| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*---------------------------------------------------------------------------+ | 
|  | 2 | |  poly_sin.c                                                               | | 
|  | 3 | |                                                                           | | 
|  | 4 | |  Computation of an approximation of the sin function and the cosine       | | 
|  | 5 | |  function by a polynomial.                                                | | 
|  | 6 | |                                                                           | | 
|  | 7 | | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
|  | 8 | |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
|  | 9 | |                  E-mail   billm@melbpc.org.au                             | | 
|  | 10 | |                                                                           | | 
|  | 11 | |                                                                           | | 
|  | 12 | +---------------------------------------------------------------------------*/ | 
|  | 13 |  | 
|  | 14 |  | 
|  | 15 | #include "exception.h" | 
|  | 16 | #include "reg_constant.h" | 
|  | 17 | #include "fpu_emu.h" | 
|  | 18 | #include "fpu_system.h" | 
|  | 19 | #include "control_w.h" | 
|  | 20 | #include "poly.h" | 
|  | 21 |  | 
|  | 22 |  | 
|  | 23 | #define	N_COEFF_P	4 | 
|  | 24 | #define	N_COEFF_N	4 | 
|  | 25 |  | 
|  | 26 | static const unsigned long long pos_terms_l[N_COEFF_P] = | 
|  | 27 | { | 
|  | 28 | 0xaaaaaaaaaaaaaaabLL, | 
|  | 29 | 0x00d00d00d00cf906LL, | 
|  | 30 | 0x000006b99159a8bbLL, | 
|  | 31 | 0x000000000d7392e6LL | 
|  | 32 | }; | 
|  | 33 |  | 
|  | 34 | static const unsigned long long neg_terms_l[N_COEFF_N] = | 
|  | 35 | { | 
|  | 36 | 0x2222222222222167LL, | 
|  | 37 | 0x0002e3bc74aab624LL, | 
|  | 38 | 0x0000000b09229062LL, | 
|  | 39 | 0x00000000000c7973LL | 
|  | 40 | }; | 
|  | 41 |  | 
|  | 42 |  | 
|  | 43 |  | 
|  | 44 | #define	N_COEFF_PH	4 | 
|  | 45 | #define	N_COEFF_NH	4 | 
|  | 46 | static const unsigned long long pos_terms_h[N_COEFF_PH] = | 
|  | 47 | { | 
|  | 48 | 0x0000000000000000LL, | 
|  | 49 | 0x05b05b05b05b0406LL, | 
|  | 50 | 0x000049f93edd91a9LL, | 
|  | 51 | 0x00000000c9c9ed62LL | 
|  | 52 | }; | 
|  | 53 |  | 
|  | 54 | static const unsigned long long neg_terms_h[N_COEFF_NH] = | 
|  | 55 | { | 
|  | 56 | 0xaaaaaaaaaaaaaa98LL, | 
|  | 57 | 0x001a01a01a019064LL, | 
|  | 58 | 0x0000008f76c68a77LL, | 
|  | 59 | 0x0000000000d58f5eLL | 
|  | 60 | }; | 
|  | 61 |  | 
|  | 62 |  | 
|  | 63 | /*--- poly_sine() -----------------------------------------------------------+ | 
|  | 64 | |                                                                           | | 
|  | 65 | +---------------------------------------------------------------------------*/ | 
|  | 66 | void	poly_sine(FPU_REG *st0_ptr) | 
|  | 67 | { | 
|  | 68 | int                 exponent, echange; | 
|  | 69 | Xsig                accumulator, argSqrd, argTo4; | 
|  | 70 | unsigned long       fix_up, adj; | 
|  | 71 | unsigned long long  fixed_arg; | 
|  | 72 | FPU_REG	      result; | 
|  | 73 |  | 
|  | 74 | exponent = exponent(st0_ptr); | 
|  | 75 |  | 
|  | 76 | accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
|  | 77 |  | 
|  | 78 | /* Split into two ranges, for arguments below and above 1.0 */ | 
|  | 79 | /* The boundary between upper and lower is approx 0.88309101259 */ | 
|  | 80 | if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) ) | 
|  | 81 | { | 
|  | 82 | /* The argument is <= 0.88309101259 */ | 
|  | 83 |  | 
|  | 84 | argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0; | 
|  | 85 | mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
|  | 86 | shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
|  | 87 | argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
|  | 88 | argTo4.lsw = argSqrd.lsw; | 
|  | 89 | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  | 90 |  | 
|  | 91 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
|  | 92 | N_COEFF_N-1); | 
|  | 93 | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 94 | negate_Xsig(&accumulator); | 
|  | 95 |  | 
|  | 96 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
|  | 97 | N_COEFF_P-1); | 
|  | 98 |  | 
|  | 99 | shr_Xsig(&accumulator, 2);    /* Divide by four */ | 
|  | 100 | accumulator.msw |= 0x80000000;  /* Add 1.0 */ | 
|  | 101 |  | 
|  | 102 | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | 103 | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | 104 | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | 105 |  | 
|  | 106 | /* Divide by four, FPU_REG compatible, etc */ | 
|  | 107 | exponent = 3*exponent; | 
|  | 108 |  | 
|  | 109 | /* The minimum exponent difference is 3 */ | 
|  | 110 | shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); | 
|  | 111 |  | 
|  | 112 | negate_Xsig(&accumulator); | 
|  | 113 | XSIG_LL(accumulator) += significand(st0_ptr); | 
|  | 114 |  | 
|  | 115 | echange = round_Xsig(&accumulator); | 
|  | 116 |  | 
|  | 117 | setexponentpos(&result, exponent(st0_ptr) + echange); | 
|  | 118 | } | 
|  | 119 | else | 
|  | 120 | { | 
|  | 121 | /* The argument is > 0.88309101259 */ | 
|  | 122 | /* We use sin(st(0)) = cos(pi/2-st(0)) */ | 
|  | 123 |  | 
|  | 124 | fixed_arg = significand(st0_ptr); | 
|  | 125 |  | 
|  | 126 | if ( exponent == 0 ) | 
|  | 127 | { | 
|  | 128 | /* The argument is >= 1.0 */ | 
|  | 129 |  | 
|  | 130 | /* Put the binary point at the left. */ | 
|  | 131 | fixed_arg <<= 1; | 
|  | 132 | } | 
|  | 133 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | 134 | fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
|  | 135 | /* There is a special case which arises due to rounding, to fix here. */ | 
|  | 136 | if ( fixed_arg == 0xffffffffffffffffLL ) | 
|  | 137 | fixed_arg = 0; | 
|  | 138 |  | 
|  | 139 | XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | 
|  | 140 | mul64_Xsig(&argSqrd, &fixed_arg); | 
|  | 141 |  | 
|  | 142 | XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw; | 
|  | 143 | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  | 144 |  | 
|  | 145 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
|  | 146 | N_COEFF_NH-1); | 
|  | 147 | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 148 | negate_Xsig(&accumulator); | 
|  | 149 |  | 
|  | 150 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
|  | 151 | N_COEFF_PH-1); | 
|  | 152 | negate_Xsig(&accumulator); | 
|  | 153 |  | 
|  | 154 | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | 155 | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | 156 |  | 
|  | 157 | shr_Xsig(&accumulator, 3); | 
|  | 158 | negate_Xsig(&accumulator); | 
|  | 159 |  | 
|  | 160 | add_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 161 |  | 
|  | 162 | shr_Xsig(&accumulator, 1); | 
|  | 163 |  | 
|  | 164 | accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */ | 
|  | 165 | negate_Xsig(&accumulator); | 
|  | 166 |  | 
|  | 167 | /* The basic computation is complete. Now fix the answer to | 
|  | 168 | compensate for the error due to the approximation used for | 
|  | 169 | pi/2 | 
|  | 170 | */ | 
|  | 171 |  | 
|  | 172 | /* This has an exponent of -65 */ | 
|  | 173 | fix_up = 0x898cc517; | 
|  | 174 | /* The fix-up needs to be improved for larger args */ | 
|  | 175 | if ( argSqrd.msw & 0xffc00000 ) | 
|  | 176 | { | 
|  | 177 | /* Get about 32 bit precision in these: */ | 
|  | 178 | fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; | 
|  | 179 | } | 
|  | 180 | fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); | 
|  | 181 |  | 
|  | 182 | adj = accumulator.lsw;    /* temp save */ | 
|  | 183 | accumulator.lsw -= fix_up; | 
|  | 184 | if ( accumulator.lsw > adj ) | 
|  | 185 | XSIG_LL(accumulator) --; | 
|  | 186 |  | 
|  | 187 | echange = round_Xsig(&accumulator); | 
|  | 188 |  | 
|  | 189 | setexponentpos(&result, echange - 1); | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | significand(&result) = XSIG_LL(accumulator); | 
|  | 193 | setsign(&result, getsign(st0_ptr)); | 
|  | 194 | FPU_copy_to_reg0(&result, TAG_Valid); | 
|  | 195 |  | 
|  | 196 | #ifdef PARANOID | 
|  | 197 | if ( (exponent(&result) >= 0) | 
|  | 198 | && (significand(&result) > 0x8000000000000000LL) ) | 
|  | 199 | { | 
|  | 200 | EXCEPTION(EX_INTERNAL|0x150); | 
|  | 201 | } | 
|  | 202 | #endif /* PARANOID */ | 
|  | 203 |  | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 |  | 
|  | 207 |  | 
|  | 208 | /*--- poly_cos() ------------------------------------------------------------+ | 
|  | 209 | |                                                                           | | 
|  | 210 | +---------------------------------------------------------------------------*/ | 
|  | 211 | void	poly_cos(FPU_REG *st0_ptr) | 
|  | 212 | { | 
|  | 213 | FPU_REG	      result; | 
|  | 214 | long int            exponent, exp2, echange; | 
|  | 215 | Xsig                accumulator, argSqrd, fix_up, argTo4; | 
|  | 216 | unsigned long long  fixed_arg; | 
|  | 217 |  | 
|  | 218 | #ifdef PARANOID | 
|  | 219 | if ( (exponent(st0_ptr) > 0) | 
|  | 220 | || ((exponent(st0_ptr) == 0) | 
|  | 221 | && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) ) | 
|  | 222 | { | 
|  | 223 | EXCEPTION(EX_Invalid); | 
|  | 224 | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | 225 | return; | 
|  | 226 | } | 
|  | 227 | #endif /* PARANOID */ | 
|  | 228 |  | 
|  | 229 | exponent = exponent(st0_ptr); | 
|  | 230 |  | 
|  | 231 | accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
|  | 232 |  | 
|  | 233 | if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) ) | 
|  | 234 | { | 
|  | 235 | /* arg is < 0.687705 */ | 
|  | 236 |  | 
|  | 237 | argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; | 
|  | 238 | argSqrd.lsw = 0; | 
|  | 239 | mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
|  | 240 |  | 
|  | 241 | if ( exponent < -1 ) | 
|  | 242 | { | 
|  | 243 | /* shift the argument right by the required places */ | 
|  | 244 | shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
|  | 245 | } | 
|  | 246 |  | 
|  | 247 | argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
|  | 248 | argTo4.lsw = argSqrd.lsw; | 
|  | 249 | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  | 250 |  | 
|  | 251 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
|  | 252 | N_COEFF_NH-1); | 
|  | 253 | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 254 | negate_Xsig(&accumulator); | 
|  | 255 |  | 
|  | 256 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
|  | 257 | N_COEFF_PH-1); | 
|  | 258 | negate_Xsig(&accumulator); | 
|  | 259 |  | 
|  | 260 | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | 261 | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | 262 | shr_Xsig(&accumulator, -2*(1+exponent)); | 
|  | 263 |  | 
|  | 264 | shr_Xsig(&accumulator, 3); | 
|  | 265 | negate_Xsig(&accumulator); | 
|  | 266 |  | 
|  | 267 | add_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 268 |  | 
|  | 269 | shr_Xsig(&accumulator, 1); | 
|  | 270 |  | 
|  | 271 | /* It doesn't matter if accumulator is all zero here, the | 
|  | 272 | following code will work ok */ | 
|  | 273 | negate_Xsig(&accumulator); | 
|  | 274 |  | 
|  | 275 | if ( accumulator.lsw & 0x80000000 ) | 
|  | 276 | XSIG_LL(accumulator) ++; | 
|  | 277 | if ( accumulator.msw == 0 ) | 
|  | 278 | { | 
|  | 279 | /* The result is 1.0 */ | 
|  | 280 | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | 281 | return; | 
|  | 282 | } | 
|  | 283 | else | 
|  | 284 | { | 
|  | 285 | significand(&result) = XSIG_LL(accumulator); | 
|  | 286 |  | 
|  | 287 | /* will be a valid positive nr with expon = -1 */ | 
|  | 288 | setexponentpos(&result, -1); | 
|  | 289 | } | 
|  | 290 | } | 
|  | 291 | else | 
|  | 292 | { | 
|  | 293 | fixed_arg = significand(st0_ptr); | 
|  | 294 |  | 
|  | 295 | if ( exponent == 0 ) | 
|  | 296 | { | 
|  | 297 | /* The argument is >= 1.0 */ | 
|  | 298 |  | 
|  | 299 | /* Put the binary point at the left. */ | 
|  | 300 | fixed_arg <<= 1; | 
|  | 301 | } | 
|  | 302 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | 303 | fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
|  | 304 | /* There is a special case which arises due to rounding, to fix here. */ | 
|  | 305 | if ( fixed_arg == 0xffffffffffffffffLL ) | 
|  | 306 | fixed_arg = 0; | 
|  | 307 |  | 
|  | 308 | exponent = -1; | 
|  | 309 | exp2 = -1; | 
|  | 310 |  | 
|  | 311 | /* A shift is needed here only for a narrow range of arguments, | 
|  | 312 | i.e. for fixed_arg approx 2^-32, but we pick up more... */ | 
|  | 313 | if ( !(LL_MSW(fixed_arg) & 0xffff0000) ) | 
|  | 314 | { | 
|  | 315 | fixed_arg <<= 16; | 
|  | 316 | exponent -= 16; | 
|  | 317 | exp2 -= 16; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0; | 
|  | 321 | mul64_Xsig(&argSqrd, &fixed_arg); | 
|  | 322 |  | 
|  | 323 | if ( exponent < -1 ) | 
|  | 324 | { | 
|  | 325 | /* shift the argument right by the required places */ | 
|  | 326 | shr_Xsig(&argSqrd, 2*(-1-exponent)); | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw; | 
|  | 330 | argTo4.lsw = argSqrd.lsw; | 
|  | 331 | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  | 332 |  | 
|  | 333 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
|  | 334 | N_COEFF_N-1); | 
|  | 335 | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | 336 | negate_Xsig(&accumulator); | 
|  | 337 |  | 
|  | 338 | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
|  | 339 | N_COEFF_P-1); | 
|  | 340 |  | 
|  | 341 | shr_Xsig(&accumulator, 2);    /* Divide by four */ | 
|  | 342 | accumulator.msw |= 0x80000000;  /* Add 1.0 */ | 
|  | 343 |  | 
|  | 344 | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | 345 | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | 346 | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | 347 |  | 
|  | 348 | /* Divide by four, FPU_REG compatible, etc */ | 
|  | 349 | exponent = 3*exponent; | 
|  | 350 |  | 
|  | 351 | /* The minimum exponent difference is 3 */ | 
|  | 352 | shr_Xsig(&accumulator, exp2 - exponent); | 
|  | 353 |  | 
|  | 354 | negate_Xsig(&accumulator); | 
|  | 355 | XSIG_LL(accumulator) += fixed_arg; | 
|  | 356 |  | 
|  | 357 | /* The basic computation is complete. Now fix the answer to | 
|  | 358 | compensate for the error due to the approximation used for | 
|  | 359 | pi/2 | 
|  | 360 | */ | 
|  | 361 |  | 
|  | 362 | /* This has an exponent of -65 */ | 
|  | 363 | XSIG_LL(fix_up) = 0x898cc51701b839a2ll; | 
|  | 364 | fix_up.lsw = 0; | 
|  | 365 |  | 
|  | 366 | /* The fix-up needs to be improved for larger args */ | 
|  | 367 | if ( argSqrd.msw & 0xffc00000 ) | 
|  | 368 | { | 
|  | 369 | /* Get about 32 bit precision in these: */ | 
|  | 370 | fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; | 
|  | 371 | fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | exp2 += norm_Xsig(&accumulator); | 
|  | 375 | shr_Xsig(&accumulator, 1); /* Prevent overflow */ | 
|  | 376 | exp2++; | 
|  | 377 | shr_Xsig(&fix_up, 65 + exp2); | 
|  | 378 |  | 
|  | 379 | add_Xsig_Xsig(&accumulator, &fix_up); | 
|  | 380 |  | 
|  | 381 | echange = round_Xsig(&accumulator); | 
|  | 382 |  | 
|  | 383 | setexponentpos(&result, exp2 + echange); | 
|  | 384 | significand(&result) = XSIG_LL(accumulator); | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | FPU_copy_to_reg0(&result, TAG_Valid); | 
|  | 388 |  | 
|  | 389 | #ifdef PARANOID | 
|  | 390 | if ( (exponent(&result) >= 0) | 
|  | 391 | && (significand(&result) > 0x8000000000000000LL) ) | 
|  | 392 | { | 
|  | 393 | EXCEPTION(EX_INTERNAL|0x151); | 
|  | 394 | } | 
|  | 395 | #endif /* PARANOID */ | 
|  | 396 |  | 
|  | 397 | } |