| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*---------------------------------------------------------------------------+ | 
|  | 2 | |  poly_tan.c                                                               | | 
|  | 3 | |                                                                           | | 
|  | 4 | | Compute the tan of a FPU_REG, using a polynomial approximation.           | | 
|  | 5 | |                                                                           | | 
|  | 6 | | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
|  | 7 | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | 
|  | 8 | |                       Australia.  E-mail   billm@melbpc.org.au            | | 
|  | 9 | |                                                                           | | 
|  | 10 | |                                                                           | | 
|  | 11 | +---------------------------------------------------------------------------*/ | 
|  | 12 |  | 
|  | 13 | #include "exception.h" | 
|  | 14 | #include "reg_constant.h" | 
|  | 15 | #include "fpu_emu.h" | 
|  | 16 | #include "fpu_system.h" | 
|  | 17 | #include "control_w.h" | 
|  | 18 | #include "poly.h" | 
|  | 19 |  | 
|  | 20 |  | 
|  | 21 | #define	HiPOWERop	3	/* odd poly, positive terms */ | 
|  | 22 | static const unsigned long long oddplterm[HiPOWERop] = | 
|  | 23 | { | 
|  | 24 | 0x0000000000000000LL, | 
|  | 25 | 0x0051a1cf08fca228LL, | 
|  | 26 | 0x0000000071284ff7LL | 
|  | 27 | }; | 
|  | 28 |  | 
|  | 29 | #define	HiPOWERon	2	/* odd poly, negative terms */ | 
|  | 30 | static const unsigned long long oddnegterm[HiPOWERon] = | 
|  | 31 | { | 
|  | 32 | 0x1291a9a184244e80LL, | 
|  | 33 | 0x0000583245819c21LL | 
|  | 34 | }; | 
|  | 35 |  | 
|  | 36 | #define	HiPOWERep	2	/* even poly, positive terms */ | 
|  | 37 | static const unsigned long long evenplterm[HiPOWERep] = | 
|  | 38 | { | 
|  | 39 | 0x0e848884b539e888LL, | 
|  | 40 | 0x00003c7f18b887daLL | 
|  | 41 | }; | 
|  | 42 |  | 
|  | 43 | #define	HiPOWERen	2	/* even poly, negative terms */ | 
|  | 44 | static const unsigned long long evennegterm[HiPOWERen] = | 
|  | 45 | { | 
|  | 46 | 0xf1f0200fd51569ccLL, | 
|  | 47 | 0x003afb46105c4432LL | 
|  | 48 | }; | 
|  | 49 |  | 
|  | 50 | static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL; | 
|  | 51 |  | 
|  | 52 |  | 
|  | 53 | /*--- poly_tan() ------------------------------------------------------------+ | 
|  | 54 | |                                                                           | | 
|  | 55 | +---------------------------------------------------------------------------*/ | 
|  | 56 | void	poly_tan(FPU_REG *st0_ptr) | 
|  | 57 | { | 
|  | 58 | long int    		exponent; | 
|  | 59 | int                   invert; | 
|  | 60 | Xsig                  argSq, argSqSq, accumulatoro, accumulatore, accum, | 
|  | 61 | argSignif, fix_up; | 
|  | 62 | unsigned long         adj; | 
|  | 63 |  | 
|  | 64 | exponent = exponent(st0_ptr); | 
|  | 65 |  | 
|  | 66 | #ifdef PARANOID | 
|  | 67 | if ( signnegative(st0_ptr) )	/* Can't hack a number < 0.0 */ | 
|  | 68 | { arith_invalid(0); return; }  /* Need a positive number */ | 
|  | 69 | #endif /* PARANOID */ | 
|  | 70 |  | 
|  | 71 | /* Split the problem into two domains, smaller and larger than pi/4 */ | 
|  | 72 | if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) ) | 
|  | 73 | { | 
|  | 74 | /* The argument is greater than (approx) pi/4 */ | 
|  | 75 | invert = 1; | 
|  | 76 | accum.lsw = 0; | 
|  | 77 | XSIG_LL(accum) = significand(st0_ptr); | 
|  | 78 |  | 
|  | 79 | if ( exponent == 0 ) | 
|  | 80 | { | 
|  | 81 | /* The argument is >= 1.0 */ | 
|  | 82 | /* Put the binary point at the left. */ | 
|  | 83 | XSIG_LL(accum) <<= 1; | 
|  | 84 | } | 
|  | 85 | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | 86 | XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum); | 
|  | 87 | /* This is a special case which arises due to rounding. */ | 
|  | 88 | if ( XSIG_LL(accum) == 0xffffffffffffffffLL ) | 
|  | 89 | { | 
|  | 90 | FPU_settag0(TAG_Valid); | 
|  | 91 | significand(st0_ptr) = 0x8a51e04daabda360LL; | 
|  | 92 | setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative); | 
|  | 93 | return; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | argSignif.lsw = accum.lsw; | 
|  | 97 | XSIG_LL(argSignif) = XSIG_LL(accum); | 
|  | 98 | exponent = -1 + norm_Xsig(&argSignif); | 
|  | 99 | } | 
|  | 100 | else | 
|  | 101 | { | 
|  | 102 | invert = 0; | 
|  | 103 | argSignif.lsw = 0; | 
|  | 104 | XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr); | 
|  | 105 |  | 
|  | 106 | if ( exponent < -1 ) | 
|  | 107 | { | 
|  | 108 | /* shift the argument right by the required places */ | 
|  | 109 | if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U ) | 
|  | 110 | XSIG_LL(accum) ++;	/* round up */ | 
|  | 111 | } | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw; | 
|  | 115 | mul_Xsig_Xsig(&argSq, &argSq); | 
|  | 116 | XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw; | 
|  | 117 | mul_Xsig_Xsig(&argSqSq, &argSqSq); | 
|  | 118 |  | 
|  | 119 | /* Compute the negative terms for the numerator polynomial */ | 
|  | 120 | accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0; | 
|  | 121 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1); | 
|  | 122 | mul_Xsig_Xsig(&accumulatoro, &argSq); | 
|  | 123 | negate_Xsig(&accumulatoro); | 
|  | 124 | /* Add the positive terms */ | 
|  | 125 | polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1); | 
|  | 126 |  | 
|  | 127 |  | 
|  | 128 | /* Compute the positive terms for the denominator polynomial */ | 
|  | 129 | accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0; | 
|  | 130 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1); | 
|  | 131 | mul_Xsig_Xsig(&accumulatore, &argSq); | 
|  | 132 | negate_Xsig(&accumulatore); | 
|  | 133 | /* Add the negative terms */ | 
|  | 134 | polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1); | 
|  | 135 | /* Multiply by arg^2 */ | 
|  | 136 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 
|  | 137 | mul64_Xsig(&accumulatore, &XSIG_LL(argSignif)); | 
|  | 138 | /* de-normalize and divide by 2 */ | 
|  | 139 | shr_Xsig(&accumulatore, -2*(1+exponent) + 1); | 
|  | 140 | negate_Xsig(&accumulatore);      /* This does 1 - accumulator */ | 
|  | 141 |  | 
|  | 142 | /* Now find the ratio. */ | 
|  | 143 | if ( accumulatore.msw == 0 ) | 
|  | 144 | { | 
|  | 145 | /* accumulatoro must contain 1.0 here, (actually, 0) but it | 
|  | 146 | really doesn't matter what value we use because it will | 
|  | 147 | have negligible effect in later calculations | 
|  | 148 | */ | 
|  | 149 | XSIG_LL(accum) = 0x8000000000000000LL; | 
|  | 150 | accum.lsw = 0; | 
|  | 151 | } | 
|  | 152 | else | 
|  | 153 | { | 
|  | 154 | div_Xsig(&accumulatoro, &accumulatore, &accum); | 
|  | 155 | } | 
|  | 156 |  | 
|  | 157 | /* Multiply by 1/3 * arg^3 */ | 
|  | 158 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | 159 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | 160 | mul64_Xsig(&accum, &XSIG_LL(argSignif)); | 
|  | 161 | mul64_Xsig(&accum, &twothirds); | 
|  | 162 | shr_Xsig(&accum, -2*(exponent+1)); | 
|  | 163 |  | 
|  | 164 | /* tan(arg) = arg + accum */ | 
|  | 165 | add_two_Xsig(&accum, &argSignif, &exponent); | 
|  | 166 |  | 
|  | 167 | if ( invert ) | 
|  | 168 | { | 
|  | 169 | /* We now have the value of tan(pi_2 - arg) where pi_2 is an | 
|  | 170 | approximation for pi/2 | 
|  | 171 | */ | 
|  | 172 | /* The next step is to fix the answer to compensate for the | 
|  | 173 | error due to the approximation used for pi/2 | 
|  | 174 | */ | 
|  | 175 |  | 
|  | 176 | /* This is (approx) delta, the error in our approx for pi/2 | 
|  | 177 | (see above). It has an exponent of -65 | 
|  | 178 | */ | 
|  | 179 | XSIG_LL(fix_up) = 0x898cc51701b839a2LL; | 
|  | 180 | fix_up.lsw = 0; | 
|  | 181 |  | 
|  | 182 | if ( exponent == 0 ) | 
|  | 183 | adj = 0xffffffff;   /* We want approx 1.0 here, but | 
|  | 184 | this is close enough. */ | 
|  | 185 | else if ( exponent > -30 ) | 
|  | 186 | { | 
|  | 187 | adj = accum.msw >> -(exponent+1);      /* tan */ | 
|  | 188 | adj = mul_32_32(adj, adj);             /* tan^2 */ | 
|  | 189 | } | 
|  | 190 | else | 
|  | 191 | adj = 0; | 
|  | 192 | adj = mul_32_32(0x898cc517, adj);          /* delta * tan^2 */ | 
|  | 193 |  | 
|  | 194 | fix_up.msw += adj; | 
|  | 195 | if ( !(fix_up.msw & 0x80000000) )   /* did fix_up overflow ? */ | 
|  | 196 | { | 
|  | 197 | /* Yes, we need to add an msb */ | 
|  | 198 | shr_Xsig(&fix_up, 1); | 
|  | 199 | fix_up.msw |= 0x80000000; | 
|  | 200 | shr_Xsig(&fix_up, 64 + exponent); | 
|  | 201 | } | 
|  | 202 | else | 
|  | 203 | shr_Xsig(&fix_up, 65 + exponent); | 
|  | 204 |  | 
|  | 205 | add_two_Xsig(&accum, &fix_up, &exponent); | 
|  | 206 |  | 
|  | 207 | /* accum now contains tan(pi/2 - arg). | 
|  | 208 | Use tan(arg) = 1.0 / tan(pi/2 - arg) | 
|  | 209 | */ | 
|  | 210 | accumulatoro.lsw = accumulatoro.midw = 0; | 
|  | 211 | accumulatoro.msw = 0x80000000; | 
|  | 212 | div_Xsig(&accumulatoro, &accum, &accum); | 
|  | 213 | exponent = - exponent - 1; | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | /* Transfer the result */ | 
|  | 217 | round_Xsig(&accum); | 
|  | 218 | FPU_settag0(TAG_Valid); | 
|  | 219 | significand(st0_ptr) = XSIG_LL(accum); | 
|  | 220 | setexponent16(st0_ptr, exponent + EXTENDED_Ebias);  /* Result is positive. */ | 
|  | 221 |  | 
|  | 222 | } |