blob: d6624978feb257085734ce716a53e107ddbb5aea [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94/*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102#define DEF_TIMESLICE (100 * HZ / 1000)
103#define ON_RUNQUEUE_WEIGHT 30
104#define CHILD_PENALTY 95
105#define PARENT_PENALTY 100
106#define EXIT_WEIGHT 3
107#define PRIO_BONUS_RATIO 25
108#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109#define INTERACTIVE_DELTA 2
110#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111#define STARVATION_LIMIT (MAX_SLEEP_AVG)
112#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114/*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142#define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146#define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148#ifdef CONFIG_SMP
149#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152#else
153#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155#endif
156
157#define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163
164#define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167#define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700172 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Peter Williams2dd73a42006-06-27 02:54:34 -0700177static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178{
Peter Williams2dd73a42006-06-27 02:54:34 -0700179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183}
Peter Williams2dd73a42006-06-27 02:54:34 -0700184
Eric Dumazet5517d862007-05-08 00:32:57 -0700185#ifdef CONFIG_SMP
186/*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191{
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193}
194
195/*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200{
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203}
204#endif
205
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700206/*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
Ingo Molnar36c8b582006-07-03 00:25:41 -0700215static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700216{
217 return static_prio_timeslice(p->static_prio);
218}
219
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220/*
221 * These are the runqueue data structures:
222 */
223
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224struct prio_array {
225 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227 struct list_head queue[MAX_PRIO];
228};
229
230/*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700237struct rq {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700245 unsigned long raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700247 unsigned long cpu_load[3];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700248 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700249#ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252#endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
Ingo Molnar36c8b582006-07-03 00:25:41 -0700266 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800267 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268 struct mm_struct *prev_mm;
Ingo Molnar70b97a72006-07-03 00:25:42 -0700269 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273#ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700279 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280
Ingo Molnar36c8b582006-07-03 00:25:41 -0700281 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 struct list_head migration_queue;
283#endif
284
285#ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700304 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305};
306
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700307static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700308static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700310static inline int cpu_of(struct rq *rq)
311{
312#ifdef CONFIG_SMP
313 return rq->cpu;
314#else
315 return 0;
316#endif
317}
318
Nick Piggin674311d2005-06-25 14:57:27 -0700319/*
320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700321 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700322 *
323 * The domain tree of any CPU may only be accessed from within
324 * preempt-disabled sections.
325 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700326#define for_each_domain(cpu, __sd) \
327 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328
329#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
330#define this_rq() (&__get_cpu_var(runqueues))
331#define task_rq(p) cpu_rq(task_cpu(p))
332#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
333
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700335# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700336#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700337#ifndef finish_arch_switch
338# define finish_arch_switch(prev) do { } while (0)
339#endif
340
341#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700342static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700343{
344 return rq->curr == p;
345}
346
Ingo Molnar70b97a72006-07-03 00:25:42 -0700347static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700348{
349}
350
Ingo Molnar70b97a72006-07-03 00:25:42 -0700351static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700352{
Ingo Molnarda04c032005-09-13 11:17:59 +0200353#ifdef CONFIG_DEBUG_SPINLOCK
354 /* this is a valid case when another task releases the spinlock */
355 rq->lock.owner = current;
356#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700357 /*
358 * If we are tracking spinlock dependencies then we have to
359 * fix up the runqueue lock - which gets 'carried over' from
360 * prev into current:
361 */
362 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
363
Nick Piggin4866cde2005-06-25 14:57:23 -0700364 spin_unlock_irq(&rq->lock);
365}
366
367#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700368static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700369{
370#ifdef CONFIG_SMP
371 return p->oncpu;
372#else
373 return rq->curr == p;
374#endif
375}
376
Ingo Molnar70b97a72006-07-03 00:25:42 -0700377static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700378{
379#ifdef CONFIG_SMP
380 /*
381 * We can optimise this out completely for !SMP, because the
382 * SMP rebalancing from interrupt is the only thing that cares
383 * here.
384 */
385 next->oncpu = 1;
386#endif
387#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
388 spin_unlock_irq(&rq->lock);
389#else
390 spin_unlock(&rq->lock);
391#endif
392}
393
Ingo Molnar70b97a72006-07-03 00:25:42 -0700394static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700395{
396#ifdef CONFIG_SMP
397 /*
398 * After ->oncpu is cleared, the task can be moved to a different CPU.
399 * We must ensure this doesn't happen until the switch is completely
400 * finished.
401 */
402 smp_wmb();
403 prev->oncpu = 0;
404#endif
405#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
406 local_irq_enable();
407#endif
408}
409#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700412 * __task_rq_lock - lock the runqueue a given task resides on.
413 * Must be called interrupts disabled.
414 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700415static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700416 __acquires(rq->lock)
417{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700418 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700419
420repeat_lock_task:
421 rq = task_rq(p);
422 spin_lock(&rq->lock);
423 if (unlikely(rq != task_rq(p))) {
424 spin_unlock(&rq->lock);
425 goto repeat_lock_task;
426 }
427 return rq;
428}
429
430/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 * task_rq_lock - lock the runqueue a given task resides on and disable
432 * interrupts. Note the ordering: we can safely lookup the task_rq without
433 * explicitly disabling preemption.
434 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700435static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 __acquires(rq->lock)
437{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700438 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439
440repeat_lock_task:
441 local_irq_save(*flags);
442 rq = task_rq(p);
443 spin_lock(&rq->lock);
444 if (unlikely(rq != task_rq(p))) {
445 spin_unlock_irqrestore(&rq->lock, *flags);
446 goto repeat_lock_task;
447 }
448 return rq;
449}
450
Ingo Molnar70b97a72006-07-03 00:25:42 -0700451static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700452 __releases(rq->lock)
453{
454 spin_unlock(&rq->lock);
455}
456
Ingo Molnar70b97a72006-07-03 00:25:42 -0700457static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 __releases(rq->lock)
459{
460 spin_unlock_irqrestore(&rq->lock, *flags);
461}
462
463#ifdef CONFIG_SCHEDSTATS
464/*
465 * bump this up when changing the output format or the meaning of an existing
466 * format, so that tools can adapt (or abort)
467 */
Chen, Kenneth W06066712006-12-10 02:20:35 -0800468#define SCHEDSTAT_VERSION 14
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469
470static int show_schedstat(struct seq_file *seq, void *v)
471{
472 int cpu;
473
474 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
475 seq_printf(seq, "timestamp %lu\n", jiffies);
476 for_each_online_cpu(cpu) {
Ingo Molnar70b97a72006-07-03 00:25:42 -0700477 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#ifdef CONFIG_SMP
479 struct sched_domain *sd;
480 int dcnt = 0;
481#endif
482
483 /* runqueue-specific stats */
484 seq_printf(seq,
485 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
486 cpu, rq->yld_both_empty,
487 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
488 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
489 rq->ttwu_cnt, rq->ttwu_local,
490 rq->rq_sched_info.cpu_time,
491 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
492
493 seq_printf(seq, "\n");
494
495#ifdef CONFIG_SMP
496 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700497 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 for_each_domain(cpu, sd) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +0200499 enum cpu_idle_type itype;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700500 char mask_str[NR_CPUS];
501
502 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
503 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
Ingo Molnard15bcfd2007-07-09 18:51:57 +0200504 for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505 itype++) {
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800506 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
507 "%lu",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 sd->lb_cnt[itype],
509 sd->lb_balanced[itype],
510 sd->lb_failed[itype],
511 sd->lb_imbalance[itype],
512 sd->lb_gained[itype],
513 sd->lb_hot_gained[itype],
514 sd->lb_nobusyq[itype],
Chen, Kenneth W06066712006-12-10 02:20:35 -0800515 sd->lb_nobusyg[itype]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 }
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800517 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
518 " %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700520 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
521 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800522 sd->ttwu_wake_remote, sd->ttwu_move_affine,
523 sd->ttwu_move_balance);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 }
Nick Piggin674311d2005-06-25 14:57:27 -0700525 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526#endif
527 }
528 return 0;
529}
530
531static int schedstat_open(struct inode *inode, struct file *file)
532{
533 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
534 char *buf = kmalloc(size, GFP_KERNEL);
535 struct seq_file *m;
536 int res;
537
538 if (!buf)
539 return -ENOMEM;
540 res = single_open(file, show_schedstat, NULL);
541 if (!res) {
542 m = file->private_data;
543 m->buf = buf;
544 m->size = size;
545 } else
546 kfree(buf);
547 return res;
548}
549
Helge Deller15ad7cd2006-12-06 20:40:36 -0800550const struct file_operations proc_schedstat_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551 .open = schedstat_open,
552 .read = seq_read,
553 .llseek = seq_lseek,
554 .release = single_release,
555};
556
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700557/*
558 * Expects runqueue lock to be held for atomicity of update
559 */
560static inline void
561rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
562{
563 if (rq) {
564 rq->rq_sched_info.run_delay += delta_jiffies;
565 rq->rq_sched_info.pcnt++;
566 }
567}
568
569/*
570 * Expects runqueue lock to be held for atomicity of update
571 */
572static inline void
573rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
574{
575 if (rq)
576 rq->rq_sched_info.cpu_time += delta_jiffies;
577}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
579# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
580#else /* !CONFIG_SCHEDSTATS */
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700581static inline void
582rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
583{}
584static inline void
585rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
586{}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587# define schedstat_inc(rq, field) do { } while (0)
588# define schedstat_add(rq, field, amt) do { } while (0)
589#endif
590
591/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800592 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700594static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595 __acquires(rq->lock)
596{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700597 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700598
599 local_irq_disable();
600 rq = this_rq();
601 spin_lock(&rq->lock);
602
603 return rq;
604}
605
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700606#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607/*
608 * Called when a process is dequeued from the active array and given
609 * the cpu. We should note that with the exception of interactive
610 * tasks, the expired queue will become the active queue after the active
611 * queue is empty, without explicitly dequeuing and requeuing tasks in the
612 * expired queue. (Interactive tasks may be requeued directly to the
613 * active queue, thus delaying tasks in the expired queue from running;
614 * see scheduler_tick()).
615 *
616 * This function is only called from sched_info_arrive(), rather than
617 * dequeue_task(). Even though a task may be queued and dequeued multiple
618 * times as it is shuffled about, we're really interested in knowing how
619 * long it was from the *first* time it was queued to the time that it
620 * finally hit a cpu.
621 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700622static inline void sched_info_dequeued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623{
624 t->sched_info.last_queued = 0;
625}
626
627/*
628 * Called when a task finally hits the cpu. We can now calculate how
629 * long it was waiting to run. We also note when it began so that we
630 * can keep stats on how long its timeslice is.
631 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700632static void sched_info_arrive(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700634 unsigned long now = jiffies, delta_jiffies = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635
636 if (t->sched_info.last_queued)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700637 delta_jiffies = now - t->sched_info.last_queued;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 sched_info_dequeued(t);
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700639 t->sched_info.run_delay += delta_jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 t->sched_info.last_arrival = now;
641 t->sched_info.pcnt++;
642
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700643 rq_sched_info_arrive(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644}
645
646/*
647 * Called when a process is queued into either the active or expired
648 * array. The time is noted and later used to determine how long we
649 * had to wait for us to reach the cpu. Since the expired queue will
650 * become the active queue after active queue is empty, without dequeuing
651 * and requeuing any tasks, we are interested in queuing to either. It
652 * is unusual but not impossible for tasks to be dequeued and immediately
653 * requeued in the same or another array: this can happen in sched_yield(),
654 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
655 * to runqueue.
656 *
657 * This function is only called from enqueue_task(), but also only updates
658 * the timestamp if it is already not set. It's assumed that
659 * sched_info_dequeued() will clear that stamp when appropriate.
660 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700661static inline void sched_info_queued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700663 if (unlikely(sched_info_on()))
664 if (!t->sched_info.last_queued)
665 t->sched_info.last_queued = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666}
667
668/*
669 * Called when a process ceases being the active-running process, either
670 * voluntarily or involuntarily. Now we can calculate how long we ran.
671 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700672static inline void sched_info_depart(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700674 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700676 t->sched_info.cpu_time += delta_jiffies;
677 rq_sched_info_depart(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678}
679
680/*
681 * Called when tasks are switched involuntarily due, typically, to expiring
682 * their time slice. (This may also be called when switching to or from
683 * the idle task.) We are only called when prev != next.
684 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700685static inline void
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700686__sched_info_switch(struct task_struct *prev, struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700688 struct rq *rq = task_rq(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689
690 /*
691 * prev now departs the cpu. It's not interesting to record
692 * stats about how efficient we were at scheduling the idle
693 * process, however.
694 */
695 if (prev != rq->idle)
696 sched_info_depart(prev);
697
698 if (next != rq->idle)
699 sched_info_arrive(next);
700}
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700701static inline void
702sched_info_switch(struct task_struct *prev, struct task_struct *next)
703{
704 if (unlikely(sched_info_on()))
705 __sched_info_switch(prev, next);
706}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707#else
708#define sched_info_queued(t) do { } while (0)
709#define sched_info_switch(t, next) do { } while (0)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700710#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711
712/*
713 * Adding/removing a task to/from a priority array:
714 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700715static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716{
717 array->nr_active--;
718 list_del(&p->run_list);
719 if (list_empty(array->queue + p->prio))
720 __clear_bit(p->prio, array->bitmap);
721}
722
Ingo Molnar70b97a72006-07-03 00:25:42 -0700723static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724{
725 sched_info_queued(p);
726 list_add_tail(&p->run_list, array->queue + p->prio);
727 __set_bit(p->prio, array->bitmap);
728 array->nr_active++;
729 p->array = array;
730}
731
732/*
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
735 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700736static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700737{
738 list_move_tail(&p->run_list, array->queue + p->prio);
739}
740
Ingo Molnar70b97a72006-07-03 00:25:42 -0700741static inline void
742enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743{
744 list_add(&p->run_list, array->queue + p->prio);
745 __set_bit(p->prio, array->bitmap);
746 array->nr_active++;
747 p->array = array;
748}
749
750/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700751 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752 * priority but is modified by bonuses/penalties.
753 *
754 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
755 * into the -5 ... 0 ... +5 bonus/penalty range.
756 *
757 * We use 25% of the full 0...39 priority range so that:
758 *
759 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
760 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
761 *
762 * Both properties are important to certain workloads.
763 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700764
Ingo Molnar36c8b582006-07-03 00:25:41 -0700765static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700766{
767 int bonus, prio;
768
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
770
771 prio = p->static_prio - bonus;
772 if (prio < MAX_RT_PRIO)
773 prio = MAX_RT_PRIO;
774 if (prio > MAX_PRIO-1)
775 prio = MAX_PRIO-1;
776 return prio;
777}
778
779/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788/*
789 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
790 * If static_prio_timeslice() is ever changed to break this assumption then
791 * this code will need modification
792 */
793#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
794#define LOAD_WEIGHT(lp) \
795 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
796#define PRIO_TO_LOAD_WEIGHT(prio) \
797 LOAD_WEIGHT(static_prio_timeslice(prio))
798#define RTPRIO_TO_LOAD_WEIGHT(rp) \
799 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
800
Ingo Molnar36c8b582006-07-03 00:25:41 -0700801static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700802{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700803 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700804#ifdef CONFIG_SMP
805 if (p == task_rq(p)->migration_thread)
806 /*
807 * The migration thread does the actual balancing.
808 * Giving its load any weight will skew balancing
809 * adversely.
810 */
811 p->load_weight = 0;
812 else
813#endif
814 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
815 } else
816 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
817}
818
Ingo Molnar36c8b582006-07-03 00:25:41 -0700819static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700820inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700821{
822 rq->raw_weighted_load += p->load_weight;
823}
824
Ingo Molnar36c8b582006-07-03 00:25:41 -0700825static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700826dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700827{
828 rq->raw_weighted_load -= p->load_weight;
829}
830
Ingo Molnar70b97a72006-07-03 00:25:42 -0700831static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700832{
833 rq->nr_running++;
834 inc_raw_weighted_load(rq, p);
835}
836
Ingo Molnar70b97a72006-07-03 00:25:42 -0700837static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700838{
839 rq->nr_running--;
840 dec_raw_weighted_load(rq, p);
841}
842
843/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700844 * Calculate the expected normal priority: i.e. priority
845 * without taking RT-inheritance into account. Might be
846 * boosted by interactivity modifiers. Changes upon fork,
847 * setprio syscalls, and whenever the interactivity
848 * estimator recalculates.
849 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700850static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700851{
852 int prio;
853
854 if (has_rt_policy(p))
855 prio = MAX_RT_PRIO-1 - p->rt_priority;
856 else
857 prio = __normal_prio(p);
858 return prio;
859}
860
861/*
862 * Calculate the current priority, i.e. the priority
863 * taken into account by the scheduler. This value might
864 * be boosted by RT tasks, or might be boosted by
865 * interactivity modifiers. Will be RT if the task got
866 * RT-boosted. If not then it returns p->normal_prio.
867 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700868static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700869{
870 p->normal_prio = normal_prio(p);
871 /*
872 * If we are RT tasks or we were boosted to RT priority,
873 * keep the priority unchanged. Otherwise, update priority
874 * to the normal priority:
875 */
876 if (!rt_prio(p->prio))
877 return p->normal_prio;
878 return p->prio;
879}
880
881/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 * __activate_task - move a task to the runqueue.
883 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700884static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700886 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800887
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700888 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800889 target = rq->expired;
890 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700891 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892}
893
894/*
895 * __activate_idle_task - move idle task to the _front_ of runqueue.
896 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700897static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898{
899 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700900 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901}
902
Ingo Molnarb29739f2006-06-27 02:54:51 -0700903/*
904 * Recalculate p->normal_prio and p->prio after having slept,
905 * updating the sleep-average too:
906 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700907static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908{
909 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700910 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911
Con Kolivasd425b272006-03-31 02:31:29 -0800912 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800913 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914
915 if (likely(sleep_time > 0)) {
916 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700917 * This ceiling is set to the lowest priority that would allow
918 * a task to be reinserted into the active array on timeslice
919 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 */
Con Kolivas72d28542006-06-27 02:54:30 -0700921 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800922
Con Kolivas72d28542006-06-27 02:54:30 -0700923 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
924 /*
925 * Prevents user tasks from achieving best priority
926 * with one single large enough sleep.
927 */
928 p->sleep_avg = ceiling;
929 /*
930 * Using INTERACTIVE_SLEEP() as a ceiling places a
931 * nice(0) task 1ms sleep away from promotion, and
932 * gives it 700ms to round-robin with no chance of
933 * being demoted. This is more than generous, so
934 * mark this sleep as non-interactive to prevent the
935 * on-runqueue bonus logic from intervening should
936 * this task not receive cpu immediately.
937 */
938 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 } else {
940 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 * Tasks waking from uninterruptible sleep are
942 * limited in their sleep_avg rise as they
943 * are likely to be waiting on I/O
944 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800945 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700946 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700947 sleep_time = 0;
948 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700949 ceiling) {
950 p->sleep_avg = ceiling;
951 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700952 }
953 }
954
955 /*
956 * This code gives a bonus to interactive tasks.
957 *
958 * The boost works by updating the 'average sleep time'
959 * value here, based on ->timestamp. The more time a
960 * task spends sleeping, the higher the average gets -
961 * and the higher the priority boost gets as well.
962 */
963 p->sleep_avg += sleep_time;
964
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965 }
Con Kolivas72d28542006-06-27 02:54:30 -0700966 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
967 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 }
969
Chen Shanga3464a12005-06-25 14:57:31 -0700970 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971}
972
973/*
974 * activate_task - move a task to the runqueue and do priority recalculation
975 *
976 * Update all the scheduling statistics stuff. (sleep average
977 * calculation, priority modifiers, etc.)
978 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700979static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980{
981 unsigned long long now;
982
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800983 if (rt_task(p))
984 goto out;
985
Linus Torvalds1da177e2005-04-16 15:20:36 -0700986 now = sched_clock();
987#ifdef CONFIG_SMP
988 if (!local) {
989 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700990 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800991 now = (now - this_rq->most_recent_timestamp)
992 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 }
994#endif
995
Ingo Molnarece8a682006-12-06 20:37:24 -0800996 /*
997 * Sleep time is in units of nanosecs, so shift by 20 to get a
998 * milliseconds-range estimation of the amount of time that the task
999 * spent sleeping:
1000 */
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1004 (now - p->timestamp) >> 20);
1005 }
1006
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001007 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008
1009 /*
1010 * This checks to make sure it's not an uninterruptible task
1011 * that is now waking up.
1012 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001013 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014 /*
1015 * Tasks which were woken up by interrupts (ie. hw events)
1016 * are most likely of interactive nature. So we give them
1017 * the credit of extending their sleep time to the period
1018 * of time they spend on the runqueue, waiting for execution
1019 * on a CPU, first time around:
1020 */
1021 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -08001022 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 else {
1024 /*
1025 * Normal first-time wakeups get a credit too for
1026 * on-runqueue time, but it will be weighted down:
1027 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001028 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 }
1030 }
1031 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001032out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 __activate_task(p, rq);
1034}
1035
1036/*
1037 * deactivate_task - remove a task from the runqueue.
1038 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001039static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040{
Peter Williams2dd73a42006-06-27 02:54:34 -07001041 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042 dequeue_task(p, p->array);
1043 p->array = NULL;
1044}
1045
1046/*
1047 * resched_task - mark a task 'to be rescheduled now'.
1048 *
1049 * On UP this means the setting of the need_resched flag, on SMP it
1050 * might also involve a cross-CPU call to trigger the scheduler on
1051 * the target CPU.
1052 */
1053#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +02001054
1055#ifndef tsk_is_polling
1056#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1057#endif
1058
Ingo Molnar36c8b582006-07-03 00:25:41 -07001059static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001061 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062
1063 assert_spin_locked(&task_rq(p)->lock);
1064
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001065 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1066 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001068 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1069
1070 cpu = task_cpu(p);
1071 if (cpu == smp_processor_id())
1072 return;
1073
Andi Kleen495ab9c2006-06-26 13:59:11 +02001074 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001075 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +02001076 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001077 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078}
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07001079
1080static void resched_cpu(int cpu)
1081{
1082 struct rq *rq = cpu_rq(cpu);
1083 unsigned long flags;
1084
1085 if (!spin_trylock_irqsave(&rq->lock, flags))
1086 return;
1087 resched_task(cpu_curr(cpu));
1088 spin_unlock_irqrestore(&rq->lock, flags);
1089}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001091static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001093 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094 set_tsk_need_resched(p);
1095}
1096#endif
1097
1098/**
1099 * task_curr - is this task currently executing on a CPU?
1100 * @p: the task in question.
1101 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001102inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001103{
1104 return cpu_curr(task_cpu(p)) == p;
1105}
1106
Peter Williams2dd73a42006-06-27 02:54:34 -07001107/* Used instead of source_load when we know the type == 0 */
1108unsigned long weighted_cpuload(const int cpu)
1109{
1110 return cpu_rq(cpu)->raw_weighted_load;
1111}
1112
Linus Torvalds1da177e2005-04-16 15:20:36 -07001113#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001114
1115void set_task_cpu(struct task_struct *p, unsigned int cpu)
1116{
1117 task_thread_info(p)->cpu = cpu;
1118}
1119
Ingo Molnar70b97a72006-07-03 00:25:42 -07001120struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122
Ingo Molnar36c8b582006-07-03 00:25:41 -07001123 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 int dest_cpu;
1125
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001127};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128
1129/*
1130 * The task's runqueue lock must be held.
1131 * Returns true if you have to wait for migration thread.
1132 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001133static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001134migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001136 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137
1138 /*
1139 * If the task is not on a runqueue (and not running), then
1140 * it is sufficient to simply update the task's cpu field.
1141 */
1142 if (!p->array && !task_running(rq, p)) {
1143 set_task_cpu(p, dest_cpu);
1144 return 0;
1145 }
1146
1147 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148 req->task = p;
1149 req->dest_cpu = dest_cpu;
1150 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001151
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152 return 1;
1153}
1154
1155/*
1156 * wait_task_inactive - wait for a thread to unschedule.
1157 *
1158 * The caller must ensure that the task *will* unschedule sometime soon,
1159 * else this function might spin for a *long* time. This function can't
1160 * be called with interrupts off, or it may introduce deadlock with
1161 * smp_call_function() if an IPI is sent by the same process we are
1162 * waiting to become inactive.
1163 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001164void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165{
1166 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001167 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001168 struct prio_array *array;
1169 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170
1171repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001172 /*
1173 * We do the initial early heuristics without holding
1174 * any task-queue locks at all. We'll only try to get
1175 * the runqueue lock when things look like they will
1176 * work out!
1177 */
1178 rq = task_rq(p);
1179
1180 /*
1181 * If the task is actively running on another CPU
1182 * still, just relax and busy-wait without holding
1183 * any locks.
1184 *
1185 * NOTE! Since we don't hold any locks, it's not
1186 * even sure that "rq" stays as the right runqueue!
1187 * But we don't care, since "task_running()" will
1188 * return false if the runqueue has changed and p
1189 * is actually now running somewhere else!
1190 */
1191 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001192 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001193
1194 /*
1195 * Ok, time to look more closely! We need the rq
1196 * lock now, to be *sure*. If we're wrong, we'll
1197 * just go back and repeat.
1198 */
1199 rq = task_rq_lock(p, &flags);
1200 running = task_running(rq, p);
1201 array = p->array;
1202 task_rq_unlock(rq, &flags);
1203
1204 /*
1205 * Was it really running after all now that we
1206 * checked with the proper locks actually held?
1207 *
1208 * Oops. Go back and try again..
1209 */
1210 if (unlikely(running)) {
1211 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212 goto repeat;
1213 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001214
1215 /*
1216 * It's not enough that it's not actively running,
1217 * it must be off the runqueue _entirely_, and not
1218 * preempted!
1219 *
1220 * So if it wa still runnable (but just not actively
1221 * running right now), it's preempted, and we should
1222 * yield - it could be a while.
1223 */
1224 if (unlikely(array)) {
1225 yield();
1226 goto repeat;
1227 }
1228
1229 /*
1230 * Ahh, all good. It wasn't running, and it wasn't
1231 * runnable, which means that it will never become
1232 * running in the future either. We're all done!
1233 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesnt have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001249void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250{
1251 int cpu;
1252
1253 preempt_disable();
1254 cpu = task_cpu(p);
1255 if ((cpu != smp_processor_id()) && task_curr(p))
1256 smp_send_reschedule(cpu);
1257 preempt_enable();
1258}
1259
1260/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001261 * Return a low guess at the load of a migration-source cpu weighted
1262 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263 *
1264 * We want to under-estimate the load of migration sources, to
1265 * balance conservatively.
1266 */
Con Kolivasb9104722005-11-08 21:38:55 -08001267static inline unsigned long source_load(int cpu, int type)
1268{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001269 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001270
Peter Williams2dd73a42006-06-27 02:54:34 -07001271 if (type == 0)
1272 return rq->raw_weighted_load;
1273
1274 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275}
1276
1277/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001278 * Return a high guess at the load of a migration-target cpu weighted
1279 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 */
Con Kolivasb9104722005-11-08 21:38:55 -08001281static inline unsigned long target_load(int cpu, int type)
1282{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001283 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001284
Peter Williams2dd73a42006-06-27 02:54:34 -07001285 if (type == 0)
1286 return rq->raw_weighted_load;
1287
1288 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1289}
1290
1291/*
1292 * Return the average load per task on the cpu's run queue
1293 */
1294static inline unsigned long cpu_avg_load_per_task(int cpu)
1295{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001296 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001297 unsigned long n = rq->nr_running;
1298
Ingo Molnar48f24c42006-07-03 00:25:40 -07001299 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300}
1301
Nick Piggin147cbb42005-06-25 14:57:19 -07001302/*
1303 * find_idlest_group finds and returns the least busy CPU group within the
1304 * domain.
1305 */
1306static struct sched_group *
1307find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1308{
1309 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1310 unsigned long min_load = ULONG_MAX, this_load = 0;
1311 int load_idx = sd->forkexec_idx;
1312 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1313
1314 do {
1315 unsigned long load, avg_load;
1316 int local_group;
1317 int i;
1318
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001319 /* Skip over this group if it has no CPUs allowed */
1320 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1321 goto nextgroup;
1322
Nick Piggin147cbb42005-06-25 14:57:19 -07001323 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001324
1325 /* Tally up the load of all CPUs in the group */
1326 avg_load = 0;
1327
1328 for_each_cpu_mask(i, group->cpumask) {
1329 /* Bias balancing toward cpus of our domain */
1330 if (local_group)
1331 load = source_load(i, load_idx);
1332 else
1333 load = target_load(i, load_idx);
1334
1335 avg_load += load;
1336 }
1337
1338 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001339 avg_load = sg_div_cpu_power(group,
1340 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001341
1342 if (local_group) {
1343 this_load = avg_load;
1344 this = group;
1345 } else if (avg_load < min_load) {
1346 min_load = avg_load;
1347 idlest = group;
1348 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001349nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001350 group = group->next;
1351 } while (group != sd->groups);
1352
1353 if (!idlest || 100*this_load < imbalance*min_load)
1354 return NULL;
1355 return idlest;
1356}
1357
1358/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001359 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001360 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001361static int
1362find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001363{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001364 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001365 unsigned long load, min_load = ULONG_MAX;
1366 int idlest = -1;
1367 int i;
1368
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001369 /* Traverse only the allowed CPUs */
1370 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1371
1372 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001373 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
1378 }
1379 }
1380
1381 return idlest;
1382}
1383
Nick Piggin476d1392005-06-25 14:57:29 -07001384/*
1385 * sched_balance_self: balance the current task (running on cpu) in domains
1386 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1387 * SD_BALANCE_EXEC.
1388 *
1389 * Balance, ie. select the least loaded group.
1390 *
1391 * Returns the target CPU number, or the same CPU if no balancing is needed.
1392 *
1393 * preempt must be disabled.
1394 */
1395static int sched_balance_self(int cpu, int flag)
1396{
1397 struct task_struct *t = current;
1398 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001399
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001400 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001401 /*
1402 * If power savings logic is enabled for a domain, stop there.
1403 */
1404 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1405 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001406 if (tmp->flags & flag)
1407 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001408 }
Nick Piggin476d1392005-06-25 14:57:29 -07001409
1410 while (sd) {
1411 cpumask_t span;
1412 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001413 int new_cpu, weight;
1414
1415 if (!(sd->flags & flag)) {
1416 sd = sd->child;
1417 continue;
1418 }
Nick Piggin476d1392005-06-25 14:57:29 -07001419
1420 span = sd->span;
1421 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001422 if (!group) {
1423 sd = sd->child;
1424 continue;
1425 }
Nick Piggin476d1392005-06-25 14:57:29 -07001426
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001427 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001428 if (new_cpu == -1 || new_cpu == cpu) {
1429 /* Now try balancing at a lower domain level of cpu */
1430 sd = sd->child;
1431 continue;
1432 }
Nick Piggin476d1392005-06-25 14:57:29 -07001433
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001434 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001435 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001436 sd = NULL;
1437 weight = cpus_weight(span);
1438 for_each_domain(cpu, tmp) {
1439 if (weight <= cpus_weight(tmp->span))
1440 break;
1441 if (tmp->flags & flag)
1442 sd = tmp;
1443 }
1444 /* while loop will break here if sd == NULL */
1445 }
1446
1447 return cpu;
1448}
1449
1450#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451
1452/*
1453 * wake_idle() will wake a task on an idle cpu if task->cpu is
1454 * not idle and an idle cpu is available. The span of cpus to
1455 * search starts with cpus closest then further out as needed,
1456 * so we always favor a closer, idle cpu.
1457 *
1458 * Returns the CPU we should wake onto.
1459 */
1460#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001461static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462{
1463 cpumask_t tmp;
1464 struct sched_domain *sd;
1465 int i;
1466
Siddha, Suresh B49531982007-05-08 00:33:01 -07001467 /*
1468 * If it is idle, then it is the best cpu to run this task.
1469 *
1470 * This cpu is also the best, if it has more than one task already.
1471 * Siblings must be also busy(in most cases) as they didn't already
1472 * pickup the extra load from this cpu and hence we need not check
1473 * sibling runqueue info. This will avoid the checks and cache miss
1474 * penalities associated with that.
1475 */
1476 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 return cpu;
1478
1479 for_each_domain(cpu, sd) {
1480 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001481 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482 for_each_cpu_mask(i, tmp) {
1483 if (idle_cpu(i))
1484 return i;
1485 }
1486 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001487 else
1488 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 }
1490 return cpu;
1491}
1492#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001493static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001494{
1495 return cpu;
1496}
1497#endif
1498
1499/***
1500 * try_to_wake_up - wake up a thread
1501 * @p: the to-be-woken-up thread
1502 * @state: the mask of task states that can be woken
1503 * @sync: do a synchronous wakeup?
1504 *
1505 * Put it on the run-queue if it's not already there. The "current"
1506 * thread is always on the run-queue (except when the actual
1507 * re-schedule is in progress), and as such you're allowed to do
1508 * the simpler "current->state = TASK_RUNNING" to mark yourself
1509 * runnable without the overhead of this.
1510 *
1511 * returns failure only if the task is already active.
1512 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001513static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514{
1515 int cpu, this_cpu, success = 0;
1516 unsigned long flags;
1517 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001518 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001520 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001521 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 int new_cpu;
1523#endif
1524
1525 rq = task_rq_lock(p, &flags);
1526 old_state = p->state;
1527 if (!(old_state & state))
1528 goto out;
1529
1530 if (p->array)
1531 goto out_running;
1532
1533 cpu = task_cpu(p);
1534 this_cpu = smp_processor_id();
1535
1536#ifdef CONFIG_SMP
1537 if (unlikely(task_running(rq, p)))
1538 goto out_activate;
1539
Nick Piggin78979862005-06-25 14:57:13 -07001540 new_cpu = cpu;
1541
Linus Torvalds1da177e2005-04-16 15:20:36 -07001542 schedstat_inc(rq, ttwu_cnt);
1543 if (cpu == this_cpu) {
1544 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001545 goto out_set_cpu;
1546 }
1547
1548 for_each_domain(this_cpu, sd) {
1549 if (cpu_isset(cpu, sd->span)) {
1550 schedstat_inc(sd, ttwu_wake_remote);
1551 this_sd = sd;
1552 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553 }
1554 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555
Nick Piggin78979862005-06-25 14:57:13 -07001556 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 goto out_set_cpu;
1558
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559 /*
Nick Piggin78979862005-06-25 14:57:13 -07001560 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561 */
Nick Piggin78979862005-06-25 14:57:13 -07001562 if (this_sd) {
1563 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565
Nick Piggina3f21bc2005-06-25 14:57:15 -07001566 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1567
Nick Piggin78979862005-06-25 14:57:13 -07001568 load = source_load(cpu, idx);
1569 this_load = target_load(this_cpu, idx);
1570
Nick Piggin78979862005-06-25 14:57:13 -07001571 new_cpu = this_cpu; /* Wake to this CPU if we can */
1572
Nick Piggina3f21bc2005-06-25 14:57:15 -07001573 if (this_sd->flags & SD_WAKE_AFFINE) {
1574 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001575 unsigned long tl_per_task;
1576
1577 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001578
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001580 * If sync wakeup then subtract the (maximum possible)
1581 * effect of the currently running task from the load
1582 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001584 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001585 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001586
1587 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001588 tl + target_load(cpu, idx) <= tl_per_task) ||
1589 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001590 /*
1591 * This domain has SD_WAKE_AFFINE and
1592 * p is cache cold in this domain, and
1593 * there is no bad imbalance.
1594 */
1595 schedstat_inc(this_sd, ttwu_move_affine);
1596 goto out_set_cpu;
1597 }
1598 }
1599
1600 /*
1601 * Start passive balancing when half the imbalance_pct
1602 * limit is reached.
1603 */
1604 if (this_sd->flags & SD_WAKE_BALANCE) {
1605 if (imbalance*this_load <= 100*load) {
1606 schedstat_inc(this_sd, ttwu_move_balance);
1607 goto out_set_cpu;
1608 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001609 }
1610 }
1611
1612 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1613out_set_cpu:
1614 new_cpu = wake_idle(new_cpu, p);
1615 if (new_cpu != cpu) {
1616 set_task_cpu(p, new_cpu);
1617 task_rq_unlock(rq, &flags);
1618 /* might preempt at this point */
1619 rq = task_rq_lock(p, &flags);
1620 old_state = p->state;
1621 if (!(old_state & state))
1622 goto out;
1623 if (p->array)
1624 goto out_running;
1625
1626 this_cpu = smp_processor_id();
1627 cpu = task_cpu(p);
1628 }
1629
1630out_activate:
1631#endif /* CONFIG_SMP */
1632 if (old_state == TASK_UNINTERRUPTIBLE) {
1633 rq->nr_uninterruptible--;
1634 /*
1635 * Tasks on involuntary sleep don't earn
1636 * sleep_avg beyond just interactive state.
1637 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001638 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001639 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001640
1641 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001642 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001643 * woken up with their sleep average not weighted in an
1644 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001645 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001646 if (old_state & TASK_NONINTERACTIVE)
1647 p->sleep_type = SLEEP_NONINTERACTIVE;
1648
1649
1650 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001651 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 * Sync wakeups (i.e. those types of wakeups where the waker
1653 * has indicated that it will leave the CPU in short order)
1654 * don't trigger a preemption, if the woken up task will run on
1655 * this cpu. (in this case the 'I will reschedule' promise of
1656 * the waker guarantees that the freshly woken up task is going
1657 * to be considered on this CPU.)
1658 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 if (!sync || cpu != this_cpu) {
1660 if (TASK_PREEMPTS_CURR(p, rq))
1661 resched_task(rq->curr);
1662 }
1663 success = 1;
1664
1665out_running:
1666 p->state = TASK_RUNNING;
1667out:
1668 task_rq_unlock(rq, &flags);
1669
1670 return success;
1671}
1672
Ingo Molnar36c8b582006-07-03 00:25:41 -07001673int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001674{
1675 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1676 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1677}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678EXPORT_SYMBOL(wake_up_process);
1679
Ingo Molnar36c8b582006-07-03 00:25:41 -07001680int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681{
1682 return try_to_wake_up(p, state, 0);
1683}
1684
Peter Williamsbc947632006-12-19 12:48:50 +10001685static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686/*
1687 * Perform scheduler related setup for a newly forked process p.
1688 * p is forked by current.
1689 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001690void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691{
Nick Piggin476d1392005-06-25 14:57:29 -07001692 int cpu = get_cpu();
1693
1694#ifdef CONFIG_SMP
1695 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1696#endif
1697 set_task_cpu(p, cpu);
1698
Linus Torvalds1da177e2005-04-16 15:20:36 -07001699 /*
1700 * We mark the process as running here, but have not actually
1701 * inserted it onto the runqueue yet. This guarantees that
1702 * nobody will actually run it, and a signal or other external
1703 * event cannot wake it up and insert it on the runqueue either.
1704 */
1705 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001706
1707 /*
1708 * Make sure we do not leak PI boosting priority to the child:
1709 */
1710 p->prio = current->normal_prio;
1711
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712 INIT_LIST_HEAD(&p->run_list);
1713 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001714#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1715 if (unlikely(sched_info_on()))
1716 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001717#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001718#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001719 p->oncpu = 0;
1720#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001722 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001723 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724#endif
1725 /*
1726 * Share the timeslice between parent and child, thus the
1727 * total amount of pending timeslices in the system doesn't change,
1728 * resulting in more scheduling fairness.
1729 */
1730 local_irq_disable();
1731 p->time_slice = (current->time_slice + 1) >> 1;
1732 /*
1733 * The remainder of the first timeslice might be recovered by
1734 * the parent if the child exits early enough.
1735 */
1736 p->first_time_slice = 1;
1737 current->time_slice >>= 1;
1738 p->timestamp = sched_clock();
1739 if (unlikely(!current->time_slice)) {
1740 /*
1741 * This case is rare, it happens when the parent has only
1742 * a single jiffy left from its timeslice. Taking the
1743 * runqueue lock is not a problem.
1744 */
1745 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001746 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001747 }
1748 local_irq_enable();
1749 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750}
1751
1752/*
1753 * wake_up_new_task - wake up a newly created task for the first time.
1754 *
1755 * This function will do some initial scheduler statistics housekeeping
1756 * that must be done for every newly created context, then puts the task
1757 * on the runqueue and wakes it.
1758 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001759void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001761 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 unsigned long flags;
1763 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764
1765 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001767 this_cpu = smp_processor_id();
1768 cpu = task_cpu(p);
1769
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770 /*
1771 * We decrease the sleep average of forking parents
1772 * and children as well, to keep max-interactive tasks
1773 * from forking tasks that are max-interactive. The parent
1774 * (current) is done further down, under its lock.
1775 */
1776 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1777 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1778
1779 p->prio = effective_prio(p);
1780
1781 if (likely(cpu == this_cpu)) {
1782 if (!(clone_flags & CLONE_VM)) {
1783 /*
1784 * The VM isn't cloned, so we're in a good position to
1785 * do child-runs-first in anticipation of an exec. This
1786 * usually avoids a lot of COW overhead.
1787 */
1788 if (unlikely(!current->array))
1789 __activate_task(p, rq);
1790 else {
1791 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001792 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 list_add_tail(&p->run_list, &current->run_list);
1794 p->array = current->array;
1795 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001796 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 }
1798 set_need_resched();
1799 } else
1800 /* Run child last */
1801 __activate_task(p, rq);
1802 /*
1803 * We skip the following code due to cpu == this_cpu
1804 *
1805 * task_rq_unlock(rq, &flags);
1806 * this_rq = task_rq_lock(current, &flags);
1807 */
1808 this_rq = rq;
1809 } else {
1810 this_rq = cpu_rq(this_cpu);
1811
1812 /*
1813 * Not the local CPU - must adjust timestamp. This should
1814 * get optimised away in the !CONFIG_SMP case.
1815 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001816 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1817 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001818 __activate_task(p, rq);
1819 if (TASK_PREEMPTS_CURR(p, rq))
1820 resched_task(rq->curr);
1821
1822 /*
1823 * Parent and child are on different CPUs, now get the
1824 * parent runqueue to update the parent's ->sleep_avg:
1825 */
1826 task_rq_unlock(rq, &flags);
1827 this_rq = task_rq_lock(current, &flags);
1828 }
1829 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1830 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1831 task_rq_unlock(this_rq, &flags);
1832}
1833
1834/*
1835 * Potentially available exiting-child timeslices are
1836 * retrieved here - this way the parent does not get
1837 * penalized for creating too many threads.
1838 *
1839 * (this cannot be used to 'generate' timeslices
1840 * artificially, because any timeslice recovered here
1841 * was given away by the parent in the first place.)
1842 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001843void fastcall sched_exit(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844{
1845 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001846 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847
1848 /*
1849 * If the child was a (relative-) CPU hog then decrease
1850 * the sleep_avg of the parent as well.
1851 */
1852 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001853 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001854 p->parent->time_slice += p->time_slice;
1855 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1856 p->parent->time_slice = task_timeslice(p);
1857 }
1858 if (p->sleep_avg < p->parent->sleep_avg)
1859 p->parent->sleep_avg = p->parent->sleep_avg /
1860 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1861 (EXIT_WEIGHT + 1);
1862 task_rq_unlock(rq, &flags);
1863}
1864
1865/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001866 * prepare_task_switch - prepare to switch tasks
1867 * @rq: the runqueue preparing to switch
1868 * @next: the task we are going to switch to.
1869 *
1870 * This is called with the rq lock held and interrupts off. It must
1871 * be paired with a subsequent finish_task_switch after the context
1872 * switch.
1873 *
1874 * prepare_task_switch sets up locking and calls architecture specific
1875 * hooks.
1876 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001877static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001878{
1879 prepare_lock_switch(rq, next);
1880 prepare_arch_switch(next);
1881}
1882
1883/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001885 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 * @prev: the thread we just switched away from.
1887 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001888 * finish_task_switch must be called after the context switch, paired
1889 * with a prepare_task_switch call before the context switch.
1890 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1891 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001892 *
1893 * Note that we may have delayed dropping an mm in context_switch(). If
1894 * so, we finish that here outside of the runqueue lock. (Doing it
1895 * with the lock held can cause deadlocks; see schedule() for
1896 * details.)
1897 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001898static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899 __releases(rq->lock)
1900{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001902 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903
1904 rq->prev_mm = NULL;
1905
1906 /*
1907 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001908 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001909 * schedule one last time. The schedule call will never return, and
1910 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001911 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 * still held, otherwise prev could be scheduled on another cpu, die
1913 * there before we look at prev->state, and then the reference would
1914 * be dropped twice.
1915 * Manfred Spraul <manfred@colorfullife.com>
1916 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001917 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001918 finish_arch_switch(prev);
1919 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920 if (mm)
1921 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001922 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001923 /*
1924 * Remove function-return probe instances associated with this
1925 * task and put them back on the free list.
1926 */
1927 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001929 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001930}
1931
1932/**
1933 * schedule_tail - first thing a freshly forked thread must call.
1934 * @prev: the thread we just switched away from.
1935 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001936asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 __releases(rq->lock)
1938{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001939 struct rq *rq = this_rq();
1940
Nick Piggin4866cde2005-06-25 14:57:23 -07001941 finish_task_switch(rq, prev);
1942#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1943 /* In this case, finish_task_switch does not reenable preemption */
1944 preempt_enable();
1945#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 if (current->set_child_tid)
1947 put_user(current->pid, current->set_child_tid);
1948}
1949
1950/*
1951 * context_switch - switch to the new MM and the new
1952 * thread's register state.
1953 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001954static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001955context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001956 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957{
1958 struct mm_struct *mm = next->mm;
1959 struct mm_struct *oldmm = prev->active_mm;
1960
Zachary Amsden9226d122007-02-13 13:26:21 +01001961 /*
1962 * For paravirt, this is coupled with an exit in switch_to to
1963 * combine the page table reload and the switch backend into
1964 * one hypercall.
1965 */
1966 arch_enter_lazy_cpu_mode();
1967
Nick Pigginbeed33a2006-10-11 01:21:52 -07001968 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969 next->active_mm = oldmm;
1970 atomic_inc(&oldmm->mm_count);
1971 enter_lazy_tlb(oldmm, next);
1972 } else
1973 switch_mm(oldmm, mm, next);
1974
Nick Pigginbeed33a2006-10-11 01:21:52 -07001975 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 prev->active_mm = NULL;
1977 WARN_ON(rq->prev_mm);
1978 rq->prev_mm = oldmm;
1979 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001980 /*
1981 * Since the runqueue lock will be released by the next
1982 * task (which is an invalid locking op but in the case
1983 * of the scheduler it's an obvious special-case), so we
1984 * do an early lockdep release here:
1985 */
1986#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001987 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001988#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989
1990 /* Here we just switch the register state and the stack. */
1991 switch_to(prev, next, prev);
1992
1993 return prev;
1994}
1995
1996/*
1997 * nr_running, nr_uninterruptible and nr_context_switches:
1998 *
1999 * externally visible scheduler statistics: current number of runnable
2000 * threads, current number of uninterruptible-sleeping threads, total
2001 * number of context switches performed since bootup.
2002 */
2003unsigned long nr_running(void)
2004{
2005 unsigned long i, sum = 0;
2006
2007 for_each_online_cpu(i)
2008 sum += cpu_rq(i)->nr_running;
2009
2010 return sum;
2011}
2012
2013unsigned long nr_uninterruptible(void)
2014{
2015 unsigned long i, sum = 0;
2016
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08002017 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 sum += cpu_rq(i)->nr_uninterruptible;
2019
2020 /*
2021 * Since we read the counters lockless, it might be slightly
2022 * inaccurate. Do not allow it to go below zero though:
2023 */
2024 if (unlikely((long)sum < 0))
2025 sum = 0;
2026
2027 return sum;
2028}
2029
2030unsigned long long nr_context_switches(void)
2031{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07002032 int i;
2033 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08002035 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 sum += cpu_rq(i)->nr_switches;
2037
2038 return sum;
2039}
2040
2041unsigned long nr_iowait(void)
2042{
2043 unsigned long i, sum = 0;
2044
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08002045 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002046 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2047
2048 return sum;
2049}
2050
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08002051unsigned long nr_active(void)
2052{
2053 unsigned long i, running = 0, uninterruptible = 0;
2054
2055 for_each_online_cpu(i) {
2056 running += cpu_rq(i)->nr_running;
2057 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2058 }
2059
2060 if (unlikely((long)uninterruptible < 0))
2061 uninterruptible = 0;
2062
2063 return running + uninterruptible;
2064}
2065
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066#ifdef CONFIG_SMP
2067
2068/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07002069 * Is this task likely cache-hot:
2070 */
2071static inline int
2072task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2073{
2074 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2075}
2076
2077/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078 * double_rq_lock - safely lock two runqueues
2079 *
2080 * Note this does not disable interrupts like task_rq_lock,
2081 * you need to do so manually before calling.
2082 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002083static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084 __acquires(rq1->lock)
2085 __acquires(rq2->lock)
2086{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002087 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 if (rq1 == rq2) {
2089 spin_lock(&rq1->lock);
2090 __acquire(rq2->lock); /* Fake it out ;) */
2091 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002092 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 spin_lock(&rq1->lock);
2094 spin_lock(&rq2->lock);
2095 } else {
2096 spin_lock(&rq2->lock);
2097 spin_lock(&rq1->lock);
2098 }
2099 }
2100}
2101
2102/*
2103 * double_rq_unlock - safely unlock two runqueues
2104 *
2105 * Note this does not restore interrupts like task_rq_unlock,
2106 * you need to do so manually after calling.
2107 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002108static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 __releases(rq1->lock)
2110 __releases(rq2->lock)
2111{
2112 spin_unlock(&rq1->lock);
2113 if (rq1 != rq2)
2114 spin_unlock(&rq2->lock);
2115 else
2116 __release(rq2->lock);
2117}
2118
2119/*
2120 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2121 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002122static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123 __releases(this_rq->lock)
2124 __acquires(busiest->lock)
2125 __acquires(this_rq->lock)
2126{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002127 if (unlikely(!irqs_disabled())) {
2128 /* printk() doesn't work good under rq->lock */
2129 spin_unlock(&this_rq->lock);
2130 BUG_ON(1);
2131 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002133 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002134 spin_unlock(&this_rq->lock);
2135 spin_lock(&busiest->lock);
2136 spin_lock(&this_rq->lock);
2137 } else
2138 spin_lock(&busiest->lock);
2139 }
2140}
2141
2142/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 * If dest_cpu is allowed for this process, migrate the task to it.
2144 * This is accomplished by forcing the cpu_allowed mask to only
2145 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2146 * the cpu_allowed mask is restored.
2147 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002148static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002150 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002152 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153
2154 rq = task_rq_lock(p, &flags);
2155 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2156 || unlikely(cpu_is_offline(dest_cpu)))
2157 goto out;
2158
2159 /* force the process onto the specified CPU */
2160 if (migrate_task(p, dest_cpu, &req)) {
2161 /* Need to wait for migration thread (might exit: take ref). */
2162 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 get_task_struct(mt);
2165 task_rq_unlock(rq, &flags);
2166 wake_up_process(mt);
2167 put_task_struct(mt);
2168 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002169
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170 return;
2171 }
2172out:
2173 task_rq_unlock(rq, &flags);
2174}
2175
2176/*
Nick Piggin476d1392005-06-25 14:57:29 -07002177 * sched_exec - execve() is a valuable balancing opportunity, because at
2178 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 */
2180void sched_exec(void)
2181{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002183 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002185 if (new_cpu != this_cpu)
2186 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187}
2188
2189/*
2190 * pull_task - move a task from a remote runqueue to the local runqueue.
2191 * Both runqueues must be locked.
2192 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002193static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2194 struct task_struct *p, struct rq *this_rq,
2195 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196{
2197 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002198 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002199 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002200 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002202 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2203 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002204 /*
2205 * Note that idle threads have a prio of MAX_PRIO, for this test
2206 * to be always true for them.
2207 */
2208 if (TASK_PREEMPTS_CURR(p, this_rq))
2209 resched_task(this_rq->curr);
2210}
2211
2212/*
2213 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2214 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002215static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002216int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002217 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002218 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219{
2220 /*
2221 * We do not migrate tasks that are:
2222 * 1) running (obviously), or
2223 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2224 * 3) are cache-hot on their current CPU.
2225 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002226 if (!cpu_isset(this_cpu, p->cpus_allowed))
2227 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002228 *all_pinned = 0;
2229
2230 if (task_running(rq, p))
2231 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232
2233 /*
2234 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002235 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236 * 2) too many balance attempts have failed.
2237 */
2238
Mike Galbraithb18ec802006-12-10 02:20:31 -08002239 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2240#ifdef CONFIG_SCHEDSTATS
2241 if (task_hot(p, rq->most_recent_timestamp, sd))
2242 schedstat_inc(sd, lb_hot_gained[idle]);
2243#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002245 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246
Mike Galbraithb18ec802006-12-10 02:20:31 -08002247 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002248 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249 return 1;
2250}
2251
Peter Williams615052d2006-06-27 02:54:37 -07002252#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002253
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002255 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2256 * load from busiest to this_rq, as part of a balancing operation within
2257 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258 *
2259 * Called with both runqueues locked.
2260 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002261static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002262 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002263 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002264 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002266 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2267 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002268 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002270 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002271 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272
Peter Williams2dd73a42006-06-27 02:54:34 -07002273 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 goto out;
2275
Peter Williams2dd73a42006-06-27 02:54:34 -07002276 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002277 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002278 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002279 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002280 /*
2281 * Enable handling of the case where there is more than one task
2282 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002283 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002284 * and therefore it's safe to override the skip (based on load) of
2285 * any task we find with that prio.
2286 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002287 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002288
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289 /*
2290 * We first consider expired tasks. Those will likely not be
2291 * executed in the near future, and they are most likely to
2292 * be cache-cold, thus switching CPUs has the least effect
2293 * on them.
2294 */
2295 if (busiest->expired->nr_active) {
2296 array = busiest->expired;
2297 dst_array = this_rq->expired;
2298 } else {
2299 array = busiest->active;
2300 dst_array = this_rq->active;
2301 }
2302
2303new_array:
2304 /* Start searching at priority 0: */
2305 idx = 0;
2306skip_bitmap:
2307 if (!idx)
2308 idx = sched_find_first_bit(array->bitmap);
2309 else
2310 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2311 if (idx >= MAX_PRIO) {
2312 if (array == busiest->expired && busiest->active->nr_active) {
2313 array = busiest->active;
2314 dst_array = this_rq->active;
2315 goto new_array;
2316 }
2317 goto out;
2318 }
2319
2320 head = array->queue + idx;
2321 curr = head->prev;
2322skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002323 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324
2325 curr = curr->prev;
2326
Peter Williams50ddd962006-06-27 02:54:36 -07002327 /*
2328 * To help distribute high priority tasks accross CPUs we don't
2329 * skip a task if it will be the highest priority task (i.e. smallest
2330 * prio value) on its new queue regardless of its load weight
2331 */
Peter Williams615052d2006-06-27 02:54:37 -07002332 skip_for_load = tmp->load_weight > rem_load_move;
2333 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002334 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002335 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002336 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002337
2338 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339 if (curr != head)
2340 goto skip_queue;
2341 idx++;
2342 goto skip_bitmap;
2343 }
2344
Linus Torvalds1da177e2005-04-16 15:20:36 -07002345 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2346 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002347 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348
Peter Williams2dd73a42006-06-27 02:54:34 -07002349 /*
2350 * We only want to steal up to the prescribed number of tasks
2351 * and the prescribed amount of weighted load.
2352 */
2353 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002354 if (idx < this_best_prio)
2355 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 if (curr != head)
2357 goto skip_queue;
2358 idx++;
2359 goto skip_bitmap;
2360 }
2361out:
2362 /*
2363 * Right now, this is the only place pull_task() is called,
2364 * so we can safely collect pull_task() stats here rather than
2365 * inside pull_task().
2366 */
2367 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002368
2369 if (all_pinned)
2370 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371 return pulled;
2372}
2373
2374/*
2375 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002376 * domain. It calculates and returns the amount of weighted load which
2377 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 */
2379static struct sched_group *
2380find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002381 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002382 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002383{
2384 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2385 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002386 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002387 unsigned long busiest_load_per_task, busiest_nr_running;
2388 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002389 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002390#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2391 int power_savings_balance = 1;
2392 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2393 unsigned long min_nr_running = ULONG_MAX;
2394 struct sched_group *group_min = NULL, *group_leader = NULL;
2395#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396
2397 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002398 busiest_load_per_task = busiest_nr_running = 0;
2399 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002400 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002401 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002402 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002403 load_idx = sd->newidle_idx;
2404 else
2405 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406
2407 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002408 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002409 int local_group;
2410 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002411 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002412 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002413
2414 local_group = cpu_isset(this_cpu, group->cpumask);
2415
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002416 if (local_group)
2417 balance_cpu = first_cpu(group->cpumask);
2418
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002420 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421
2422 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002423 struct rq *rq;
2424
2425 if (!cpu_isset(i, *cpus))
2426 continue;
2427
2428 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002429
Nick Piggin5969fe02005-09-10 00:26:19 -07002430 if (*sd_idle && !idle_cpu(i))
2431 *sd_idle = 0;
2432
Linus Torvalds1da177e2005-04-16 15:20:36 -07002433 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002434 if (local_group) {
2435 if (idle_cpu(i) && !first_idle_cpu) {
2436 first_idle_cpu = 1;
2437 balance_cpu = i;
2438 }
2439
Nick Piggina2000572006-02-10 01:51:02 -08002440 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002441 } else
Nick Piggina2000572006-02-10 01:51:02 -08002442 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443
2444 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002445 sum_nr_running += rq->nr_running;
2446 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447 }
2448
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002449 /*
2450 * First idle cpu or the first cpu(busiest) in this sched group
2451 * is eligible for doing load balancing at this and above
2452 * domains.
2453 */
2454 if (local_group && balance_cpu != this_cpu && balance) {
2455 *balance = 0;
2456 goto ret;
2457 }
2458
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002460 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461
2462 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002463 avg_load = sg_div_cpu_power(group,
2464 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465
Eric Dumazet5517d862007-05-08 00:32:57 -07002466 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002467
Linus Torvalds1da177e2005-04-16 15:20:36 -07002468 if (local_group) {
2469 this_load = avg_load;
2470 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002471 this_nr_running = sum_nr_running;
2472 this_load_per_task = sum_weighted_load;
2473 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002474 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 max_load = avg_load;
2476 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002477 busiest_nr_running = sum_nr_running;
2478 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002480
2481#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2482 /*
2483 * Busy processors will not participate in power savings
2484 * balance.
2485 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002486 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002487 goto group_next;
2488
2489 /*
2490 * If the local group is idle or completely loaded
2491 * no need to do power savings balance at this domain
2492 */
2493 if (local_group && (this_nr_running >= group_capacity ||
2494 !this_nr_running))
2495 power_savings_balance = 0;
2496
2497 /*
2498 * If a group is already running at full capacity or idle,
2499 * don't include that group in power savings calculations
2500 */
2501 if (!power_savings_balance || sum_nr_running >= group_capacity
2502 || !sum_nr_running)
2503 goto group_next;
2504
2505 /*
2506 * Calculate the group which has the least non-idle load.
2507 * This is the group from where we need to pick up the load
2508 * for saving power
2509 */
2510 if ((sum_nr_running < min_nr_running) ||
2511 (sum_nr_running == min_nr_running &&
2512 first_cpu(group->cpumask) <
2513 first_cpu(group_min->cpumask))) {
2514 group_min = group;
2515 min_nr_running = sum_nr_running;
2516 min_load_per_task = sum_weighted_load /
2517 sum_nr_running;
2518 }
2519
2520 /*
2521 * Calculate the group which is almost near its
2522 * capacity but still has some space to pick up some load
2523 * from other group and save more power
2524 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002525 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002526 if (sum_nr_running > leader_nr_running ||
2527 (sum_nr_running == leader_nr_running &&
2528 first_cpu(group->cpumask) >
2529 first_cpu(group_leader->cpumask))) {
2530 group_leader = group;
2531 leader_nr_running = sum_nr_running;
2532 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002533 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002534group_next:
2535#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 group = group->next;
2537 } while (group != sd->groups);
2538
Peter Williams2dd73a42006-06-27 02:54:34 -07002539 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 goto out_balanced;
2541
2542 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2543
2544 if (this_load >= avg_load ||
2545 100*max_load <= sd->imbalance_pct*this_load)
2546 goto out_balanced;
2547
Peter Williams2dd73a42006-06-27 02:54:34 -07002548 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002549 /*
2550 * We're trying to get all the cpus to the average_load, so we don't
2551 * want to push ourselves above the average load, nor do we wish to
2552 * reduce the max loaded cpu below the average load, as either of these
2553 * actions would just result in more rebalancing later, and ping-pong
2554 * tasks around. Thus we look for the minimum possible imbalance.
2555 * Negative imbalances (*we* are more loaded than anyone else) will
2556 * be counted as no imbalance for these purposes -- we can't fix that
2557 * by pulling tasks to us. Be careful of negative numbers as they'll
2558 * appear as very large values with unsigned longs.
2559 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002560 if (max_load <= busiest_load_per_task)
2561 goto out_balanced;
2562
2563 /*
2564 * In the presence of smp nice balancing, certain scenarios can have
2565 * max load less than avg load(as we skip the groups at or below
2566 * its cpu_power, while calculating max_load..)
2567 */
2568 if (max_load < avg_load) {
2569 *imbalance = 0;
2570 goto small_imbalance;
2571 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002572
2573 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002574 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002575
Linus Torvalds1da177e2005-04-16 15:20:36 -07002576 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002577 *imbalance = min(max_pull * busiest->__cpu_power,
2578 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 / SCHED_LOAD_SCALE;
2580
Peter Williams2dd73a42006-06-27 02:54:34 -07002581 /*
2582 * if *imbalance is less than the average load per runnable task
2583 * there is no gaurantee that any tasks will be moved so we'll have
2584 * a think about bumping its value to force at least one task to be
2585 * moved
2586 */
2587 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002588 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002589 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002590
Peter Williams2dd73a42006-06-27 02:54:34 -07002591small_imbalance:
2592 pwr_move = pwr_now = 0;
2593 imbn = 2;
2594 if (this_nr_running) {
2595 this_load_per_task /= this_nr_running;
2596 if (busiest_load_per_task > this_load_per_task)
2597 imbn = 1;
2598 } else
2599 this_load_per_task = SCHED_LOAD_SCALE;
2600
2601 if (max_load - this_load >= busiest_load_per_task * imbn) {
2602 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 return busiest;
2604 }
2605
2606 /*
2607 * OK, we don't have enough imbalance to justify moving tasks,
2608 * however we may be able to increase total CPU power used by
2609 * moving them.
2610 */
2611
Eric Dumazet5517d862007-05-08 00:32:57 -07002612 pwr_now += busiest->__cpu_power *
2613 min(busiest_load_per_task, max_load);
2614 pwr_now += this->__cpu_power *
2615 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616 pwr_now /= SCHED_LOAD_SCALE;
2617
2618 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002619 tmp = sg_div_cpu_power(busiest,
2620 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002622 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002623 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624
2625 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002626 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002627 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002628 tmp = sg_div_cpu_power(this,
2629 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002630 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002631 tmp = sg_div_cpu_power(this,
2632 busiest_load_per_task * SCHED_LOAD_SCALE);
2633 pwr_move += this->__cpu_power *
2634 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635 pwr_move /= SCHED_LOAD_SCALE;
2636
2637 /* Move if we gain throughput */
2638 if (pwr_move <= pwr_now)
2639 goto out_balanced;
2640
Peter Williams2dd73a42006-06-27 02:54:34 -07002641 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642 }
2643
Linus Torvalds1da177e2005-04-16 15:20:36 -07002644 return busiest;
2645
2646out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002647#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002648 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002649 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002651 if (this == group_leader && group_leader != group_min) {
2652 *imbalance = min_load_per_task;
2653 return group_min;
2654 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002655#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002656ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 *imbalance = 0;
2658 return NULL;
2659}
2660
2661/*
2662 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2663 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002664static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002665find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002666 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002668 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002669 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 int i;
2671
2672 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002673
2674 if (!cpu_isset(i, *cpus))
2675 continue;
2676
Ingo Molnar48f24c42006-07-03 00:25:40 -07002677 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678
Ingo Molnar48f24c42006-07-03 00:25:40 -07002679 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002680 continue;
2681
Ingo Molnar48f24c42006-07-03 00:25:40 -07002682 if (rq->raw_weighted_load > max_load) {
2683 max_load = rq->raw_weighted_load;
2684 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 }
2686 }
2687
2688 return busiest;
2689}
2690
2691/*
Nick Piggin77391d72005-06-25 14:57:30 -07002692 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2693 * so long as it is large enough.
2694 */
2695#define MAX_PINNED_INTERVAL 512
2696
Ingo Molnar48f24c42006-07-03 00:25:40 -07002697static inline unsigned long minus_1_or_zero(unsigned long n)
2698{
2699 return n > 0 ? n - 1 : 0;
2700}
2701
Nick Piggin77391d72005-06-25 14:57:30 -07002702/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2704 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002706static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002707 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002708 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002710 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002713 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002714 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002715 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002716
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002717 /*
2718 * When power savings policy is enabled for the parent domain, idle
2719 * sibling can pick up load irrespective of busy siblings. In this case,
2720 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002721 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002722 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002723 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002724 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002725 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727 schedstat_inc(sd, lb_cnt[idle]);
2728
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002729redo:
2730 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002731 &cpus, balance);
2732
Chen, Kenneth W06066712006-12-10 02:20:35 -08002733 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002734 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002735
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 if (!group) {
2737 schedstat_inc(sd, lb_nobusyg[idle]);
2738 goto out_balanced;
2739 }
2740
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002741 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 if (!busiest) {
2743 schedstat_inc(sd, lb_nobusyq[idle]);
2744 goto out_balanced;
2745 }
2746
Nick Piggindb935db2005-06-25 14:57:11 -07002747 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748
2749 schedstat_add(sd, lb_imbalance[idle], imbalance);
2750
2751 nr_moved = 0;
2752 if (busiest->nr_running > 1) {
2753 /*
2754 * Attempt to move tasks. If find_busiest_group has found
2755 * an imbalance but busiest->nr_running <= 1, the group is
2756 * still unbalanced. nr_moved simply stays zero, so it is
2757 * correctly treated as an imbalance.
2758 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002759 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002760 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002762 minus_1_or_zero(busiest->nr_running),
2763 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002764 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002765 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002766
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002767 /*
2768 * some other cpu did the load balance for us.
2769 */
2770 if (nr_moved && this_cpu != smp_processor_id())
2771 resched_cpu(this_cpu);
2772
Nick Piggin81026792005-06-25 14:57:07 -07002773 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002774 if (unlikely(all_pinned)) {
2775 cpu_clear(cpu_of(busiest), cpus);
2776 if (!cpus_empty(cpus))
2777 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002778 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002779 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 }
Nick Piggin81026792005-06-25 14:57:07 -07002781
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782 if (!nr_moved) {
2783 schedstat_inc(sd, lb_failed[idle]);
2784 sd->nr_balance_failed++;
2785
2786 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002788 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002789
2790 /* don't kick the migration_thread, if the curr
2791 * task on busiest cpu can't be moved to this_cpu
2792 */
2793 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002794 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002795 all_pinned = 1;
2796 goto out_one_pinned;
2797 }
2798
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799 if (!busiest->active_balance) {
2800 busiest->active_balance = 1;
2801 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002802 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002804 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002805 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 wake_up_process(busiest->migration_thread);
2807
2808 /*
2809 * We've kicked active balancing, reset the failure
2810 * counter.
2811 */
Nick Piggin39507452005-06-25 14:57:09 -07002812 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813 }
Nick Piggin81026792005-06-25 14:57:07 -07002814 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 sd->nr_balance_failed = 0;
2816
Nick Piggin81026792005-06-25 14:57:07 -07002817 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 /* We were unbalanced, so reset the balancing interval */
2819 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002820 } else {
2821 /*
2822 * If we've begun active balancing, start to back off. This
2823 * case may not be covered by the all_pinned logic if there
2824 * is only 1 task on the busy runqueue (because we don't call
2825 * move_tasks).
2826 */
2827 if (sd->balance_interval < sd->max_interval)
2828 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829 }
2830
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002831 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002832 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002833 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002834 return nr_moved;
2835
2836out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002837 schedstat_inc(sd, lb_balanced[idle]);
2838
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002839 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002840
2841out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002842 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002843 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2844 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 sd->balance_interval *= 2;
2846
Ingo Molnar48f24c42006-07-03 00:25:40 -07002847 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002849 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850 return 0;
2851}
2852
2853/*
2854 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2855 * tasks if there is an imbalance.
2856 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002857 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002858 * this_rq is locked.
2859 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002860static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002861load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862{
2863 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002864 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 unsigned long imbalance;
2866 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002867 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002868 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002869
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002870 /*
2871 * When power savings policy is enabled for the parent domain, idle
2872 * sibling can pick up load irrespective of busy siblings. In this case,
2873 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002874 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002875 */
2876 if (sd->flags & SD_SHARE_CPUPOWER &&
2877 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002878 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002880 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002881redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002882 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002883 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002884 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002885 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002886 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002887 }
2888
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002889 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002890 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002891 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002892 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002893 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002894 }
2895
Nick Piggindb935db2005-06-25 14:57:11 -07002896 BUG_ON(busiest == this_rq);
2897
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002898 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002899
2900 nr_moved = 0;
2901 if (busiest->nr_running > 1) {
2902 /* Attempt to move tasks */
2903 double_lock_balance(this_rq, busiest);
2904 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002905 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002906 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002907 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002908
2909 if (!nr_moved) {
2910 cpu_clear(cpu_of(busiest), cpus);
2911 if (!cpus_empty(cpus))
2912 goto redo;
2913 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002914 }
2915
Nick Piggin5969fe02005-09-10 00:26:19 -07002916 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002917 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002918 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2919 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002920 return -1;
2921 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002922 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002925
2926out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002927 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002928 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002929 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002930 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002931 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002932
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002933 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934}
2935
2936/*
2937 * idle_balance is called by schedule() if this_cpu is about to become
2938 * idle. Attempts to pull tasks from other CPUs.
2939 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002940static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941{
2942 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002943 int pulled_task = 0;
2944 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945
2946 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002947 unsigned long interval;
2948
2949 if (!(sd->flags & SD_LOAD_BALANCE))
2950 continue;
2951
2952 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002953 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002954 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002955 this_rq, sd);
2956
2957 interval = msecs_to_jiffies(sd->balance_interval);
2958 if (time_after(next_balance, sd->last_balance + interval))
2959 next_balance = sd->last_balance + interval;
2960 if (pulled_task)
2961 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002962 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002963 if (!pulled_task)
2964 /*
2965 * We are going idle. next_balance may be set based on
2966 * a busy processor. So reset next_balance.
2967 */
2968 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002969}
2970
2971/*
2972 * active_load_balance is run by migration threads. It pushes running tasks
2973 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2974 * running on each physical CPU where possible, and avoids physical /
2975 * logical imbalances.
2976 *
2977 * Called with busiest_rq locked.
2978 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002979static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002980{
Nick Piggin39507452005-06-25 14:57:09 -07002981 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002982 struct sched_domain *sd;
2983 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002984
Ingo Molnar48f24c42006-07-03 00:25:40 -07002985 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002986 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002987 return;
2988
2989 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002990
2991 /*
Nick Piggin39507452005-06-25 14:57:09 -07002992 * This condition is "impossible", if it occurs
2993 * we need to fix it. Originally reported by
2994 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002995 */
Nick Piggin39507452005-06-25 14:57:09 -07002996 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002997
Nick Piggin39507452005-06-25 14:57:09 -07002998 /* move a task from busiest_rq to target_rq */
2999 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003000
Nick Piggin39507452005-06-25 14:57:09 -07003001 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003002 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07003003 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003004 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07003005 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003006 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003007
Ingo Molnar48f24c42006-07-03 00:25:40 -07003008 if (likely(sd)) {
3009 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010
Ingo Molnar48f24c42006-07-03 00:25:40 -07003011 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003012 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07003013 NULL))
3014 schedstat_inc(sd, alb_pushed);
3015 else
3016 schedstat_inc(sd, alb_failed);
3017 }
Nick Piggin39507452005-06-25 14:57:09 -07003018 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019}
3020
Christoph Lameter7835b982006-12-10 02:20:22 -08003021static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003022{
Christoph Lameter7835b982006-12-10 02:20:22 -08003023 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08003024 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003025
Peter Williams2dd73a42006-06-27 02:54:34 -07003026 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003027
3028 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08003029 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003030 unsigned long old_load, new_load;
3031
Nick Pigginff916912007-02-12 00:53:51 -08003032 /* scale is effectively 1 << i now, and >> i divides by scale */
3033
Nick Piggin78979862005-06-25 14:57:13 -07003034 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07003035 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07003036 /*
3037 * Round up the averaging division if load is increasing. This
3038 * prevents us from getting stuck on 9 if the load is 10, for
3039 * example.
3040 */
3041 if (new_load > old_load)
3042 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08003043 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07003044 }
Christoph Lameter7835b982006-12-10 02:20:22 -08003045}
3046
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003047#ifdef CONFIG_NO_HZ
3048static struct {
3049 atomic_t load_balancer;
3050 cpumask_t cpu_mask;
3051} nohz ____cacheline_aligned = {
3052 .load_balancer = ATOMIC_INIT(-1),
3053 .cpu_mask = CPU_MASK_NONE,
3054};
3055
Christoph Lameter7835b982006-12-10 02:20:22 -08003056/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003057 * This routine will try to nominate the ilb (idle load balancing)
3058 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3059 * load balancing on behalf of all those cpus. If all the cpus in the system
3060 * go into this tickless mode, then there will be no ilb owner (as there is
3061 * no need for one) and all the cpus will sleep till the next wakeup event
3062 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08003063 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003064 * For the ilb owner, tick is not stopped. And this tick will be used
3065 * for idle load balancing. ilb owner will still be part of
3066 * nohz.cpu_mask..
3067 *
3068 * While stopping the tick, this cpu will become the ilb owner if there
3069 * is no other owner. And will be the owner till that cpu becomes busy
3070 * or if all cpus in the system stop their ticks at which point
3071 * there is no need for ilb owner.
3072 *
3073 * When the ilb owner becomes busy, it nominates another owner, during the
3074 * next busy scheduler_tick()
3075 */
3076int select_nohz_load_balancer(int stop_tick)
3077{
3078 int cpu = smp_processor_id();
3079
3080 if (stop_tick) {
3081 cpu_set(cpu, nohz.cpu_mask);
3082 cpu_rq(cpu)->in_nohz_recently = 1;
3083
3084 /*
3085 * If we are going offline and still the leader, give up!
3086 */
3087 if (cpu_is_offline(cpu) &&
3088 atomic_read(&nohz.load_balancer) == cpu) {
3089 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3090 BUG();
3091 return 0;
3092 }
3093
3094 /* time for ilb owner also to sleep */
3095 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3096 if (atomic_read(&nohz.load_balancer) == cpu)
3097 atomic_set(&nohz.load_balancer, -1);
3098 return 0;
3099 }
3100
3101 if (atomic_read(&nohz.load_balancer) == -1) {
3102 /* make me the ilb owner */
3103 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3104 return 1;
3105 } else if (atomic_read(&nohz.load_balancer) == cpu)
3106 return 1;
3107 } else {
3108 if (!cpu_isset(cpu, nohz.cpu_mask))
3109 return 0;
3110
3111 cpu_clear(cpu, nohz.cpu_mask);
3112
3113 if (atomic_read(&nohz.load_balancer) == cpu)
3114 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3115 BUG();
3116 }
3117 return 0;
3118}
3119#endif
3120
3121static DEFINE_SPINLOCK(balancing);
3122
3123/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003124 * It checks each scheduling domain to see if it is due to be balanced,
3125 * and initiates a balancing operation if so.
3126 *
3127 * Balancing parameters are set up in arch_init_sched_domains.
3128 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003129static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003130{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003131 int balance = 1;
3132 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003133 unsigned long interval;
3134 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003135 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003136 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003137
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003138 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003139 if (!(sd->flags & SD_LOAD_BALANCE))
3140 continue;
3141
3142 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003143 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144 interval *= sd->busy_factor;
3145
3146 /* scale ms to jiffies */
3147 interval = msecs_to_jiffies(interval);
3148 if (unlikely(!interval))
3149 interval = 1;
3150
Christoph Lameter08c183f2006-12-10 02:20:29 -08003151 if (sd->flags & SD_SERIALIZE) {
3152 if (!spin_trylock(&balancing))
3153 goto out;
3154 }
3155
Christoph Lameterc9819f42006-12-10 02:20:25 -08003156 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003157 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003158 /*
3159 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003160 * longer idle, or one of our SMT siblings is
3161 * not idle.
3162 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003163 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003165 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003167 if (sd->flags & SD_SERIALIZE)
3168 spin_unlock(&balancing);
3169out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003170 if (time_after(next_balance, sd->last_balance + interval))
3171 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003172
3173 /*
3174 * Stop the load balance at this level. There is another
3175 * CPU in our sched group which is doing load balancing more
3176 * actively.
3177 */
3178 if (!balance)
3179 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003180 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003181 rq->next_balance = next_balance;
3182}
3183
3184/*
3185 * run_rebalance_domains is triggered when needed from the scheduler tick.
3186 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3187 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3188 */
3189static void run_rebalance_domains(struct softirq_action *h)
3190{
3191 int local_cpu = smp_processor_id();
3192 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003193 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003194
3195 rebalance_domains(local_cpu, idle);
3196
3197#ifdef CONFIG_NO_HZ
3198 /*
3199 * If this cpu is the owner for idle load balancing, then do the
3200 * balancing on behalf of the other idle cpus whose ticks are
3201 * stopped.
3202 */
3203 if (local_rq->idle_at_tick &&
3204 atomic_read(&nohz.load_balancer) == local_cpu) {
3205 cpumask_t cpus = nohz.cpu_mask;
3206 struct rq *rq;
3207 int balance_cpu;
3208
3209 cpu_clear(local_cpu, cpus);
3210 for_each_cpu_mask(balance_cpu, cpus) {
3211 /*
3212 * If this cpu gets work to do, stop the load balancing
3213 * work being done for other cpus. Next load
3214 * balancing owner will pick it up.
3215 */
3216 if (need_resched())
3217 break;
3218
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003219 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003220
3221 rq = cpu_rq(balance_cpu);
3222 if (time_after(local_rq->next_balance, rq->next_balance))
3223 local_rq->next_balance = rq->next_balance;
3224 }
3225 }
3226#endif
3227}
3228
3229/*
3230 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3231 *
3232 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3233 * idle load balancing owner or decide to stop the periodic load balancing,
3234 * if the whole system is idle.
3235 */
3236static inline void trigger_load_balance(int cpu)
3237{
3238 struct rq *rq = cpu_rq(cpu);
3239#ifdef CONFIG_NO_HZ
3240 /*
3241 * If we were in the nohz mode recently and busy at the current
3242 * scheduler tick, then check if we need to nominate new idle
3243 * load balancer.
3244 */
3245 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3246 rq->in_nohz_recently = 0;
3247
3248 if (atomic_read(&nohz.load_balancer) == cpu) {
3249 cpu_clear(cpu, nohz.cpu_mask);
3250 atomic_set(&nohz.load_balancer, -1);
3251 }
3252
3253 if (atomic_read(&nohz.load_balancer) == -1) {
3254 /*
3255 * simple selection for now: Nominate the
3256 * first cpu in the nohz list to be the next
3257 * ilb owner.
3258 *
3259 * TBD: Traverse the sched domains and nominate
3260 * the nearest cpu in the nohz.cpu_mask.
3261 */
3262 int ilb = first_cpu(nohz.cpu_mask);
3263
3264 if (ilb != NR_CPUS)
3265 resched_cpu(ilb);
3266 }
3267 }
3268
3269 /*
3270 * If this cpu is idle and doing idle load balancing for all the
3271 * cpus with ticks stopped, is it time for that to stop?
3272 */
3273 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3274 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3275 resched_cpu(cpu);
3276 return;
3277 }
3278
3279 /*
3280 * If this cpu is idle and the idle load balancing is done by
3281 * someone else, then no need raise the SCHED_SOFTIRQ
3282 */
3283 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3284 cpu_isset(cpu, nohz.cpu_mask))
3285 return;
3286#endif
3287 if (time_after_eq(jiffies, rq->next_balance))
3288 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003289}
3290#else
3291/*
3292 * on UP we do not need to balance between CPUs:
3293 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003294static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295{
3296}
3297#endif
3298
Linus Torvalds1da177e2005-04-16 15:20:36 -07003299DEFINE_PER_CPU(struct kernel_stat, kstat);
3300
3301EXPORT_PER_CPU_SYMBOL(kstat);
3302
3303/*
3304 * This is called on clock ticks and on context switches.
3305 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3306 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07003307static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07003308update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003309{
Mike Galbraithb18ec802006-12-10 02:20:31 -08003310 p->sched_time += now - p->last_ran;
3311 p->last_ran = rq->most_recent_timestamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312}
3313
3314/*
3315 * Return current->sched_time plus any more ns on the sched_clock
3316 * that have not yet been banked.
3317 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003318unsigned long long current_sched_time(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003319{
3320 unsigned long long ns;
3321 unsigned long flags;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003322
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323 local_irq_save(flags);
Mike Galbraithb18ec802006-12-10 02:20:31 -08003324 ns = p->sched_time + sched_clock() - p->last_ran;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003325 local_irq_restore(flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003326
Linus Torvalds1da177e2005-04-16 15:20:36 -07003327 return ns;
3328}
3329
3330/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003331 * We place interactive tasks back into the active array, if possible.
3332 *
3333 * To guarantee that this does not starve expired tasks we ignore the
3334 * interactivity of a task if the first expired task had to wait more
3335 * than a 'reasonable' amount of time. This deadline timeout is
3336 * load-dependent, as the frequency of array switched decreases with
3337 * increasing number of running tasks. We also ignore the interactivity
3338 * if a better static_prio task has expired:
3339 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003340static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003341{
3342 if (rq->curr->static_prio > rq->best_expired_prio)
3343 return 1;
3344 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3345 return 0;
3346 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3347 return 1;
3348 return 0;
3349}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003350
3351/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003352 * Account user cpu time to a process.
3353 * @p: the process that the cpu time gets accounted to
3354 * @hardirq_offset: the offset to subtract from hardirq_count()
3355 * @cputime: the cpu time spent in user space since the last update
3356 */
3357void account_user_time(struct task_struct *p, cputime_t cputime)
3358{
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 cputime64_t tmp;
3361
3362 p->utime = cputime_add(p->utime, cputime);
3363
3364 /* Add user time to cpustat. */
3365 tmp = cputime_to_cputime64(cputime);
3366 if (TASK_NICE(p) > 0)
3367 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3368 else
3369 cpustat->user = cputime64_add(cpustat->user, tmp);
3370}
3371
3372/*
3373 * Account system cpu time to a process.
3374 * @p: the process that the cpu time gets accounted to
3375 * @hardirq_offset: the offset to subtract from hardirq_count()
3376 * @cputime: the cpu time spent in kernel space since the last update
3377 */
3378void account_system_time(struct task_struct *p, int hardirq_offset,
3379 cputime_t cputime)
3380{
3381 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003382 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383 cputime64_t tmp;
3384
3385 p->stime = cputime_add(p->stime, cputime);
3386
3387 /* Add system time to cpustat. */
3388 tmp = cputime_to_cputime64(cputime);
3389 if (hardirq_count() - hardirq_offset)
3390 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3391 else if (softirq_count())
3392 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3393 else if (p != rq->idle)
3394 cpustat->system = cputime64_add(cpustat->system, tmp);
3395 else if (atomic_read(&rq->nr_iowait) > 0)
3396 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3397 else
3398 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3399 /* Account for system time used */
3400 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401}
3402
3403/*
3404 * Account for involuntary wait time.
3405 * @p: the process from which the cpu time has been stolen
3406 * @steal: the cpu time spent in involuntary wait
3407 */
3408void account_steal_time(struct task_struct *p, cputime_t steal)
3409{
3410 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3411 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003412 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003413
3414 if (p == rq->idle) {
3415 p->stime = cputime_add(p->stime, steal);
3416 if (atomic_read(&rq->nr_iowait) > 0)
3417 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3418 else
3419 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3420 } else
3421 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3422}
3423
Christoph Lameter7835b982006-12-10 02:20:22 -08003424static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003425{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003426 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003427 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003428 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003429 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 }
3431 spin_lock(&rq->lock);
3432 /*
3433 * The task was running during this tick - update the
3434 * time slice counter. Note: we do not update a thread's
3435 * priority until it either goes to sleep or uses up its
3436 * timeslice. This makes it possible for interactive tasks
3437 * to use up their timeslices at their highest priority levels.
3438 */
3439 if (rt_task(p)) {
3440 /*
3441 * RR tasks need a special form of timeslice management.
3442 * FIFO tasks have no timeslices.
3443 */
3444 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3445 p->time_slice = task_timeslice(p);
3446 p->first_time_slice = 0;
3447 set_tsk_need_resched(p);
3448
3449 /* put it at the end of the queue: */
3450 requeue_task(p, rq->active);
3451 }
3452 goto out_unlock;
3453 }
3454 if (!--p->time_slice) {
3455 dequeue_task(p, rq->active);
3456 set_tsk_need_resched(p);
3457 p->prio = effective_prio(p);
3458 p->time_slice = task_timeslice(p);
3459 p->first_time_slice = 0;
3460
3461 if (!rq->expired_timestamp)
3462 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003463 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464 enqueue_task(p, rq->expired);
3465 if (p->static_prio < rq->best_expired_prio)
3466 rq->best_expired_prio = p->static_prio;
3467 } else
3468 enqueue_task(p, rq->active);
3469 } else {
3470 /*
3471 * Prevent a too long timeslice allowing a task to monopolize
3472 * the CPU. We do this by splitting up the timeslice into
3473 * smaller pieces.
3474 *
3475 * Note: this does not mean the task's timeslices expire or
3476 * get lost in any way, they just might be preempted by
3477 * another task of equal priority. (one with higher
3478 * priority would have preempted this task already.) We
3479 * requeue this task to the end of the list on this priority
3480 * level, which is in essence a round-robin of tasks with
3481 * equal priority.
3482 *
3483 * This only applies to tasks in the interactive
3484 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3485 */
3486 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3487 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3488 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3489 (p->array == rq->active)) {
3490
3491 requeue_task(p, rq->active);
3492 set_tsk_need_resched(p);
3493 }
3494 }
3495out_unlock:
3496 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003497}
3498
3499/*
3500 * This function gets called by the timer code, with HZ frequency.
3501 * We call it with interrupts disabled.
3502 *
3503 * It also gets called by the fork code, when changing the parent's
3504 * timeslices.
3505 */
3506void scheduler_tick(void)
3507{
3508 unsigned long long now = sched_clock();
3509 struct task_struct *p = current;
3510 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003511 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003512 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003513
3514 update_cpu_clock(p, rq, now);
3515
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003516 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003517 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003518#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003519 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003520 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003521 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003522#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523}
3524
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3526
3527void fastcall add_preempt_count(int val)
3528{
3529 /*
3530 * Underflow?
3531 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003532 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3533 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534 preempt_count() += val;
3535 /*
3536 * Spinlock count overflowing soon?
3537 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003538 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3539 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540}
3541EXPORT_SYMBOL(add_preempt_count);
3542
3543void fastcall sub_preempt_count(int val)
3544{
3545 /*
3546 * Underflow?
3547 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003548 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3549 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 /*
3551 * Is the spinlock portion underflowing?
3552 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003553 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3554 !(preempt_count() & PREEMPT_MASK)))
3555 return;
3556
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 preempt_count() -= val;
3558}
3559EXPORT_SYMBOL(sub_preempt_count);
3560
3561#endif
3562
Con Kolivas3dee3862006-03-31 02:31:23 -08003563static inline int interactive_sleep(enum sleep_type sleep_type)
3564{
3565 return (sleep_type == SLEEP_INTERACTIVE ||
3566 sleep_type == SLEEP_INTERRUPTED);
3567}
3568
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569/*
3570 * schedule() is the main scheduler function.
3571 */
3572asmlinkage void __sched schedule(void)
3573{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003574 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003575 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576 struct list_head *queue;
3577 unsigned long long now;
3578 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003579 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003580 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003581 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582
3583 /*
3584 * Test if we are atomic. Since do_exit() needs to call into
3585 * schedule() atomically, we ignore that path for now.
3586 * Otherwise, whine if we are scheduling when we should not be.
3587 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003588 if (unlikely(in_atomic() && !current->exit_state)) {
3589 printk(KERN_ERR "BUG: scheduling while atomic: "
3590 "%s/0x%08x/%d\n",
3591 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003592 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003593 if (irqs_disabled())
3594 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003595 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596 }
3597 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3598
3599need_resched:
3600 preempt_disable();
3601 prev = current;
3602 release_kernel_lock(prev);
3603need_resched_nonpreemptible:
3604 rq = this_rq();
3605
3606 /*
3607 * The idle thread is not allowed to schedule!
3608 * Remove this check after it has been exercised a bit.
3609 */
3610 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3611 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3612 dump_stack();
3613 }
3614
3615 schedstat_inc(rq, sched_cnt);
3616 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003617 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003618 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003619 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620 run_time = 0;
3621 } else
3622 run_time = NS_MAX_SLEEP_AVG;
3623
3624 /*
3625 * Tasks charged proportionately less run_time at high sleep_avg to
3626 * delay them losing their interactive status
3627 */
3628 run_time /= (CURRENT_BONUS(prev) ? : 1);
3629
3630 spin_lock_irq(&rq->lock);
3631
Linus Torvalds1da177e2005-04-16 15:20:36 -07003632 switch_count = &prev->nivcsw;
3633 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3634 switch_count = &prev->nvcsw;
3635 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3636 unlikely(signal_pending(prev))))
3637 prev->state = TASK_RUNNING;
3638 else {
3639 if (prev->state == TASK_UNINTERRUPTIBLE)
3640 rq->nr_uninterruptible++;
3641 deactivate_task(prev, rq);
3642 }
3643 }
3644
3645 cpu = smp_processor_id();
3646 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647 idle_balance(cpu, rq);
3648 if (!rq->nr_running) {
3649 next = rq->idle;
3650 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003651 goto switch_tasks;
3652 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003653 }
3654
3655 array = rq->active;
3656 if (unlikely(!array->nr_active)) {
3657 /*
3658 * Switch the active and expired arrays.
3659 */
3660 schedstat_inc(rq, sched_switch);
3661 rq->active = rq->expired;
3662 rq->expired = array;
3663 array = rq->active;
3664 rq->expired_timestamp = 0;
3665 rq->best_expired_prio = MAX_PRIO;
3666 }
3667
3668 idx = sched_find_first_bit(array->bitmap);
3669 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003670 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671
Con Kolivas3dee3862006-03-31 02:31:23 -08003672 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003674 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675 delta = 0;
3676
Con Kolivas3dee3862006-03-31 02:31:23 -08003677 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003678 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3679
3680 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003681 new_prio = recalc_task_prio(next, next->timestamp + delta);
3682
3683 if (unlikely(next->prio != new_prio)) {
3684 dequeue_task(next, array);
3685 next->prio = new_prio;
3686 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003687 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003689 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690switch_tasks:
3691 if (next == rq->idle)
3692 schedstat_inc(rq, sched_goidle);
3693 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003694 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695 clear_tsk_need_resched(prev);
3696 rcu_qsctr_inc(task_cpu(prev));
3697
3698 update_cpu_clock(prev, rq, now);
3699
3700 prev->sleep_avg -= run_time;
3701 if ((long)prev->sleep_avg <= 0)
3702 prev->sleep_avg = 0;
3703 prev->timestamp = prev->last_ran = now;
3704
3705 sched_info_switch(prev, next);
3706 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003707 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708 rq->nr_switches++;
3709 rq->curr = next;
3710 ++*switch_count;
3711
Nick Piggin4866cde2005-06-25 14:57:23 -07003712 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003713 prev = context_switch(rq, prev, next);
3714 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003715 /*
3716 * this_rq must be evaluated again because prev may have moved
3717 * CPUs since it called schedule(), thus the 'rq' on its stack
3718 * frame will be invalid.
3719 */
3720 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721 } else
3722 spin_unlock_irq(&rq->lock);
3723
3724 prev = current;
3725 if (unlikely(reacquire_kernel_lock(prev) < 0))
3726 goto need_resched_nonpreemptible;
3727 preempt_enable_no_resched();
3728 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3729 goto need_resched;
3730}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003731EXPORT_SYMBOL(schedule);
3732
3733#ifdef CONFIG_PREEMPT
3734/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003735 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736 * off of preempt_enable. Kernel preemptions off return from interrupt
3737 * occur there and call schedule directly.
3738 */
3739asmlinkage void __sched preempt_schedule(void)
3740{
3741 struct thread_info *ti = current_thread_info();
3742#ifdef CONFIG_PREEMPT_BKL
3743 struct task_struct *task = current;
3744 int saved_lock_depth;
3745#endif
3746 /*
3747 * If there is a non-zero preempt_count or interrupts are disabled,
3748 * we do not want to preempt the current task. Just return..
3749 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003750 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003751 return;
3752
3753need_resched:
3754 add_preempt_count(PREEMPT_ACTIVE);
3755 /*
3756 * We keep the big kernel semaphore locked, but we
3757 * clear ->lock_depth so that schedule() doesnt
3758 * auto-release the semaphore:
3759 */
3760#ifdef CONFIG_PREEMPT_BKL
3761 saved_lock_depth = task->lock_depth;
3762 task->lock_depth = -1;
3763#endif
3764 schedule();
3765#ifdef CONFIG_PREEMPT_BKL
3766 task->lock_depth = saved_lock_depth;
3767#endif
3768 sub_preempt_count(PREEMPT_ACTIVE);
3769
3770 /* we could miss a preemption opportunity between schedule and now */
3771 barrier();
3772 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3773 goto need_resched;
3774}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003775EXPORT_SYMBOL(preempt_schedule);
3776
3777/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003778 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003779 * off of irq context.
3780 * Note, that this is called and return with irqs disabled. This will
3781 * protect us against recursive calling from irq.
3782 */
3783asmlinkage void __sched preempt_schedule_irq(void)
3784{
3785 struct thread_info *ti = current_thread_info();
3786#ifdef CONFIG_PREEMPT_BKL
3787 struct task_struct *task = current;
3788 int saved_lock_depth;
3789#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003790 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003791 BUG_ON(ti->preempt_count || !irqs_disabled());
3792
3793need_resched:
3794 add_preempt_count(PREEMPT_ACTIVE);
3795 /*
3796 * We keep the big kernel semaphore locked, but we
3797 * clear ->lock_depth so that schedule() doesnt
3798 * auto-release the semaphore:
3799 */
3800#ifdef CONFIG_PREEMPT_BKL
3801 saved_lock_depth = task->lock_depth;
3802 task->lock_depth = -1;
3803#endif
3804 local_irq_enable();
3805 schedule();
3806 local_irq_disable();
3807#ifdef CONFIG_PREEMPT_BKL
3808 task->lock_depth = saved_lock_depth;
3809#endif
3810 sub_preempt_count(PREEMPT_ACTIVE);
3811
3812 /* we could miss a preemption opportunity between schedule and now */
3813 barrier();
3814 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3815 goto need_resched;
3816}
3817
3818#endif /* CONFIG_PREEMPT */
3819
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003820int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3821 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003822{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003823 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003824}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825EXPORT_SYMBOL(default_wake_function);
3826
3827/*
3828 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3829 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3830 * number) then we wake all the non-exclusive tasks and one exclusive task.
3831 *
3832 * There are circumstances in which we can try to wake a task which has already
3833 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3834 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3835 */
3836static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3837 int nr_exclusive, int sync, void *key)
3838{
3839 struct list_head *tmp, *next;
3840
3841 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003842 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3843 unsigned flags = curr->flags;
3844
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003846 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003847 break;
3848 }
3849}
3850
3851/**
3852 * __wake_up - wake up threads blocked on a waitqueue.
3853 * @q: the waitqueue
3854 * @mode: which threads
3855 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003856 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857 */
3858void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003859 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&q->lock, flags);
3864 __wake_up_common(q, mode, nr_exclusive, 0, key);
3865 spin_unlock_irqrestore(&q->lock, flags);
3866}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003867EXPORT_SYMBOL(__wake_up);
3868
3869/*
3870 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3871 */
3872void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3873{
3874 __wake_up_common(q, mode, 1, 0, NULL);
3875}
3876
3877/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003878 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003879 * @q: the waitqueue
3880 * @mode: which threads
3881 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3882 *
3883 * The sync wakeup differs that the waker knows that it will schedule
3884 * away soon, so while the target thread will be woken up, it will not
3885 * be migrated to another CPU - ie. the two threads are 'synchronized'
3886 * with each other. This can prevent needless bouncing between CPUs.
3887 *
3888 * On UP it can prevent extra preemption.
3889 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003890void fastcall
3891__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003892{
3893 unsigned long flags;
3894 int sync = 1;
3895
3896 if (unlikely(!q))
3897 return;
3898
3899 if (unlikely(!nr_exclusive))
3900 sync = 0;
3901
3902 spin_lock_irqsave(&q->lock, flags);
3903 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3904 spin_unlock_irqrestore(&q->lock, flags);
3905}
3906EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3907
3908void fastcall complete(struct completion *x)
3909{
3910 unsigned long flags;
3911
3912 spin_lock_irqsave(&x->wait.lock, flags);
3913 x->done++;
3914 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3915 1, 0, NULL);
3916 spin_unlock_irqrestore(&x->wait.lock, flags);
3917}
3918EXPORT_SYMBOL(complete);
3919
3920void fastcall complete_all(struct completion *x)
3921{
3922 unsigned long flags;
3923
3924 spin_lock_irqsave(&x->wait.lock, flags);
3925 x->done += UINT_MAX/2;
3926 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3927 0, 0, NULL);
3928 spin_unlock_irqrestore(&x->wait.lock, flags);
3929}
3930EXPORT_SYMBOL(complete_all);
3931
3932void fastcall __sched wait_for_completion(struct completion *x)
3933{
3934 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003935
Linus Torvalds1da177e2005-04-16 15:20:36 -07003936 spin_lock_irq(&x->wait.lock);
3937 if (!x->done) {
3938 DECLARE_WAITQUEUE(wait, current);
3939
3940 wait.flags |= WQ_FLAG_EXCLUSIVE;
3941 __add_wait_queue_tail(&x->wait, &wait);
3942 do {
3943 __set_current_state(TASK_UNINTERRUPTIBLE);
3944 spin_unlock_irq(&x->wait.lock);
3945 schedule();
3946 spin_lock_irq(&x->wait.lock);
3947 } while (!x->done);
3948 __remove_wait_queue(&x->wait, &wait);
3949 }
3950 x->done--;
3951 spin_unlock_irq(&x->wait.lock);
3952}
3953EXPORT_SYMBOL(wait_for_completion);
3954
3955unsigned long fastcall __sched
3956wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3957{
3958 might_sleep();
3959
3960 spin_lock_irq(&x->wait.lock);
3961 if (!x->done) {
3962 DECLARE_WAITQUEUE(wait, current);
3963
3964 wait.flags |= WQ_FLAG_EXCLUSIVE;
3965 __add_wait_queue_tail(&x->wait, &wait);
3966 do {
3967 __set_current_state(TASK_UNINTERRUPTIBLE);
3968 spin_unlock_irq(&x->wait.lock);
3969 timeout = schedule_timeout(timeout);
3970 spin_lock_irq(&x->wait.lock);
3971 if (!timeout) {
3972 __remove_wait_queue(&x->wait, &wait);
3973 goto out;
3974 }
3975 } while (!x->done);
3976 __remove_wait_queue(&x->wait, &wait);
3977 }
3978 x->done--;
3979out:
3980 spin_unlock_irq(&x->wait.lock);
3981 return timeout;
3982}
3983EXPORT_SYMBOL(wait_for_completion_timeout);
3984
3985int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3986{
3987 int ret = 0;
3988
3989 might_sleep();
3990
3991 spin_lock_irq(&x->wait.lock);
3992 if (!x->done) {
3993 DECLARE_WAITQUEUE(wait, current);
3994
3995 wait.flags |= WQ_FLAG_EXCLUSIVE;
3996 __add_wait_queue_tail(&x->wait, &wait);
3997 do {
3998 if (signal_pending(current)) {
3999 ret = -ERESTARTSYS;
4000 __remove_wait_queue(&x->wait, &wait);
4001 goto out;
4002 }
4003 __set_current_state(TASK_INTERRUPTIBLE);
4004 spin_unlock_irq(&x->wait.lock);
4005 schedule();
4006 spin_lock_irq(&x->wait.lock);
4007 } while (!x->done);
4008 __remove_wait_queue(&x->wait, &wait);
4009 }
4010 x->done--;
4011out:
4012 spin_unlock_irq(&x->wait.lock);
4013
4014 return ret;
4015}
4016EXPORT_SYMBOL(wait_for_completion_interruptible);
4017
4018unsigned long fastcall __sched
4019wait_for_completion_interruptible_timeout(struct completion *x,
4020 unsigned long timeout)
4021{
4022 might_sleep();
4023
4024 spin_lock_irq(&x->wait.lock);
4025 if (!x->done) {
4026 DECLARE_WAITQUEUE(wait, current);
4027
4028 wait.flags |= WQ_FLAG_EXCLUSIVE;
4029 __add_wait_queue_tail(&x->wait, &wait);
4030 do {
4031 if (signal_pending(current)) {
4032 timeout = -ERESTARTSYS;
4033 __remove_wait_queue(&x->wait, &wait);
4034 goto out;
4035 }
4036 __set_current_state(TASK_INTERRUPTIBLE);
4037 spin_unlock_irq(&x->wait.lock);
4038 timeout = schedule_timeout(timeout);
4039 spin_lock_irq(&x->wait.lock);
4040 if (!timeout) {
4041 __remove_wait_queue(&x->wait, &wait);
4042 goto out;
4043 }
4044 } while (!x->done);
4045 __remove_wait_queue(&x->wait, &wait);
4046 }
4047 x->done--;
4048out:
4049 spin_unlock_irq(&x->wait.lock);
4050 return timeout;
4051}
4052EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4053
4054
4055#define SLEEP_ON_VAR \
4056 unsigned long flags; \
4057 wait_queue_t wait; \
4058 init_waitqueue_entry(&wait, current);
4059
4060#define SLEEP_ON_HEAD \
4061 spin_lock_irqsave(&q->lock,flags); \
4062 __add_wait_queue(q, &wait); \
4063 spin_unlock(&q->lock);
4064
4065#define SLEEP_ON_TAIL \
4066 spin_lock_irq(&q->lock); \
4067 __remove_wait_queue(q, &wait); \
4068 spin_unlock_irqrestore(&q->lock, flags);
4069
4070void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4071{
4072 SLEEP_ON_VAR
4073
4074 current->state = TASK_INTERRUPTIBLE;
4075
4076 SLEEP_ON_HEAD
4077 schedule();
4078 SLEEP_ON_TAIL
4079}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004080EXPORT_SYMBOL(interruptible_sleep_on);
4081
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004082long fastcall __sched
4083interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084{
4085 SLEEP_ON_VAR
4086
4087 current->state = TASK_INTERRUPTIBLE;
4088
4089 SLEEP_ON_HEAD
4090 timeout = schedule_timeout(timeout);
4091 SLEEP_ON_TAIL
4092
4093 return timeout;
4094}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4096
4097void fastcall __sched sleep_on(wait_queue_head_t *q)
4098{
4099 SLEEP_ON_VAR
4100
4101 current->state = TASK_UNINTERRUPTIBLE;
4102
4103 SLEEP_ON_HEAD
4104 schedule();
4105 SLEEP_ON_TAIL
4106}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004107EXPORT_SYMBOL(sleep_on);
4108
4109long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4110{
4111 SLEEP_ON_VAR
4112
4113 current->state = TASK_UNINTERRUPTIBLE;
4114
4115 SLEEP_ON_HEAD
4116 timeout = schedule_timeout(timeout);
4117 SLEEP_ON_TAIL
4118
4119 return timeout;
4120}
4121
4122EXPORT_SYMBOL(sleep_on_timeout);
4123
Ingo Molnarb29739f2006-06-27 02:54:51 -07004124#ifdef CONFIG_RT_MUTEXES
4125
4126/*
4127 * rt_mutex_setprio - set the current priority of a task
4128 * @p: task
4129 * @prio: prio value (kernel-internal form)
4130 *
4131 * This function changes the 'effective' priority of a task. It does
4132 * not touch ->normal_prio like __setscheduler().
4133 *
4134 * Used by the rt_mutex code to implement priority inheritance logic.
4135 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004136void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07004137{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004138 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004139 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004140 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07004141 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004142
4143 BUG_ON(prio < 0 || prio > MAX_PRIO);
4144
4145 rq = task_rq_lock(p, &flags);
4146
Andrew Mortond5f9f942007-05-08 20:27:06 -07004147 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004148 array = p->array;
4149 if (array)
4150 dequeue_task(p, array);
4151 p->prio = prio;
4152
4153 if (array) {
4154 /*
4155 * If changing to an RT priority then queue it
4156 * in the active array!
4157 */
4158 if (rt_task(p))
4159 array = rq->active;
4160 enqueue_task(p, array);
4161 /*
4162 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004163 * our priority decreased, or if we are not currently running on
4164 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004165 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004166 if (task_running(rq, p)) {
4167 if (p->prio > oldprio)
4168 resched_task(rq->curr);
4169 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004170 resched_task(rq->curr);
4171 }
4172 task_rq_unlock(rq, &flags);
4173}
4174
4175#endif
4176
Ingo Molnar36c8b582006-07-03 00:25:41 -07004177void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004179 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004180 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004181 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004182 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004183
4184 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4185 return;
4186 /*
4187 * We have to be careful, if called from sys_setpriority(),
4188 * the task might be in the middle of scheduling on another CPU.
4189 */
4190 rq = task_rq_lock(p, &flags);
4191 /*
4192 * The RT priorities are set via sched_setscheduler(), but we still
4193 * allow the 'normal' nice value to be set - but as expected
4194 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004195 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004196 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004197 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004198 p->static_prio = NICE_TO_PRIO(nice);
4199 goto out_unlock;
4200 }
4201 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004202 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004204 dec_raw_weighted_load(rq, p);
4205 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004208 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004209 old_prio = p->prio;
4210 p->prio = effective_prio(p);
4211 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212
4213 if (array) {
4214 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004215 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004217 * If the task increased its priority or is running and
4218 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004219 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004220 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004221 resched_task(rq->curr);
4222 }
4223out_unlock:
4224 task_rq_unlock(rq, &flags);
4225}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004226EXPORT_SYMBOL(set_user_nice);
4227
Matt Mackalle43379f2005-05-01 08:59:00 -07004228/*
4229 * can_nice - check if a task can reduce its nice value
4230 * @p: task
4231 * @nice: nice value
4232 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004233int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004234{
Matt Mackall024f4742005-08-18 11:24:19 -07004235 /* convert nice value [19,-20] to rlimit style value [1,40] */
4236 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004237
Matt Mackalle43379f2005-05-01 08:59:00 -07004238 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4239 capable(CAP_SYS_NICE));
4240}
4241
Linus Torvalds1da177e2005-04-16 15:20:36 -07004242#ifdef __ARCH_WANT_SYS_NICE
4243
4244/*
4245 * sys_nice - change the priority of the current process.
4246 * @increment: priority increment
4247 *
4248 * sys_setpriority is a more generic, but much slower function that
4249 * does similar things.
4250 */
4251asmlinkage long sys_nice(int increment)
4252{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004253 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004254
4255 /*
4256 * Setpriority might change our priority at the same moment.
4257 * We don't have to worry. Conceptually one call occurs first
4258 * and we have a single winner.
4259 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004260 if (increment < -40)
4261 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004262 if (increment > 40)
4263 increment = 40;
4264
4265 nice = PRIO_TO_NICE(current->static_prio) + increment;
4266 if (nice < -20)
4267 nice = -20;
4268 if (nice > 19)
4269 nice = 19;
4270
Matt Mackalle43379f2005-05-01 08:59:00 -07004271 if (increment < 0 && !can_nice(current, nice))
4272 return -EPERM;
4273
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274 retval = security_task_setnice(current, nice);
4275 if (retval)
4276 return retval;
4277
4278 set_user_nice(current, nice);
4279 return 0;
4280}
4281
4282#endif
4283
4284/**
4285 * task_prio - return the priority value of a given task.
4286 * @p: the task in question.
4287 *
4288 * This is the priority value as seen by users in /proc.
4289 * RT tasks are offset by -200. Normal tasks are centered
4290 * around 0, value goes from -16 to +15.
4291 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004292int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293{
4294 return p->prio - MAX_RT_PRIO;
4295}
4296
4297/**
4298 * task_nice - return the nice value of a given task.
4299 * @p: the task in question.
4300 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004301int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004302{
4303 return TASK_NICE(p);
4304}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306
4307/**
4308 * idle_cpu - is a given cpu idle currently?
4309 * @cpu: the processor in question.
4310 */
4311int idle_cpu(int cpu)
4312{
4313 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4314}
4315
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316/**
4317 * idle_task - return the idle task for a given cpu.
4318 * @cpu: the processor in question.
4319 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004320struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321{
4322 return cpu_rq(cpu)->idle;
4323}
4324
4325/**
4326 * find_process_by_pid - find a process with a matching PID value.
4327 * @pid: the pid in question.
4328 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004329static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004330{
4331 return pid ? find_task_by_pid(pid) : current;
4332}
4333
4334/* Actually do priority change: must hold rq lock. */
4335static void __setscheduler(struct task_struct *p, int policy, int prio)
4336{
4337 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004338
Linus Torvalds1da177e2005-04-16 15:20:36 -07004339 p->policy = policy;
4340 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004341 p->normal_prio = normal_prio(p);
4342 /* we are holding p->pi_lock already */
4343 p->prio = rt_mutex_getprio(p);
4344 /*
4345 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4346 */
4347 if (policy == SCHED_BATCH)
4348 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004349 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004350}
4351
4352/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004353 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004354 * @p: the task in question.
4355 * @policy: new policy.
4356 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004357 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004358 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004359 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004360int sched_setscheduler(struct task_struct *p, int policy,
4361 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004363 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004364 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004365 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004366 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004367
Steven Rostedt66e53932006-06-27 02:54:44 -07004368 /* may grab non-irq protected spin_locks */
4369 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370recheck:
4371 /* double check policy once rq lock held */
4372 if (policy < 0)
4373 policy = oldpolicy = p->policy;
4374 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004375 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4376 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004377 /*
4378 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004379 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4380 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004381 */
4382 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004383 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004384 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004385 return -EINVAL;
Oleg Nesterov57a6f512006-09-29 02:00:49 -07004386 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004387 return -EINVAL;
4388
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004389 /*
4390 * Allow unprivileged RT tasks to decrease priority:
4391 */
4392 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004393 if (is_rt_policy(policy)) {
4394 unsigned long rlim_rtprio;
4395 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004396
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004397 if (!lock_task_sighand(p, &flags))
4398 return -ESRCH;
4399 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4400 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004401
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004402 /* can't set/change the rt policy */
4403 if (policy != p->policy && !rlim_rtprio)
4404 return -EPERM;
4405
4406 /* can't increase priority */
4407 if (param->sched_priority > p->rt_priority &&
4408 param->sched_priority > rlim_rtprio)
4409 return -EPERM;
4410 }
4411
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004412 /* can't change other user's priorities */
4413 if ((current->euid != p->euid) &&
4414 (current->euid != p->uid))
4415 return -EPERM;
4416 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004417
4418 retval = security_task_setscheduler(p, policy, param);
4419 if (retval)
4420 return retval;
4421 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004422 * make sure no PI-waiters arrive (or leave) while we are
4423 * changing the priority of the task:
4424 */
4425 spin_lock_irqsave(&p->pi_lock, flags);
4426 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004427 * To be able to change p->policy safely, the apropriate
4428 * runqueue lock must be held.
4429 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004430 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431 /* recheck policy now with rq lock held */
4432 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4433 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004434 __task_rq_unlock(rq);
4435 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004436 goto recheck;
4437 }
4438 array = p->array;
4439 if (array)
4440 deactivate_task(p, rq);
4441 oldprio = p->prio;
4442 __setscheduler(p, policy, param->sched_priority);
4443 if (array) {
4444 __activate_task(p, rq);
4445 /*
4446 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004447 * our priority decreased, or if we are not currently running on
4448 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004449 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004450 if (task_running(rq, p)) {
4451 if (p->prio > oldprio)
4452 resched_task(rq->curr);
4453 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004454 resched_task(rq->curr);
4455 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004456 __task_rq_unlock(rq);
4457 spin_unlock_irqrestore(&p->pi_lock, flags);
4458
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004459 rt_mutex_adjust_pi(p);
4460
Linus Torvalds1da177e2005-04-16 15:20:36 -07004461 return 0;
4462}
4463EXPORT_SYMBOL_GPL(sched_setscheduler);
4464
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004465static int
4466do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004467{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004468 struct sched_param lparam;
4469 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004470 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004471
4472 if (!param || pid < 0)
4473 return -EINVAL;
4474 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4475 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004476
4477 rcu_read_lock();
4478 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004479 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004480 if (p != NULL)
4481 retval = sched_setscheduler(p, policy, &lparam);
4482 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004483
Linus Torvalds1da177e2005-04-16 15:20:36 -07004484 return retval;
4485}
4486
4487/**
4488 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4489 * @pid: the pid in question.
4490 * @policy: new policy.
4491 * @param: structure containing the new RT priority.
4492 */
4493asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4494 struct sched_param __user *param)
4495{
Jason Baronc21761f2006-01-18 17:43:03 -08004496 /* negative values for policy are not valid */
4497 if (policy < 0)
4498 return -EINVAL;
4499
Linus Torvalds1da177e2005-04-16 15:20:36 -07004500 return do_sched_setscheduler(pid, policy, param);
4501}
4502
4503/**
4504 * sys_sched_setparam - set/change the RT priority of a thread
4505 * @pid: the pid in question.
4506 * @param: structure containing the new RT priority.
4507 */
4508asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4509{
4510 return do_sched_setscheduler(pid, -1, param);
4511}
4512
4513/**
4514 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4515 * @pid: the pid in question.
4516 */
4517asmlinkage long sys_sched_getscheduler(pid_t pid)
4518{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004519 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004521
4522 if (pid < 0)
4523 goto out_nounlock;
4524
4525 retval = -ESRCH;
4526 read_lock(&tasklist_lock);
4527 p = find_process_by_pid(pid);
4528 if (p) {
4529 retval = security_task_getscheduler(p);
4530 if (!retval)
4531 retval = p->policy;
4532 }
4533 read_unlock(&tasklist_lock);
4534
4535out_nounlock:
4536 return retval;
4537}
4538
4539/**
4540 * sys_sched_getscheduler - get the RT priority of a thread
4541 * @pid: the pid in question.
4542 * @param: structure containing the RT priority.
4543 */
4544asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4545{
4546 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004547 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004548 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004549
4550 if (!param || pid < 0)
4551 goto out_nounlock;
4552
4553 read_lock(&tasklist_lock);
4554 p = find_process_by_pid(pid);
4555 retval = -ESRCH;
4556 if (!p)
4557 goto out_unlock;
4558
4559 retval = security_task_getscheduler(p);
4560 if (retval)
4561 goto out_unlock;
4562
4563 lp.sched_priority = p->rt_priority;
4564 read_unlock(&tasklist_lock);
4565
4566 /*
4567 * This one might sleep, we cannot do it with a spinlock held ...
4568 */
4569 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4570
4571out_nounlock:
4572 return retval;
4573
4574out_unlock:
4575 read_unlock(&tasklist_lock);
4576 return retval;
4577}
4578
4579long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4580{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004581 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004582 struct task_struct *p;
4583 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004584
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004585 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004586 read_lock(&tasklist_lock);
4587
4588 p = find_process_by_pid(pid);
4589 if (!p) {
4590 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004591 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004592 return -ESRCH;
4593 }
4594
4595 /*
4596 * It is not safe to call set_cpus_allowed with the
4597 * tasklist_lock held. We will bump the task_struct's
4598 * usage count and then drop tasklist_lock.
4599 */
4600 get_task_struct(p);
4601 read_unlock(&tasklist_lock);
4602
4603 retval = -EPERM;
4604 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4605 !capable(CAP_SYS_NICE))
4606 goto out_unlock;
4607
David Quigleye7834f82006-06-23 02:03:59 -07004608 retval = security_task_setscheduler(p, 0, NULL);
4609 if (retval)
4610 goto out_unlock;
4611
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612 cpus_allowed = cpuset_cpus_allowed(p);
4613 cpus_and(new_mask, new_mask, cpus_allowed);
4614 retval = set_cpus_allowed(p, new_mask);
4615
4616out_unlock:
4617 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004618 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004619 return retval;
4620}
4621
4622static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4623 cpumask_t *new_mask)
4624{
4625 if (len < sizeof(cpumask_t)) {
4626 memset(new_mask, 0, sizeof(cpumask_t));
4627 } else if (len > sizeof(cpumask_t)) {
4628 len = sizeof(cpumask_t);
4629 }
4630 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4631}
4632
4633/**
4634 * sys_sched_setaffinity - set the cpu affinity of a process
4635 * @pid: pid of the process
4636 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4637 * @user_mask_ptr: user-space pointer to the new cpu mask
4638 */
4639asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4640 unsigned long __user *user_mask_ptr)
4641{
4642 cpumask_t new_mask;
4643 int retval;
4644
4645 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4646 if (retval)
4647 return retval;
4648
4649 return sched_setaffinity(pid, new_mask);
4650}
4651
4652/*
4653 * Represents all cpu's present in the system
4654 * In systems capable of hotplug, this map could dynamically grow
4655 * as new cpu's are detected in the system via any platform specific
4656 * method, such as ACPI for e.g.
4657 */
4658
Andi Kleen4cef0c62006-01-11 22:44:57 +01004659cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004660EXPORT_SYMBOL(cpu_present_map);
4661
4662#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004663cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004664EXPORT_SYMBOL(cpu_online_map);
4665
Andi Kleen4cef0c62006-01-11 22:44:57 +01004666cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004667EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004668#endif
4669
4670long sched_getaffinity(pid_t pid, cpumask_t *mask)
4671{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004672 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004673 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004674
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004675 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004676 read_lock(&tasklist_lock);
4677
4678 retval = -ESRCH;
4679 p = find_process_by_pid(pid);
4680 if (!p)
4681 goto out_unlock;
4682
David Quigleye7834f82006-06-23 02:03:59 -07004683 retval = security_task_getscheduler(p);
4684 if (retval)
4685 goto out_unlock;
4686
Jack Steiner2f7016d2006-02-01 03:05:18 -08004687 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004688
4689out_unlock:
4690 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004691 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004692 if (retval)
4693 return retval;
4694
4695 return 0;
4696}
4697
4698/**
4699 * sys_sched_getaffinity - get the cpu affinity of a process
4700 * @pid: pid of the process
4701 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4702 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4703 */
4704asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4705 unsigned long __user *user_mask_ptr)
4706{
4707 int ret;
4708 cpumask_t mask;
4709
4710 if (len < sizeof(cpumask_t))
4711 return -EINVAL;
4712
4713 ret = sched_getaffinity(pid, &mask);
4714 if (ret < 0)
4715 return ret;
4716
4717 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4718 return -EFAULT;
4719
4720 return sizeof(cpumask_t);
4721}
4722
4723/**
4724 * sys_sched_yield - yield the current processor to other threads.
4725 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004726 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004727 * to the expired array. If there are no other threads running on this
4728 * CPU then this function will return.
4729 */
4730asmlinkage long sys_sched_yield(void)
4731{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004732 struct rq *rq = this_rq_lock();
4733 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004734
4735 schedstat_inc(rq, yld_cnt);
4736 /*
4737 * We implement yielding by moving the task into the expired
4738 * queue.
4739 *
4740 * (special rule: RT tasks will just roundrobin in the active
4741 * array.)
4742 */
4743 if (rt_task(current))
4744 target = rq->active;
4745
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004746 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004747 schedstat_inc(rq, yld_act_empty);
4748 if (!rq->expired->nr_active)
4749 schedstat_inc(rq, yld_both_empty);
4750 } else if (!rq->expired->nr_active)
4751 schedstat_inc(rq, yld_exp_empty);
4752
4753 if (array != target) {
4754 dequeue_task(current, array);
4755 enqueue_task(current, target);
4756 } else
4757 /*
4758 * requeue_task is cheaper so perform that if possible.
4759 */
4760 requeue_task(current, array);
4761
4762 /*
4763 * Since we are going to call schedule() anyway, there's
4764 * no need to preempt or enable interrupts:
4765 */
4766 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004767 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 _raw_spin_unlock(&rq->lock);
4769 preempt_enable_no_resched();
4770
4771 schedule();
4772
4773 return 0;
4774}
4775
Andrew Mortone7b38402006-06-30 01:56:00 -07004776static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004777{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004778#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4779 __might_sleep(__FILE__, __LINE__);
4780#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004781 /*
4782 * The BKS might be reacquired before we have dropped
4783 * PREEMPT_ACTIVE, which could trigger a second
4784 * cond_resched() call.
4785 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004786 do {
4787 add_preempt_count(PREEMPT_ACTIVE);
4788 schedule();
4789 sub_preempt_count(PREEMPT_ACTIVE);
4790 } while (need_resched());
4791}
4792
4793int __sched cond_resched(void)
4794{
Ingo Molnar94142322006-12-29 16:48:13 -08004795 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4796 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004797 __cond_resched();
4798 return 1;
4799 }
4800 return 0;
4801}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802EXPORT_SYMBOL(cond_resched);
4803
4804/*
4805 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4806 * call schedule, and on return reacquire the lock.
4807 *
4808 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4809 * operations here to prevent schedule() from being called twice (once via
4810 * spin_unlock(), once by hand).
4811 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004812int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004813{
Jan Kara6df3cec2005-06-13 15:52:32 -07004814 int ret = 0;
4815
Linus Torvalds1da177e2005-04-16 15:20:36 -07004816 if (need_lockbreak(lock)) {
4817 spin_unlock(lock);
4818 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004819 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820 spin_lock(lock);
4821 }
Ingo Molnar94142322006-12-29 16:48:13 -08004822 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004823 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004824 _raw_spin_unlock(lock);
4825 preempt_enable_no_resched();
4826 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004827 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004828 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004829 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004830 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004831}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004832EXPORT_SYMBOL(cond_resched_lock);
4833
4834int __sched cond_resched_softirq(void)
4835{
4836 BUG_ON(!in_softirq());
4837
Ingo Molnar94142322006-12-29 16:48:13 -08004838 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d82562007-05-23 13:58:18 -07004839 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840 __cond_resched();
4841 local_bh_disable();
4842 return 1;
4843 }
4844 return 0;
4845}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846EXPORT_SYMBOL(cond_resched_softirq);
4847
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848/**
4849 * yield - yield the current processor to other threads.
4850 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004851 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004852 * thread runnable and calls sys_sched_yield().
4853 */
4854void __sched yield(void)
4855{
4856 set_current_state(TASK_RUNNING);
4857 sys_sched_yield();
4858}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004859EXPORT_SYMBOL(yield);
4860
4861/*
4862 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4863 * that process accounting knows that this is a task in IO wait state.
4864 *
4865 * But don't do that if it is a deliberate, throttling IO wait (this task
4866 * has set its backing_dev_info: the queue against which it should throttle)
4867 */
4868void __sched io_schedule(void)
4869{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004870 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004871
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004872 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004873 atomic_inc(&rq->nr_iowait);
4874 schedule();
4875 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004876 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004877}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004878EXPORT_SYMBOL(io_schedule);
4879
4880long __sched io_schedule_timeout(long timeout)
4881{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004882 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004883 long ret;
4884
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004885 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004886 atomic_inc(&rq->nr_iowait);
4887 ret = schedule_timeout(timeout);
4888 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004889 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004890 return ret;
4891}
4892
4893/**
4894 * sys_sched_get_priority_max - return maximum RT priority.
4895 * @policy: scheduling class.
4896 *
4897 * this syscall returns the maximum rt_priority that can be used
4898 * by a given scheduling class.
4899 */
4900asmlinkage long sys_sched_get_priority_max(int policy)
4901{
4902 int ret = -EINVAL;
4903
4904 switch (policy) {
4905 case SCHED_FIFO:
4906 case SCHED_RR:
4907 ret = MAX_USER_RT_PRIO-1;
4908 break;
4909 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004910 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004911 ret = 0;
4912 break;
4913 }
4914 return ret;
4915}
4916
4917/**
4918 * sys_sched_get_priority_min - return minimum RT priority.
4919 * @policy: scheduling class.
4920 *
4921 * this syscall returns the minimum rt_priority that can be used
4922 * by a given scheduling class.
4923 */
4924asmlinkage long sys_sched_get_priority_min(int policy)
4925{
4926 int ret = -EINVAL;
4927
4928 switch (policy) {
4929 case SCHED_FIFO:
4930 case SCHED_RR:
4931 ret = 1;
4932 break;
4933 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004934 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004935 ret = 0;
4936 }
4937 return ret;
4938}
4939
4940/**
4941 * sys_sched_rr_get_interval - return the default timeslice of a process.
4942 * @pid: pid of the process.
4943 * @interval: userspace pointer to the timeslice value.
4944 *
4945 * this syscall writes the default timeslice value of a given process
4946 * into the user-space timespec buffer. A value of '0' means infinity.
4947 */
4948asmlinkage
4949long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4950{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004951 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004952 int retval = -EINVAL;
4953 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004954
4955 if (pid < 0)
4956 goto out_nounlock;
4957
4958 retval = -ESRCH;
4959 read_lock(&tasklist_lock);
4960 p = find_process_by_pid(pid);
4961 if (!p)
4962 goto out_unlock;
4963
4964 retval = security_task_getscheduler(p);
4965 if (retval)
4966 goto out_unlock;
4967
Peter Williamsb78709c2006-06-26 16:58:00 +10004968 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004969 0 : task_timeslice(p), &t);
4970 read_unlock(&tasklist_lock);
4971 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4972out_nounlock:
4973 return retval;
4974out_unlock:
4975 read_unlock(&tasklist_lock);
4976 return retval;
4977}
4978
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004979static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004980
4981static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004982{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004983 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004984 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004985
Linus Torvalds1da177e2005-04-16 15:20:36 -07004986 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004987 printk("%-13.13s %c", p->comm,
4988 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989#if (BITS_PER_LONG == 32)
4990 if (state == TASK_RUNNING)
4991 printk(" running ");
4992 else
4993 printk(" %08lX ", thread_saved_pc(p));
4994#else
4995 if (state == TASK_RUNNING)
4996 printk(" running task ");
4997 else
4998 printk(" %016lx ", thread_saved_pc(p));
4999#endif
5000#ifdef CONFIG_DEBUG_STACK_USAGE
5001 {
Al Viro10ebffd2005-11-13 16:06:56 -08005002 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005003 while (!*n)
5004 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08005005 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005006 }
5007#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02005008 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005009 if (!p->mm)
5010 printk(" (L-TLB)\n");
5011 else
5012 printk(" (NOTLB)\n");
5013
5014 if (state != TASK_RUNNING)
5015 show_stack(p, NULL);
5016}
5017
Ingo Molnare59e2ae2006-12-06 20:35:59 -08005018void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005019{
Ingo Molnar36c8b582006-07-03 00:25:41 -07005020 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005021
5022#if (BITS_PER_LONG == 32)
5023 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08005024 " free sibling\n");
5025 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005026#else
5027 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08005028 " free sibling\n");
5029 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005030#endif
5031 read_lock(&tasklist_lock);
5032 do_each_thread(g, p) {
5033 /*
5034 * reset the NMI-timeout, listing all files on a slow
5035 * console might take alot of time:
5036 */
5037 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07005038 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08005039 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005040 } while_each_thread(g, p);
5041
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07005042 touch_all_softlockup_watchdogs();
5043
Linus Torvalds1da177e2005-04-16 15:20:36 -07005044 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08005045 /*
5046 * Only show locks if all tasks are dumped:
5047 */
5048 if (state_filter == -1)
5049 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005050}
5051
Ingo Molnarf340c0d2005-06-28 16:40:42 +02005052/**
5053 * init_idle - set up an idle thread for a given CPU
5054 * @idle: task in question
5055 * @cpu: cpu the idle task belongs to
5056 *
5057 * NOTE: this function does not set the idle thread's NEED_RESCHED
5058 * flag, to make booting more robust.
5059 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07005060void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005061{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005062 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063 unsigned long flags;
5064
Ingo Molnar81c29a82006-03-07 21:55:27 -08005065 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005066 idle->sleep_avg = 0;
5067 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07005068 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005069 idle->state = TASK_RUNNING;
5070 idle->cpus_allowed = cpumask_of_cpu(cpu);
5071 set_task_cpu(idle, cpu);
5072
5073 spin_lock_irqsave(&rq->lock, flags);
5074 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07005075#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5076 idle->oncpu = 1;
5077#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005078 spin_unlock_irqrestore(&rq->lock, flags);
5079
5080 /* Set the preempt count _outside_ the spinlocks! */
5081#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08005082 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005083#else
Al Viroa1261f52005-11-13 16:06:55 -08005084 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085#endif
5086}
5087
5088/*
5089 * In a system that switches off the HZ timer nohz_cpu_mask
5090 * indicates which cpus entered this state. This is used
5091 * in the rcu update to wait only for active cpus. For system
5092 * which do not switch off the HZ timer nohz_cpu_mask should
5093 * always be CPU_MASK_NONE.
5094 */
5095cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5096
5097#ifdef CONFIG_SMP
5098/*
5099 * This is how migration works:
5100 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07005101 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102 * runqueue and wake up that CPU's migration thread.
5103 * 2) we down() the locked semaphore => thread blocks.
5104 * 3) migration thread wakes up (implicitly it forces the migrated
5105 * thread off the CPU)
5106 * 4) it gets the migration request and checks whether the migrated
5107 * task is still in the wrong runqueue.
5108 * 5) if it's in the wrong runqueue then the migration thread removes
5109 * it and puts it into the right queue.
5110 * 6) migration thread up()s the semaphore.
5111 * 7) we wake up and the migration is done.
5112 */
5113
5114/*
5115 * Change a given task's CPU affinity. Migrate the thread to a
5116 * proper CPU and schedule it away if the CPU it's executing on
5117 * is removed from the allowed bitmask.
5118 *
5119 * NOTE: the caller must have a valid reference to the task, the
5120 * task must not exit() & deallocate itself prematurely. The
5121 * call is not atomic; no spinlocks may be held.
5122 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005123int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005124{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005125 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005126 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005127 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005128 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005129
5130 rq = task_rq_lock(p, &flags);
5131 if (!cpus_intersects(new_mask, cpu_online_map)) {
5132 ret = -EINVAL;
5133 goto out;
5134 }
5135
5136 p->cpus_allowed = new_mask;
5137 /* Can the task run on the task's current CPU? If so, we're done */
5138 if (cpu_isset(task_cpu(p), new_mask))
5139 goto out;
5140
5141 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5142 /* Need help from migration thread: drop lock and wait. */
5143 task_rq_unlock(rq, &flags);
5144 wake_up_process(rq->migration_thread);
5145 wait_for_completion(&req.done);
5146 tlb_migrate_finish(p->mm);
5147 return 0;
5148 }
5149out:
5150 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005151
Linus Torvalds1da177e2005-04-16 15:20:36 -07005152 return ret;
5153}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005154EXPORT_SYMBOL_GPL(set_cpus_allowed);
5155
5156/*
5157 * Move (not current) task off this cpu, onto dest cpu. We're doing
5158 * this because either it can't run here any more (set_cpus_allowed()
5159 * away from this CPU, or CPU going down), or because we're
5160 * attempting to rebalance this task on exec (sched_exec).
5161 *
5162 * So we race with normal scheduler movements, but that's OK, as long
5163 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005164 *
5165 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005166 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005167static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005168{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005169 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005170 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005171
5172 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005173 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005174
5175 rq_src = cpu_rq(src_cpu);
5176 rq_dest = cpu_rq(dest_cpu);
5177
5178 double_rq_lock(rq_src, rq_dest);
5179 /* Already moved. */
5180 if (task_cpu(p) != src_cpu)
5181 goto out;
5182 /* Affinity changed (again). */
5183 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5184 goto out;
5185
5186 set_task_cpu(p, dest_cpu);
5187 if (p->array) {
5188 /*
5189 * Sync timestamp with rq_dest's before activating.
5190 * The same thing could be achieved by doing this step
5191 * afterwards, and pretending it was a local activate.
5192 * This way is cleaner and logically correct.
5193 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005194 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5195 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005196 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005197 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005198 if (TASK_PREEMPTS_CURR(p, rq_dest))
5199 resched_task(rq_dest->curr);
5200 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005201 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005202out:
5203 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005204 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005205}
5206
5207/*
5208 * migration_thread - this is a highprio system thread that performs
5209 * thread migration by bumping thread off CPU then 'pushing' onto
5210 * another runqueue.
5211 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005212static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005213{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005214 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005215 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005216
5217 rq = cpu_rq(cpu);
5218 BUG_ON(rq->migration_thread != current);
5219
5220 set_current_state(TASK_INTERRUPTIBLE);
5221 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005222 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005223 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005225 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005226
5227 spin_lock_irq(&rq->lock);
5228
5229 if (cpu_is_offline(cpu)) {
5230 spin_unlock_irq(&rq->lock);
5231 goto wait_to_die;
5232 }
5233
5234 if (rq->active_balance) {
5235 active_load_balance(rq, cpu);
5236 rq->active_balance = 0;
5237 }
5238
5239 head = &rq->migration_queue;
5240
5241 if (list_empty(head)) {
5242 spin_unlock_irq(&rq->lock);
5243 schedule();
5244 set_current_state(TASK_INTERRUPTIBLE);
5245 continue;
5246 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005247 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248 list_del_init(head->next);
5249
Nick Piggin674311d2005-06-25 14:57:27 -07005250 spin_unlock(&rq->lock);
5251 __migrate_task(req->task, cpu, req->dest_cpu);
5252 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005253
5254 complete(&req->done);
5255 }
5256 __set_current_state(TASK_RUNNING);
5257 return 0;
5258
5259wait_to_die:
5260 /* Wait for kthread_stop */
5261 set_current_state(TASK_INTERRUPTIBLE);
5262 while (!kthread_should_stop()) {
5263 schedule();
5264 set_current_state(TASK_INTERRUPTIBLE);
5265 }
5266 __set_current_state(TASK_RUNNING);
5267 return 0;
5268}
5269
5270#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005271/*
5272 * Figure out where task on dead CPU should go, use force if neccessary.
5273 * NOTE: interrupts should be disabled by the caller
5274 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005275static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005276{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005277 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005279 struct rq *rq;
5280 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005281
Kirill Korotaevefc30812006-06-27 02:54:32 -07005282restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005283 /* On same node? */
5284 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005285 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005286 dest_cpu = any_online_cpu(mask);
5287
5288 /* On any allowed CPU? */
5289 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005290 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005291
5292 /* No more Mr. Nice Guy. */
5293 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005294 rq = task_rq_lock(p, &flags);
5295 cpus_setall(p->cpus_allowed);
5296 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005297 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005298
5299 /*
5300 * Don't tell them about moving exiting tasks or
5301 * kernel threads (both mm NULL), since they never
5302 * leave kernel.
5303 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005304 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005305 printk(KERN_INFO "process %d (%s) no "
5306 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005307 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005308 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005309 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005310 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005311}
5312
5313/*
5314 * While a dead CPU has no uninterruptible tasks queued at this point,
5315 * it might still have a nonzero ->nr_uninterruptible counter, because
5316 * for performance reasons the counter is not stricly tracking tasks to
5317 * their home CPUs. So we just add the counter to another CPU's counter,
5318 * to keep the global sum constant after CPU-down:
5319 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005320static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005321{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005322 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005323 unsigned long flags;
5324
5325 local_irq_save(flags);
5326 double_rq_lock(rq_src, rq_dest);
5327 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5328 rq_src->nr_uninterruptible = 0;
5329 double_rq_unlock(rq_src, rq_dest);
5330 local_irq_restore(flags);
5331}
5332
5333/* Run through task list and migrate tasks from the dead cpu. */
5334static void migrate_live_tasks(int src_cpu)
5335{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005336 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337
5338 write_lock_irq(&tasklist_lock);
5339
Ingo Molnar48f24c42006-07-03 00:25:40 -07005340 do_each_thread(t, p) {
5341 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005342 continue;
5343
Ingo Molnar48f24c42006-07-03 00:25:40 -07005344 if (task_cpu(p) == src_cpu)
5345 move_task_off_dead_cpu(src_cpu, p);
5346 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005347
5348 write_unlock_irq(&tasklist_lock);
5349}
5350
5351/* Schedules idle task to be the next runnable task on current CPU.
5352 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005353 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005354 */
5355void sched_idle_next(void)
5356{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005357 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005358 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005359 struct task_struct *p = rq->idle;
5360 unsigned long flags;
5361
5362 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005363 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364
Ingo Molnar48f24c42006-07-03 00:25:40 -07005365 /*
5366 * Strictly not necessary since rest of the CPUs are stopped by now
5367 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005368 */
5369 spin_lock_irqsave(&rq->lock, flags);
5370
5371 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005372
5373 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005374 __activate_idle_task(p, rq);
5375
5376 spin_unlock_irqrestore(&rq->lock, flags);
5377}
5378
Ingo Molnar48f24c42006-07-03 00:25:40 -07005379/*
5380 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005381 * offline.
5382 */
5383void idle_task_exit(void)
5384{
5385 struct mm_struct *mm = current->active_mm;
5386
5387 BUG_ON(cpu_online(smp_processor_id()));
5388
5389 if (mm != &init_mm)
5390 switch_mm(mm, &init_mm, current);
5391 mmdrop(mm);
5392}
5393
Kirill Korotaev054b9102006-12-10 02:20:11 -08005394/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005395static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005396{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005397 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005398
5399 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005400 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005401
5402 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005403 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005404
Ingo Molnar48f24c42006-07-03 00:25:40 -07005405 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005406
5407 /*
5408 * Drop lock around migration; if someone else moves it,
5409 * that's OK. No task can be added to this CPU, so iteration is
5410 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005411 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005412 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005413 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005414 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005415 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005416
Ingo Molnar48f24c42006-07-03 00:25:40 -07005417 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005418}
5419
5420/* release_task() removes task from tasklist, so we won't find dead tasks. */
5421static void migrate_dead_tasks(unsigned int dead_cpu)
5422{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005423 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005424 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005425
5426 for (arr = 0; arr < 2; arr++) {
5427 for (i = 0; i < MAX_PRIO; i++) {
5428 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005429
Linus Torvalds1da177e2005-04-16 15:20:36 -07005430 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005431 migrate_dead(dead_cpu, list_entry(list->next,
5432 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433 }
5434 }
5435}
5436#endif /* CONFIG_HOTPLUG_CPU */
5437
5438/*
5439 * migration_call - callback that gets triggered when a CPU is added.
5440 * Here we can start up the necessary migration thread for the new CPU.
5441 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005442static int __cpuinit
5443migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005444{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005445 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005446 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005447 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005448 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005449
5450 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005451 case CPU_LOCK_ACQUIRE:
5452 mutex_lock(&sched_hotcpu_mutex);
5453 break;
5454
Linus Torvalds1da177e2005-04-16 15:20:36 -07005455 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005456 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005457 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5458 if (IS_ERR(p))
5459 return NOTIFY_BAD;
5460 p->flags |= PF_NOFREEZE;
5461 kthread_bind(p, cpu);
5462 /* Must be high prio: stop_machine expects to yield to it. */
5463 rq = task_rq_lock(p, &flags);
5464 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5465 task_rq_unlock(rq, &flags);
5466 cpu_rq(cpu)->migration_thread = p;
5467 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005468
Linus Torvalds1da177e2005-04-16 15:20:36 -07005469 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005470 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005471 /* Strictly unneccessary, as first user will wake it. */
5472 wake_up_process(cpu_rq(cpu)->migration_thread);
5473 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005474
Linus Torvalds1da177e2005-04-16 15:20:36 -07005475#ifdef CONFIG_HOTPLUG_CPU
5476 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005477 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005478 if (!cpu_rq(cpu)->migration_thread)
5479 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005480 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005481 kthread_bind(cpu_rq(cpu)->migration_thread,
5482 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483 kthread_stop(cpu_rq(cpu)->migration_thread);
5484 cpu_rq(cpu)->migration_thread = NULL;
5485 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005486
Linus Torvalds1da177e2005-04-16 15:20:36 -07005487 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005488 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005489 migrate_live_tasks(cpu);
5490 rq = cpu_rq(cpu);
5491 kthread_stop(rq->migration_thread);
5492 rq->migration_thread = NULL;
5493 /* Idle task back to normal (off runqueue, low prio) */
5494 rq = task_rq_lock(rq->idle, &flags);
5495 deactivate_task(rq->idle, rq);
5496 rq->idle->static_prio = MAX_PRIO;
5497 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5498 migrate_dead_tasks(cpu);
5499 task_rq_unlock(rq, &flags);
5500 migrate_nr_uninterruptible(rq);
5501 BUG_ON(rq->nr_running != 0);
5502
5503 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005504 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005505 * the requestors. */
5506 spin_lock_irq(&rq->lock);
5507 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005508 struct migration_req *req;
5509
Linus Torvalds1da177e2005-04-16 15:20:36 -07005510 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005511 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005512 list_del_init(&req->list);
5513 complete(&req->done);
5514 }
5515 spin_unlock_irq(&rq->lock);
5516 break;
5517#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005518 case CPU_LOCK_RELEASE:
5519 mutex_unlock(&sched_hotcpu_mutex);
5520 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005521 }
5522 return NOTIFY_OK;
5523}
5524
5525/* Register at highest priority so that task migration (migrate_all_tasks)
5526 * happens before everything else.
5527 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005528static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005529 .notifier_call = migration_call,
5530 .priority = 10
5531};
5532
5533int __init migration_init(void)
5534{
5535 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005536 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005537
5538 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005541 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005543
Linus Torvalds1da177e2005-04-16 15:20:36 -07005544 return 0;
5545}
5546#endif
5547
5548#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005549
5550/* Number of possible processor ids */
5551int nr_cpu_ids __read_mostly = NR_CPUS;
5552EXPORT_SYMBOL(nr_cpu_ids);
5553
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005554#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005555#ifdef SCHED_DOMAIN_DEBUG
5556static void sched_domain_debug(struct sched_domain *sd, int cpu)
5557{
5558 int level = 0;
5559
Nick Piggin41c7ce92005-06-25 14:57:24 -07005560 if (!sd) {
5561 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5562 return;
5563 }
5564
Linus Torvalds1da177e2005-04-16 15:20:36 -07005565 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5566
5567 do {
5568 int i;
5569 char str[NR_CPUS];
5570 struct sched_group *group = sd->groups;
5571 cpumask_t groupmask;
5572
5573 cpumask_scnprintf(str, NR_CPUS, sd->span);
5574 cpus_clear(groupmask);
5575
5576 printk(KERN_DEBUG);
5577 for (i = 0; i < level + 1; i++)
5578 printk(" ");
5579 printk("domain %d: ", level);
5580
5581 if (!(sd->flags & SD_LOAD_BALANCE)) {
5582 printk("does not load-balance\n");
5583 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005584 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5585 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005586 break;
5587 }
5588
5589 printk("span %s\n", str);
5590
5591 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005592 printk(KERN_ERR "ERROR: domain->span does not contain "
5593 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005594 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005597
5598 printk(KERN_DEBUG);
5599 for (i = 0; i < level + 2; i++)
5600 printk(" ");
5601 printk("groups:");
5602 do {
5603 if (!group) {
5604 printk("\n");
5605 printk(KERN_ERR "ERROR: group is NULL\n");
5606 break;
5607 }
5608
Eric Dumazet5517d862007-05-08 00:32:57 -07005609 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005610 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005611 printk(KERN_ERR "ERROR: domain->cpu_power not "
5612 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613 }
5614
5615 if (!cpus_weight(group->cpumask)) {
5616 printk("\n");
5617 printk(KERN_ERR "ERROR: empty group\n");
5618 }
5619
5620 if (cpus_intersects(groupmask, group->cpumask)) {
5621 printk("\n");
5622 printk(KERN_ERR "ERROR: repeated CPUs\n");
5623 }
5624
5625 cpus_or(groupmask, groupmask, group->cpumask);
5626
5627 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5628 printk(" %s", str);
5629
5630 group = group->next;
5631 } while (group != sd->groups);
5632 printk("\n");
5633
5634 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005635 printk(KERN_ERR "ERROR: groups don't span "
5636 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005637
5638 level++;
5639 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005640 if (!sd)
5641 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005642
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005643 if (!cpus_subset(groupmask, sd->span))
5644 printk(KERN_ERR "ERROR: parent span is not a superset "
5645 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005646
5647 } while (sd);
5648}
5649#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005650# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005651#endif
5652
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005653static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005654{
5655 if (cpus_weight(sd->span) == 1)
5656 return 1;
5657
5658 /* Following flags need at least 2 groups */
5659 if (sd->flags & (SD_LOAD_BALANCE |
5660 SD_BALANCE_NEWIDLE |
5661 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005662 SD_BALANCE_EXEC |
5663 SD_SHARE_CPUPOWER |
5664 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005665 if (sd->groups != sd->groups->next)
5666 return 0;
5667 }
5668
5669 /* Following flags don't use groups */
5670 if (sd->flags & (SD_WAKE_IDLE |
5671 SD_WAKE_AFFINE |
5672 SD_WAKE_BALANCE))
5673 return 0;
5674
5675 return 1;
5676}
5677
Ingo Molnar48f24c42006-07-03 00:25:40 -07005678static int
5679sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005680{
5681 unsigned long cflags = sd->flags, pflags = parent->flags;
5682
5683 if (sd_degenerate(parent))
5684 return 1;
5685
5686 if (!cpus_equal(sd->span, parent->span))
5687 return 0;
5688
5689 /* Does parent contain flags not in child? */
5690 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5691 if (cflags & SD_WAKE_AFFINE)
5692 pflags &= ~SD_WAKE_BALANCE;
5693 /* Flags needing groups don't count if only 1 group in parent */
5694 if (parent->groups == parent->groups->next) {
5695 pflags &= ~(SD_LOAD_BALANCE |
5696 SD_BALANCE_NEWIDLE |
5697 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005698 SD_BALANCE_EXEC |
5699 SD_SHARE_CPUPOWER |
5700 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005701 }
5702 if (~cflags & pflags)
5703 return 0;
5704
5705 return 1;
5706}
5707
Linus Torvalds1da177e2005-04-16 15:20:36 -07005708/*
5709 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5710 * hold the hotplug lock.
5711 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005712static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005713{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005714 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005715 struct sched_domain *tmp;
5716
5717 /* Remove the sched domains which do not contribute to scheduling. */
5718 for (tmp = sd; tmp; tmp = tmp->parent) {
5719 struct sched_domain *parent = tmp->parent;
5720 if (!parent)
5721 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005722 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005723 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005724 if (parent->parent)
5725 parent->parent->child = tmp;
5726 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005727 }
5728
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005729 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005730 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005731 if (sd)
5732 sd->child = NULL;
5733 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005734
5735 sched_domain_debug(sd, cpu);
5736
Nick Piggin674311d2005-06-25 14:57:27 -07005737 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005738}
5739
5740/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005741static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005742
5743/* Setup the mask of cpus configured for isolated domains */
5744static int __init isolated_cpu_setup(char *str)
5745{
5746 int ints[NR_CPUS], i;
5747
5748 str = get_options(str, ARRAY_SIZE(ints), ints);
5749 cpus_clear(cpu_isolated_map);
5750 for (i = 1; i <= ints[0]; i++)
5751 if (ints[i] < NR_CPUS)
5752 cpu_set(ints[i], cpu_isolated_map);
5753 return 1;
5754}
5755
5756__setup ("isolcpus=", isolated_cpu_setup);
5757
5758/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005759 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5760 * to a function which identifies what group(along with sched group) a CPU
5761 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5762 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005763 *
5764 * init_sched_build_groups will build a circular linked list of the groups
5765 * covered by the given span, and will set each group's ->cpumask correctly,
5766 * and ->cpu_power to 0.
5767 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005768static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005769init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5770 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5771 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005772{
5773 struct sched_group *first = NULL, *last = NULL;
5774 cpumask_t covered = CPU_MASK_NONE;
5775 int i;
5776
5777 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005778 struct sched_group *sg;
5779 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005780 int j;
5781
5782 if (cpu_isset(i, covered))
5783 continue;
5784
5785 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005786 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005787
5788 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005789 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005790 continue;
5791
5792 cpu_set(j, covered);
5793 cpu_set(j, sg->cpumask);
5794 }
5795 if (!first)
5796 first = sg;
5797 if (last)
5798 last->next = sg;
5799 last = sg;
5800 }
5801 last->next = first;
5802}
5803
John Hawkes9c1cfda2005-09-06 15:18:14 -07005804#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005805
John Hawkes9c1cfda2005-09-06 15:18:14 -07005806#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005807
John Hawkes9c1cfda2005-09-06 15:18:14 -07005808/**
5809 * find_next_best_node - find the next node to include in a sched_domain
5810 * @node: node whose sched_domain we're building
5811 * @used_nodes: nodes already in the sched_domain
5812 *
5813 * Find the next node to include in a given scheduling domain. Simply
5814 * finds the closest node not already in the @used_nodes map.
5815 *
5816 * Should use nodemask_t.
5817 */
5818static int find_next_best_node(int node, unsigned long *used_nodes)
5819{
5820 int i, n, val, min_val, best_node = 0;
5821
5822 min_val = INT_MAX;
5823
5824 for (i = 0; i < MAX_NUMNODES; i++) {
5825 /* Start at @node */
5826 n = (node + i) % MAX_NUMNODES;
5827
5828 if (!nr_cpus_node(n))
5829 continue;
5830
5831 /* Skip already used nodes */
5832 if (test_bit(n, used_nodes))
5833 continue;
5834
5835 /* Simple min distance search */
5836 val = node_distance(node, n);
5837
5838 if (val < min_val) {
5839 min_val = val;
5840 best_node = n;
5841 }
5842 }
5843
5844 set_bit(best_node, used_nodes);
5845 return best_node;
5846}
5847
5848/**
5849 * sched_domain_node_span - get a cpumask for a node's sched_domain
5850 * @node: node whose cpumask we're constructing
5851 * @size: number of nodes to include in this span
5852 *
5853 * Given a node, construct a good cpumask for its sched_domain to span. It
5854 * should be one that prevents unnecessary balancing, but also spreads tasks
5855 * out optimally.
5856 */
5857static cpumask_t sched_domain_node_span(int node)
5858{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005859 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005860 cpumask_t span, nodemask;
5861 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005862
5863 cpus_clear(span);
5864 bitmap_zero(used_nodes, MAX_NUMNODES);
5865
5866 nodemask = node_to_cpumask(node);
5867 cpus_or(span, span, nodemask);
5868 set_bit(node, used_nodes);
5869
5870 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5871 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005872
John Hawkes9c1cfda2005-09-06 15:18:14 -07005873 nodemask = node_to_cpumask(next_node);
5874 cpus_or(span, span, nodemask);
5875 }
5876
5877 return span;
5878}
5879#endif
5880
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005881int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005882
John Hawkes9c1cfda2005-09-06 15:18:14 -07005883/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005884 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005885 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005886#ifdef CONFIG_SCHED_SMT
5887static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005888static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005889
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005890static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5891 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005892{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005893 if (sg)
5894 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005895 return cpu;
5896}
5897#endif
5898
Ingo Molnar48f24c42006-07-03 00:25:40 -07005899/*
5900 * multi-core sched-domains:
5901 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005902#ifdef CONFIG_SCHED_MC
5903static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005904static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005905#endif
5906
5907#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005908static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5909 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005910{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005911 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005912 cpumask_t mask = cpu_sibling_map[cpu];
5913 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005914 group = first_cpu(mask);
5915 if (sg)
5916 *sg = &per_cpu(sched_group_core, group);
5917 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005918}
5919#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005920static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5921 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005922{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005923 if (sg)
5924 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005925 return cpu;
5926}
5927#endif
5928
Linus Torvalds1da177e2005-04-16 15:20:36 -07005929static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005930static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005931
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005932static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5933 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005934{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005935 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005936#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005937 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005938 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005939 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005940#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005941 cpumask_t mask = cpu_sibling_map[cpu];
5942 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005943 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005944#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005945 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005946#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005947 if (sg)
5948 *sg = &per_cpu(sched_group_phys, group);
5949 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005950}
5951
5952#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005953/*
5954 * The init_sched_build_groups can't handle what we want to do with node
5955 * groups, so roll our own. Now each node has its own list of groups which
5956 * gets dynamically allocated.
5957 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005958static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005959static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005960
5961static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005962static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005963
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005964static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5965 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005966{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005967 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5968 int group;
5969
5970 cpus_and(nodemask, nodemask, *cpu_map);
5971 group = first_cpu(nodemask);
5972
5973 if (sg)
5974 *sg = &per_cpu(sched_group_allnodes, group);
5975 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005976}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005977
Siddha, Suresh B08069032006-03-27 01:15:23 -08005978static void init_numa_sched_groups_power(struct sched_group *group_head)
5979{
5980 struct sched_group *sg = group_head;
5981 int j;
5982
5983 if (!sg)
5984 return;
5985next_sg:
5986 for_each_cpu_mask(j, sg->cpumask) {
5987 struct sched_domain *sd;
5988
5989 sd = &per_cpu(phys_domains, j);
5990 if (j != first_cpu(sd->groups->cpumask)) {
5991 /*
5992 * Only add "power" once for each
5993 * physical package.
5994 */
5995 continue;
5996 }
5997
Eric Dumazet5517d862007-05-08 00:32:57 -07005998 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005999 }
6000 sg = sg->next;
6001 if (sg != group_head)
6002 goto next_sg;
6003}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006004#endif
6005
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006006#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006007/* Free memory allocated for various sched_group structures */
6008static void free_sched_groups(const cpumask_t *cpu_map)
6009{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006010 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006011
6012 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006013 struct sched_group **sched_group_nodes
6014 = sched_group_nodes_bycpu[cpu];
6015
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006016 if (!sched_group_nodes)
6017 continue;
6018
6019 for (i = 0; i < MAX_NUMNODES; i++) {
6020 cpumask_t nodemask = node_to_cpumask(i);
6021 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6022
6023 cpus_and(nodemask, nodemask, *cpu_map);
6024 if (cpus_empty(nodemask))
6025 continue;
6026
6027 if (sg == NULL)
6028 continue;
6029 sg = sg->next;
6030next_sg:
6031 oldsg = sg;
6032 sg = sg->next;
6033 kfree(oldsg);
6034 if (oldsg != sched_group_nodes[i])
6035 goto next_sg;
6036 }
6037 kfree(sched_group_nodes);
6038 sched_group_nodes_bycpu[cpu] = NULL;
6039 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006040}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006041#else
6042static void free_sched_groups(const cpumask_t *cpu_map)
6043{
6044}
6045#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006046
Linus Torvalds1da177e2005-04-16 15:20:36 -07006047/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006048 * Initialize sched groups cpu_power.
6049 *
6050 * cpu_power indicates the capacity of sched group, which is used while
6051 * distributing the load between different sched groups in a sched domain.
6052 * Typically cpu_power for all the groups in a sched domain will be same unless
6053 * there are asymmetries in the topology. If there are asymmetries, group
6054 * having more cpu_power will pickup more load compared to the group having
6055 * less cpu_power.
6056 *
6057 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6058 * the maximum number of tasks a group can handle in the presence of other idle
6059 * or lightly loaded groups in the same sched domain.
6060 */
6061static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6062{
6063 struct sched_domain *child;
6064 struct sched_group *group;
6065
6066 WARN_ON(!sd || !sd->groups);
6067
6068 if (cpu != first_cpu(sd->groups->cpumask))
6069 return;
6070
6071 child = sd->child;
6072
Eric Dumazet5517d862007-05-08 00:32:57 -07006073 sd->groups->__cpu_power = 0;
6074
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006075 /*
6076 * For perf policy, if the groups in child domain share resources
6077 * (for example cores sharing some portions of the cache hierarchy
6078 * or SMT), then set this domain groups cpu_power such that each group
6079 * can handle only one task, when there are other idle groups in the
6080 * same sched domain.
6081 */
6082 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6083 (child->flags &
6084 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07006085 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006086 return;
6087 }
6088
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006089 /*
6090 * add cpu_power of each child group to this groups cpu_power
6091 */
6092 group = child->groups;
6093 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07006094 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006095 group = group->next;
6096 } while (group != child->groups);
6097}
6098
6099/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006100 * Build sched domains for a given set of cpus and attach the sched domains
6101 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006102 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006103static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006104{
6105 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006106 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07006107#ifdef CONFIG_NUMA
6108 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006109 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006110
6111 /*
6112 * Allocate the per-node list of sched groups
6113 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006114 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006115 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006116 if (!sched_group_nodes) {
6117 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006118 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006119 }
6120 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6121#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006122
6123 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006124 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006125 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006126 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006127 struct sched_domain *sd = NULL, *p;
6128 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6129
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006130 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006131
6132#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006133 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006134 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6135 sd = &per_cpu(allnodes_domains, i);
6136 *sd = SD_ALLNODES_INIT;
6137 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006138 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006139 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006140 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006141 } else
6142 p = NULL;
6143
Linus Torvalds1da177e2005-04-16 15:20:36 -07006144 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006145 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006146 sd->span = sched_domain_node_span(cpu_to_node(i));
6147 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006148 if (p)
6149 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006150 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006151#endif
6152
6153 p = sd;
6154 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006155 *sd = SD_CPU_INIT;
6156 sd->span = nodemask;
6157 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006158 if (p)
6159 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006160 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006161
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006162#ifdef CONFIG_SCHED_MC
6163 p = sd;
6164 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006165 *sd = SD_MC_INIT;
6166 sd->span = cpu_coregroup_map(i);
6167 cpus_and(sd->span, sd->span, *cpu_map);
6168 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006169 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006170 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006171#endif
6172
Linus Torvalds1da177e2005-04-16 15:20:36 -07006173#ifdef CONFIG_SCHED_SMT
6174 p = sd;
6175 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006176 *sd = SD_SIBLING_INIT;
6177 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006178 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006179 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006180 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006181 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006182#endif
6183 }
6184
6185#ifdef CONFIG_SCHED_SMT
6186 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006187 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006188 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006189 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006190 if (i != first_cpu(this_sibling_map))
6191 continue;
6192
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006193 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006194 }
6195#endif
6196
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006197#ifdef CONFIG_SCHED_MC
6198 /* Set up multi-core groups */
6199 for_each_cpu_mask(i, *cpu_map) {
6200 cpumask_t this_core_map = cpu_coregroup_map(i);
6201 cpus_and(this_core_map, this_core_map, *cpu_map);
6202 if (i != first_cpu(this_core_map))
6203 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006204 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006205 }
6206#endif
6207
6208
Linus Torvalds1da177e2005-04-16 15:20:36 -07006209 /* Set up physical groups */
6210 for (i = 0; i < MAX_NUMNODES; i++) {
6211 cpumask_t nodemask = node_to_cpumask(i);
6212
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006213 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006214 if (cpus_empty(nodemask))
6215 continue;
6216
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006217 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006218 }
6219
6220#ifdef CONFIG_NUMA
6221 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006222 if (sd_allnodes)
6223 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006224
6225 for (i = 0; i < MAX_NUMNODES; i++) {
6226 /* Set up node groups */
6227 struct sched_group *sg, *prev;
6228 cpumask_t nodemask = node_to_cpumask(i);
6229 cpumask_t domainspan;
6230 cpumask_t covered = CPU_MASK_NONE;
6231 int j;
6232
6233 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006234 if (cpus_empty(nodemask)) {
6235 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006236 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006237 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006238
6239 domainspan = sched_domain_node_span(i);
6240 cpus_and(domainspan, domainspan, *cpu_map);
6241
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006242 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006243 if (!sg) {
6244 printk(KERN_WARNING "Can not alloc domain group for "
6245 "node %d\n", i);
6246 goto error;
6247 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006248 sched_group_nodes[i] = sg;
6249 for_each_cpu_mask(j, nodemask) {
6250 struct sched_domain *sd;
6251 sd = &per_cpu(node_domains, j);
6252 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006253 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006254 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006255 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006256 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006257 cpus_or(covered, covered, nodemask);
6258 prev = sg;
6259
6260 for (j = 0; j < MAX_NUMNODES; j++) {
6261 cpumask_t tmp, notcovered;
6262 int n = (i + j) % MAX_NUMNODES;
6263
6264 cpus_complement(notcovered, covered);
6265 cpus_and(tmp, notcovered, *cpu_map);
6266 cpus_and(tmp, tmp, domainspan);
6267 if (cpus_empty(tmp))
6268 break;
6269
6270 nodemask = node_to_cpumask(n);
6271 cpus_and(tmp, tmp, nodemask);
6272 if (cpus_empty(tmp))
6273 continue;
6274
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006275 sg = kmalloc_node(sizeof(struct sched_group),
6276 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006277 if (!sg) {
6278 printk(KERN_WARNING
6279 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006280 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006281 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006282 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006283 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006284 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006285 cpus_or(covered, covered, tmp);
6286 prev->next = sg;
6287 prev = sg;
6288 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006289 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006290#endif
6291
6292 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006293#ifdef CONFIG_SCHED_SMT
6294 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006295 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006296 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006297 }
6298#endif
6299#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006300 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006301 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006302 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006303 }
6304#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006305
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006306 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006307 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006308 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006309 }
6310
John Hawkes9c1cfda2005-09-06 15:18:14 -07006311#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006312 for (i = 0; i < MAX_NUMNODES; i++)
6313 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006314
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006315 if (sd_allnodes) {
6316 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006317
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006318 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006319 init_numa_sched_groups_power(sg);
6320 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006321#endif
6322
Linus Torvalds1da177e2005-04-16 15:20:36 -07006323 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006324 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006325 struct sched_domain *sd;
6326#ifdef CONFIG_SCHED_SMT
6327 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006328#elif defined(CONFIG_SCHED_MC)
6329 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006330#else
6331 sd = &per_cpu(phys_domains, i);
6332#endif
6333 cpu_attach_domain(sd, i);
6334 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006335
6336 return 0;
6337
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006338#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006339error:
6340 free_sched_groups(cpu_map);
6341 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006342#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006343}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006344/*
6345 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6346 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006347static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006348{
6349 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006350 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006351
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006352 /*
6353 * Setup mask for cpus without special case scheduling requirements.
6354 * For now this just excludes isolated cpus, but could be used to
6355 * exclude other special cases in the future.
6356 */
6357 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6358
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006359 err = build_sched_domains(&cpu_default_map);
6360
6361 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006362}
6363
6364static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006365{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006366 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006367}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006368
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006369/*
6370 * Detach sched domains from a group of cpus specified in cpu_map
6371 * These cpus will now be attached to the NULL domain
6372 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006373static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006374{
6375 int i;
6376
6377 for_each_cpu_mask(i, *cpu_map)
6378 cpu_attach_domain(NULL, i);
6379 synchronize_sched();
6380 arch_destroy_sched_domains(cpu_map);
6381}
6382
6383/*
6384 * Partition sched domains as specified by the cpumasks below.
6385 * This attaches all cpus from the cpumasks to the NULL domain,
6386 * waits for a RCU quiescent period, recalculates sched
6387 * domain information and then attaches them back to the
6388 * correct sched domains
6389 * Call with hotplug lock held
6390 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006391int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006392{
6393 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006394 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006395
6396 cpus_and(*partition1, *partition1, cpu_online_map);
6397 cpus_and(*partition2, *partition2, cpu_online_map);
6398 cpus_or(change_map, *partition1, *partition2);
6399
6400 /* Detach sched domains from all of the affected cpus */
6401 detach_destroy_domains(&change_map);
6402 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006403 err = build_sched_domains(partition1);
6404 if (!err && !cpus_empty(*partition2))
6405 err = build_sched_domains(partition2);
6406
6407 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006408}
6409
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006410#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6411int arch_reinit_sched_domains(void)
6412{
6413 int err;
6414
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006415 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006416 detach_destroy_domains(&cpu_online_map);
6417 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006418 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006419
6420 return err;
6421}
6422
6423static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6424{
6425 int ret;
6426
6427 if (buf[0] != '0' && buf[0] != '1')
6428 return -EINVAL;
6429
6430 if (smt)
6431 sched_smt_power_savings = (buf[0] == '1');
6432 else
6433 sched_mc_power_savings = (buf[0] == '1');
6434
6435 ret = arch_reinit_sched_domains();
6436
6437 return ret ? ret : count;
6438}
6439
6440int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6441{
6442 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006443
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006444#ifdef CONFIG_SCHED_SMT
6445 if (smt_capable())
6446 err = sysfs_create_file(&cls->kset.kobj,
6447 &attr_sched_smt_power_savings.attr);
6448#endif
6449#ifdef CONFIG_SCHED_MC
6450 if (!err && mc_capable())
6451 err = sysfs_create_file(&cls->kset.kobj,
6452 &attr_sched_mc_power_savings.attr);
6453#endif
6454 return err;
6455}
6456#endif
6457
6458#ifdef CONFIG_SCHED_MC
6459static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6460{
6461 return sprintf(page, "%u\n", sched_mc_power_savings);
6462}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006463static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6464 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006465{
6466 return sched_power_savings_store(buf, count, 0);
6467}
6468SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6469 sched_mc_power_savings_store);
6470#endif
6471
6472#ifdef CONFIG_SCHED_SMT
6473static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6474{
6475 return sprintf(page, "%u\n", sched_smt_power_savings);
6476}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006477static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6478 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006479{
6480 return sched_power_savings_store(buf, count, 1);
6481}
6482SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6483 sched_smt_power_savings_store);
6484#endif
6485
Linus Torvalds1da177e2005-04-16 15:20:36 -07006486/*
6487 * Force a reinitialization of the sched domains hierarchy. The domains
6488 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006489 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006490 * which will prevent rebalancing while the sched domains are recalculated.
6491 */
6492static int update_sched_domains(struct notifier_block *nfb,
6493 unsigned long action, void *hcpu)
6494{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006495 switch (action) {
6496 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006497 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006498 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006499 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006500 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006501 return NOTIFY_OK;
6502
6503 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006504 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006505 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006506 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006507 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006508 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006509 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006510 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006511 /*
6512 * Fall through and re-initialise the domains.
6513 */
6514 break;
6515 default:
6516 return NOTIFY_DONE;
6517 }
6518
6519 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006520 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006521
6522 return NOTIFY_OK;
6523}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006524
6525void __init sched_init_smp(void)
6526{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006527 cpumask_t non_isolated_cpus;
6528
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006529 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006530 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006531 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006532 if (cpus_empty(non_isolated_cpus))
6533 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006534 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006535 /* XXX: Theoretical race here - CPU may be hotplugged now */
6536 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006537
6538 /* Move init over to a non-isolated CPU */
6539 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6540 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006541}
6542#else
6543void __init sched_init_smp(void)
6544{
6545}
6546#endif /* CONFIG_SMP */
6547
6548int in_sched_functions(unsigned long addr)
6549{
6550 /* Linker adds these: start and end of __sched functions */
6551 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006552
Linus Torvalds1da177e2005-04-16 15:20:36 -07006553 return in_lock_functions(addr) ||
6554 (addr >= (unsigned long)__sched_text_start
6555 && addr < (unsigned long)__sched_text_end);
6556}
6557
6558void __init sched_init(void)
6559{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006561 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006562
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006563 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006564 struct prio_array *array;
6565 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006566
6567 rq = cpu_rq(i);
6568 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006569 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006570 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006571 rq->active = rq->arrays;
6572 rq->expired = rq->arrays + 1;
6573 rq->best_expired_prio = MAX_PRIO;
6574
6575#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006576 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006577 for (j = 1; j < 3; j++)
6578 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006579 rq->active_balance = 0;
6580 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006581 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006582 rq->migration_thread = NULL;
6583 INIT_LIST_HEAD(&rq->migration_queue);
6584#endif
6585 atomic_set(&rq->nr_iowait, 0);
6586
6587 for (j = 0; j < 2; j++) {
6588 array = rq->arrays + j;
6589 for (k = 0; k < MAX_PRIO; k++) {
6590 INIT_LIST_HEAD(array->queue + k);
6591 __clear_bit(k, array->bitmap);
6592 }
6593 // delimiter for bitsearch
6594 __set_bit(MAX_PRIO, array->bitmap);
6595 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006596 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006597 }
6598
Peter Williams2dd73a42006-06-27 02:54:34 -07006599 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006600
Christoph Lameterc9819f42006-12-10 02:20:25 -08006601#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006602 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006603 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6604#endif
6605
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006606#ifdef CONFIG_RT_MUTEXES
6607 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6608#endif
6609
Linus Torvalds1da177e2005-04-16 15:20:36 -07006610 /*
6611 * The boot idle thread does lazy MMU switching as well:
6612 */
6613 atomic_inc(&init_mm.mm_count);
6614 enter_lazy_tlb(&init_mm, current);
6615
6616 /*
6617 * Make us the idle thread. Technically, schedule() should not be
6618 * called from this thread, however somewhere below it might be,
6619 * but because we are the idle thread, we just pick up running again
6620 * when this runqueue becomes "idle".
6621 */
6622 init_idle(current, smp_processor_id());
6623}
6624
6625#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6626void __might_sleep(char *file, int line)
6627{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006628#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006629 static unsigned long prev_jiffy; /* ratelimiting */
6630
6631 if ((in_atomic() || irqs_disabled()) &&
6632 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6633 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6634 return;
6635 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006636 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006637 " context at %s:%d\n", file, line);
6638 printk("in_atomic():%d, irqs_disabled():%d\n",
6639 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006640 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006641 if (irqs_disabled())
6642 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006643 dump_stack();
6644 }
6645#endif
6646}
6647EXPORT_SYMBOL(__might_sleep);
6648#endif
6649
6650#ifdef CONFIG_MAGIC_SYSRQ
6651void normalize_rt_tasks(void)
6652{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006653 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006654 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006655 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006656 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006657
6658 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006659
6660 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006661 if (!rt_task(p))
6662 continue;
6663
Ingo Molnarb29739f2006-06-27 02:54:51 -07006664 spin_lock_irqsave(&p->pi_lock, flags);
6665 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006666
6667 array = p->array;
6668 if (array)
6669 deactivate_task(p, task_rq(p));
6670 __setscheduler(p, SCHED_NORMAL, 0);
6671 if (array) {
6672 __activate_task(p, task_rq(p));
6673 resched_task(rq->curr);
6674 }
6675
Ingo Molnarb29739f2006-06-27 02:54:51 -07006676 __task_rq_unlock(rq);
6677 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006678 } while_each_thread(g, p);
6679
Linus Torvalds1da177e2005-04-16 15:20:36 -07006680 read_unlock_irq(&tasklist_lock);
6681}
6682
6683#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006684
6685#ifdef CONFIG_IA64
6686/*
6687 * These functions are only useful for the IA64 MCA handling.
6688 *
6689 * They can only be called when the whole system has been
6690 * stopped - every CPU needs to be quiescent, and no scheduling
6691 * activity can take place. Using them for anything else would
6692 * be a serious bug, and as a result, they aren't even visible
6693 * under any other configuration.
6694 */
6695
6696/**
6697 * curr_task - return the current task for a given cpu.
6698 * @cpu: the processor in question.
6699 *
6700 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6701 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006702struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006703{
6704 return cpu_curr(cpu);
6705}
6706
6707/**
6708 * set_curr_task - set the current task for a given cpu.
6709 * @cpu: the processor in question.
6710 * @p: the task pointer to set.
6711 *
6712 * Description: This function must only be used when non-maskable interrupts
6713 * are serviced on a separate stack. It allows the architecture to switch the
6714 * notion of the current task on a cpu in a non-blocking manner. This function
6715 * must be called with all CPU's synchronized, and interrupts disabled, the
6716 * and caller must save the original value of the current task (see
6717 * curr_task() above) and restore that value before reenabling interrupts and
6718 * re-starting the system.
6719 *
6720 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6721 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006722void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006723{
6724 cpu_curr(cpu) = p;
6725}
6726
6727#endif