|  | 809 | sizes = malloc_sizes; | 
|  | 810 | names = cache_names; | 
|  | 811 |  | 
|  | 812 | while (sizes->cs_size != ULONG_MAX) { | 
|  | 813 | /* For performance, all the general caches are L1 aligned. | 
|  | 814 | * This should be particularly beneficial on SMP boxes, as it | 
|  | 815 | * eliminates "false sharing". | 
|  | 816 | * Note for systems short on memory removing the alignment will | 
|  | 817 | * allow tighter packing of the smaller caches. */ | 
|  | 818 | sizes->cs_cachep = kmem_cache_create(names->name, | 
|  | 819 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | 
|  | 820 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | 
|  | 821 |  | 
|  | 822 | /* Inc off-slab bufctl limit until the ceiling is hit. */ | 
|  | 823 | if (!(OFF_SLAB(sizes->cs_cachep))) { | 
|  | 824 | offslab_limit = sizes->cs_size-sizeof(struct slab); | 
|  | 825 | offslab_limit /= sizeof(kmem_bufctl_t); | 
|  | 826 | } | 
|  | 827 |  | 
|  | 828 | sizes->cs_dmacachep = kmem_cache_create(names->name_dma, | 
|  | 829 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | 
|  | 830 | (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), | 
|  | 831 | NULL, NULL); | 
|  | 832 |  | 
|  | 833 | sizes++; | 
|  | 834 | names++; | 
|  | 835 | } | 
|  | 836 | /* 4) Replace the bootstrap head arrays */ | 
|  | 837 | { | 
|  | 838 | void * ptr; | 
|  | 839 |  | 
|  | 840 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
|  | 841 | local_irq_disable(); | 
|  | 842 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | 
|  | 843 | memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); | 
|  | 844 | cache_cache.array[smp_processor_id()] = ptr; | 
|  | 845 | local_irq_enable(); | 
|  | 846 |  | 
|  | 847 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 
|  | 848 | local_irq_disable(); | 
|  | 849 | BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); | 
|  | 850 | memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), | 
|  | 851 | sizeof(struct arraycache_init)); | 
|  | 852 | malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; | 
|  | 853 | local_irq_enable(); | 
|  | 854 | } | 
|  | 855 |  | 
|  | 856 | /* 5) resize the head arrays to their final sizes */ | 
|  | 857 | { | 
|  | 858 | kmem_cache_t *cachep; | 
|  | 859 | down(&cache_chain_sem); | 
|  | 860 | list_for_each_entry(cachep, &cache_chain, next) | 
|  | 861 | enable_cpucache(cachep); | 
|  | 862 | up(&cache_chain_sem); | 
|  | 863 | } | 
|  | 864 |  | 
|  | 865 | /* Done! */ | 
|  | 866 | g_cpucache_up = FULL; | 
|  | 867 |  | 
|  | 868 | /* Register a cpu startup notifier callback | 
|  | 869 | * that initializes ac_data for all new cpus | 
|  | 870 | */ | 
|  | 871 | register_cpu_notifier(&cpucache_notifier); | 
|  | 872 |  | 
|  | 873 |  | 
|  | 874 | /* The reap timers are started later, with a module init call: | 
|  | 875 | * That part of the kernel is not yet operational. | 
|  | 876 | */ | 
|  | 877 | } | 
|  | 878 |  | 
|  | 879 | static int __init cpucache_init(void) | 
|  | 880 | { | 
|  | 881 | int cpu; | 
|  | 882 |  | 
|  | 883 | /* | 
|  | 884 | * Register the timers that return unneeded | 
|  | 885 | * pages to gfp. | 
|  | 886 | */ | 
|  | 887 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | 888 | if (cpu_online(cpu)) | 
|  | 889 | start_cpu_timer(cpu); | 
|  | 890 | } | 
|  | 891 |  | 
|  | 892 | return 0; | 
|  | 893 | } | 
|  | 894 |  | 
|  | 895 | __initcall(cpucache_init); | 
|  | 896 |  | 
|  | 897 | /* | 
|  | 898 | * Interface to system's page allocator. No need to hold the cache-lock. | 
|  | 899 | * | 
|  | 900 | * If we requested dmaable memory, we will get it. Even if we | 
|  | 901 | * did not request dmaable memory, we might get it, but that | 
|  | 902 | * would be relatively rare and ignorable. | 
|  | 903 | */ | 
|  | 904 | static void *kmem_getpages(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | 
|  | 905 | { | 
|  | 906 | struct page *page; | 
|  | 907 | void *addr; | 
|  | 908 | int i; | 
|  | 909 |  | 
|  | 910 | flags |= cachep->gfpflags; | 
|  | 911 | if (likely(nodeid == -1)) { | 
|  | 912 | page = alloc_pages(flags, cachep->gfporder); | 
|  | 913 | } else { | 
|  | 914 | page = alloc_pages_node(nodeid, flags, cachep->gfporder); | 
|  | 915 | } | 
|  | 916 | if (!page) | 
|  | 917 | return NULL; | 
|  | 918 | addr = page_address(page); | 
|  | 919 |  | 
|  | 920 | i = (1 << cachep->gfporder); | 
|  | 921 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | 922 | atomic_add(i, &slab_reclaim_pages); | 
|  | 923 | add_page_state(nr_slab, i); | 
|  | 924 | while (i--) { | 
|  | 925 | SetPageSlab(page); | 
|  | 926 | page++; | 
|  | 927 | } | 
|  | 928 | return addr; | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | /* | 
|  | 932 | * Interface to system's page release. | 
|  | 933 | */ | 
|  | 934 | static void kmem_freepages(kmem_cache_t *cachep, void *addr) | 
|  | 935 | { | 
|  | 936 | unsigned long i = (1<<cachep->gfporder); | 
|  | 937 | struct page *page = virt_to_page(addr); | 
|  | 938 | const unsigned long nr_freed = i; | 
|  | 939 |  | 
|  | 940 | while (i--) { | 
|  | 941 | if (!TestClearPageSlab(page)) | 
|  | 942 | BUG(); | 
|  | 943 | page++; | 
|  | 944 | } | 
|  | 945 | sub_page_state(nr_slab, nr_freed); | 
|  | 946 | if (current->reclaim_state) | 
|  | 947 | current->reclaim_state->reclaimed_slab += nr_freed; | 
|  | 948 | free_pages((unsigned long)addr, cachep->gfporder); | 
|  | 949 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | 950 | atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | static void kmem_rcu_free(struct rcu_head *head) | 
|  | 954 | { | 
|  | 955 | struct slab_rcu *slab_rcu = (struct slab_rcu *) head; | 
|  | 956 | kmem_cache_t *cachep = slab_rcu->cachep; | 
|  | 957 |  | 
|  | 958 | kmem_freepages(cachep, slab_rcu->addr); | 
|  | 959 | if (OFF_SLAB(cachep)) | 
|  | 960 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | 
|  | 961 | } | 
|  | 962 |  | 
|  | 963 | #if DEBUG | 
|  | 964 |  | 
|  | 965 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | 966 | static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, | 
|  | 967 | unsigned long caller) | 
|  | 968 | { | 
|  | 969 | int size = obj_reallen(cachep); | 
|  | 970 |  | 
|  | 971 | addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; | 
|  | 972 |  | 
|  | 973 | if (size < 5*sizeof(unsigned long)) | 
|  | 974 | return; | 
|  | 975 |  | 
|  | 976 | *addr++=0x12345678; | 
|  | 977 | *addr++=caller; | 
|  | 978 | *addr++=smp_processor_id(); | 
|  | 979 | size -= 3*sizeof(unsigned long); | 
|  | 980 | { | 
|  | 981 | unsigned long *sptr = &caller; | 
|  | 982 | unsigned long svalue; | 
|  | 983 |  | 
|  | 984 | while (!kstack_end(sptr)) { | 
|  | 985 | svalue = *sptr++; | 
|  | 986 | if (kernel_text_address(svalue)) { | 
|  | 987 | *addr++=svalue; | 
|  | 988 | size -= sizeof(unsigned long); | 
|  | 989 | if (size <= sizeof(unsigned long)) | 
|  | 990 | break; | 
|  | 991 | } | 
|  | 992 | } | 
|  | 993 |  | 
|  | 994 | } | 
|  | 995 | *addr++=0x87654321; | 
|  | 996 | } | 
|  | 997 | #endif | 
|  | 998 |  | 
|  | 999 | static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) | 
|  | 1000 | { | 
|  | 1001 | int size = obj_reallen(cachep); | 
|  | 1002 | addr = &((char*)addr)[obj_dbghead(cachep)]; | 
|  | 1003 |  | 
|  | 1004 | memset(addr, val, size); | 
|  | 1005 | *(unsigned char *)(addr+size-1) = POISON_END; | 
|  | 1006 | } | 
|  | 1007 |  | 
|  | 1008 | static void dump_line(char *data, int offset, int limit) | 
|  | 1009 | { | 
|  | 1010 | int i; | 
|  | 1011 | printk(KERN_ERR "%03x:", offset); | 
|  | 1012 | for (i=0;i<limit;i++) { | 
|  | 1013 | printk(" %02x", (unsigned char)data[offset+i]); | 
|  | 1014 | } | 
|  | 1015 | printk("\n"); | 
|  | 1016 | } | 
|  | 1017 | #endif | 
|  | 1018 |  | 
|  | 1019 | #if DEBUG | 
|  | 1020 |  | 
|  | 1021 | static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) | 
|  | 1022 | { | 
|  | 1023 | int i, size; | 
|  | 1024 | char *realobj; | 
|  | 1025 |  | 
|  | 1026 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 1027 | printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", | 
|  | 1028 | *dbg_redzone1(cachep, objp), | 
|  | 1029 | *dbg_redzone2(cachep, objp)); | 
|  | 1030 | } | 
|  | 1031 |  | 
|  | 1032 | if (cachep->flags & SLAB_STORE_USER) { | 
|  | 1033 | printk(KERN_ERR "Last user: [<%p>]", | 
|  | 1034 | *dbg_userword(cachep, objp)); | 
|  | 1035 | print_symbol("(%s)", | 
|  | 1036 | (unsigned long)*dbg_userword(cachep, objp)); | 
|  | 1037 | printk("\n"); | 
|  | 1038 | } | 
|  | 1039 | realobj = (char*)objp+obj_dbghead(cachep); | 
|  | 1040 | size = obj_reallen(cachep); | 
|  | 1041 | for (i=0; i<size && lines;i+=16, lines--) { | 
|  | 1042 | int limit; | 
|  | 1043 | limit = 16; | 
|  | 1044 | if (i+limit > size) | 
|  | 1045 | limit = size-i; | 
|  | 1046 | dump_line(realobj, i, limit); | 
|  | 1047 | } | 
|  | 1048 | } | 
|  | 1049 |  | 
|  | 1050 | static void check_poison_obj(kmem_cache_t *cachep, void *objp) | 
|  | 1051 | { | 
|  | 1052 | char *realobj; | 
|  | 1053 | int size, i; | 
|  | 1054 | int lines = 0; | 
|  | 1055 |  | 
|  | 1056 | realobj = (char*)objp+obj_dbghead(cachep); | 
|  | 1057 | size = obj_reallen(cachep); | 
|  | 1058 |  | 
|  | 1059 | for (i=0;i<size;i++) { | 
|  | 1060 | char exp = POISON_FREE; | 
|  | 1061 | if (i == size-1) | 
|  | 1062 | exp = POISON_END; | 
|  | 1063 | if (realobj[i] != exp) { | 
|  | 1064 | int limit; | 
|  | 1065 | /* Mismatch ! */ | 
|  | 1066 | /* Print header */ | 
|  | 1067 | if (lines == 0) { | 
|  | 1068 | printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", | 
|  | 1069 | realobj, size); | 
|  | 1070 | print_objinfo(cachep, objp, 0); | 
|  | 1071 | } | 
|  | 1072 | /* Hexdump the affected line */ | 
|  | 1073 | i = (i/16)*16; | 
|  | 1074 | limit = 16; | 
|  | 1075 | if (i+limit > size) | 
|  | 1076 | limit = size-i; | 
|  | 1077 | dump_line(realobj, i, limit); | 
|  | 1078 | i += 16; | 
|  | 1079 | lines++; | 
|  | 1080 | /* Limit to 5 lines */ | 
|  | 1081 | if (lines > 5) | 
|  | 1082 | break; | 
|  | 1083 | } | 
|  | 1084 | } | 
|  | 1085 | if (lines != 0) { | 
|  | 1086 | /* Print some data about the neighboring objects, if they | 
|  | 1087 | * exist: | 
|  | 1088 | */ | 
|  | 1089 | struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp)); | 
|  | 1090 | int objnr; | 
|  | 1091 |  | 
|  | 1092 | objnr = (objp-slabp->s_mem)/cachep->objsize; | 
|  | 1093 | if (objnr) { | 
|  | 1094 | objp = slabp->s_mem+(objnr-1)*cachep->objsize; | 
|  | 1095 | realobj = (char*)objp+obj_dbghead(cachep); | 
|  | 1096 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 
|  | 1097 | realobj, size); | 
|  | 1098 | print_objinfo(cachep, objp, 2); | 
|  | 1099 | } | 
|  | 1100 | if (objnr+1 < cachep->num) { | 
|  | 1101 | objp = slabp->s_mem+(objnr+1)*cachep->objsize; | 
|  | 1102 | realobj = (char*)objp+obj_dbghead(cachep); | 
|  | 1103 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 
|  | 1104 | realobj, size); | 
|  | 1105 | print_objinfo(cachep, objp, 2); | 
|  | 1106 | } | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 | #endif | 
|  | 1110 |  | 
|  | 1111 | /* Destroy all the objs in a slab, and release the mem back to the system. | 
|  | 1112 | * Before calling the slab must have been unlinked from the cache. | 
|  | 1113 | * The cache-lock is not held/needed. | 
|  | 1114 | */ | 
|  | 1115 | static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | 
|  | 1116 | { | 
|  | 1117 | void *addr = slabp->s_mem - slabp->colouroff; | 
|  | 1118 |  | 
|  | 1119 | #if DEBUG | 
|  | 1120 | int i; | 
|  | 1121 | for (i = 0; i < cachep->num; i++) { | 
|  | 1122 | void *objp = slabp->s_mem + cachep->objsize * i; | 
|  | 1123 |  | 
|  | 1124 | if (cachep->flags & SLAB_POISON) { | 
|  | 1125 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | 1126 | if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) | 
|  | 1127 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); | 
|  | 1128 | else | 
|  | 1129 | check_poison_obj(cachep, objp); | 
|  | 1130 | #else | 
|  | 1131 | check_poison_obj(cachep, objp); | 
|  | 1132 | #endif | 
|  | 1133 | } | 
|  | 1134 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 1135 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | 1136 | slab_error(cachep, "start of a freed object " | 
|  | 1137 | "was overwritten"); | 
|  | 1138 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | 1139 | slab_error(cachep, "end of a freed object " | 
|  | 1140 | "was overwritten"); | 
|  | 1141 | } | 
|  | 1142 | if (cachep->dtor && !(cachep->flags & SLAB_POISON)) | 
|  | 1143 | (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); | 
|  | 1144 | } | 
|  | 1145 | #else | 
|  | 1146 | if (cachep->dtor) { | 
|  | 1147 | int i; | 
|  | 1148 | for (i = 0; i < cachep->num; i++) { | 
|  | 1149 | void* objp = slabp->s_mem+cachep->objsize*i; | 
|  | 1150 | (cachep->dtor)(objp, cachep, 0); | 
|  | 1151 | } | 
|  | 1152 | } | 
|  | 1153 | #endif | 
|  | 1154 |  | 
|  | 1155 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | 1156 | struct slab_rcu *slab_rcu; | 
|  | 1157 |  | 
|  | 1158 | slab_rcu = (struct slab_rcu *) slabp; | 
|  | 1159 | slab_rcu->cachep = cachep; | 
|  | 1160 | slab_rcu->addr = addr; | 
|  | 1161 | call_rcu(&slab_rcu->head, kmem_rcu_free); | 
|  | 1162 | } else { | 
|  | 1163 | kmem_freepages(cachep, addr); | 
|  | 1164 | if (OFF_SLAB(cachep)) | 
|  | 1165 | kmem_cache_free(cachep->slabp_cache, slabp); | 
|  | 1166 | } | 
|  | 1167 | } | 
|  | 1168 |  | 
|  | 1169 | /** | 
|  | 1170 | * kmem_cache_create - Create a cache. | 
|  | 1171 | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | 1172 | * @size: The size of objects to be created in this cache. | 
|  | 1173 | * @align: The required alignment for the objects. | 
|  | 1174 | * @flags: SLAB flags | 
|  | 1175 | * @ctor: A constructor for the objects. | 
|  | 1176 | * @dtor: A destructor for the objects. | 
|  | 1177 | * | 
|  | 1178 | * Returns a ptr to the cache on success, NULL on failure. | 
|  | 1179 | * Cannot be called within a int, but can be interrupted. | 
|  | 1180 | * The @ctor is run when new pages are allocated by the cache | 
|  | 1181 | * and the @dtor is run before the pages are handed back. | 
|  | 1182 | * | 
|  | 1183 | * @name must be valid until the cache is destroyed. This implies that | 
|  | 1184 | * the module calling this has to destroy the cache before getting | 
|  | 1185 | * unloaded. | 
|  | 1186 | * | 
|  | 1187 | * The flags are | 
|  | 1188 | * | 
|  | 1189 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | 1190 | * to catch references to uninitialised memory. | 
|  | 1191 | * | 
|  | 1192 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | 1193 | * for buffer overruns. | 
|  | 1194 | * | 
|  | 1195 | * %SLAB_NO_REAP - Don't automatically reap this cache when we're under | 
|  | 1196 | * memory pressure. | 
|  | 1197 | * | 
|  | 1198 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | 1199 | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | 1200 | * as davem. | 
|  | 1201 | */ | 
|  | 1202 | kmem_cache_t * | 
|  | 1203 | kmem_cache_create (const char *name, size_t size, size_t align, | 
|  | 1204 | unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long), | 
|  | 1205 | void (*dtor)(void*, kmem_cache_t *, unsigned long)) | 
|  | 1206 | { | 
|  | 1207 | size_t left_over, slab_size, ralign; | 
|  | 1208 | kmem_cache_t *cachep = NULL; | 
|  | 1209 |  | 
|  | 1210 | /* | 
|  | 1211 | * Sanity checks... these are all serious usage bugs. | 
|  | 1212 | */ | 
|  | 1213 | if ((!name) || | 
|  | 1214 | in_interrupt() || | 
|  | 1215 | (size < BYTES_PER_WORD) || | 
|  | 1216 | (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || | 
|  | 1217 | (dtor && !ctor)) { | 
|  | 1218 | printk(KERN_ERR "%s: Early error in slab %s\n", | 
|  | 1219 | __FUNCTION__, name); | 
|  | 1220 | BUG(); | 
|  | 1221 | } | 
|  | 1222 |  | 
|  | 1223 | #if DEBUG | 
|  | 1224 | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | 1225 | if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { | 
|  | 1226 | /* No constructor, but inital state check requested */ | 
|  | 1227 | printk(KERN_ERR "%s: No con, but init state check " | 
|  | 1228 | "requested - %s\n", __FUNCTION__, name); | 
|  | 1229 | flags &= ~SLAB_DEBUG_INITIAL; | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | #if FORCED_DEBUG | 
|  | 1233 | /* | 
|  | 1234 | * Enable redzoning and last user accounting, except for caches with | 
|  | 1235 | * large objects, if the increased size would increase the object size | 
|  | 1236 | * above the next power of two: caches with object sizes just above a | 
|  | 1237 | * power of two have a significant amount of internal fragmentation. | 
|  | 1238 | */ | 
|  | 1239 | if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) | 
|  | 1240 | flags |= SLAB_RED_ZONE|SLAB_STORE_USER; | 
|  | 1241 | if (!(flags & SLAB_DESTROY_BY_RCU)) | 
|  | 1242 | flags |= SLAB_POISON; | 
|  | 1243 | #endif | 
|  | 1244 | if (flags & SLAB_DESTROY_BY_RCU) | 
|  | 1245 | BUG_ON(flags & SLAB_POISON); | 
|  | 1246 | #endif | 
|  | 1247 | if (flags & SLAB_DESTROY_BY_RCU) | 
|  | 1248 | BUG_ON(dtor); | 
|  | 1249 |  | 
|  | 1250 | /* | 
|  | 1251 | * Always checks flags, a caller might be expecting debug | 
|  | 1252 | * support which isn't available. | 
|  | 1253 | */ | 
|  | 1254 | if (flags & ~CREATE_MASK) | 
|  | 1255 | BUG(); | 
|  | 1256 |  | 
|  | 1257 | /* Check that size is in terms of words.  This is needed to avoid | 
|  | 1258 | * unaligned accesses for some archs when redzoning is used, and makes | 
|  | 1259 | * sure any on-slab bufctl's are also correctly aligned. | 
|  | 1260 | */ | 
|  | 1261 | if (size & (BYTES_PER_WORD-1)) { | 
|  | 1262 | size += (BYTES_PER_WORD-1); | 
|  | 1263 | size &= ~(BYTES_PER_WORD-1); | 
|  | 1264 | } | 
|  | 1265 |  | 
|  | 1266 | /* calculate out the final buffer alignment: */ | 
|  | 1267 | /* 1) arch recommendation: can be overridden for debug */ | 
|  | 1268 | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | 1269 | /* Default alignment: as specified by the arch code. | 
|  | 1270 | * Except if an object is really small, then squeeze multiple | 
|  | 1271 | * objects into one cacheline. | 
|  | 1272 | */ | 
|  | 1273 | ralign = cache_line_size(); | 
|  | 1274 | while (size <= ralign/2) | 
|  | 1275 | ralign /= 2; | 
|  | 1276 | } else { | 
|  | 1277 | ralign = BYTES_PER_WORD; | 
|  | 1278 | } | 
|  | 1279 | /* 2) arch mandated alignment: disables debug if necessary */ | 
|  | 1280 | if (ralign < ARCH_SLAB_MINALIGN) { | 
|  | 1281 | ralign = ARCH_SLAB_MINALIGN; | 
|  | 1282 | if (ralign > BYTES_PER_WORD) | 
|  | 1283 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | 
|  | 1284 | } | 
|  | 1285 | /* 3) caller mandated alignment: disables debug if necessary */ | 
|  | 1286 | if (ralign < align) { | 
|  | 1287 | ralign = align; | 
|  | 1288 | if (ralign > BYTES_PER_WORD) | 
|  | 1289 | flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); | 
|  | 1290 | } | 
|  | 1291 | /* 4) Store it. Note that the debug code below can reduce | 
|  | 1292 | *    the alignment to BYTES_PER_WORD. | 
|  | 1293 | */ | 
|  | 1294 | align = ralign; | 
|  | 1295 |  | 
|  | 1296 | /* Get cache's description obj. */ | 
|  | 1297 | cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL); | 
|  | 1298 | if (!cachep) | 
|  | 1299 | goto opps; | 
|  | 1300 | memset(cachep, 0, sizeof(kmem_cache_t)); | 
|  | 1301 |  | 
|  | 1302 | #if DEBUG | 
|  | 1303 | cachep->reallen = size; | 
|  | 1304 |  | 
|  | 1305 | if (flags & SLAB_RED_ZONE) { | 
|  | 1306 | /* redzoning only works with word aligned caches */ | 
|  | 1307 | align = BYTES_PER_WORD; | 
|  | 1308 |  | 
|  | 1309 | /* add space for red zone words */ | 
|  | 1310 | cachep->dbghead += BYTES_PER_WORD; | 
|  | 1311 | size += 2*BYTES_PER_WORD; | 
|  | 1312 | } | 
|  | 1313 | if (flags & SLAB_STORE_USER) { | 
|  | 1314 | /* user store requires word alignment and | 
|  | 1315 | * one word storage behind the end of the real | 
|  | 1316 | * object. | 
|  | 1317 | */ | 
|  | 1318 | align = BYTES_PER_WORD; | 
|  | 1319 | size += BYTES_PER_WORD; | 
|  | 1320 | } | 
|  | 1321 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 
|  | 1322 | if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { | 
|  | 1323 | cachep->dbghead += PAGE_SIZE - size; | 
|  | 1324 | size = PAGE_SIZE; | 
|  | 1325 | } | 
|  | 1326 | #endif | 
|  | 1327 | #endif | 
|  | 1328 |  | 
|  | 1329 | /* Determine if the slab management is 'on' or 'off' slab. */ | 
|  | 1330 | if (size >= (PAGE_SIZE>>3)) | 
|  | 1331 | /* | 
|  | 1332 | * Size is large, assume best to place the slab management obj | 
|  | 1333 | * off-slab (should allow better packing of objs). | 
|  | 1334 | */ | 
|  | 1335 | flags |= CFLGS_OFF_SLAB; | 
|  | 1336 |  | 
|  | 1337 | size = ALIGN(size, align); | 
|  | 1338 |  | 
|  | 1339 | if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) { | 
|  | 1340 | /* | 
|  | 1341 | * A VFS-reclaimable slab tends to have most allocations | 
|  | 1342 | * as GFP_NOFS and we really don't want to have to be allocating | 
|  | 1343 | * higher-order pages when we are unable to shrink dcache. | 
|  | 1344 | */ | 
|  | 1345 | cachep->gfporder = 0; | 
|  | 1346 | cache_estimate(cachep->gfporder, size, align, flags, | 
|  | 1347 | &left_over, &cachep->num); | 
|  | 1348 | } else { | 
|  | 1349 | /* | 
|  | 1350 | * Calculate size (in pages) of slabs, and the num of objs per | 
|  | 1351 | * slab.  This could be made much more intelligent.  For now, | 
|  | 1352 | * try to avoid using high page-orders for slabs.  When the | 
|  | 1353 | * gfp() funcs are more friendly towards high-order requests, | 
|  | 1354 | * this should be changed. | 
|  | 1355 | */ | 
|  | 1356 | do { | 
|  | 1357 | unsigned int break_flag = 0; | 
|  | 1358 | cal_wastage: | 
|  | 1359 | cache_estimate(cachep->gfporder, size, align, flags, | 
|  | 1360 | &left_over, &cachep->num); | 
|  | 1361 | if (break_flag) | 
|  | 1362 | break; | 
|  | 1363 | if (cachep->gfporder >= MAX_GFP_ORDER) | 
|  | 1364 | break; | 
|  | 1365 | if (!cachep->num) | 
|  | 1366 | goto next; | 
|  | 1367 | if (flags & CFLGS_OFF_SLAB && | 
|  | 1368 | cachep->num > offslab_limit) { | 
|  | 1369 | /* This num of objs will cause problems. */ | 
|  | 1370 | cachep->gfporder--; | 
|  | 1371 | break_flag++; | 
|  | 1372 | goto cal_wastage; | 
|  | 1373 | } | 
|  | 1374 |  | 
|  | 1375 | /* | 
|  | 1376 | * Large num of objs is good, but v. large slabs are | 
|  | 1377 | * currently bad for the gfp()s. | 
|  | 1378 | */ | 
|  | 1379 | if (cachep->gfporder >= slab_break_gfp_order) | 
|  | 1380 | break; | 
|  | 1381 |  | 
|  | 1382 | if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) | 
|  | 1383 | break;	/* Acceptable internal fragmentation. */ | 
|  | 1384 | next: | 
|  | 1385 | cachep->gfporder++; | 
|  | 1386 | } while (1); | 
|  | 1387 | } | 
|  | 1388 |  | 
|  | 1389 | if (!cachep->num) { | 
|  | 1390 | printk("kmem_cache_create: couldn't create cache %s.\n", name); | 
|  | 1391 | kmem_cache_free(&cache_cache, cachep); | 
|  | 1392 | cachep = NULL; | 
|  | 1393 | goto opps; | 
|  | 1394 | } | 
|  | 1395 | slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) | 
|  | 1396 | + sizeof(struct slab), align); | 
|  | 1397 |  | 
|  | 1398 | /* | 
|  | 1399 | * If the slab has been placed off-slab, and we have enough space then | 
|  | 1400 | * move it on-slab. This is at the expense of any extra colouring. | 
|  | 1401 | */ | 
|  | 1402 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | 
|  | 1403 | flags &= ~CFLGS_OFF_SLAB; | 
|  | 1404 | left_over -= slab_size; | 
|  | 1405 | } | 
|  | 1406 |  | 
|  | 1407 | if (flags & CFLGS_OFF_SLAB) { | 
|  | 1408 | /* really off slab. No need for manual alignment */ | 
|  | 1409 | slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); | 
|  | 1410 | } | 
|  | 1411 |  | 
|  | 1412 | cachep->colour_off = cache_line_size(); | 
|  | 1413 | /* Offset must be a multiple of the alignment. */ | 
|  | 1414 | if (cachep->colour_off < align) | 
|  | 1415 | cachep->colour_off = align; | 
|  | 1416 | cachep->colour = left_over/cachep->colour_off; | 
|  | 1417 | cachep->slab_size = slab_size; | 
|  | 1418 | cachep->flags = flags; | 
|  | 1419 | cachep->gfpflags = 0; | 
|  | 1420 | if (flags & SLAB_CACHE_DMA) | 
|  | 1421 | cachep->gfpflags |= GFP_DMA; | 
|  | 1422 | spin_lock_init(&cachep->spinlock); | 
|  | 1423 | cachep->objsize = size; | 
|  | 1424 | /* NUMA */ | 
|  | 1425 | INIT_LIST_HEAD(&cachep->lists.slabs_full); | 
|  | 1426 | INIT_LIST_HEAD(&cachep->lists.slabs_partial); | 
|  | 1427 | INIT_LIST_HEAD(&cachep->lists.slabs_free); | 
|  | 1428 |  | 
|  | 1429 | if (flags & CFLGS_OFF_SLAB) | 
|  | 1430 | cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); | 
|  | 1431 | cachep->ctor = ctor; | 
|  | 1432 | cachep->dtor = dtor; | 
|  | 1433 | cachep->name = name; | 
|  | 1434 |  | 
|  | 1435 | /* Don't let CPUs to come and go */ | 
|  | 1436 | lock_cpu_hotplug(); | 
|  | 1437 |  | 
|  | 1438 | if (g_cpucache_up == FULL) { | 
|  | 1439 | enable_cpucache(cachep); | 
|  | 1440 | } else { | 
|  | 1441 | if (g_cpucache_up == NONE) { | 
|  | 1442 | /* Note: the first kmem_cache_create must create | 
|  | 1443 | * the cache that's used by kmalloc(24), otherwise | 
|  | 1444 | * the creation of further caches will BUG(). | 
|  | 1445 | */ | 
|  | 1446 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 
|  | 1447 | g_cpucache_up = PARTIAL; | 
|  | 1448 | } else { | 
|  | 1449 | cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); | 
|  | 1450 | } | 
|  | 1451 | BUG_ON(!ac_data(cachep)); | 
|  | 1452 | ac_data(cachep)->avail = 0; | 
|  | 1453 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | 1454 | ac_data(cachep)->batchcount = 1; | 
|  | 1455 | ac_data(cachep)->touched = 0; | 
|  | 1456 | cachep->batchcount = 1; | 
|  | 1457 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | 1458 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | 
|  | 1459 | + cachep->num; | 
|  | 1460 | } | 
|  | 1461 |  | 
|  | 1462 | cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + | 
|  | 1463 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | 
|  | 1464 |  | 
|  | 1465 | /* Need the semaphore to access the chain. */ | 
|  | 1466 | down(&cache_chain_sem); | 
|  | 1467 | { | 
|  | 1468 | struct list_head *p; | 
|  | 1469 | mm_segment_t old_fs; | 
|  | 1470 |  | 
|  | 1471 | old_fs = get_fs(); | 
|  | 1472 | set_fs(KERNEL_DS); | 
|  | 1473 | list_for_each(p, &cache_chain) { | 
|  | 1474 | kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); | 
|  | 1475 | char tmp; | 
|  | 1476 | /* This happens when the module gets unloaded and doesn't | 
|  | 1477 | destroy its slab cache and noone else reuses the vmalloc | 
|  | 1478 | area of the module. Print a warning. */ | 
|  | 1479 | if (__get_user(tmp,pc->name)) { | 
|  | 1480 | printk("SLAB: cache with size %d has lost its name\n", | 
|  | 1481 | pc->objsize); | 
|  | 1482 | continue; | 
|  | 1483 | } | 
|  | 1484 | if (!strcmp(pc->name,name)) { | 
|  | 1485 | printk("kmem_cache_create: duplicate cache %s\n",name); | 
|  | 1486 | up(&cache_chain_sem); | 
|  | 1487 | unlock_cpu_hotplug(); | 
|  | 1488 | BUG(); | 
|  | 1489 | } | 
|  | 1490 | } | 
|  | 1491 | set_fs(old_fs); | 
|  | 1492 | } | 
|  | 1493 |  | 
|  | 1494 | /* cache setup completed, link it into the list */ | 
|  | 1495 | list_add(&cachep->next, &cache_chain); | 
|  | 1496 | up(&cache_chain_sem); | 
|  | 1497 | unlock_cpu_hotplug(); | 
|  | 1498 | opps: | 
|  | 1499 | if (!cachep && (flags & SLAB_PANIC)) | 
|  | 1500 | panic("kmem_cache_create(): failed to create slab `%s'\n", | 
|  | 1501 | name); | 
|  | 1502 | return cachep; | 
|  | 1503 | } | 
|  | 1504 | EXPORT_SYMBOL(kmem_cache_create); | 
|  | 1505 |  | 
|  | 1506 | #if DEBUG | 
|  | 1507 | static void check_irq_off(void) | 
|  | 1508 | { | 
|  | 1509 | BUG_ON(!irqs_disabled()); | 
|  | 1510 | } | 
|  | 1511 |  | 
|  | 1512 | static void check_irq_on(void) | 
|  | 1513 | { | 
|  | 1514 | BUG_ON(irqs_disabled()); | 
|  | 1515 | } | 
|  | 1516 |  | 
|  | 1517 | static void check_spinlock_acquired(kmem_cache_t *cachep) | 
|  | 1518 | { | 
|  | 1519 | #ifdef CONFIG_SMP | 
|  | 1520 | check_irq_off(); | 
|  | 1521 | BUG_ON(spin_trylock(&cachep->spinlock)); | 
|  | 1522 | #endif | 
|  | 1523 | } | 
|  | 1524 | #else | 
|  | 1525 | #define check_irq_off()	do { } while(0) | 
|  | 1526 | #define check_irq_on()	do { } while(0) | 
|  | 1527 | #define check_spinlock_acquired(x) do { } while(0) | 
|  | 1528 | #endif | 
|  | 1529 |  | 
|  | 1530 | /* | 
|  | 1531 | * Waits for all CPUs to execute func(). | 
|  | 1532 | */ | 
|  | 1533 | static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | 
|  | 1534 | { | 
|  | 1535 | check_irq_on(); | 
|  | 1536 | preempt_disable(); | 
|  | 1537 |  | 
|  | 1538 | local_irq_disable(); | 
|  | 1539 | func(arg); | 
|  | 1540 | local_irq_enable(); | 
|  | 1541 |  | 
|  | 1542 | if (smp_call_function(func, arg, 1, 1)) | 
|  | 1543 | BUG(); | 
|  | 1544 |  | 
|  | 1545 | preempt_enable(); | 
|  | 1546 | } | 
|  | 1547 |  | 
|  | 1548 | static void drain_array_locked(kmem_cache_t* cachep, | 
|  | 1549 | struct array_cache *ac, int force); | 
|  | 1550 |  | 
|  | 1551 | static void do_drain(void *arg) | 
|  | 1552 | { | 
|  | 1553 | kmem_cache_t *cachep = (kmem_cache_t*)arg; | 
|  | 1554 | struct array_cache *ac; | 
|  | 1555 |  | 
|  | 1556 | check_irq_off(); | 
|  | 1557 | ac = ac_data(cachep); | 
|  | 1558 | spin_lock(&cachep->spinlock); | 
|  | 1559 | free_block(cachep, &ac_entry(ac)[0], ac->avail); | 
|  | 1560 | spin_unlock(&cachep->spinlock); | 
|  | 1561 | ac->avail = 0; | 
|  | 1562 | } | 
|  | 1563 |  | 
|  | 1564 | static void drain_cpu_caches(kmem_cache_t *cachep) | 
|  | 1565 | { | 
|  | 1566 | smp_call_function_all_cpus(do_drain, cachep); | 
|  | 1567 | check_irq_on(); | 
|  | 1568 | spin_lock_irq(&cachep->spinlock); | 
|  | 1569 | if (cachep->lists.shared) | 
|  | 1570 | drain_array_locked(cachep, cachep->lists.shared, 1); | 
|  | 1571 | spin_unlock_irq(&cachep->spinlock); | 
|  | 1572 | } | 
|  | 1573 |  | 
|  | 1574 |  | 
|  | 1575 | /* NUMA shrink all list3s */ | 
|  | 1576 | static int __cache_shrink(kmem_cache_t *cachep) | 
|  | 1577 | { | 
|  | 1578 | struct slab *slabp; | 
|  | 1579 | int ret; | 
|  | 1580 |  | 
|  | 1581 | drain_cpu_caches(cachep); | 
|  | 1582 |  | 
|  | 1583 | check_irq_on(); | 
|  | 1584 | spin_lock_irq(&cachep->spinlock); | 
|  | 1585 |  | 
|  | 1586 | for(;;) { | 
|  | 1587 | struct list_head *p; | 
|  | 1588 |  | 
|  | 1589 | p = cachep->lists.slabs_free.prev; | 
|  | 1590 | if (p == &cachep->lists.slabs_free) | 
|  | 1591 | break; | 
|  | 1592 |  | 
|  | 1593 | slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); | 
|  | 1594 | #if DEBUG | 
|  | 1595 | if (slabp->inuse) | 
|  | 1596 | BUG(); | 
|  | 1597 | #endif | 
|  | 1598 | list_del(&slabp->list); | 
|  | 1599 |  | 
|  | 1600 | cachep->lists.free_objects -= cachep->num; | 
|  | 1601 | spin_unlock_irq(&cachep->spinlock); | 
|  | 1602 | slab_destroy(cachep, slabp); | 
|  | 1603 | spin_lock_irq(&cachep->spinlock); | 
|  | 1604 | } | 
|  | 1605 | ret = !list_empty(&cachep->lists.slabs_full) || | 
|  | 1606 | !list_empty(&cachep->lists.slabs_partial); | 
|  | 1607 | spin_unlock_irq(&cachep->spinlock); | 
|  | 1608 | return ret; | 
|  | 1609 | } | 
|  | 1610 |  | 
|  | 1611 | /** | 
|  | 1612 | * kmem_cache_shrink - Shrink a cache. | 
|  | 1613 | * @cachep: The cache to shrink. | 
|  | 1614 | * | 
|  | 1615 | * Releases as many slabs as possible for a cache. | 
|  | 1616 | * To help debugging, a zero exit status indicates all slabs were released. | 
|  | 1617 | */ | 
|  | 1618 | int kmem_cache_shrink(kmem_cache_t *cachep) | 
|  | 1619 | { | 
|  | 1620 | if (!cachep || in_interrupt()) | 
|  | 1621 | BUG(); | 
|  | 1622 |  | 
|  | 1623 | return __cache_shrink(cachep); | 
|  | 1624 | } | 
|  | 1625 | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  | 1626 |  | 
|  | 1627 | /** | 
|  | 1628 | * kmem_cache_destroy - delete a cache | 
|  | 1629 | * @cachep: the cache to destroy | 
|  | 1630 | * | 
|  | 1631 | * Remove a kmem_cache_t object from the slab cache. | 
|  | 1632 | * Returns 0 on success. | 
|  | 1633 | * | 
|  | 1634 | * It is expected this function will be called by a module when it is | 
|  | 1635 | * unloaded.  This will remove the cache completely, and avoid a duplicate | 
|  | 1636 | * cache being allocated each time a module is loaded and unloaded, if the | 
|  | 1637 | * module doesn't have persistent in-kernel storage across loads and unloads. | 
|  | 1638 | * | 
|  | 1639 | * The cache must be empty before calling this function. | 
|  | 1640 | * | 
|  | 1641 | * The caller must guarantee that noone will allocate memory from the cache | 
|  | 1642 | * during the kmem_cache_destroy(). | 
|  | 1643 | */ | 
|  | 1644 | int kmem_cache_destroy(kmem_cache_t * cachep) | 
|  | 1645 | { | 
|  | 1646 | int i; | 
|  | 1647 |  | 
|  | 1648 | if (!cachep || in_interrupt()) | 
|  | 1649 | BUG(); | 
|  | 1650 |  | 
|  | 1651 | /* Don't let CPUs to come and go */ | 
|  | 1652 | lock_cpu_hotplug(); | 
|  | 1653 |  | 
|  | 1654 | /* Find the cache in the chain of caches. */ | 
|  | 1655 | down(&cache_chain_sem); | 
|  | 1656 | /* | 
|  | 1657 | * the chain is never empty, cache_cache is never destroyed | 
|  | 1658 | */ | 
|  | 1659 | list_del(&cachep->next); | 
|  | 1660 | up(&cache_chain_sem); | 
|  | 1661 |  | 
|  | 1662 | if (__cache_shrink(cachep)) { | 
|  | 1663 | slab_error(cachep, "Can't free all objects"); | 
|  | 1664 | down(&cache_chain_sem); | 
|  | 1665 | list_add(&cachep->next,&cache_chain); | 
|  | 1666 | up(&cache_chain_sem); | 
|  | 1667 | unlock_cpu_hotplug(); | 
|  | 1668 | return 1; | 
|  | 1669 | } | 
|  | 1670 |  | 
|  | 1671 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | 
| Paul E. McKenney | fbd568a3e | 2005-05-01 08:59:04 -0700 | [diff] [blame] | 1672 | synchronize_rcu(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1673 |  | 
|  | 1674 | /* no cpu_online check required here since we clear the percpu | 
|  | 1675 | * array on cpu offline and set this to NULL. | 
|  | 1676 | */ | 
|  | 1677 | for (i = 0; i < NR_CPUS; i++) | 
|  | 1678 | kfree(cachep->array[i]); | 
|  | 1679 |  | 
|  | 1680 | /* NUMA: free the list3 structures */ | 
|  | 1681 | kfree(cachep->lists.shared); | 
|  | 1682 | cachep->lists.shared = NULL; | 
|  | 1683 | kmem_cache_free(&cache_cache, cachep); | 
|  | 1684 |  | 
|  | 1685 | unlock_cpu_hotplug(); | 
|  | 1686 |  | 
|  | 1687 | return 0; | 
|  | 1688 | } | 
|  | 1689 | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  | 1690 |  | 
|  | 1691 | /* Get the memory for a slab management obj. */ | 
|  | 1692 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, | 
|  | 1693 | void *objp, int colour_off, unsigned int __nocast local_flags) | 
|  | 1694 | { | 
|  | 1695 | struct slab *slabp; | 
|  | 1696 |  | 
|  | 1697 | if (OFF_SLAB(cachep)) { | 
|  | 1698 | /* Slab management obj is off-slab. */ | 
|  | 1699 | slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); | 
|  | 1700 | if (!slabp) | 
|  | 1701 | return NULL; | 
|  | 1702 | } else { | 
|  | 1703 | slabp = objp+colour_off; | 
|  | 1704 | colour_off += cachep->slab_size; | 
|  | 1705 | } | 
|  | 1706 | slabp->inuse = 0; | 
|  | 1707 | slabp->colouroff = colour_off; | 
|  | 1708 | slabp->s_mem = objp+colour_off; | 
|  | 1709 |  | 
|  | 1710 | return slabp; | 
|  | 1711 | } | 
|  | 1712 |  | 
|  | 1713 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | 
|  | 1714 | { | 
|  | 1715 | return (kmem_bufctl_t *)(slabp+1); | 
|  | 1716 | } | 
|  | 1717 |  | 
|  | 1718 | static void cache_init_objs(kmem_cache_t *cachep, | 
|  | 1719 | struct slab *slabp, unsigned long ctor_flags) | 
|  | 1720 | { | 
|  | 1721 | int i; | 
|  | 1722 |  | 
|  | 1723 | for (i = 0; i < cachep->num; i++) { | 
|  | 1724 | void* objp = slabp->s_mem+cachep->objsize*i; | 
|  | 1725 | #if DEBUG | 
|  | 1726 | /* need to poison the objs? */ | 
|  | 1727 | if (cachep->flags & SLAB_POISON) | 
|  | 1728 | poison_obj(cachep, objp, POISON_FREE); | 
|  | 1729 | if (cachep->flags & SLAB_STORE_USER) | 
|  | 1730 | *dbg_userword(cachep, objp) = NULL; | 
|  | 1731 |  | 
|  | 1732 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 1733 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | 1734 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | 1735 | } | 
|  | 1736 | /* | 
|  | 1737 | * Constructors are not allowed to allocate memory from | 
|  | 1738 | * the same cache which they are a constructor for. | 
|  | 1739 | * Otherwise, deadlock. They must also be threaded. | 
|  | 1740 | */ | 
|  | 1741 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 
|  | 1742 | cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); | 
|  | 1743 |  | 
|  | 1744 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 1745 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | 1746 | slab_error(cachep, "constructor overwrote the" | 
|  | 1747 | " end of an object"); | 
|  | 1748 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | 1749 | slab_error(cachep, "constructor overwrote the" | 
|  | 1750 | " start of an object"); | 
|  | 1751 | } | 
|  | 1752 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | 
|  | 1753 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | 
|  | 1754 | #else | 
|  | 1755 | if (cachep->ctor) | 
|  | 1756 | cachep->ctor(objp, cachep, ctor_flags); | 
|  | 1757 | #endif | 
|  | 1758 | slab_bufctl(slabp)[i] = i+1; | 
|  | 1759 | } | 
|  | 1760 | slab_bufctl(slabp)[i-1] = BUFCTL_END; | 
|  | 1761 | slabp->free = 0; | 
|  | 1762 | } | 
|  | 1763 |  | 
|  | 1764 | static void kmem_flagcheck(kmem_cache_t *cachep, unsigned int flags) | 
|  | 1765 | { | 
|  | 1766 | if (flags & SLAB_DMA) { | 
|  | 1767 | if (!(cachep->gfpflags & GFP_DMA)) | 
|  | 1768 | BUG(); | 
|  | 1769 | } else { | 
|  | 1770 | if (cachep->gfpflags & GFP_DMA) | 
|  | 1771 | BUG(); | 
|  | 1772 | } | 
|  | 1773 | } | 
|  | 1774 |  | 
|  | 1775 | static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) | 
|  | 1776 | { | 
|  | 1777 | int i; | 
|  | 1778 | struct page *page; | 
|  | 1779 |  | 
|  | 1780 | /* Nasty!!!!!! I hope this is OK. */ | 
|  | 1781 | i = 1 << cachep->gfporder; | 
|  | 1782 | page = virt_to_page(objp); | 
|  | 1783 | do { | 
|  | 1784 | SET_PAGE_CACHE(page, cachep); | 
|  | 1785 | SET_PAGE_SLAB(page, slabp); | 
|  | 1786 | page++; | 
|  | 1787 | } while (--i); | 
|  | 1788 | } | 
|  | 1789 |  | 
|  | 1790 | /* | 
|  | 1791 | * Grow (by 1) the number of slabs within a cache.  This is called by | 
|  | 1792 | * kmem_cache_alloc() when there are no active objs left in a cache. | 
|  | 1793 | */ | 
|  | 1794 | static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nodeid) | 
|  | 1795 | { | 
|  | 1796 | struct slab	*slabp; | 
|  | 1797 | void		*objp; | 
|  | 1798 | size_t		 offset; | 
|  | 1799 | unsigned int	 local_flags; | 
|  | 1800 | unsigned long	 ctor_flags; | 
|  | 1801 |  | 
|  | 1802 | /* Be lazy and only check for valid flags here, | 
|  | 1803 | * keeping it out of the critical path in kmem_cache_alloc(). | 
|  | 1804 | */ | 
|  | 1805 | if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) | 
|  | 1806 | BUG(); | 
|  | 1807 | if (flags & SLAB_NO_GROW) | 
|  | 1808 | return 0; | 
|  | 1809 |  | 
|  | 1810 | ctor_flags = SLAB_CTOR_CONSTRUCTOR; | 
|  | 1811 | local_flags = (flags & SLAB_LEVEL_MASK); | 
|  | 1812 | if (!(local_flags & __GFP_WAIT)) | 
|  | 1813 | /* | 
|  | 1814 | * Not allowed to sleep.  Need to tell a constructor about | 
|  | 1815 | * this - it might need to know... | 
|  | 1816 | */ | 
|  | 1817 | ctor_flags |= SLAB_CTOR_ATOMIC; | 
|  | 1818 |  | 
|  | 1819 | /* About to mess with non-constant members - lock. */ | 
|  | 1820 | check_irq_off(); | 
|  | 1821 | spin_lock(&cachep->spinlock); | 
|  | 1822 |  | 
|  | 1823 | /* Get colour for the slab, and cal the next value. */ | 
|  | 1824 | offset = cachep->colour_next; | 
|  | 1825 | cachep->colour_next++; | 
|  | 1826 | if (cachep->colour_next >= cachep->colour) | 
|  | 1827 | cachep->colour_next = 0; | 
|  | 1828 | offset *= cachep->colour_off; | 
|  | 1829 |  | 
|  | 1830 | spin_unlock(&cachep->spinlock); | 
|  | 1831 |  | 
|  | 1832 | if (local_flags & __GFP_WAIT) | 
|  | 1833 | local_irq_enable(); | 
|  | 1834 |  | 
|  | 1835 | /* | 
|  | 1836 | * The test for missing atomic flag is performed here, rather than | 
|  | 1837 | * the more obvious place, simply to reduce the critical path length | 
|  | 1838 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | 
|  | 1839 | * will eventually be caught here (where it matters). | 
|  | 1840 | */ | 
|  | 1841 | kmem_flagcheck(cachep, flags); | 
|  | 1842 |  | 
|  | 1843 |  | 
|  | 1844 | /* Get mem for the objs. */ | 
|  | 1845 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) | 
|  | 1846 | goto failed; | 
|  | 1847 |  | 
|  | 1848 | /* Get slab management. */ | 
|  | 1849 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | 
|  | 1850 | goto opps1; | 
|  | 1851 |  | 
|  | 1852 | set_slab_attr(cachep, slabp, objp); | 
|  | 1853 |  | 
|  | 1854 | cache_init_objs(cachep, slabp, ctor_flags); | 
|  | 1855 |  | 
|  | 1856 | if (local_flags & __GFP_WAIT) | 
|  | 1857 | local_irq_disable(); | 
|  | 1858 | check_irq_off(); | 
|  | 1859 | spin_lock(&cachep->spinlock); | 
|  | 1860 |  | 
|  | 1861 | /* Make slab active. */ | 
|  | 1862 | list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); | 
|  | 1863 | STATS_INC_GROWN(cachep); | 
|  | 1864 | list3_data(cachep)->free_objects += cachep->num; | 
|  | 1865 | spin_unlock(&cachep->spinlock); | 
|  | 1866 | return 1; | 
|  | 1867 | opps1: | 
|  | 1868 | kmem_freepages(cachep, objp); | 
|  | 1869 | failed: | 
|  | 1870 | if (local_flags & __GFP_WAIT) | 
|  | 1871 | local_irq_disable(); | 
|  | 1872 | return 0; | 
|  | 1873 | } | 
|  | 1874 |  | 
|  | 1875 | #if DEBUG | 
|  | 1876 |  | 
|  | 1877 | /* | 
|  | 1878 | * Perform extra freeing checks: | 
|  | 1879 | * - detect bad pointers. | 
|  | 1880 | * - POISON/RED_ZONE checking | 
|  | 1881 | * - destructor calls, for caches with POISON+dtor | 
|  | 1882 | */ | 
|  | 1883 | static void kfree_debugcheck(const void *objp) | 
|  | 1884 | { | 
|  | 1885 | struct page *page; | 
|  | 1886 |  | 
|  | 1887 | if (!virt_addr_valid(objp)) { | 
|  | 1888 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | 
|  | 1889 | (unsigned long)objp); | 
|  | 1890 | BUG(); | 
|  | 1891 | } | 
|  | 1892 | page = virt_to_page(objp); | 
|  | 1893 | if (!PageSlab(page)) { | 
|  | 1894 | printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); | 
|  | 1895 | BUG(); | 
|  | 1896 | } | 
|  | 1897 | } | 
|  | 1898 |  | 
|  | 1899 | static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, | 
|  | 1900 | void *caller) | 
|  | 1901 | { | 
|  | 1902 | struct page *page; | 
|  | 1903 | unsigned int objnr; | 
|  | 1904 | struct slab *slabp; | 
|  | 1905 |  | 
|  | 1906 | objp -= obj_dbghead(cachep); | 
|  | 1907 | kfree_debugcheck(objp); | 
|  | 1908 | page = virt_to_page(objp); | 
|  | 1909 |  | 
|  | 1910 | if (GET_PAGE_CACHE(page) != cachep) { | 
|  | 1911 | printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", | 
|  | 1912 | GET_PAGE_CACHE(page),cachep); | 
|  | 1913 | printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); | 
|  | 1914 | printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name); | 
|  | 1915 | WARN_ON(1); | 
|  | 1916 | } | 
|  | 1917 | slabp = GET_PAGE_SLAB(page); | 
|  | 1918 |  | 
|  | 1919 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 1920 | if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { | 
|  | 1921 | slab_error(cachep, "double free, or memory outside" | 
|  | 1922 | " object was overwritten"); | 
|  | 1923 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | 
|  | 1924 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | 
|  | 1925 | } | 
|  | 1926 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | 1927 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | 1928 | } | 
|  | 1929 | if (cachep->flags & SLAB_STORE_USER) | 
|  | 1930 | *dbg_userword(cachep, objp) = caller; | 
|  | 1931 |  | 
|  | 1932 | objnr = (objp-slabp->s_mem)/cachep->objsize; | 
|  | 1933 |  | 
|  | 1934 | BUG_ON(objnr >= cachep->num); | 
|  | 1935 | BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); | 
|  | 1936 |  | 
|  | 1937 | if (cachep->flags & SLAB_DEBUG_INITIAL) { | 
|  | 1938 | /* Need to call the slab's constructor so the | 
|  | 1939 | * caller can perform a verify of its state (debugging). | 
|  | 1940 | * Called without the cache-lock held. | 
|  | 1941 | */ | 
|  | 1942 | cachep->ctor(objp+obj_dbghead(cachep), | 
|  | 1943 | cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); | 
|  | 1944 | } | 
|  | 1945 | if (cachep->flags & SLAB_POISON && cachep->dtor) { | 
|  | 1946 | /* we want to cache poison the object, | 
|  | 1947 | * call the destruction callback | 
|  | 1948 | */ | 
|  | 1949 | cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); | 
|  | 1950 | } | 
|  | 1951 | if (cachep->flags & SLAB_POISON) { | 
|  | 1952 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | 1953 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { | 
|  | 1954 | store_stackinfo(cachep, objp, (unsigned long)caller); | 
|  | 1955 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); | 
|  | 1956 | } else { | 
|  | 1957 | poison_obj(cachep, objp, POISON_FREE); | 
|  | 1958 | } | 
|  | 1959 | #else | 
|  | 1960 | poison_obj(cachep, objp, POISON_FREE); | 
|  | 1961 | #endif | 
|  | 1962 | } | 
|  | 1963 | return objp; | 
|  | 1964 | } | 
|  | 1965 |  | 
|  | 1966 | static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | 
|  | 1967 | { | 
|  | 1968 | kmem_bufctl_t i; | 
|  | 1969 | int entries = 0; | 
|  | 1970 |  | 
|  | 1971 | check_spinlock_acquired(cachep); | 
|  | 1972 | /* Check slab's freelist to see if this obj is there. */ | 
|  | 1973 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | 
|  | 1974 | entries++; | 
|  | 1975 | if (entries > cachep->num || i >= cachep->num) | 
|  | 1976 | goto bad; | 
|  | 1977 | } | 
|  | 1978 | if (entries != cachep->num - slabp->inuse) { | 
|  | 1979 | bad: | 
|  | 1980 | printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", | 
|  | 1981 | cachep->name, cachep->num, slabp, slabp->inuse); | 
|  | 1982 | for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { | 
|  | 1983 | if ((i%16)==0) | 
|  | 1984 | printk("\n%03x:", i); | 
|  | 1985 | printk(" %02x", ((unsigned char*)slabp)[i]); | 
|  | 1986 | } | 
|  | 1987 | printk("\n"); | 
|  | 1988 | BUG(); | 
|  | 1989 | } | 
|  | 1990 | } | 
|  | 1991 | #else | 
|  | 1992 | #define kfree_debugcheck(x) do { } while(0) | 
|  | 1993 | #define cache_free_debugcheck(x,objp,z) (objp) | 
|  | 1994 | #define check_slabp(x,y) do { } while(0) | 
|  | 1995 | #endif | 
|  | 1996 |  | 
|  | 1997 | static void *cache_alloc_refill(kmem_cache_t *cachep, unsigned int __nocast flags) | 
|  | 1998 | { | 
|  | 1999 | int batchcount; | 
|  | 2000 | struct kmem_list3 *l3; | 
|  | 2001 | struct array_cache *ac; | 
|  | 2002 |  | 
|  | 2003 | check_irq_off(); | 
|  | 2004 | ac = ac_data(cachep); | 
|  | 2005 | retry: | 
|  | 2006 | batchcount = ac->batchcount; | 
|  | 2007 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 
|  | 2008 | /* if there was little recent activity on this | 
|  | 2009 | * cache, then perform only a partial refill. | 
|  | 2010 | * Otherwise we could generate refill bouncing. | 
|  | 2011 | */ | 
|  | 2012 | batchcount = BATCHREFILL_LIMIT; | 
|  | 2013 | } | 
|  | 2014 | l3 = list3_data(cachep); | 
|  | 2015 |  | 
|  | 2016 | BUG_ON(ac->avail > 0); | 
|  | 2017 | spin_lock(&cachep->spinlock); | 
|  | 2018 | if (l3->shared) { | 
|  | 2019 | struct array_cache *shared_array = l3->shared; | 
|  | 2020 | if (shared_array->avail) { | 
|  | 2021 | if (batchcount > shared_array->avail) | 
|  | 2022 | batchcount = shared_array->avail; | 
|  | 2023 | shared_array->avail -= batchcount; | 
|  | 2024 | ac->avail = batchcount; | 
|  | 2025 | memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], | 
|  | 2026 | sizeof(void*)*batchcount); | 
|  | 2027 | shared_array->touched = 1; | 
|  | 2028 | goto alloc_done; | 
|  | 2029 | } | 
|  | 2030 | } | 
|  | 2031 | while (batchcount > 0) { | 
|  | 2032 | struct list_head *entry; | 
|  | 2033 | struct slab *slabp; | 
|  | 2034 | /* Get slab alloc is to come from. */ | 
|  | 2035 | entry = l3->slabs_partial.next; | 
|  | 2036 | if (entry == &l3->slabs_partial) { | 
|  | 2037 | l3->free_touched = 1; | 
|  | 2038 | entry = l3->slabs_free.next; | 
|  | 2039 | if (entry == &l3->slabs_free) | 
|  | 2040 | goto must_grow; | 
|  | 2041 | } | 
|  | 2042 |  | 
|  | 2043 | slabp = list_entry(entry, struct slab, list); | 
|  | 2044 | check_slabp(cachep, slabp); | 
|  | 2045 | check_spinlock_acquired(cachep); | 
|  | 2046 | while (slabp->inuse < cachep->num && batchcount--) { | 
|  | 2047 | kmem_bufctl_t next; | 
|  | 2048 | STATS_INC_ALLOCED(cachep); | 
|  | 2049 | STATS_INC_ACTIVE(cachep); | 
|  | 2050 | STATS_SET_HIGH(cachep); | 
|  | 2051 |  | 
|  | 2052 | /* get obj pointer */ | 
|  | 2053 | ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; | 
|  | 2054 |  | 
|  | 2055 | slabp->inuse++; | 
|  | 2056 | next = slab_bufctl(slabp)[slabp->free]; | 
|  | 2057 | #if DEBUG | 
|  | 2058 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | 
|  | 2059 | #endif | 
|  | 2060 | slabp->free = next; | 
|  | 2061 | } | 
|  | 2062 | check_slabp(cachep, slabp); | 
|  | 2063 |  | 
|  | 2064 | /* move slabp to correct slabp list: */ | 
|  | 2065 | list_del(&slabp->list); | 
|  | 2066 | if (slabp->free == BUFCTL_END) | 
|  | 2067 | list_add(&slabp->list, &l3->slabs_full); | 
|  | 2068 | else | 
|  | 2069 | list_add(&slabp->list, &l3->slabs_partial); | 
|  | 2070 | } | 
|  | 2071 |  | 
|  | 2072 | must_grow: | 
|  | 2073 | l3->free_objects -= ac->avail; | 
|  | 2074 | alloc_done: | 
|  | 2075 | spin_unlock(&cachep->spinlock); | 
|  | 2076 |  | 
|  | 2077 | if (unlikely(!ac->avail)) { | 
|  | 2078 | int x; | 
|  | 2079 | x = cache_grow(cachep, flags, -1); | 
|  | 2080 |  | 
|  | 2081 | // cache_grow can reenable interrupts, then ac could change. | 
|  | 2082 | ac = ac_data(cachep); | 
|  | 2083 | if (!x && ac->avail == 0)	// no objects in sight? abort | 
|  | 2084 | return NULL; | 
|  | 2085 |  | 
|  | 2086 | if (!ac->avail)		// objects refilled by interrupt? | 
|  | 2087 | goto retry; | 
|  | 2088 | } | 
|  | 2089 | ac->touched = 1; | 
|  | 2090 | return ac_entry(ac)[--ac->avail]; | 
|  | 2091 | } | 
|  | 2092 |  | 
|  | 2093 | static inline void | 
|  | 2094 | cache_alloc_debugcheck_before(kmem_cache_t *cachep, unsigned int __nocast flags) | 
|  | 2095 | { | 
|  | 2096 | might_sleep_if(flags & __GFP_WAIT); | 
|  | 2097 | #if DEBUG | 
|  | 2098 | kmem_flagcheck(cachep, flags); | 
|  | 2099 | #endif | 
|  | 2100 | } | 
|  | 2101 |  | 
|  | 2102 | #if DEBUG | 
|  | 2103 | static void * | 
|  | 2104 | cache_alloc_debugcheck_after(kmem_cache_t *cachep, | 
| Alexey Dobriyan | 0db925a | 2005-07-07 17:56:58 -0700 | [diff] [blame] | 2105 | unsigned int __nocast flags, void *objp, void *caller) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2106 | { | 
|  | 2107 | if (!objp) | 
|  | 2108 | return objp; | 
|  | 2109 | if (cachep->flags & SLAB_POISON) { | 
|  | 2110 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | 2111 | if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 
|  | 2112 | kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); | 
|  | 2113 | else | 
|  | 2114 | check_poison_obj(cachep, objp); | 
|  | 2115 | #else | 
|  | 2116 | check_poison_obj(cachep, objp); | 
|  | 2117 | #endif | 
|  | 2118 | poison_obj(cachep, objp, POISON_INUSE); | 
|  | 2119 | } | 
|  | 2120 | if (cachep->flags & SLAB_STORE_USER) | 
|  | 2121 | *dbg_userword(cachep, objp) = caller; | 
|  | 2122 |  | 
|  | 2123 | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | 2124 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | 
|  | 2125 | slab_error(cachep, "double free, or memory outside" | 
|  | 2126 | " object was overwritten"); | 
|  | 2127 | printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", | 
|  | 2128 | objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); | 
|  | 2129 | } | 
|  | 2130 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | 
|  | 2131 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | 
|  | 2132 | } | 
|  | 2133 | objp += obj_dbghead(cachep); | 
|  | 2134 | if (cachep->ctor && cachep->flags & SLAB_POISON) { | 
|  | 2135 | unsigned long	ctor_flags = SLAB_CTOR_CONSTRUCTOR; | 
|  | 2136 |  | 
|  | 2137 | if (!(flags & __GFP_WAIT)) | 
|  | 2138 | ctor_flags |= SLAB_CTOR_ATOMIC; | 
|  | 2139 |  | 
|  | 2140 | cachep->ctor(objp, cachep, ctor_flags); | 
|  | 2141 | } | 
|  | 2142 | return objp; | 
|  | 2143 | } | 
|  | 2144 | #else | 
|  | 2145 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 
|  | 2146 | #endif | 
|  | 2147 |  | 
|  | 2148 |  | 
|  | 2149 | static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | 
|  | 2150 | { | 
|  | 2151 | unsigned long save_flags; | 
|  | 2152 | void* objp; | 
|  | 2153 | struct array_cache *ac; | 
|  | 2154 |  | 
|  | 2155 | cache_alloc_debugcheck_before(cachep, flags); | 
|  | 2156 |  | 
|  | 2157 | local_irq_save(save_flags); | 
|  | 2158 | ac = ac_data(cachep); | 
|  | 2159 | if (likely(ac->avail)) { | 
|  | 2160 | STATS_INC_ALLOCHIT(cachep); | 
|  | 2161 | ac->touched = 1; | 
|  | 2162 | objp = ac_entry(ac)[--ac->avail]; | 
|  | 2163 | } else { | 
|  | 2164 | STATS_INC_ALLOCMISS(cachep); | 
|  | 2165 | objp = cache_alloc_refill(cachep, flags); | 
|  | 2166 | } | 
|  | 2167 | local_irq_restore(save_flags); | 
|  | 2168 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0)); | 
|  | 2169 | return objp; | 
|  | 2170 | } | 
|  | 2171 |  | 
|  | 2172 | /* | 
|  | 2173 | * NUMA: different approach needed if the spinlock is moved into | 
|  | 2174 | * the l3 structure | 
|  | 2175 | */ | 
|  | 2176 |  | 
|  | 2177 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | 
|  | 2178 | { | 
|  | 2179 | int i; | 
|  | 2180 |  | 
|  | 2181 | check_spinlock_acquired(cachep); | 
|  | 2182 |  | 
|  | 2183 | /* NUMA: move add into loop */ | 
|  | 2184 | cachep->lists.free_objects += nr_objects; | 
|  | 2185 |  | 
|  | 2186 | for (i = 0; i < nr_objects; i++) { | 
|  | 2187 | void *objp = objpp[i]; | 
|  | 2188 | struct slab *slabp; | 
|  | 2189 | unsigned int objnr; | 
|  | 2190 |  | 
|  | 2191 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | 
|  | 2192 | list_del(&slabp->list); | 
|  | 2193 | objnr = (objp - slabp->s_mem) / cachep->objsize; | 
|  | 2194 | check_slabp(cachep, slabp); | 
|  | 2195 | #if DEBUG | 
|  | 2196 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | 
|  | 2197 | printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", | 
|  | 2198 | cachep->name, objp); | 
|  | 2199 | BUG(); | 
|  | 2200 | } | 
|  | 2201 | #endif | 
|  | 2202 | slab_bufctl(slabp)[objnr] = slabp->free; | 
|  | 2203 | slabp->free = objnr; | 
|  | 2204 | STATS_DEC_ACTIVE(cachep); | 
|  | 2205 | slabp->inuse--; | 
|  | 2206 | check_slabp(cachep, slabp); | 
|  | 2207 |  | 
|  | 2208 | /* fixup slab chains */ | 
|  | 2209 | if (slabp->inuse == 0) { | 
|  | 2210 | if (cachep->lists.free_objects > cachep->free_limit) { | 
|  | 2211 | cachep->lists.free_objects -= cachep->num; | 
|  | 2212 | slab_destroy(cachep, slabp); | 
|  | 2213 | } else { | 
|  | 2214 | list_add(&slabp->list, | 
|  | 2215 | &list3_data_ptr(cachep, objp)->slabs_free); | 
|  | 2216 | } | 
|  | 2217 | } else { | 
|  | 2218 | /* Unconditionally move a slab to the end of the | 
|  | 2219 | * partial list on free - maximum time for the | 
|  | 2220 | * other objects to be freed, too. | 
|  | 2221 | */ | 
|  | 2222 | list_add_tail(&slabp->list, | 
|  | 2223 | &list3_data_ptr(cachep, objp)->slabs_partial); | 
|  | 2224 | } | 
|  | 2225 | } | 
|  | 2226 | } | 
|  | 2227 |  | 
|  | 2228 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | 
|  | 2229 | { | 
|  | 2230 | int batchcount; | 
|  | 2231 |  | 
|  | 2232 | batchcount = ac->batchcount; | 
|  | 2233 | #if DEBUG | 
|  | 2234 | BUG_ON(!batchcount || batchcount > ac->avail); | 
|  | 2235 | #endif | 
|  | 2236 | check_irq_off(); | 
|  | 2237 | spin_lock(&cachep->spinlock); | 
|  | 2238 | if (cachep->lists.shared) { | 
|  | 2239 | struct array_cache *shared_array = cachep->lists.shared; | 
|  | 2240 | int max = shared_array->limit-shared_array->avail; | 
|  | 2241 | if (max) { | 
|  | 2242 | if (batchcount > max) | 
|  | 2243 | batchcount = max; | 
|  | 2244 | memcpy(&ac_entry(shared_array)[shared_array->avail], | 
|  | 2245 | &ac_entry(ac)[0], | 
|  | 2246 | sizeof(void*)*batchcount); | 
|  | 2247 | shared_array->avail += batchcount; | 
|  | 2248 | goto free_done; | 
|  | 2249 | } | 
|  | 2250 | } | 
|  | 2251 |  | 
|  | 2252 | free_block(cachep, &ac_entry(ac)[0], batchcount); | 
|  | 2253 | free_done: | 
|  | 2254 | #if STATS | 
|  | 2255 | { | 
|  | 2256 | int i = 0; | 
|  | 2257 | struct list_head *p; | 
|  | 2258 |  | 
|  | 2259 | p = list3_data(cachep)->slabs_free.next; | 
|  | 2260 | while (p != &(list3_data(cachep)->slabs_free)) { | 
|  | 2261 | struct slab *slabp; | 
|  | 2262 |  | 
|  | 2263 | slabp = list_entry(p, struct slab, list); | 
|  | 2264 | BUG_ON(slabp->inuse); | 
|  | 2265 |  | 
|  | 2266 | i++; | 
|  | 2267 | p = p->next; | 
|  | 2268 | } | 
|  | 2269 | STATS_SET_FREEABLE(cachep, i); | 
|  | 2270 | } | 
|  | 2271 | #endif | 
|  | 2272 | spin_unlock(&cachep->spinlock); | 
|  | 2273 | ac->avail -= batchcount; | 
|  | 2274 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], | 
|  | 2275 | sizeof(void*)*ac->avail); | 
|  | 2276 | } | 
|  | 2277 |  | 
|  | 2278 | /* | 
|  | 2279 | * __cache_free | 
|  | 2280 | * Release an obj back to its cache. If the obj has a constructed | 
|  | 2281 | * state, it must be in this state _before_ it is released. | 
|  | 2282 | * | 
|  | 2283 | * Called with disabled ints. | 
|  | 2284 | */ | 
|  | 2285 | static inline void __cache_free(kmem_cache_t *cachep, void *objp) | 
|  | 2286 | { | 
|  | 2287 | struct array_cache *ac = ac_data(cachep); | 
|  | 2288 |  | 
|  | 2289 | check_irq_off(); | 
|  | 2290 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | 
|  | 2291 |  | 
|  | 2292 | if (likely(ac->avail < ac->limit)) { | 
|  | 2293 | STATS_INC_FREEHIT(cachep); | 
|  | 2294 | ac_entry(ac)[ac->avail++] = objp; | 
|  | 2295 | return; | 
|  | 2296 | } else { | 
|  | 2297 | STATS_INC_FREEMISS(cachep); | 
|  | 2298 | cache_flusharray(cachep, ac); | 
|  | 2299 | ac_entry(ac)[ac->avail++] = objp; | 
|  | 2300 | } | 
|  | 2301 | } | 
|  | 2302 |  | 
|  | 2303 | /** | 
|  | 2304 | * kmem_cache_alloc - Allocate an object | 
|  | 2305 | * @cachep: The cache to allocate from. | 
|  | 2306 | * @flags: See kmalloc(). | 
|  | 2307 | * | 
|  | 2308 | * Allocate an object from this cache.  The flags are only relevant | 
|  | 2309 | * if the cache has no available objects. | 
|  | 2310 | */ | 
|  | 2311 | void *kmem_cache_alloc(kmem_cache_t *cachep, unsigned int __nocast flags) | 
|  | 2312 | { | 
|  | 2313 | return __cache_alloc(cachep, flags); | 
|  | 2314 | } | 
|  | 2315 | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  | 2316 |  | 
|  | 2317 | /** | 
|  | 2318 | * kmem_ptr_validate - check if an untrusted pointer might | 
|  | 2319 | *	be a slab entry. | 
|  | 2320 | * @cachep: the cache we're checking against | 
|  | 2321 | * @ptr: pointer to validate | 
|  | 2322 | * | 
|  | 2323 | * This verifies that the untrusted pointer looks sane: | 
|  | 2324 | * it is _not_ a guarantee that the pointer is actually | 
|  | 2325 | * part of the slab cache in question, but it at least | 
|  | 2326 | * validates that the pointer can be dereferenced and | 
|  | 2327 | * looks half-way sane. | 
|  | 2328 | * | 
|  | 2329 | * Currently only used for dentry validation. | 
|  | 2330 | */ | 
|  | 2331 | int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) | 
|  | 2332 | { | 
|  | 2333 | unsigned long addr = (unsigned long) ptr; | 
|  | 2334 | unsigned long min_addr = PAGE_OFFSET; | 
|  | 2335 | unsigned long align_mask = BYTES_PER_WORD-1; | 
|  | 2336 | unsigned long size = cachep->objsize; | 
|  | 2337 | struct page *page; | 
|  | 2338 |  | 
|  | 2339 | if (unlikely(addr < min_addr)) | 
|  | 2340 | goto out; | 
|  | 2341 | if (unlikely(addr > (unsigned long)high_memory - size)) | 
|  | 2342 | goto out; | 
|  | 2343 | if (unlikely(addr & align_mask)) | 
|  | 2344 | goto out; | 
|  | 2345 | if (unlikely(!kern_addr_valid(addr))) | 
|  | 2346 | goto out; | 
|  | 2347 | if (unlikely(!kern_addr_valid(addr + size - 1))) | 
|  | 2348 | goto out; | 
|  | 2349 | page = virt_to_page(ptr); | 
|  | 2350 | if (unlikely(!PageSlab(page))) | 
|  | 2351 | goto out; | 
|  | 2352 | if (unlikely(GET_PAGE_CACHE(page) != cachep)) | 
|  | 2353 | goto out; | 
|  | 2354 | return 1; | 
|  | 2355 | out: | 
|  | 2356 | return 0; | 
|  | 2357 | } | 
|  | 2358 |  | 
|  | 2359 | #ifdef CONFIG_NUMA | 
|  | 2360 | /** | 
|  | 2361 | * kmem_cache_alloc_node - Allocate an object on the specified node | 
|  | 2362 | * @cachep: The cache to allocate from. | 
|  | 2363 | * @flags: See kmalloc(). | 
|  | 2364 | * @nodeid: node number of the target node. | 
|  | 2365 | * | 
|  | 2366 | * Identical to kmem_cache_alloc, except that this function is slow | 
|  | 2367 | * and can sleep. And it will allocate memory on the given node, which | 
|  | 2368 | * can improve the performance for cpu bound structures. | 
|  | 2369 | */ | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2370 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2371 | { | 
|  | 2372 | int loop; | 
|  | 2373 | void *objp; | 
|  | 2374 | struct slab *slabp; | 
|  | 2375 | kmem_bufctl_t next; | 
|  | 2376 |  | 
| Christoph Lameter | 83b78bd | 2005-07-06 10:47:07 -0700 | [diff] [blame] | 2377 | if (nodeid == -1) | 
|  | 2378 | return kmem_cache_alloc(cachep, flags); | 
|  | 2379 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2380 | for (loop = 0;;loop++) { | 
|  | 2381 | struct list_head *q; | 
|  | 2382 |  | 
|  | 2383 | objp = NULL; | 
|  | 2384 | check_irq_on(); | 
|  | 2385 | spin_lock_irq(&cachep->spinlock); | 
|  | 2386 | /* walk through all partial and empty slab and find one | 
|  | 2387 | * from the right node */ | 
|  | 2388 | list_for_each(q,&cachep->lists.slabs_partial) { | 
|  | 2389 | slabp = list_entry(q, struct slab, list); | 
|  | 2390 |  | 
|  | 2391 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | 
|  | 2392 | loop > 2) | 
|  | 2393 | goto got_slabp; | 
|  | 2394 | } | 
|  | 2395 | list_for_each(q, &cachep->lists.slabs_free) { | 
|  | 2396 | slabp = list_entry(q, struct slab, list); | 
|  | 2397 |  | 
|  | 2398 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | 
|  | 2399 | loop > 2) | 
|  | 2400 | goto got_slabp; | 
|  | 2401 | } | 
|  | 2402 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2403 |  | 
|  | 2404 | local_irq_disable(); | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2405 | if (!cache_grow(cachep, flags, nodeid)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2406 | local_irq_enable(); | 
|  | 2407 | return NULL; | 
|  | 2408 | } | 
|  | 2409 | local_irq_enable(); | 
|  | 2410 | } | 
|  | 2411 | got_slabp: | 
|  | 2412 | /* found one: allocate object */ | 
|  | 2413 | check_slabp(cachep, slabp); | 
|  | 2414 | check_spinlock_acquired(cachep); | 
|  | 2415 |  | 
|  | 2416 | STATS_INC_ALLOCED(cachep); | 
|  | 2417 | STATS_INC_ACTIVE(cachep); | 
|  | 2418 | STATS_SET_HIGH(cachep); | 
|  | 2419 | STATS_INC_NODEALLOCS(cachep); | 
|  | 2420 |  | 
|  | 2421 | objp = slabp->s_mem + slabp->free*cachep->objsize; | 
|  | 2422 |  | 
|  | 2423 | slabp->inuse++; | 
|  | 2424 | next = slab_bufctl(slabp)[slabp->free]; | 
|  | 2425 | #if DEBUG | 
|  | 2426 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | 
|  | 2427 | #endif | 
|  | 2428 | slabp->free = next; | 
|  | 2429 | check_slabp(cachep, slabp); | 
|  | 2430 |  | 
|  | 2431 | /* move slabp to correct slabp list: */ | 
|  | 2432 | list_del(&slabp->list); | 
|  | 2433 | if (slabp->free == BUFCTL_END) | 
|  | 2434 | list_add(&slabp->list, &cachep->lists.slabs_full); | 
|  | 2435 | else | 
|  | 2436 | list_add(&slabp->list, &cachep->lists.slabs_partial); | 
|  | 2437 |  | 
|  | 2438 | list3_data(cachep)->free_objects--; | 
|  | 2439 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2440 |  | 
|  | 2441 | objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, | 
|  | 2442 | __builtin_return_address(0)); | 
|  | 2443 | return objp; | 
|  | 2444 | } | 
|  | 2445 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  | 2446 |  | 
| Alexey Dobriyan | 0db925a | 2005-07-07 17:56:58 -0700 | [diff] [blame] | 2447 | void *kmalloc_node(size_t size, unsigned int __nocast flags, int node) | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2448 | { | 
|  | 2449 | kmem_cache_t *cachep; | 
|  | 2450 |  | 
|  | 2451 | cachep = kmem_find_general_cachep(size, flags); | 
|  | 2452 | if (unlikely(cachep == NULL)) | 
|  | 2453 | return NULL; | 
|  | 2454 | return kmem_cache_alloc_node(cachep, flags, node); | 
|  | 2455 | } | 
|  | 2456 | EXPORT_SYMBOL(kmalloc_node); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2457 | #endif | 
|  | 2458 |  | 
|  | 2459 | /** | 
|  | 2460 | * kmalloc - allocate memory | 
|  | 2461 | * @size: how many bytes of memory are required. | 
|  | 2462 | * @flags: the type of memory to allocate. | 
|  | 2463 | * | 
|  | 2464 | * kmalloc is the normal method of allocating memory | 
|  | 2465 | * in the kernel. | 
|  | 2466 | * | 
|  | 2467 | * The @flags argument may be one of: | 
|  | 2468 | * | 
|  | 2469 | * %GFP_USER - Allocate memory on behalf of user.  May sleep. | 
|  | 2470 | * | 
|  | 2471 | * %GFP_KERNEL - Allocate normal kernel ram.  May sleep. | 
|  | 2472 | * | 
|  | 2473 | * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers. | 
|  | 2474 | * | 
|  | 2475 | * Additionally, the %GFP_DMA flag may be set to indicate the memory | 
|  | 2476 | * must be suitable for DMA.  This can mean different things on different | 
|  | 2477 | * platforms.  For example, on i386, it means that the memory must come | 
|  | 2478 | * from the first 16MB. | 
|  | 2479 | */ | 
|  | 2480 | void *__kmalloc(size_t size, unsigned int __nocast flags) | 
|  | 2481 | { | 
|  | 2482 | kmem_cache_t *cachep; | 
|  | 2483 |  | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2484 | /* If you want to save a few bytes .text space: replace | 
|  | 2485 | * __ with kmem_. | 
|  | 2486 | * Then kmalloc uses the uninlined functions instead of the inline | 
|  | 2487 | * functions. | 
|  | 2488 | */ | 
|  | 2489 | cachep = __find_general_cachep(size, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2490 | if (unlikely(cachep == NULL)) | 
|  | 2491 | return NULL; | 
|  | 2492 | return __cache_alloc(cachep, flags); | 
|  | 2493 | } | 
|  | 2494 | EXPORT_SYMBOL(__kmalloc); | 
|  | 2495 |  | 
|  | 2496 | #ifdef CONFIG_SMP | 
|  | 2497 | /** | 
|  | 2498 | * __alloc_percpu - allocate one copy of the object for every present | 
|  | 2499 | * cpu in the system, zeroing them. | 
|  | 2500 | * Objects should be dereferenced using the per_cpu_ptr macro only. | 
|  | 2501 | * | 
|  | 2502 | * @size: how many bytes of memory are required. | 
|  | 2503 | * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. | 
|  | 2504 | */ | 
|  | 2505 | void *__alloc_percpu(size_t size, size_t align) | 
|  | 2506 | { | 
|  | 2507 | int i; | 
|  | 2508 | struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); | 
|  | 2509 |  | 
|  | 2510 | if (!pdata) | 
|  | 2511 | return NULL; | 
|  | 2512 |  | 
|  | 2513 | for (i = 0; i < NR_CPUS; i++) { | 
|  | 2514 | if (!cpu_possible(i)) | 
|  | 2515 | continue; | 
| Manfred Spraul | 97e2bde | 2005-05-01 08:58:38 -0700 | [diff] [blame] | 2516 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, | 
|  | 2517 | cpu_to_node(i)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2518 |  | 
|  | 2519 | if (!pdata->ptrs[i]) | 
|  | 2520 | goto unwind_oom; | 
|  | 2521 | memset(pdata->ptrs[i], 0, size); | 
|  | 2522 | } | 
|  | 2523 |  | 
|  | 2524 | /* Catch derefs w/o wrappers */ | 
|  | 2525 | return (void *) (~(unsigned long) pdata); | 
|  | 2526 |  | 
|  | 2527 | unwind_oom: | 
|  | 2528 | while (--i >= 0) { | 
|  | 2529 | if (!cpu_possible(i)) | 
|  | 2530 | continue; | 
|  | 2531 | kfree(pdata->ptrs[i]); | 
|  | 2532 | } | 
|  | 2533 | kfree(pdata); | 
|  | 2534 | return NULL; | 
|  | 2535 | } | 
|  | 2536 | EXPORT_SYMBOL(__alloc_percpu); | 
|  | 2537 | #endif | 
|  | 2538 |  | 
|  | 2539 | /** | 
|  | 2540 | * kmem_cache_free - Deallocate an object | 
|  | 2541 | * @cachep: The cache the allocation was from. | 
|  | 2542 | * @objp: The previously allocated object. | 
|  | 2543 | * | 
|  | 2544 | * Free an object which was previously allocated from this | 
|  | 2545 | * cache. | 
|  | 2546 | */ | 
|  | 2547 | void kmem_cache_free(kmem_cache_t *cachep, void *objp) | 
|  | 2548 | { | 
|  | 2549 | unsigned long flags; | 
|  | 2550 |  | 
|  | 2551 | local_irq_save(flags); | 
|  | 2552 | __cache_free(cachep, objp); | 
|  | 2553 | local_irq_restore(flags); | 
|  | 2554 | } | 
|  | 2555 | EXPORT_SYMBOL(kmem_cache_free); | 
|  | 2556 |  | 
|  | 2557 | /** | 
|  | 2558 | * kcalloc - allocate memory for an array. The memory is set to zero. | 
|  | 2559 | * @n: number of elements. | 
|  | 2560 | * @size: element size. | 
|  | 2561 | * @flags: the type of memory to allocate. | 
|  | 2562 | */ | 
|  | 2563 | void *kcalloc(size_t n, size_t size, unsigned int __nocast flags) | 
|  | 2564 | { | 
|  | 2565 | void *ret = NULL; | 
|  | 2566 |  | 
|  | 2567 | if (n != 0 && size > INT_MAX / n) | 
|  | 2568 | return ret; | 
|  | 2569 |  | 
|  | 2570 | ret = kmalloc(n * size, flags); | 
|  | 2571 | if (ret) | 
|  | 2572 | memset(ret, 0, n * size); | 
|  | 2573 | return ret; | 
|  | 2574 | } | 
|  | 2575 | EXPORT_SYMBOL(kcalloc); | 
|  | 2576 |  | 
|  | 2577 | /** | 
|  | 2578 | * kfree - free previously allocated memory | 
|  | 2579 | * @objp: pointer returned by kmalloc. | 
|  | 2580 | * | 
|  | 2581 | * Don't free memory not originally allocated by kmalloc() | 
|  | 2582 | * or you will run into trouble. | 
|  | 2583 | */ | 
|  | 2584 | void kfree(const void *objp) | 
|  | 2585 | { | 
|  | 2586 | kmem_cache_t *c; | 
|  | 2587 | unsigned long flags; | 
|  | 2588 |  | 
|  | 2589 | if (unlikely(!objp)) | 
|  | 2590 | return; | 
|  | 2591 | local_irq_save(flags); | 
|  | 2592 | kfree_debugcheck(objp); | 
|  | 2593 | c = GET_PAGE_CACHE(virt_to_page(objp)); | 
|  | 2594 | __cache_free(c, (void*)objp); | 
|  | 2595 | local_irq_restore(flags); | 
|  | 2596 | } | 
|  | 2597 | EXPORT_SYMBOL(kfree); | 
|  | 2598 |  | 
|  | 2599 | #ifdef CONFIG_SMP | 
|  | 2600 | /** | 
|  | 2601 | * free_percpu - free previously allocated percpu memory | 
|  | 2602 | * @objp: pointer returned by alloc_percpu. | 
|  | 2603 | * | 
|  | 2604 | * Don't free memory not originally allocated by alloc_percpu() | 
|  | 2605 | * The complemented objp is to check for that. | 
|  | 2606 | */ | 
|  | 2607 | void | 
|  | 2608 | free_percpu(const void *objp) | 
|  | 2609 | { | 
|  | 2610 | int i; | 
|  | 2611 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | 
|  | 2612 |  | 
|  | 2613 | for (i = 0; i < NR_CPUS; i++) { | 
|  | 2614 | if (!cpu_possible(i)) | 
|  | 2615 | continue; | 
|  | 2616 | kfree(p->ptrs[i]); | 
|  | 2617 | } | 
|  | 2618 | kfree(p); | 
|  | 2619 | } | 
|  | 2620 | EXPORT_SYMBOL(free_percpu); | 
|  | 2621 | #endif | 
|  | 2622 |  | 
|  | 2623 | unsigned int kmem_cache_size(kmem_cache_t *cachep) | 
|  | 2624 | { | 
|  | 2625 | return obj_reallen(cachep); | 
|  | 2626 | } | 
|  | 2627 | EXPORT_SYMBOL(kmem_cache_size); | 
|  | 2628 |  | 
| Arnaldo Carvalho de Melo | 1944972 | 2005-06-18 22:46:19 -0700 | [diff] [blame] | 2629 | const char *kmem_cache_name(kmem_cache_t *cachep) | 
|  | 2630 | { | 
|  | 2631 | return cachep->name; | 
|  | 2632 | } | 
|  | 2633 | EXPORT_SYMBOL_GPL(kmem_cache_name); | 
|  | 2634 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2635 | struct ccupdate_struct { | 
|  | 2636 | kmem_cache_t *cachep; | 
|  | 2637 | struct array_cache *new[NR_CPUS]; | 
|  | 2638 | }; | 
|  | 2639 |  | 
|  | 2640 | static void do_ccupdate_local(void *info) | 
|  | 2641 | { | 
|  | 2642 | struct ccupdate_struct *new = (struct ccupdate_struct *)info; | 
|  | 2643 | struct array_cache *old; | 
|  | 2644 |  | 
|  | 2645 | check_irq_off(); | 
|  | 2646 | old = ac_data(new->cachep); | 
|  | 2647 |  | 
|  | 2648 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 
|  | 2649 | new->new[smp_processor_id()] = old; | 
|  | 2650 | } | 
|  | 2651 |  | 
|  | 2652 |  | 
|  | 2653 | static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | 
|  | 2654 | int shared) | 
|  | 2655 | { | 
|  | 2656 | struct ccupdate_struct new; | 
|  | 2657 | struct array_cache *new_shared; | 
|  | 2658 | int i; | 
|  | 2659 |  | 
|  | 2660 | memset(&new.new,0,sizeof(new.new)); | 
|  | 2661 | for (i = 0; i < NR_CPUS; i++) { | 
|  | 2662 | if (cpu_online(i)) { | 
|  | 2663 | new.new[i] = alloc_arraycache(i, limit, batchcount); | 
|  | 2664 | if (!new.new[i]) { | 
|  | 2665 | for (i--; i >= 0; i--) kfree(new.new[i]); | 
|  | 2666 | return -ENOMEM; | 
|  | 2667 | } | 
|  | 2668 | } else { | 
|  | 2669 | new.new[i] = NULL; | 
|  | 2670 | } | 
|  | 2671 | } | 
|  | 2672 | new.cachep = cachep; | 
|  | 2673 |  | 
|  | 2674 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | 
|  | 2675 |  | 
|  | 2676 | check_irq_on(); | 
|  | 2677 | spin_lock_irq(&cachep->spinlock); | 
|  | 2678 | cachep->batchcount = batchcount; | 
|  | 2679 | cachep->limit = limit; | 
|  | 2680 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; | 
|  | 2681 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2682 |  | 
|  | 2683 | for (i = 0; i < NR_CPUS; i++) { | 
|  | 2684 | struct array_cache *ccold = new.new[i]; | 
|  | 2685 | if (!ccold) | 
|  | 2686 | continue; | 
|  | 2687 | spin_lock_irq(&cachep->spinlock); | 
|  | 2688 | free_block(cachep, ac_entry(ccold), ccold->avail); | 
|  | 2689 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2690 | kfree(ccold); | 
|  | 2691 | } | 
|  | 2692 | new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); | 
|  | 2693 | if (new_shared) { | 
|  | 2694 | struct array_cache *old; | 
|  | 2695 |  | 
|  | 2696 | spin_lock_irq(&cachep->spinlock); | 
|  | 2697 | old = cachep->lists.shared; | 
|  | 2698 | cachep->lists.shared = new_shared; | 
|  | 2699 | if (old) | 
|  | 2700 | free_block(cachep, ac_entry(old), old->avail); | 
|  | 2701 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2702 | kfree(old); | 
|  | 2703 | } | 
|  | 2704 |  | 
|  | 2705 | return 0; | 
|  | 2706 | } | 
|  | 2707 |  | 
|  | 2708 |  | 
|  | 2709 | static void enable_cpucache(kmem_cache_t *cachep) | 
|  | 2710 | { | 
|  | 2711 | int err; | 
|  | 2712 | int limit, shared; | 
|  | 2713 |  | 
|  | 2714 | /* The head array serves three purposes: | 
|  | 2715 | * - create a LIFO ordering, i.e. return objects that are cache-warm | 
|  | 2716 | * - reduce the number of spinlock operations. | 
|  | 2717 | * - reduce the number of linked list operations on the slab and | 
|  | 2718 | *   bufctl chains: array operations are cheaper. | 
|  | 2719 | * The numbers are guessed, we should auto-tune as described by | 
|  | 2720 | * Bonwick. | 
|  | 2721 | */ | 
|  | 2722 | if (cachep->objsize > 131072) | 
|  | 2723 | limit = 1; | 
|  | 2724 | else if (cachep->objsize > PAGE_SIZE) | 
|  | 2725 | limit = 8; | 
|  | 2726 | else if (cachep->objsize > 1024) | 
|  | 2727 | limit = 24; | 
|  | 2728 | else if (cachep->objsize > 256) | 
|  | 2729 | limit = 54; | 
|  | 2730 | else | 
|  | 2731 | limit = 120; | 
|  | 2732 |  | 
|  | 2733 | /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound | 
|  | 2734 | * allocation behaviour: Most allocs on one cpu, most free operations | 
|  | 2735 | * on another cpu. For these cases, an efficient object passing between | 
|  | 2736 | * cpus is necessary. This is provided by a shared array. The array | 
|  | 2737 | * replaces Bonwick's magazine layer. | 
|  | 2738 | * On uniprocessor, it's functionally equivalent (but less efficient) | 
|  | 2739 | * to a larger limit. Thus disabled by default. | 
|  | 2740 | */ | 
|  | 2741 | shared = 0; | 
|  | 2742 | #ifdef CONFIG_SMP | 
|  | 2743 | if (cachep->objsize <= PAGE_SIZE) | 
|  | 2744 | shared = 8; | 
|  | 2745 | #endif | 
|  | 2746 |  | 
|  | 2747 | #if DEBUG | 
|  | 2748 | /* With debugging enabled, large batchcount lead to excessively | 
|  | 2749 | * long periods with disabled local interrupts. Limit the | 
|  | 2750 | * batchcount | 
|  | 2751 | */ | 
|  | 2752 | if (limit > 32) | 
|  | 2753 | limit = 32; | 
|  | 2754 | #endif | 
|  | 2755 | err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); | 
|  | 2756 | if (err) | 
|  | 2757 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 
|  | 2758 | cachep->name, -err); | 
|  | 2759 | } | 
|  | 2760 |  | 
|  | 2761 | static void drain_array_locked(kmem_cache_t *cachep, | 
|  | 2762 | struct array_cache *ac, int force) | 
|  | 2763 | { | 
|  | 2764 | int tofree; | 
|  | 2765 |  | 
|  | 2766 | check_spinlock_acquired(cachep); | 
|  | 2767 | if (ac->touched && !force) { | 
|  | 2768 | ac->touched = 0; | 
|  | 2769 | } else if (ac->avail) { | 
|  | 2770 | tofree = force ? ac->avail : (ac->limit+4)/5; | 
|  | 2771 | if (tofree > ac->avail) { | 
|  | 2772 | tofree = (ac->avail+1)/2; | 
|  | 2773 | } | 
|  | 2774 | free_block(cachep, ac_entry(ac), tofree); | 
|  | 2775 | ac->avail -= tofree; | 
|  | 2776 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], | 
|  | 2777 | sizeof(void*)*ac->avail); | 
|  | 2778 | } | 
|  | 2779 | } | 
|  | 2780 |  | 
|  | 2781 | /** | 
|  | 2782 | * cache_reap - Reclaim memory from caches. | 
|  | 2783 | * | 
|  | 2784 | * Called from workqueue/eventd every few seconds. | 
|  | 2785 | * Purpose: | 
|  | 2786 | * - clear the per-cpu caches for this CPU. | 
|  | 2787 | * - return freeable pages to the main free memory pool. | 
|  | 2788 | * | 
|  | 2789 | * If we cannot acquire the cache chain semaphore then just give up - we'll | 
|  | 2790 | * try again on the next iteration. | 
|  | 2791 | */ | 
|  | 2792 | static void cache_reap(void *unused) | 
|  | 2793 | { | 
|  | 2794 | struct list_head *walk; | 
|  | 2795 |  | 
|  | 2796 | if (down_trylock(&cache_chain_sem)) { | 
|  | 2797 | /* Give up. Setup the next iteration. */ | 
|  | 2798 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | 
|  | 2799 | return; | 
|  | 2800 | } | 
|  | 2801 |  | 
|  | 2802 | list_for_each(walk, &cache_chain) { | 
|  | 2803 | kmem_cache_t *searchp; | 
|  | 2804 | struct list_head* p; | 
|  | 2805 | int tofree; | 
|  | 2806 | struct slab *slabp; | 
|  | 2807 |  | 
|  | 2808 | searchp = list_entry(walk, kmem_cache_t, next); | 
|  | 2809 |  | 
|  | 2810 | if (searchp->flags & SLAB_NO_REAP) | 
|  | 2811 | goto next; | 
|  | 2812 |  | 
|  | 2813 | check_irq_on(); | 
|  | 2814 |  | 
|  | 2815 | spin_lock_irq(&searchp->spinlock); | 
|  | 2816 |  | 
|  | 2817 | drain_array_locked(searchp, ac_data(searchp), 0); | 
|  | 2818 |  | 
|  | 2819 | if(time_after(searchp->lists.next_reap, jiffies)) | 
|  | 2820 | goto next_unlock; | 
|  | 2821 |  | 
|  | 2822 | searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; | 
|  | 2823 |  | 
|  | 2824 | if (searchp->lists.shared) | 
|  | 2825 | drain_array_locked(searchp, searchp->lists.shared, 0); | 
|  | 2826 |  | 
|  | 2827 | if (searchp->lists.free_touched) { | 
|  | 2828 | searchp->lists.free_touched = 0; | 
|  | 2829 | goto next_unlock; | 
|  | 2830 | } | 
|  | 2831 |  | 
|  | 2832 | tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); | 
|  | 2833 | do { | 
|  | 2834 | p = list3_data(searchp)->slabs_free.next; | 
|  | 2835 | if (p == &(list3_data(searchp)->slabs_free)) | 
|  | 2836 | break; | 
|  | 2837 |  | 
|  | 2838 | slabp = list_entry(p, struct slab, list); | 
|  | 2839 | BUG_ON(slabp->inuse); | 
|  | 2840 | list_del(&slabp->list); | 
|  | 2841 | STATS_INC_REAPED(searchp); | 
|  | 2842 |  | 
|  | 2843 | /* Safe to drop the lock. The slab is no longer | 
|  | 2844 | * linked to the cache. | 
|  | 2845 | * searchp cannot disappear, we hold | 
|  | 2846 | * cache_chain_lock | 
|  | 2847 | */ | 
|  | 2848 | searchp->lists.free_objects -= searchp->num; | 
|  | 2849 | spin_unlock_irq(&searchp->spinlock); | 
|  | 2850 | slab_destroy(searchp, slabp); | 
|  | 2851 | spin_lock_irq(&searchp->spinlock); | 
|  | 2852 | } while(--tofree > 0); | 
|  | 2853 | next_unlock: | 
|  | 2854 | spin_unlock_irq(&searchp->spinlock); | 
|  | 2855 | next: | 
|  | 2856 | cond_resched(); | 
|  | 2857 | } | 
|  | 2858 | check_irq_on(); | 
|  | 2859 | up(&cache_chain_sem); | 
| Christoph Lameter | 4ae7c03 | 2005-06-21 17:14:57 -0700 | [diff] [blame] | 2860 | drain_remote_pages(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2861 | /* Setup the next iteration */ | 
|  | 2862 | schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id()); | 
|  | 2863 | } | 
|  | 2864 |  | 
|  | 2865 | #ifdef CONFIG_PROC_FS | 
|  | 2866 |  | 
|  | 2867 | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | 2868 | { | 
|  | 2869 | loff_t n = *pos; | 
|  | 2870 | struct list_head *p; | 
|  | 2871 |  | 
|  | 2872 | down(&cache_chain_sem); | 
|  | 2873 | if (!n) { | 
|  | 2874 | /* | 
|  | 2875 | * Output format version, so at least we can change it | 
|  | 2876 | * without _too_ many complaints. | 
|  | 2877 | */ | 
|  | 2878 | #if STATS | 
|  | 2879 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | 2880 | #else | 
|  | 2881 | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | 2882 | #endif | 
|  | 2883 | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
|  | 2884 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | 2885 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | 2886 | #if STATS | 
|  | 2887 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | 
|  | 2888 | " <error> <maxfreeable> <freelimit> <nodeallocs>"); | 
|  | 2889 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | 2890 | #endif | 
|  | 2891 | seq_putc(m, '\n'); | 
|  | 2892 | } | 
|  | 2893 | p = cache_chain.next; | 
|  | 2894 | while (n--) { | 
|  | 2895 | p = p->next; | 
|  | 2896 | if (p == &cache_chain) | 
|  | 2897 | return NULL; | 
|  | 2898 | } | 
|  | 2899 | return list_entry(p, kmem_cache_t, next); | 
|  | 2900 | } | 
|  | 2901 |  | 
|  | 2902 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | 2903 | { | 
|  | 2904 | kmem_cache_t *cachep = p; | 
|  | 2905 | ++*pos; | 
|  | 2906 | return cachep->next.next == &cache_chain ? NULL | 
|  | 2907 | : list_entry(cachep->next.next, kmem_cache_t, next); | 
|  | 2908 | } | 
|  | 2909 |  | 
|  | 2910 | static void s_stop(struct seq_file *m, void *p) | 
|  | 2911 | { | 
|  | 2912 | up(&cache_chain_sem); | 
|  | 2913 | } | 
|  | 2914 |  | 
|  | 2915 | static int s_show(struct seq_file *m, void *p) | 
|  | 2916 | { | 
|  | 2917 | kmem_cache_t *cachep = p; | 
|  | 2918 | struct list_head *q; | 
|  | 2919 | struct slab	*slabp; | 
|  | 2920 | unsigned long	active_objs; | 
|  | 2921 | unsigned long	num_objs; | 
|  | 2922 | unsigned long	active_slabs = 0; | 
|  | 2923 | unsigned long	num_slabs; | 
|  | 2924 | const char *name; | 
|  | 2925 | char *error = NULL; | 
|  | 2926 |  | 
|  | 2927 | check_irq_on(); | 
|  | 2928 | spin_lock_irq(&cachep->spinlock); | 
|  | 2929 | active_objs = 0; | 
|  | 2930 | num_slabs = 0; | 
|  | 2931 | list_for_each(q,&cachep->lists.slabs_full) { | 
|  | 2932 | slabp = list_entry(q, struct slab, list); | 
|  | 2933 | if (slabp->inuse != cachep->num && !error) | 
|  | 2934 | error = "slabs_full accounting error"; | 
|  | 2935 | active_objs += cachep->num; | 
|  | 2936 | active_slabs++; | 
|  | 2937 | } | 
|  | 2938 | list_for_each(q,&cachep->lists.slabs_partial) { | 
|  | 2939 | slabp = list_entry(q, struct slab, list); | 
|  | 2940 | if (slabp->inuse == cachep->num && !error) | 
|  | 2941 | error = "slabs_partial inuse accounting error"; | 
|  | 2942 | if (!slabp->inuse && !error) | 
|  | 2943 | error = "slabs_partial/inuse accounting error"; | 
|  | 2944 | active_objs += slabp->inuse; | 
|  | 2945 | active_slabs++; | 
|  | 2946 | } | 
|  | 2947 | list_for_each(q,&cachep->lists.slabs_free) { | 
|  | 2948 | slabp = list_entry(q, struct slab, list); | 
|  | 2949 | if (slabp->inuse && !error) | 
|  | 2950 | error = "slabs_free/inuse accounting error"; | 
|  | 2951 | num_slabs++; | 
|  | 2952 | } | 
|  | 2953 | num_slabs+=active_slabs; | 
|  | 2954 | num_objs = num_slabs*cachep->num; | 
|  | 2955 | if (num_objs - active_objs != cachep->lists.free_objects && !error) | 
|  | 2956 | error = "free_objects accounting error"; | 
|  | 2957 |  | 
|  | 2958 | name = cachep->name; | 
|  | 2959 | if (error) | 
|  | 2960 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 
|  | 2961 |  | 
|  | 2962 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | 2963 | name, active_objs, num_objs, cachep->objsize, | 
|  | 2964 | cachep->num, (1<<cachep->gfporder)); | 
|  | 2965 | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | 2966 | cachep->limit, cachep->batchcount, | 
|  | 2967 | cachep->lists.shared->limit/cachep->batchcount); | 
|  | 2968 | seq_printf(m, " : slabdata %6lu %6lu %6u", | 
|  | 2969 | active_slabs, num_slabs, cachep->lists.shared->avail); | 
|  | 2970 | #if STATS | 
|  | 2971 | {	/* list3 stats */ | 
|  | 2972 | unsigned long high = cachep->high_mark; | 
|  | 2973 | unsigned long allocs = cachep->num_allocations; | 
|  | 2974 | unsigned long grown = cachep->grown; | 
|  | 2975 | unsigned long reaped = cachep->reaped; | 
|  | 2976 | unsigned long errors = cachep->errors; | 
|  | 2977 | unsigned long max_freeable = cachep->max_freeable; | 
|  | 2978 | unsigned long free_limit = cachep->free_limit; | 
|  | 2979 | unsigned long node_allocs = cachep->node_allocs; | 
|  | 2980 |  | 
|  | 2981 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", | 
|  | 2982 | allocs, high, grown, reaped, errors, | 
|  | 2983 | max_freeable, free_limit, node_allocs); | 
|  | 2984 | } | 
|  | 2985 | /* cpu stats */ | 
|  | 2986 | { | 
|  | 2987 | unsigned long allochit = atomic_read(&cachep->allochit); | 
|  | 2988 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | 
|  | 2989 | unsigned long freehit = atomic_read(&cachep->freehit); | 
|  | 2990 | unsigned long freemiss = atomic_read(&cachep->freemiss); | 
|  | 2991 |  | 
|  | 2992 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | 
|  | 2993 | allochit, allocmiss, freehit, freemiss); | 
|  | 2994 | } | 
|  | 2995 | #endif | 
|  | 2996 | seq_putc(m, '\n'); | 
|  | 2997 | spin_unlock_irq(&cachep->spinlock); | 
|  | 2998 | return 0; | 
|  | 2999 | } | 
|  | 3000 |  | 
|  | 3001 | /* | 
|  | 3002 | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | 3003 | * | 
|  | 3004 | * Output layout: | 
|  | 3005 | * cache-name | 
|  | 3006 | * num-active-objs | 
|  | 3007 | * total-objs | 
|  | 3008 | * object size | 
|  | 3009 | * num-active-slabs | 
|  | 3010 | * total-slabs | 
|  | 3011 | * num-pages-per-slab | 
|  | 3012 | * + further values on SMP and with statistics enabled | 
|  | 3013 | */ | 
|  | 3014 |  | 
|  | 3015 | struct seq_operations slabinfo_op = { | 
|  | 3016 | .start	= s_start, | 
|  | 3017 | .next	= s_next, | 
|  | 3018 | .stop	= s_stop, | 
|  | 3019 | .show	= s_show, | 
|  | 3020 | }; | 
|  | 3021 |  | 
|  | 3022 | #define MAX_SLABINFO_WRITE 128 | 
|  | 3023 | /** | 
|  | 3024 | * slabinfo_write - Tuning for the slab allocator | 
|  | 3025 | * @file: unused | 
|  | 3026 | * @buffer: user buffer | 
|  | 3027 | * @count: data length | 
|  | 3028 | * @ppos: unused | 
|  | 3029 | */ | 
|  | 3030 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
|  | 3031 | size_t count, loff_t *ppos) | 
|  | 3032 | { | 
|  | 3033 | char kbuf[MAX_SLABINFO_WRITE+1], *tmp; | 
|  | 3034 | int limit, batchcount, shared, res; | 
|  | 3035 | struct list_head *p; | 
|  | 3036 |  | 
|  | 3037 | if (count > MAX_SLABINFO_WRITE) | 
|  | 3038 | return -EINVAL; | 
|  | 3039 | if (copy_from_user(&kbuf, buffer, count)) | 
|  | 3040 | return -EFAULT; | 
|  | 3041 | kbuf[MAX_SLABINFO_WRITE] = '\0'; | 
|  | 3042 |  | 
|  | 3043 | tmp = strchr(kbuf, ' '); | 
|  | 3044 | if (!tmp) | 
|  | 3045 | return -EINVAL; | 
|  | 3046 | *tmp = '\0'; | 
|  | 3047 | tmp++; | 
|  | 3048 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | 
|  | 3049 | return -EINVAL; | 
|  | 3050 |  | 
|  | 3051 | /* Find the cache in the chain of caches. */ | 
|  | 3052 | down(&cache_chain_sem); | 
|  | 3053 | res = -EINVAL; | 
|  | 3054 | list_for_each(p,&cache_chain) { | 
|  | 3055 | kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); | 
|  | 3056 |  | 
|  | 3057 | if (!strcmp(cachep->name, kbuf)) { | 
|  | 3058 | if (limit < 1 || | 
|  | 3059 | batchcount < 1 || | 
|  | 3060 | batchcount > limit || | 
|  | 3061 | shared < 0) { | 
|  | 3062 | res = -EINVAL; | 
|  | 3063 | } else { | 
|  | 3064 | res = do_tune_cpucache(cachep, limit, batchcount, shared); | 
|  | 3065 | } | 
|  | 3066 | break; | 
|  | 3067 | } | 
|  | 3068 | } | 
|  | 3069 | up(&cache_chain_sem); | 
|  | 3070 | if (res >= 0) | 
|  | 3071 | res = count; | 
|  | 3072 | return res; | 
|  | 3073 | } | 
|  | 3074 | #endif | 
|  | 3075 |  | 
|  | 3076 | unsigned int ksize(const void *objp) | 
|  | 3077 | { | 
|  | 3078 | kmem_cache_t *c; | 
|  | 3079 | unsigned long flags; | 
|  | 3080 | unsigned int size = 0; | 
|  | 3081 |  | 
|  | 3082 | if (likely(objp != NULL)) { | 
|  | 3083 | local_irq_save(flags); | 
|  | 3084 | c = GET_PAGE_CACHE(virt_to_page(objp)); | 
|  | 3085 | size = kmem_cache_size(c); | 
|  | 3086 | local_irq_restore(flags); | 
|  | 3087 | } | 
|  | 3088 |  | 
|  | 3089 | return size; | 
|  | 3090 | } | 
| Paulo Marques | 543537b | 2005-06-23 00:09:02 -0700 | [diff] [blame] | 3091 |  | 
|  | 3092 |  | 
|  | 3093 | /* | 
|  | 3094 | * kstrdup - allocate space for and copy an existing string | 
|  | 3095 | * | 
|  | 3096 | * @s: the string to duplicate | 
|  | 3097 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | 3098 | */ | 
| Alexey Dobriyan | 0db925a | 2005-07-07 17:56:58 -0700 | [diff] [blame] | 3099 | char *kstrdup(const char *s, unsigned int __nocast gfp) | 
| Paulo Marques | 543537b | 2005-06-23 00:09:02 -0700 | [diff] [blame] | 3100 | { | 
|  | 3101 | size_t len; | 
|  | 3102 | char *buf; | 
|  | 3103 |  | 
|  | 3104 | if (!s) | 
|  | 3105 | return NULL; | 
|  | 3106 |  | 
|  | 3107 | len = strlen(s) + 1; | 
|  | 3108 | buf = kmalloc(len, gfp); | 
|  | 3109 | if (buf) | 
|  | 3110 | memcpy(buf, s, len); | 
|  | 3111 | return buf; | 
|  | 3112 | } | 
|  | 3113 | EXPORT_SYMBOL(kstrdup); |