| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/kernel/timer.c | 
|  | 3 | * | 
|  | 4 | *  Kernel internal timers, kernel timekeeping, basic process system calls | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | 7 | * | 
|  | 8 | *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better. | 
|  | 9 | * | 
|  | 10 | *  1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
|  | 11 | *              "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | 12 | *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 
|  | 13 | *              serialize accesses to xtime/lost_ticks). | 
|  | 14 | *                              Copyright (C) 1998  Andrea Arcangeli | 
|  | 15 | *  1999-03-10  Improved NTP compatibility by Ulrich Windl | 
|  | 16 | *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love | 
|  | 17 | *  2000-10-05  Implemented scalable SMP per-CPU timer handling. | 
|  | 18 | *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar | 
|  | 19 | *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 
|  | 20 | */ | 
|  | 21 |  | 
|  | 22 | #include <linux/kernel_stat.h> | 
|  | 23 | #include <linux/module.h> | 
|  | 24 | #include <linux/interrupt.h> | 
|  | 25 | #include <linux/percpu.h> | 
|  | 26 | #include <linux/init.h> | 
|  | 27 | #include <linux/mm.h> | 
|  | 28 | #include <linux/swap.h> | 
|  | 29 | #include <linux/notifier.h> | 
|  | 30 | #include <linux/thread_info.h> | 
|  | 31 | #include <linux/time.h> | 
|  | 32 | #include <linux/jiffies.h> | 
|  | 33 | #include <linux/posix-timers.h> | 
|  | 34 | #include <linux/cpu.h> | 
|  | 35 | #include <linux/syscalls.h> | 
|  | 36 |  | 
|  | 37 | #include <asm/uaccess.h> | 
|  | 38 | #include <asm/unistd.h> | 
|  | 39 | #include <asm/div64.h> | 
|  | 40 | #include <asm/timex.h> | 
|  | 41 | #include <asm/io.h> | 
|  | 42 |  | 
|  | 43 | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | 44 | static void time_interpolator_update(long delta_nsec); | 
|  | 45 | #else | 
|  | 46 | #define time_interpolator_update(x) | 
|  | 47 | #endif | 
|  | 48 |  | 
| Thomas Gleixner | ecea8d1 | 2005-10-30 15:03:00 -0800 | [diff] [blame] | 49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 
|  | 50 |  | 
|  | 51 | EXPORT_SYMBOL(jiffies_64); | 
|  | 52 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 53 | /* | 
|  | 54 | * per-CPU timer vector definitions: | 
|  | 55 | */ | 
|  | 56 |  | 
|  | 57 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 
|  | 58 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 
|  | 59 | #define TVN_SIZE (1 << TVN_BITS) | 
|  | 60 | #define TVR_SIZE (1 << TVR_BITS) | 
|  | 61 | #define TVN_MASK (TVN_SIZE - 1) | 
|  | 62 | #define TVR_MASK (TVR_SIZE - 1) | 
|  | 63 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 64 | struct timer_base_s { | 
|  | 65 | spinlock_t lock; | 
|  | 66 | struct timer_list *running_timer; | 
|  | 67 | }; | 
|  | 68 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 69 | typedef struct tvec_s { | 
|  | 70 | struct list_head vec[TVN_SIZE]; | 
|  | 71 | } tvec_t; | 
|  | 72 |  | 
|  | 73 | typedef struct tvec_root_s { | 
|  | 74 | struct list_head vec[TVR_SIZE]; | 
|  | 75 | } tvec_root_t; | 
|  | 76 |  | 
|  | 77 | struct tvec_t_base_s { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 78 | struct timer_base_s t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 79 | unsigned long timer_jiffies; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 80 | tvec_root_t tv1; | 
|  | 81 | tvec_t tv2; | 
|  | 82 | tvec_t tv3; | 
|  | 83 | tvec_t tv4; | 
|  | 84 | tvec_t tv5; | 
|  | 85 | } ____cacheline_aligned_in_smp; | 
|  | 86 |  | 
|  | 87 | typedef struct tvec_t_base_s tvec_base_t; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 88 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 89 |  | 
|  | 90 | static inline void set_running_timer(tvec_base_t *base, | 
|  | 91 | struct timer_list *timer) | 
|  | 92 | { | 
|  | 93 | #ifdef CONFIG_SMP | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 94 | base->t_base.running_timer = timer; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 95 | #endif | 
|  | 96 | } | 
|  | 97 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 98 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 
|  | 99 | { | 
|  | 100 | unsigned long expires = timer->expires; | 
|  | 101 | unsigned long idx = expires - base->timer_jiffies; | 
|  | 102 | struct list_head *vec; | 
|  | 103 |  | 
|  | 104 | if (idx < TVR_SIZE) { | 
|  | 105 | int i = expires & TVR_MASK; | 
|  | 106 | vec = base->tv1.vec + i; | 
|  | 107 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 
|  | 108 | int i = (expires >> TVR_BITS) & TVN_MASK; | 
|  | 109 | vec = base->tv2.vec + i; | 
|  | 110 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 
|  | 111 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 
|  | 112 | vec = base->tv3.vec + i; | 
|  | 113 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 
|  | 114 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 
|  | 115 | vec = base->tv4.vec + i; | 
|  | 116 | } else if ((signed long) idx < 0) { | 
|  | 117 | /* | 
|  | 118 | * Can happen if you add a timer with expires == jiffies, | 
|  | 119 | * or you set a timer to go off in the past | 
|  | 120 | */ | 
|  | 121 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 
|  | 122 | } else { | 
|  | 123 | int i; | 
|  | 124 | /* If the timeout is larger than 0xffffffff on 64-bit | 
|  | 125 | * architectures then we use the maximum timeout: | 
|  | 126 | */ | 
|  | 127 | if (idx > 0xffffffffUL) { | 
|  | 128 | idx = 0xffffffffUL; | 
|  | 129 | expires = idx + base->timer_jiffies; | 
|  | 130 | } | 
|  | 131 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 
|  | 132 | vec = base->tv5.vec + i; | 
|  | 133 | } | 
|  | 134 | /* | 
|  | 135 | * Timers are FIFO: | 
|  | 136 | */ | 
|  | 137 | list_add_tail(&timer->entry, vec); | 
|  | 138 | } | 
|  | 139 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 140 | typedef struct timer_base_s timer_base_t; | 
|  | 141 | /* | 
|  | 142 | * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) | 
|  | 143 | * at compile time, and we need timer->base to lock the timer. | 
|  | 144 | */ | 
|  | 145 | timer_base_t __init_timer_base | 
|  | 146 | ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; | 
|  | 147 | EXPORT_SYMBOL(__init_timer_base); | 
|  | 148 |  | 
|  | 149 | /*** | 
|  | 150 | * init_timer - initialize a timer. | 
|  | 151 | * @timer: the timer to be initialized | 
|  | 152 | * | 
|  | 153 | * init_timer() must be done to a timer prior calling *any* of the | 
|  | 154 | * other timer functions. | 
|  | 155 | */ | 
|  | 156 | void fastcall init_timer(struct timer_list *timer) | 
|  | 157 | { | 
|  | 158 | timer->entry.next = NULL; | 
|  | 159 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 160 | } | 
|  | 161 | EXPORT_SYMBOL(init_timer); | 
|  | 162 |  | 
|  | 163 | static inline void detach_timer(struct timer_list *timer, | 
|  | 164 | int clear_pending) | 
|  | 165 | { | 
|  | 166 | struct list_head *entry = &timer->entry; | 
|  | 167 |  | 
|  | 168 | __list_del(entry->prev, entry->next); | 
|  | 169 | if (clear_pending) | 
|  | 170 | entry->next = NULL; | 
|  | 171 | entry->prev = LIST_POISON2; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock | 
|  | 176 | * means that all timers which are tied to this base via timer->base are | 
|  | 177 | * locked, and the base itself is locked too. | 
|  | 178 | * | 
|  | 179 | * So __run_timers/migrate_timers can safely modify all timers which could | 
|  | 180 | * be found on ->tvX lists. | 
|  | 181 | * | 
|  | 182 | * When the timer's base is locked, and the timer removed from list, it is | 
|  | 183 | * possible to set timer->base = NULL and drop the lock: the timer remains | 
|  | 184 | * locked. | 
|  | 185 | */ | 
|  | 186 | static timer_base_t *lock_timer_base(struct timer_list *timer, | 
|  | 187 | unsigned long *flags) | 
|  | 188 | { | 
|  | 189 | timer_base_t *base; | 
|  | 190 |  | 
|  | 191 | for (;;) { | 
|  | 192 | base = timer->base; | 
|  | 193 | if (likely(base != NULL)) { | 
|  | 194 | spin_lock_irqsave(&base->lock, *flags); | 
|  | 195 | if (likely(base == timer->base)) | 
|  | 196 | return base; | 
|  | 197 | /* The timer has migrated to another CPU */ | 
|  | 198 | spin_unlock_irqrestore(&base->lock, *flags); | 
|  | 199 | } | 
|  | 200 | cpu_relax(); | 
|  | 201 | } | 
|  | 202 | } | 
|  | 203 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 204 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | 205 | { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 206 | timer_base_t *base; | 
|  | 207 | tvec_base_t *new_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 208 | unsigned long flags; | 
|  | 209 | int ret = 0; | 
|  | 210 |  | 
|  | 211 | BUG_ON(!timer->function); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 212 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 213 | base = lock_timer_base(timer, &flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 214 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 215 | if (timer_pending(timer)) { | 
|  | 216 | detach_timer(timer, 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 217 | ret = 1; | 
|  | 218 | } | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 219 |  | 
|  | 220 | new_base = &__get_cpu_var(tvec_bases); | 
|  | 221 |  | 
|  | 222 | if (base != &new_base->t_base) { | 
|  | 223 | /* | 
|  | 224 | * We are trying to schedule the timer on the local CPU. | 
|  | 225 | * However we can't change timer's base while it is running, | 
|  | 226 | * otherwise del_timer_sync() can't detect that the timer's | 
|  | 227 | * handler yet has not finished. This also guarantees that | 
|  | 228 | * the timer is serialized wrt itself. | 
|  | 229 | */ | 
|  | 230 | if (unlikely(base->running_timer == timer)) { | 
|  | 231 | /* The timer remains on a former base */ | 
|  | 232 | new_base = container_of(base, tvec_base_t, t_base); | 
|  | 233 | } else { | 
|  | 234 | /* See the comment in lock_timer_base() */ | 
|  | 235 | timer->base = NULL; | 
|  | 236 | spin_unlock(&base->lock); | 
|  | 237 | spin_lock(&new_base->t_base.lock); | 
|  | 238 | timer->base = &new_base->t_base; | 
|  | 239 | } | 
|  | 240 | } | 
|  | 241 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 242 | timer->expires = expires; | 
|  | 243 | internal_add_timer(new_base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 244 | spin_unlock_irqrestore(&new_base->t_base.lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 245 |  | 
|  | 246 | return ret; | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | EXPORT_SYMBOL(__mod_timer); | 
|  | 250 |  | 
|  | 251 | /*** | 
|  | 252 | * add_timer_on - start a timer on a particular CPU | 
|  | 253 | * @timer: the timer to be added | 
|  | 254 | * @cpu: the CPU to start it on | 
|  | 255 | * | 
|  | 256 | * This is not very scalable on SMP. Double adds are not possible. | 
|  | 257 | */ | 
|  | 258 | void add_timer_on(struct timer_list *timer, int cpu) | 
|  | 259 | { | 
|  | 260 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 
|  | 261 | unsigned long flags; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 262 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 263 | BUG_ON(timer_pending(timer) || !timer->function); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 264 | spin_lock_irqsave(&base->t_base.lock, flags); | 
|  | 265 | timer->base = &base->t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 266 | internal_add_timer(base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 267 | spin_unlock_irqrestore(&base->t_base.lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 268 | } | 
|  | 269 |  | 
|  | 270 |  | 
|  | 271 | /*** | 
|  | 272 | * mod_timer - modify a timer's timeout | 
|  | 273 | * @timer: the timer to be modified | 
|  | 274 | * | 
|  | 275 | * mod_timer is a more efficient way to update the expire field of an | 
|  | 276 | * active timer (if the timer is inactive it will be activated) | 
|  | 277 | * | 
|  | 278 | * mod_timer(timer, expires) is equivalent to: | 
|  | 279 | * | 
|  | 280 | *     del_timer(timer); timer->expires = expires; add_timer(timer); | 
|  | 281 | * | 
|  | 282 | * Note that if there are multiple unserialized concurrent users of the | 
|  | 283 | * same timer, then mod_timer() is the only safe way to modify the timeout, | 
|  | 284 | * since add_timer() cannot modify an already running timer. | 
|  | 285 | * | 
|  | 286 | * The function returns whether it has modified a pending timer or not. | 
|  | 287 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 
|  | 288 | * active timer returns 1.) | 
|  | 289 | */ | 
|  | 290 | int mod_timer(struct timer_list *timer, unsigned long expires) | 
|  | 291 | { | 
|  | 292 | BUG_ON(!timer->function); | 
|  | 293 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 294 | /* | 
|  | 295 | * This is a common optimization triggered by the | 
|  | 296 | * networking code - if the timer is re-modified | 
|  | 297 | * to be the same thing then just return: | 
|  | 298 | */ | 
|  | 299 | if (timer->expires == expires && timer_pending(timer)) | 
|  | 300 | return 1; | 
|  | 301 |  | 
|  | 302 | return __mod_timer(timer, expires); | 
|  | 303 | } | 
|  | 304 |  | 
|  | 305 | EXPORT_SYMBOL(mod_timer); | 
|  | 306 |  | 
|  | 307 | /*** | 
|  | 308 | * del_timer - deactive a timer. | 
|  | 309 | * @timer: the timer to be deactivated | 
|  | 310 | * | 
|  | 311 | * del_timer() deactivates a timer - this works on both active and inactive | 
|  | 312 | * timers. | 
|  | 313 | * | 
|  | 314 | * The function returns whether it has deactivated a pending timer or not. | 
|  | 315 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 
|  | 316 | * active timer returns 1.) | 
|  | 317 | */ | 
|  | 318 | int del_timer(struct timer_list *timer) | 
|  | 319 | { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 320 | timer_base_t *base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 321 | unsigned long flags; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 322 | int ret = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 323 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 324 | if (timer_pending(timer)) { | 
|  | 325 | base = lock_timer_base(timer, &flags); | 
|  | 326 | if (timer_pending(timer)) { | 
|  | 327 | detach_timer(timer, 1); | 
|  | 328 | ret = 1; | 
|  | 329 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 330 | spin_unlock_irqrestore(&base->lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 331 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 332 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 333 | return ret; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 334 | } | 
|  | 335 |  | 
|  | 336 | EXPORT_SYMBOL(del_timer); | 
|  | 337 |  | 
|  | 338 | #ifdef CONFIG_SMP | 
| Oleg Nesterov | fd450b7 | 2005-06-23 00:08:59 -0700 | [diff] [blame] | 339 | /* | 
|  | 340 | * This function tries to deactivate a timer. Upon successful (ret >= 0) | 
|  | 341 | * exit the timer is not queued and the handler is not running on any CPU. | 
|  | 342 | * | 
|  | 343 | * It must not be called from interrupt contexts. | 
|  | 344 | */ | 
|  | 345 | int try_to_del_timer_sync(struct timer_list *timer) | 
|  | 346 | { | 
|  | 347 | timer_base_t *base; | 
|  | 348 | unsigned long flags; | 
|  | 349 | int ret = -1; | 
|  | 350 |  | 
|  | 351 | base = lock_timer_base(timer, &flags); | 
|  | 352 |  | 
|  | 353 | if (base->running_timer == timer) | 
|  | 354 | goto out; | 
|  | 355 |  | 
|  | 356 | ret = 0; | 
|  | 357 | if (timer_pending(timer)) { | 
|  | 358 | detach_timer(timer, 1); | 
|  | 359 | ret = 1; | 
|  | 360 | } | 
|  | 361 | out: | 
|  | 362 | spin_unlock_irqrestore(&base->lock, flags); | 
|  | 363 |  | 
|  | 364 | return ret; | 
|  | 365 | } | 
|  | 366 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 367 | /*** | 
|  | 368 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | 
|  | 369 | * @timer: the timer to be deactivated | 
|  | 370 | * | 
|  | 371 | * This function only differs from del_timer() on SMP: besides deactivating | 
|  | 372 | * the timer it also makes sure the handler has finished executing on other | 
|  | 373 | * CPUs. | 
|  | 374 | * | 
|  | 375 | * Synchronization rules: callers must prevent restarting of the timer, | 
|  | 376 | * otherwise this function is meaningless. It must not be called from | 
|  | 377 | * interrupt contexts. The caller must not hold locks which would prevent | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 378 | * completion of the timer's handler. The timer's handler must not call | 
|  | 379 | * add_timer_on(). Upon exit the timer is not queued and the handler is | 
|  | 380 | * not running on any CPU. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 381 | * | 
|  | 382 | * The function returns whether it has deactivated a pending timer or not. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 383 | */ | 
|  | 384 | int del_timer_sync(struct timer_list *timer) | 
|  | 385 | { | 
| Oleg Nesterov | fd450b7 | 2005-06-23 00:08:59 -0700 | [diff] [blame] | 386 | for (;;) { | 
|  | 387 | int ret = try_to_del_timer_sync(timer); | 
|  | 388 | if (ret >= 0) | 
|  | 389 | return ret; | 
|  | 390 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 391 | } | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 392 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 393 | EXPORT_SYMBOL(del_timer_sync); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 394 | #endif | 
|  | 395 |  | 
|  | 396 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 
|  | 397 | { | 
|  | 398 | /* cascade all the timers from tv up one level */ | 
|  | 399 | struct list_head *head, *curr; | 
|  | 400 |  | 
|  | 401 | head = tv->vec + index; | 
|  | 402 | curr = head->next; | 
|  | 403 | /* | 
|  | 404 | * We are removing _all_ timers from the list, so we don't  have to | 
|  | 405 | * detach them individually, just clear the list afterwards. | 
|  | 406 | */ | 
|  | 407 | while (curr != head) { | 
|  | 408 | struct timer_list *tmp; | 
|  | 409 |  | 
|  | 410 | tmp = list_entry(curr, struct timer_list, entry); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 411 | BUG_ON(tmp->base != &base->t_base); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 412 | curr = curr->next; | 
|  | 413 | internal_add_timer(base, tmp); | 
|  | 414 | } | 
|  | 415 | INIT_LIST_HEAD(head); | 
|  | 416 |  | 
|  | 417 | return index; | 
|  | 418 | } | 
|  | 419 |  | 
|  | 420 | /*** | 
|  | 421 | * __run_timers - run all expired timers (if any) on this CPU. | 
|  | 422 | * @base: the timer vector to be processed. | 
|  | 423 | * | 
|  | 424 | * This function cascades all vectors and executes all expired timer | 
|  | 425 | * vectors. | 
|  | 426 | */ | 
|  | 427 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 
|  | 428 |  | 
|  | 429 | static inline void __run_timers(tvec_base_t *base) | 
|  | 430 | { | 
|  | 431 | struct timer_list *timer; | 
|  | 432 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 433 | spin_lock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 434 | while (time_after_eq(jiffies, base->timer_jiffies)) { | 
|  | 435 | struct list_head work_list = LIST_HEAD_INIT(work_list); | 
|  | 436 | struct list_head *head = &work_list; | 
|  | 437 | int index = base->timer_jiffies & TVR_MASK; | 
|  | 438 |  | 
|  | 439 | /* | 
|  | 440 | * Cascade timers: | 
|  | 441 | */ | 
|  | 442 | if (!index && | 
|  | 443 | (!cascade(base, &base->tv2, INDEX(0))) && | 
|  | 444 | (!cascade(base, &base->tv3, INDEX(1))) && | 
|  | 445 | !cascade(base, &base->tv4, INDEX(2))) | 
|  | 446 | cascade(base, &base->tv5, INDEX(3)); | 
|  | 447 | ++base->timer_jiffies; | 
|  | 448 | list_splice_init(base->tv1.vec + index, &work_list); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 449 | while (!list_empty(head)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 450 | void (*fn)(unsigned long); | 
|  | 451 | unsigned long data; | 
|  | 452 |  | 
|  | 453 | timer = list_entry(head->next,struct timer_list,entry); | 
|  | 454 | fn = timer->function; | 
|  | 455 | data = timer->data; | 
|  | 456 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 457 | set_running_timer(base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 458 | detach_timer(timer, 1); | 
|  | 459 | spin_unlock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 460 | { | 
| Jesper Juhl | be5b4fb | 2005-06-23 00:09:09 -0700 | [diff] [blame] | 461 | int preempt_count = preempt_count(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 462 | fn(data); | 
|  | 463 | if (preempt_count != preempt_count()) { | 
| Jesper Juhl | be5b4fb | 2005-06-23 00:09:09 -0700 | [diff] [blame] | 464 | printk(KERN_WARNING "huh, entered %p " | 
|  | 465 | "with preempt_count %08x, exited" | 
|  | 466 | " with %08x?\n", | 
|  | 467 | fn, preempt_count, | 
|  | 468 | preempt_count()); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 469 | BUG(); | 
|  | 470 | } | 
|  | 471 | } | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 472 | spin_lock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 473 | } | 
|  | 474 | } | 
|  | 475 | set_running_timer(base, NULL); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 476 | spin_unlock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 477 | } | 
|  | 478 |  | 
|  | 479 | #ifdef CONFIG_NO_IDLE_HZ | 
|  | 480 | /* | 
|  | 481 | * Find out when the next timer event is due to happen. This | 
|  | 482 | * is used on S/390 to stop all activity when a cpus is idle. | 
|  | 483 | * This functions needs to be called disabled. | 
|  | 484 | */ | 
|  | 485 | unsigned long next_timer_interrupt(void) | 
|  | 486 | { | 
|  | 487 | tvec_base_t *base; | 
|  | 488 | struct list_head *list; | 
|  | 489 | struct timer_list *nte; | 
|  | 490 | unsigned long expires; | 
|  | 491 | tvec_t *varray[4]; | 
|  | 492 | int i, j; | 
|  | 493 |  | 
|  | 494 | base = &__get_cpu_var(tvec_bases); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 495 | spin_lock(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 496 | expires = base->timer_jiffies + (LONG_MAX >> 1); | 
|  | 497 | list = 0; | 
|  | 498 |  | 
|  | 499 | /* Look for timer events in tv1. */ | 
|  | 500 | j = base->timer_jiffies & TVR_MASK; | 
|  | 501 | do { | 
|  | 502 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | 
|  | 503 | expires = nte->expires; | 
|  | 504 | if (j < (base->timer_jiffies & TVR_MASK)) | 
|  | 505 | list = base->tv2.vec + (INDEX(0)); | 
|  | 506 | goto found; | 
|  | 507 | } | 
|  | 508 | j = (j + 1) & TVR_MASK; | 
|  | 509 | } while (j != (base->timer_jiffies & TVR_MASK)); | 
|  | 510 |  | 
|  | 511 | /* Check tv2-tv5. */ | 
|  | 512 | varray[0] = &base->tv2; | 
|  | 513 | varray[1] = &base->tv3; | 
|  | 514 | varray[2] = &base->tv4; | 
|  | 515 | varray[3] = &base->tv5; | 
|  | 516 | for (i = 0; i < 4; i++) { | 
|  | 517 | j = INDEX(i); | 
|  | 518 | do { | 
|  | 519 | if (list_empty(varray[i]->vec + j)) { | 
|  | 520 | j = (j + 1) & TVN_MASK; | 
|  | 521 | continue; | 
|  | 522 | } | 
|  | 523 | list_for_each_entry(nte, varray[i]->vec + j, entry) | 
|  | 524 | if (time_before(nte->expires, expires)) | 
|  | 525 | expires = nte->expires; | 
|  | 526 | if (j < (INDEX(i)) && i < 3) | 
|  | 527 | list = varray[i + 1]->vec + (INDEX(i + 1)); | 
|  | 528 | goto found; | 
|  | 529 | } while (j != (INDEX(i))); | 
|  | 530 | } | 
|  | 531 | found: | 
|  | 532 | if (list) { | 
|  | 533 | /* | 
|  | 534 | * The search wrapped. We need to look at the next list | 
|  | 535 | * from next tv element that would cascade into tv element | 
|  | 536 | * where we found the timer element. | 
|  | 537 | */ | 
|  | 538 | list_for_each_entry(nte, list, entry) { | 
|  | 539 | if (time_before(nte->expires, expires)) | 
|  | 540 | expires = nte->expires; | 
|  | 541 | } | 
|  | 542 | } | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 543 | spin_unlock(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 544 | return expires; | 
|  | 545 | } | 
|  | 546 | #endif | 
|  | 547 |  | 
|  | 548 | /******************************************************************/ | 
|  | 549 |  | 
|  | 550 | /* | 
|  | 551 | * Timekeeping variables | 
|  | 552 | */ | 
|  | 553 | unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */ | 
|  | 554 | unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */ | 
|  | 555 |  | 
|  | 556 | /* | 
|  | 557 | * The current time | 
|  | 558 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | 
|  | 559 | * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
|  | 560 | * at zero at system boot time, so wall_to_monotonic will be negative, | 
|  | 561 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
|  | 562 | * the usual normalization. | 
|  | 563 | */ | 
|  | 564 | struct timespec xtime __attribute__ ((aligned (16))); | 
|  | 565 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 
|  | 566 |  | 
|  | 567 | EXPORT_SYMBOL(xtime); | 
|  | 568 |  | 
|  | 569 | /* Don't completely fail for HZ > 500.  */ | 
|  | 570 | int tickadj = 500/HZ ? : 1;		/* microsecs */ | 
|  | 571 |  | 
|  | 572 |  | 
|  | 573 | /* | 
|  | 574 | * phase-lock loop variables | 
|  | 575 | */ | 
|  | 576 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 
|  | 577 | int time_state = TIME_OK;		/* clock synchronization status	*/ | 
|  | 578 | int time_status = STA_UNSYNC;		/* clock status bits		*/ | 
|  | 579 | long time_offset;			/* time adjustment (us)		*/ | 
|  | 580 | long time_constant = 2;			/* pll time constant		*/ | 
|  | 581 | long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/ | 
|  | 582 | long time_precision = 1;		/* clock precision (us)		*/ | 
|  | 583 | long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/ | 
|  | 584 | long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/ | 
|  | 585 | static long time_phase;			/* phase offset (scaled us)	*/ | 
|  | 586 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 
|  | 587 | /* frequency offset (scaled ppm)*/ | 
|  | 588 | static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/ | 
|  | 589 | long time_reftime;			/* time at last adjustment (s)	*/ | 
|  | 590 | long time_adjust; | 
|  | 591 | long time_next_adjust; | 
|  | 592 |  | 
|  | 593 | /* | 
|  | 594 | * this routine handles the overflow of the microsecond field | 
|  | 595 | * | 
|  | 596 | * The tricky bits of code to handle the accurate clock support | 
|  | 597 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
|  | 598 | * They were originally developed for SUN and DEC kernels. | 
|  | 599 | * All the kudos should go to Dave for this stuff. | 
|  | 600 | * | 
|  | 601 | */ | 
|  | 602 | static void second_overflow(void) | 
|  | 603 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 604 | long ltemp; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 605 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 606 | /* Bump the maxerror field */ | 
|  | 607 | time_maxerror += time_tolerance >> SHIFT_USEC; | 
|  | 608 | if (time_maxerror > NTP_PHASE_LIMIT) { | 
|  | 609 | time_maxerror = NTP_PHASE_LIMIT; | 
|  | 610 | time_status |= STA_UNSYNC; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 611 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 612 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 613 | /* | 
|  | 614 | * Leap second processing. If in leap-insert state at the end of the | 
|  | 615 | * day, the system clock is set back one second; if in leap-delete | 
|  | 616 | * state, the system clock is set ahead one second. The microtime() | 
|  | 617 | * routine or external clock driver will insure that reported time is | 
|  | 618 | * always monotonic. The ugly divides should be replaced. | 
|  | 619 | */ | 
|  | 620 | switch (time_state) { | 
|  | 621 | case TIME_OK: | 
|  | 622 | if (time_status & STA_INS) | 
|  | 623 | time_state = TIME_INS; | 
|  | 624 | else if (time_status & STA_DEL) | 
|  | 625 | time_state = TIME_DEL; | 
|  | 626 | break; | 
|  | 627 | case TIME_INS: | 
|  | 628 | if (xtime.tv_sec % 86400 == 0) { | 
|  | 629 | xtime.tv_sec--; | 
|  | 630 | wall_to_monotonic.tv_sec++; | 
|  | 631 | /* | 
|  | 632 | * The timer interpolator will make time change | 
|  | 633 | * gradually instead of an immediate jump by one second | 
|  | 634 | */ | 
|  | 635 | time_interpolator_update(-NSEC_PER_SEC); | 
|  | 636 | time_state = TIME_OOP; | 
|  | 637 | clock_was_set(); | 
|  | 638 | printk(KERN_NOTICE "Clock: inserting leap second " | 
|  | 639 | "23:59:60 UTC\n"); | 
|  | 640 | } | 
|  | 641 | break; | 
|  | 642 | case TIME_DEL: | 
|  | 643 | if ((xtime.tv_sec + 1) % 86400 == 0) { | 
|  | 644 | xtime.tv_sec++; | 
|  | 645 | wall_to_monotonic.tv_sec--; | 
|  | 646 | /* | 
|  | 647 | * Use of time interpolator for a gradual change of | 
|  | 648 | * time | 
|  | 649 | */ | 
|  | 650 | time_interpolator_update(NSEC_PER_SEC); | 
|  | 651 | time_state = TIME_WAIT; | 
|  | 652 | clock_was_set(); | 
|  | 653 | printk(KERN_NOTICE "Clock: deleting leap second " | 
|  | 654 | "23:59:59 UTC\n"); | 
|  | 655 | } | 
|  | 656 | break; | 
|  | 657 | case TIME_OOP: | 
|  | 658 | time_state = TIME_WAIT; | 
|  | 659 | break; | 
|  | 660 | case TIME_WAIT: | 
|  | 661 | if (!(time_status & (STA_INS | STA_DEL))) | 
|  | 662 | time_state = TIME_OK; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 663 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 664 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 665 | /* | 
|  | 666 | * Compute the phase adjustment for the next second. In PLL mode, the | 
|  | 667 | * offset is reduced by a fixed factor times the time constant. In FLL | 
|  | 668 | * mode the offset is used directly. In either mode, the maximum phase | 
|  | 669 | * adjustment for each second is clamped so as to spread the adjustment | 
|  | 670 | * over not more than the number of seconds between updates. | 
|  | 671 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 672 | ltemp = time_offset; | 
|  | 673 | if (!(time_status & STA_FLL)) | 
| john stultz | 1bb34a4 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 674 | ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | 
|  | 675 | ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
|  | 676 | ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 677 | time_offset -= ltemp; | 
|  | 678 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 679 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 680 | /* | 
|  | 681 | * Compute the frequency estimate and additional phase adjustment due | 
|  | 682 | * to frequency error for the next second. When the PPS signal is | 
|  | 683 | * engaged, gnaw on the watchdog counter and update the frequency | 
|  | 684 | * computed by the pll and the PPS signal. | 
|  | 685 | */ | 
|  | 686 | pps_valid++; | 
|  | 687 | if (pps_valid == PPS_VALID) {	/* PPS signal lost */ | 
|  | 688 | pps_jitter = MAXTIME; | 
|  | 689 | pps_stabil = MAXFREQ; | 
|  | 690 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
|  | 691 | STA_PPSWANDER | STA_PPSERROR); | 
|  | 692 | } | 
|  | 693 | ltemp = time_freq + pps_freq; | 
|  | 694 | time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 695 |  | 
|  | 696 | #if HZ == 100 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 697 | /* | 
|  | 698 | * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to | 
|  | 699 | * get 128.125; => only 0.125% error (p. 14) | 
|  | 700 | */ | 
|  | 701 | time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 702 | #endif | 
| YOSHIFUJI Hideaki | 4b8f573 | 2005-10-29 18:15:42 -0700 | [diff] [blame] | 703 | #if HZ == 250 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 704 | /* | 
|  | 705 | * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and | 
|  | 706 | * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | 
|  | 707 | */ | 
|  | 708 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
| YOSHIFUJI Hideaki | 4b8f573 | 2005-10-29 18:15:42 -0700 | [diff] [blame] | 709 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 710 | #if HZ == 1000 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 711 | /* | 
|  | 712 | * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and | 
|  | 713 | * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 
|  | 714 | */ | 
|  | 715 | time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 716 | #endif | 
|  | 717 | } | 
|  | 718 |  | 
|  | 719 | /* in the NTP reference this is called "hardclock()" */ | 
|  | 720 | static void update_wall_time_one_tick(void) | 
|  | 721 | { | 
|  | 722 | long time_adjust_step, delta_nsec; | 
|  | 723 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 724 | if ((time_adjust_step = time_adjust) != 0 ) { | 
|  | 725 | /* | 
|  | 726 | * We are doing an adjtime thing.  Prepare time_adjust_step to | 
|  | 727 | * be within bounds.  Note that a positive time_adjust means we | 
|  | 728 | * want the clock to run faster. | 
|  | 729 | * | 
|  | 730 | * Limit the amount of the step to be in the range | 
|  | 731 | * -tickadj .. +tickadj | 
|  | 732 | */ | 
|  | 733 | time_adjust_step = min(time_adjust_step, (long)tickadj); | 
|  | 734 | time_adjust_step = max(time_adjust_step, (long)-tickadj); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 735 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 736 | /* Reduce by this step the amount of time left  */ | 
|  | 737 | time_adjust -= time_adjust_step; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 738 | } | 
|  | 739 | delta_nsec = tick_nsec + time_adjust_step * 1000; | 
|  | 740 | /* | 
|  | 741 | * Advance the phase, once it gets to one microsecond, then | 
|  | 742 | * advance the tick more. | 
|  | 743 | */ | 
|  | 744 | time_phase += time_adj; | 
| john stultz | 1bb34a4 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 745 | if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) { | 
|  | 746 | long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 747 | time_phase -= ltemp << (SHIFT_SCALE - 10); | 
|  | 748 | delta_nsec += ltemp; | 
|  | 749 | } | 
|  | 750 | xtime.tv_nsec += delta_nsec; | 
|  | 751 | time_interpolator_update(delta_nsec); | 
|  | 752 |  | 
|  | 753 | /* Changes by adjtime() do not take effect till next tick. */ | 
|  | 754 | if (time_next_adjust != 0) { | 
|  | 755 | time_adjust = time_next_adjust; | 
|  | 756 | time_next_adjust = 0; | 
|  | 757 | } | 
|  | 758 | } | 
|  | 759 |  | 
|  | 760 | /* | 
|  | 761 | * Using a loop looks inefficient, but "ticks" is | 
|  | 762 | * usually just one (we shouldn't be losing ticks, | 
|  | 763 | * we're doing this this way mainly for interrupt | 
|  | 764 | * latency reasons, not because we think we'll | 
|  | 765 | * have lots of lost timer ticks | 
|  | 766 | */ | 
|  | 767 | static void update_wall_time(unsigned long ticks) | 
|  | 768 | { | 
|  | 769 | do { | 
|  | 770 | ticks--; | 
|  | 771 | update_wall_time_one_tick(); | 
|  | 772 | if (xtime.tv_nsec >= 1000000000) { | 
|  | 773 | xtime.tv_nsec -= 1000000000; | 
|  | 774 | xtime.tv_sec++; | 
|  | 775 | second_overflow(); | 
|  | 776 | } | 
|  | 777 | } while (ticks); | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | /* | 
|  | 781 | * Called from the timer interrupt handler to charge one tick to the current | 
|  | 782 | * process.  user_tick is 1 if the tick is user time, 0 for system. | 
|  | 783 | */ | 
|  | 784 | void update_process_times(int user_tick) | 
|  | 785 | { | 
|  | 786 | struct task_struct *p = current; | 
|  | 787 | int cpu = smp_processor_id(); | 
|  | 788 |  | 
|  | 789 | /* Note: this timer irq context must be accounted for as well. */ | 
|  | 790 | if (user_tick) | 
|  | 791 | account_user_time(p, jiffies_to_cputime(1)); | 
|  | 792 | else | 
|  | 793 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 
|  | 794 | run_local_timers(); | 
|  | 795 | if (rcu_pending(cpu)) | 
|  | 796 | rcu_check_callbacks(cpu, user_tick); | 
|  | 797 | scheduler_tick(); | 
|  | 798 | run_posix_cpu_timers(p); | 
|  | 799 | } | 
|  | 800 |  | 
|  | 801 | /* | 
|  | 802 | * Nr of active tasks - counted in fixed-point numbers | 
|  | 803 | */ | 
|  | 804 | static unsigned long count_active_tasks(void) | 
|  | 805 | { | 
|  | 806 | return (nr_running() + nr_uninterruptible()) * FIXED_1; | 
|  | 807 | } | 
|  | 808 |  | 
|  | 809 | /* | 
|  | 810 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 
|  | 811 | * imply that avenrun[] is the standard name for this kind of thing. | 
|  | 812 | * Nothing else seems to be standardized: the fractional size etc | 
|  | 813 | * all seem to differ on different machines. | 
|  | 814 | * | 
|  | 815 | * Requires xtime_lock to access. | 
|  | 816 | */ | 
|  | 817 | unsigned long avenrun[3]; | 
|  | 818 |  | 
|  | 819 | EXPORT_SYMBOL(avenrun); | 
|  | 820 |  | 
|  | 821 | /* | 
|  | 822 | * calc_load - given tick count, update the avenrun load estimates. | 
|  | 823 | * This is called while holding a write_lock on xtime_lock. | 
|  | 824 | */ | 
|  | 825 | static inline void calc_load(unsigned long ticks) | 
|  | 826 | { | 
|  | 827 | unsigned long active_tasks; /* fixed-point */ | 
|  | 828 | static int count = LOAD_FREQ; | 
|  | 829 |  | 
|  | 830 | count -= ticks; | 
|  | 831 | if (count < 0) { | 
|  | 832 | count += LOAD_FREQ; | 
|  | 833 | active_tasks = count_active_tasks(); | 
|  | 834 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 
|  | 835 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 
|  | 836 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 
|  | 837 | } | 
|  | 838 | } | 
|  | 839 |  | 
|  | 840 | /* jiffies at the most recent update of wall time */ | 
|  | 841 | unsigned long wall_jiffies = INITIAL_JIFFIES; | 
|  | 842 |  | 
|  | 843 | /* | 
|  | 844 | * This read-write spinlock protects us from races in SMP while | 
|  | 845 | * playing with xtime and avenrun. | 
|  | 846 | */ | 
|  | 847 | #ifndef ARCH_HAVE_XTIME_LOCK | 
|  | 848 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 
|  | 849 |  | 
|  | 850 | EXPORT_SYMBOL(xtime_lock); | 
|  | 851 | #endif | 
|  | 852 |  | 
|  | 853 | /* | 
|  | 854 | * This function runs timers and the timer-tq in bottom half context. | 
|  | 855 | */ | 
|  | 856 | static void run_timer_softirq(struct softirq_action *h) | 
|  | 857 | { | 
|  | 858 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | 
|  | 859 |  | 
|  | 860 | if (time_after_eq(jiffies, base->timer_jiffies)) | 
|  | 861 | __run_timers(base); | 
|  | 862 | } | 
|  | 863 |  | 
|  | 864 | /* | 
|  | 865 | * Called by the local, per-CPU timer interrupt on SMP. | 
|  | 866 | */ | 
|  | 867 | void run_local_timers(void) | 
|  | 868 | { | 
|  | 869 | raise_softirq(TIMER_SOFTIRQ); | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | /* | 
|  | 873 | * Called by the timer interrupt. xtime_lock must already be taken | 
|  | 874 | * by the timer IRQ! | 
|  | 875 | */ | 
|  | 876 | static inline void update_times(void) | 
|  | 877 | { | 
|  | 878 | unsigned long ticks; | 
|  | 879 |  | 
|  | 880 | ticks = jiffies - wall_jiffies; | 
|  | 881 | if (ticks) { | 
|  | 882 | wall_jiffies += ticks; | 
|  | 883 | update_wall_time(ticks); | 
|  | 884 | } | 
|  | 885 | calc_load(ticks); | 
|  | 886 | } | 
|  | 887 |  | 
|  | 888 | /* | 
|  | 889 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
|  | 890 | * without sampling the sequence number in xtime_lock. | 
|  | 891 | * jiffies is defined in the linker script... | 
|  | 892 | */ | 
|  | 893 |  | 
|  | 894 | void do_timer(struct pt_regs *regs) | 
|  | 895 | { | 
|  | 896 | jiffies_64++; | 
|  | 897 | update_times(); | 
| Ingo Molnar | 8446f1d | 2005-09-06 15:16:27 -0700 | [diff] [blame] | 898 | softlockup_tick(regs); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 899 | } | 
|  | 900 |  | 
|  | 901 | #ifdef __ARCH_WANT_SYS_ALARM | 
|  | 902 |  | 
|  | 903 | /* | 
|  | 904 | * For backwards compatibility?  This can be done in libc so Alpha | 
|  | 905 | * and all newer ports shouldn't need it. | 
|  | 906 | */ | 
|  | 907 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 
|  | 908 | { | 
|  | 909 | struct itimerval it_new, it_old; | 
|  | 910 | unsigned int oldalarm; | 
|  | 911 |  | 
|  | 912 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | 
|  | 913 | it_new.it_value.tv_sec = seconds; | 
|  | 914 | it_new.it_value.tv_usec = 0; | 
|  | 915 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | 
|  | 916 | oldalarm = it_old.it_value.tv_sec; | 
|  | 917 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | 
|  | 918 | /* And we'd better return too much than too little anyway */ | 
|  | 919 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | 
|  | 920 | oldalarm++; | 
|  | 921 | return oldalarm; | 
|  | 922 | } | 
|  | 923 |  | 
|  | 924 | #endif | 
|  | 925 |  | 
|  | 926 | #ifndef __alpha__ | 
|  | 927 |  | 
|  | 928 | /* | 
|  | 929 | * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this | 
|  | 930 | * should be moved into arch/i386 instead? | 
|  | 931 | */ | 
|  | 932 |  | 
|  | 933 | /** | 
|  | 934 | * sys_getpid - return the thread group id of the current process | 
|  | 935 | * | 
|  | 936 | * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
|  | 937 | * the pid are identical unless CLONE_THREAD was specified on clone() in | 
|  | 938 | * which case the tgid is the same in all threads of the same group. | 
|  | 939 | * | 
|  | 940 | * This is SMP safe as current->tgid does not change. | 
|  | 941 | */ | 
|  | 942 | asmlinkage long sys_getpid(void) | 
|  | 943 | { | 
|  | 944 | return current->tgid; | 
|  | 945 | } | 
|  | 946 |  | 
|  | 947 | /* | 
|  | 948 | * Accessing ->group_leader->real_parent is not SMP-safe, it could | 
|  | 949 | * change from under us. However, rather than getting any lock | 
|  | 950 | * we can use an optimistic algorithm: get the parent | 
|  | 951 | * pid, and go back and check that the parent is still | 
|  | 952 | * the same. If it has changed (which is extremely unlikely | 
|  | 953 | * indeed), we just try again.. | 
|  | 954 | * | 
|  | 955 | * NOTE! This depends on the fact that even if we _do_ | 
|  | 956 | * get an old value of "parent", we can happily dereference | 
|  | 957 | * the pointer (it was and remains a dereferencable kernel pointer | 
|  | 958 | * no matter what): we just can't necessarily trust the result | 
|  | 959 | * until we know that the parent pointer is valid. | 
|  | 960 | * | 
|  | 961 | * NOTE2: ->group_leader never changes from under us. | 
|  | 962 | */ | 
|  | 963 | asmlinkage long sys_getppid(void) | 
|  | 964 | { | 
|  | 965 | int pid; | 
|  | 966 | struct task_struct *me = current; | 
|  | 967 | struct task_struct *parent; | 
|  | 968 |  | 
|  | 969 | parent = me->group_leader->real_parent; | 
|  | 970 | for (;;) { | 
|  | 971 | pid = parent->tgid; | 
| David Meybohm | 4c5640c | 2005-08-22 13:11:08 -0700 | [diff] [blame] | 972 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 973 | { | 
|  | 974 | struct task_struct *old = parent; | 
|  | 975 |  | 
|  | 976 | /* | 
|  | 977 | * Make sure we read the pid before re-reading the | 
|  | 978 | * parent pointer: | 
|  | 979 | */ | 
| akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 980 | smp_rmb(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 981 | parent = me->group_leader->real_parent; | 
|  | 982 | if (old != parent) | 
|  | 983 | continue; | 
|  | 984 | } | 
|  | 985 | #endif | 
|  | 986 | break; | 
|  | 987 | } | 
|  | 988 | return pid; | 
|  | 989 | } | 
|  | 990 |  | 
|  | 991 | asmlinkage long sys_getuid(void) | 
|  | 992 | { | 
|  | 993 | /* Only we change this so SMP safe */ | 
|  | 994 | return current->uid; | 
|  | 995 | } | 
|  | 996 |  | 
|  | 997 | asmlinkage long sys_geteuid(void) | 
|  | 998 | { | 
|  | 999 | /* Only we change this so SMP safe */ | 
|  | 1000 | return current->euid; | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | asmlinkage long sys_getgid(void) | 
|  | 1004 | { | 
|  | 1005 | /* Only we change this so SMP safe */ | 
|  | 1006 | return current->gid; | 
|  | 1007 | } | 
|  | 1008 |  | 
|  | 1009 | asmlinkage long sys_getegid(void) | 
|  | 1010 | { | 
|  | 1011 | /* Only we change this so SMP safe */ | 
|  | 1012 | return  current->egid; | 
|  | 1013 | } | 
|  | 1014 |  | 
|  | 1015 | #endif | 
|  | 1016 |  | 
|  | 1017 | static void process_timeout(unsigned long __data) | 
|  | 1018 | { | 
|  | 1019 | wake_up_process((task_t *)__data); | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | /** | 
|  | 1023 | * schedule_timeout - sleep until timeout | 
|  | 1024 | * @timeout: timeout value in jiffies | 
|  | 1025 | * | 
|  | 1026 | * Make the current task sleep until @timeout jiffies have | 
|  | 1027 | * elapsed. The routine will return immediately unless | 
|  | 1028 | * the current task state has been set (see set_current_state()). | 
|  | 1029 | * | 
|  | 1030 | * You can set the task state as follows - | 
|  | 1031 | * | 
|  | 1032 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 
|  | 1033 | * pass before the routine returns. The routine will return 0 | 
|  | 1034 | * | 
|  | 1035 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
|  | 1036 | * delivered to the current task. In this case the remaining time | 
|  | 1037 | * in jiffies will be returned, or 0 if the timer expired in time | 
|  | 1038 | * | 
|  | 1039 | * The current task state is guaranteed to be TASK_RUNNING when this | 
|  | 1040 | * routine returns. | 
|  | 1041 | * | 
|  | 1042 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 
|  | 1043 | * the CPU away without a bound on the timeout. In this case the return | 
|  | 1044 | * value will be %MAX_SCHEDULE_TIMEOUT. | 
|  | 1045 | * | 
|  | 1046 | * In all cases the return value is guaranteed to be non-negative. | 
|  | 1047 | */ | 
|  | 1048 | fastcall signed long __sched schedule_timeout(signed long timeout) | 
|  | 1049 | { | 
|  | 1050 | struct timer_list timer; | 
|  | 1051 | unsigned long expire; | 
|  | 1052 |  | 
|  | 1053 | switch (timeout) | 
|  | 1054 | { | 
|  | 1055 | case MAX_SCHEDULE_TIMEOUT: | 
|  | 1056 | /* | 
|  | 1057 | * These two special cases are useful to be comfortable | 
|  | 1058 | * in the caller. Nothing more. We could take | 
|  | 1059 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | 
|  | 1060 | * but I' d like to return a valid offset (>=0) to allow | 
|  | 1061 | * the caller to do everything it want with the retval. | 
|  | 1062 | */ | 
|  | 1063 | schedule(); | 
|  | 1064 | goto out; | 
|  | 1065 | default: | 
|  | 1066 | /* | 
|  | 1067 | * Another bit of PARANOID. Note that the retval will be | 
|  | 1068 | * 0 since no piece of kernel is supposed to do a check | 
|  | 1069 | * for a negative retval of schedule_timeout() (since it | 
|  | 1070 | * should never happens anyway). You just have the printk() | 
|  | 1071 | * that will tell you if something is gone wrong and where. | 
|  | 1072 | */ | 
|  | 1073 | if (timeout < 0) | 
|  | 1074 | { | 
|  | 1075 | printk(KERN_ERR "schedule_timeout: wrong timeout " | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1076 | "value %lx from %p\n", timeout, | 
|  | 1077 | __builtin_return_address(0)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1078 | current->state = TASK_RUNNING; | 
|  | 1079 | goto out; | 
|  | 1080 | } | 
|  | 1081 | } | 
|  | 1082 |  | 
|  | 1083 | expire = timeout + jiffies; | 
|  | 1084 |  | 
| Oleg Nesterov | a8db2db | 2005-10-30 15:01:38 -0800 | [diff] [blame] | 1085 | setup_timer(&timer, process_timeout, (unsigned long)current); | 
|  | 1086 | __mod_timer(&timer, expire); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1087 | schedule(); | 
|  | 1088 | del_singleshot_timer_sync(&timer); | 
|  | 1089 |  | 
|  | 1090 | timeout = expire - jiffies; | 
|  | 1091 |  | 
|  | 1092 | out: | 
|  | 1093 | return timeout < 0 ? 0 : timeout; | 
|  | 1094 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1095 | EXPORT_SYMBOL(schedule_timeout); | 
|  | 1096 |  | 
| Andrew Morton | 8a1c175 | 2005-09-13 01:25:15 -0700 | [diff] [blame] | 1097 | /* | 
|  | 1098 | * We can use __set_current_state() here because schedule_timeout() calls | 
|  | 1099 | * schedule() unconditionally. | 
|  | 1100 | */ | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1101 | signed long __sched schedule_timeout_interruptible(signed long timeout) | 
|  | 1102 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1103 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1104 | return schedule_timeout(timeout); | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1105 | } | 
|  | 1106 | EXPORT_SYMBOL(schedule_timeout_interruptible); | 
|  | 1107 |  | 
|  | 1108 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | 
|  | 1109 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1110 | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 1111 | return schedule_timeout(timeout); | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1112 | } | 
|  | 1113 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | 
|  | 1114 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1115 | /* Thread ID - the internal kernel "pid" */ | 
|  | 1116 | asmlinkage long sys_gettid(void) | 
|  | 1117 | { | 
|  | 1118 | return current->pid; | 
|  | 1119 | } | 
|  | 1120 |  | 
|  | 1121 | static long __sched nanosleep_restart(struct restart_block *restart) | 
|  | 1122 | { | 
|  | 1123 | unsigned long expire = restart->arg0, now = jiffies; | 
|  | 1124 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; | 
|  | 1125 | long ret; | 
|  | 1126 |  | 
|  | 1127 | /* Did it expire while we handled signals? */ | 
|  | 1128 | if (!time_after(expire, now)) | 
|  | 1129 | return 0; | 
|  | 1130 |  | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1131 | expire = schedule_timeout_interruptible(expire - now); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1132 |  | 
|  | 1133 | ret = 0; | 
|  | 1134 | if (expire) { | 
|  | 1135 | struct timespec t; | 
|  | 1136 | jiffies_to_timespec(expire, &t); | 
|  | 1137 |  | 
|  | 1138 | ret = -ERESTART_RESTARTBLOCK; | 
|  | 1139 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | 1140 | ret = -EFAULT; | 
|  | 1141 | /* The 'restart' block is already filled in */ | 
|  | 1142 | } | 
|  | 1143 | return ret; | 
|  | 1144 | } | 
|  | 1145 |  | 
|  | 1146 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | 
|  | 1147 | { | 
|  | 1148 | struct timespec t; | 
|  | 1149 | unsigned long expire; | 
|  | 1150 | long ret; | 
|  | 1151 |  | 
|  | 1152 | if (copy_from_user(&t, rqtp, sizeof(t))) | 
|  | 1153 | return -EFAULT; | 
|  | 1154 |  | 
|  | 1155 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) | 
|  | 1156 | return -EINVAL; | 
|  | 1157 |  | 
|  | 1158 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1159 | expire = schedule_timeout_interruptible(expire); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1160 |  | 
|  | 1161 | ret = 0; | 
|  | 1162 | if (expire) { | 
|  | 1163 | struct restart_block *restart; | 
|  | 1164 | jiffies_to_timespec(expire, &t); | 
|  | 1165 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 
|  | 1166 | return -EFAULT; | 
|  | 1167 |  | 
|  | 1168 | restart = ¤t_thread_info()->restart_block; | 
|  | 1169 | restart->fn = nanosleep_restart; | 
|  | 1170 | restart->arg0 = jiffies + expire; | 
|  | 1171 | restart->arg1 = (unsigned long) rmtp; | 
|  | 1172 | ret = -ERESTART_RESTARTBLOCK; | 
|  | 1173 | } | 
|  | 1174 | return ret; | 
|  | 1175 | } | 
|  | 1176 |  | 
|  | 1177 | /* | 
|  | 1178 | * sys_sysinfo - fill in sysinfo struct | 
|  | 1179 | */ | 
|  | 1180 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 
|  | 1181 | { | 
|  | 1182 | struct sysinfo val; | 
|  | 1183 | unsigned long mem_total, sav_total; | 
|  | 1184 | unsigned int mem_unit, bitcount; | 
|  | 1185 | unsigned long seq; | 
|  | 1186 |  | 
|  | 1187 | memset((char *)&val, 0, sizeof(struct sysinfo)); | 
|  | 1188 |  | 
|  | 1189 | do { | 
|  | 1190 | struct timespec tp; | 
|  | 1191 | seq = read_seqbegin(&xtime_lock); | 
|  | 1192 |  | 
|  | 1193 | /* | 
|  | 1194 | * This is annoying.  The below is the same thing | 
|  | 1195 | * posix_get_clock_monotonic() does, but it wants to | 
|  | 1196 | * take the lock which we want to cover the loads stuff | 
|  | 1197 | * too. | 
|  | 1198 | */ | 
|  | 1199 |  | 
|  | 1200 | getnstimeofday(&tp); | 
|  | 1201 | tp.tv_sec += wall_to_monotonic.tv_sec; | 
|  | 1202 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | 
|  | 1203 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 
|  | 1204 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 
|  | 1205 | tp.tv_sec++; | 
|  | 1206 | } | 
|  | 1207 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
|  | 1208 |  | 
|  | 1209 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1210 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1211 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 
|  | 1212 |  | 
|  | 1213 | val.procs = nr_threads; | 
|  | 1214 | } while (read_seqretry(&xtime_lock, seq)); | 
|  | 1215 |  | 
|  | 1216 | si_meminfo(&val); | 
|  | 1217 | si_swapinfo(&val); | 
|  | 1218 |  | 
|  | 1219 | /* | 
|  | 1220 | * If the sum of all the available memory (i.e. ram + swap) | 
|  | 1221 | * is less than can be stored in a 32 bit unsigned long then | 
|  | 1222 | * we can be binary compatible with 2.2.x kernels.  If not, | 
|  | 1223 | * well, in that case 2.2.x was broken anyways... | 
|  | 1224 | * | 
|  | 1225 | *  -Erik Andersen <andersee@debian.org> | 
|  | 1226 | */ | 
|  | 1227 |  | 
|  | 1228 | mem_total = val.totalram + val.totalswap; | 
|  | 1229 | if (mem_total < val.totalram || mem_total < val.totalswap) | 
|  | 1230 | goto out; | 
|  | 1231 | bitcount = 0; | 
|  | 1232 | mem_unit = val.mem_unit; | 
|  | 1233 | while (mem_unit > 1) { | 
|  | 1234 | bitcount++; | 
|  | 1235 | mem_unit >>= 1; | 
|  | 1236 | sav_total = mem_total; | 
|  | 1237 | mem_total <<= 1; | 
|  | 1238 | if (mem_total < sav_total) | 
|  | 1239 | goto out; | 
|  | 1240 | } | 
|  | 1241 |  | 
|  | 1242 | /* | 
|  | 1243 | * If mem_total did not overflow, multiply all memory values by | 
|  | 1244 | * val.mem_unit and set it to 1.  This leaves things compatible | 
|  | 1245 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
|  | 1246 | * kernels... | 
|  | 1247 | */ | 
|  | 1248 |  | 
|  | 1249 | val.mem_unit = 1; | 
|  | 1250 | val.totalram <<= bitcount; | 
|  | 1251 | val.freeram <<= bitcount; | 
|  | 1252 | val.sharedram <<= bitcount; | 
|  | 1253 | val.bufferram <<= bitcount; | 
|  | 1254 | val.totalswap <<= bitcount; | 
|  | 1255 | val.freeswap <<= bitcount; | 
|  | 1256 | val.totalhigh <<= bitcount; | 
|  | 1257 | val.freehigh <<= bitcount; | 
|  | 1258 |  | 
|  | 1259 | out: | 
|  | 1260 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
|  | 1261 | return -EFAULT; | 
|  | 1262 |  | 
|  | 1263 | return 0; | 
|  | 1264 | } | 
|  | 1265 |  | 
|  | 1266 | static void __devinit init_timers_cpu(int cpu) | 
|  | 1267 | { | 
|  | 1268 | int j; | 
|  | 1269 | tvec_base_t *base; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1270 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1271 | base = &per_cpu(tvec_bases, cpu); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1272 | spin_lock_init(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1273 | for (j = 0; j < TVN_SIZE; j++) { | 
|  | 1274 | INIT_LIST_HEAD(base->tv5.vec + j); | 
|  | 1275 | INIT_LIST_HEAD(base->tv4.vec + j); | 
|  | 1276 | INIT_LIST_HEAD(base->tv3.vec + j); | 
|  | 1277 | INIT_LIST_HEAD(base->tv2.vec + j); | 
|  | 1278 | } | 
|  | 1279 | for (j = 0; j < TVR_SIZE; j++) | 
|  | 1280 | INIT_LIST_HEAD(base->tv1.vec + j); | 
|  | 1281 |  | 
|  | 1282 | base->timer_jiffies = jiffies; | 
|  | 1283 | } | 
|  | 1284 |  | 
|  | 1285 | #ifdef CONFIG_HOTPLUG_CPU | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1286 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1287 | { | 
|  | 1288 | struct timer_list *timer; | 
|  | 1289 |  | 
|  | 1290 | while (!list_empty(head)) { | 
|  | 1291 | timer = list_entry(head->next, struct timer_list, entry); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1292 | detach_timer(timer, 0); | 
|  | 1293 | timer->base = &new_base->t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1294 | internal_add_timer(new_base, timer); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1295 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | static void __devinit migrate_timers(int cpu) | 
|  | 1299 | { | 
|  | 1300 | tvec_base_t *old_base; | 
|  | 1301 | tvec_base_t *new_base; | 
|  | 1302 | int i; | 
|  | 1303 |  | 
|  | 1304 | BUG_ON(cpu_online(cpu)); | 
|  | 1305 | old_base = &per_cpu(tvec_bases, cpu); | 
|  | 1306 | new_base = &get_cpu_var(tvec_bases); | 
|  | 1307 |  | 
|  | 1308 | local_irq_disable(); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1309 | spin_lock(&new_base->t_base.lock); | 
|  | 1310 | spin_lock(&old_base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1311 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1312 | if (old_base->t_base.running_timer) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1313 | BUG(); | 
|  | 1314 | for (i = 0; i < TVR_SIZE; i++) | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1315 | migrate_timer_list(new_base, old_base->tv1.vec + i); | 
|  | 1316 | for (i = 0; i < TVN_SIZE; i++) { | 
|  | 1317 | migrate_timer_list(new_base, old_base->tv2.vec + i); | 
|  | 1318 | migrate_timer_list(new_base, old_base->tv3.vec + i); | 
|  | 1319 | migrate_timer_list(new_base, old_base->tv4.vec + i); | 
|  | 1320 | migrate_timer_list(new_base, old_base->tv5.vec + i); | 
|  | 1321 | } | 
|  | 1322 |  | 
|  | 1323 | spin_unlock(&old_base->t_base.lock); | 
|  | 1324 | spin_unlock(&new_base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1325 | local_irq_enable(); | 
|  | 1326 | put_cpu_var(tvec_bases); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1327 | } | 
|  | 1328 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  | 1329 |  | 
|  | 1330 | static int __devinit timer_cpu_notify(struct notifier_block *self, | 
|  | 1331 | unsigned long action, void *hcpu) | 
|  | 1332 | { | 
|  | 1333 | long cpu = (long)hcpu; | 
|  | 1334 | switch(action) { | 
|  | 1335 | case CPU_UP_PREPARE: | 
|  | 1336 | init_timers_cpu(cpu); | 
|  | 1337 | break; | 
|  | 1338 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 1339 | case CPU_DEAD: | 
|  | 1340 | migrate_timers(cpu); | 
|  | 1341 | break; | 
|  | 1342 | #endif | 
|  | 1343 | default: | 
|  | 1344 | break; | 
|  | 1345 | } | 
|  | 1346 | return NOTIFY_OK; | 
|  | 1347 | } | 
|  | 1348 |  | 
|  | 1349 | static struct notifier_block __devinitdata timers_nb = { | 
|  | 1350 | .notifier_call	= timer_cpu_notify, | 
|  | 1351 | }; | 
|  | 1352 |  | 
|  | 1353 |  | 
|  | 1354 | void __init init_timers(void) | 
|  | 1355 | { | 
|  | 1356 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 
|  | 1357 | (void *)(long)smp_processor_id()); | 
|  | 1358 | register_cpu_notifier(&timers_nb); | 
|  | 1359 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 
|  | 1360 | } | 
|  | 1361 |  | 
|  | 1362 | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | 1363 |  | 
|  | 1364 | struct time_interpolator *time_interpolator; | 
|  | 1365 | static struct time_interpolator *time_interpolator_list; | 
|  | 1366 | static DEFINE_SPINLOCK(time_interpolator_lock); | 
|  | 1367 |  | 
|  | 1368 | static inline u64 time_interpolator_get_cycles(unsigned int src) | 
|  | 1369 | { | 
|  | 1370 | unsigned long (*x)(void); | 
|  | 1371 |  | 
|  | 1372 | switch (src) | 
|  | 1373 | { | 
|  | 1374 | case TIME_SOURCE_FUNCTION: | 
|  | 1375 | x = time_interpolator->addr; | 
|  | 1376 | return x(); | 
|  | 1377 |  | 
|  | 1378 | case TIME_SOURCE_MMIO64	: | 
|  | 1379 | return readq((void __iomem *) time_interpolator->addr); | 
|  | 1380 |  | 
|  | 1381 | case TIME_SOURCE_MMIO32	: | 
|  | 1382 | return readl((void __iomem *) time_interpolator->addr); | 
|  | 1383 |  | 
|  | 1384 | default: return get_cycles(); | 
|  | 1385 | } | 
|  | 1386 | } | 
|  | 1387 |  | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1388 | static inline u64 time_interpolator_get_counter(int writelock) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1389 | { | 
|  | 1390 | unsigned int src = time_interpolator->source; | 
|  | 1391 |  | 
|  | 1392 | if (time_interpolator->jitter) | 
|  | 1393 | { | 
|  | 1394 | u64 lcycle; | 
|  | 1395 | u64 now; | 
|  | 1396 |  | 
|  | 1397 | do { | 
|  | 1398 | lcycle = time_interpolator->last_cycle; | 
|  | 1399 | now = time_interpolator_get_cycles(src); | 
|  | 1400 | if (lcycle && time_after(lcycle, now)) | 
|  | 1401 | return lcycle; | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1402 |  | 
|  | 1403 | /* When holding the xtime write lock, there's no need | 
|  | 1404 | * to add the overhead of the cmpxchg.  Readers are | 
|  | 1405 | * force to retry until the write lock is released. | 
|  | 1406 | */ | 
|  | 1407 | if (writelock) { | 
|  | 1408 | time_interpolator->last_cycle = now; | 
|  | 1409 | return now; | 
|  | 1410 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1411 | /* Keep track of the last timer value returned. The use of cmpxchg here | 
|  | 1412 | * will cause contention in an SMP environment. | 
|  | 1413 | */ | 
|  | 1414 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 
|  | 1415 | return now; | 
|  | 1416 | } | 
|  | 1417 | else | 
|  | 1418 | return time_interpolator_get_cycles(src); | 
|  | 1419 | } | 
|  | 1420 |  | 
|  | 1421 | void time_interpolator_reset(void) | 
|  | 1422 | { | 
|  | 1423 | time_interpolator->offset = 0; | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1424 | time_interpolator->last_counter = time_interpolator_get_counter(1); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1425 | } | 
|  | 1426 |  | 
|  | 1427 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 
|  | 1428 |  | 
|  | 1429 | unsigned long time_interpolator_get_offset(void) | 
|  | 1430 | { | 
|  | 1431 | /* If we do not have a time interpolator set up then just return zero */ | 
|  | 1432 | if (!time_interpolator) | 
|  | 1433 | return 0; | 
|  | 1434 |  | 
|  | 1435 | return time_interpolator->offset + | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1436 | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1437 | } | 
|  | 1438 |  | 
|  | 1439 | #define INTERPOLATOR_ADJUST 65536 | 
|  | 1440 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 
|  | 1441 |  | 
|  | 1442 | static void time_interpolator_update(long delta_nsec) | 
|  | 1443 | { | 
|  | 1444 | u64 counter; | 
|  | 1445 | unsigned long offset; | 
|  | 1446 |  | 
|  | 1447 | /* If there is no time interpolator set up then do nothing */ | 
|  | 1448 | if (!time_interpolator) | 
|  | 1449 | return; | 
|  | 1450 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1451 | /* | 
|  | 1452 | * The interpolator compensates for late ticks by accumulating the late | 
|  | 1453 | * time in time_interpolator->offset. A tick earlier than expected will | 
|  | 1454 | * lead to a reset of the offset and a corresponding jump of the clock | 
|  | 1455 | * forward. Again this only works if the interpolator clock is running | 
|  | 1456 | * slightly slower than the regular clock and the tuning logic insures | 
|  | 1457 | * that. | 
|  | 1458 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1459 |  | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1460 | counter = time_interpolator_get_counter(1); | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1461 | offset = time_interpolator->offset + | 
|  | 1462 | GET_TI_NSECS(counter, time_interpolator); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1463 |  | 
|  | 1464 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 
|  | 1465 | time_interpolator->offset = offset - delta_nsec; | 
|  | 1466 | else { | 
|  | 1467 | time_interpolator->skips++; | 
|  | 1468 | time_interpolator->ns_skipped += delta_nsec - offset; | 
|  | 1469 | time_interpolator->offset = 0; | 
|  | 1470 | } | 
|  | 1471 | time_interpolator->last_counter = counter; | 
|  | 1472 |  | 
|  | 1473 | /* Tuning logic for time interpolator invoked every minute or so. | 
|  | 1474 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 
|  | 1475 | * Increase interpolator clock speed if we skip too much time. | 
|  | 1476 | */ | 
|  | 1477 | if (jiffies % INTERPOLATOR_ADJUST == 0) | 
|  | 1478 | { | 
|  | 1479 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | 
|  | 1480 | time_interpolator->nsec_per_cyc--; | 
|  | 1481 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 
|  | 1482 | time_interpolator->nsec_per_cyc++; | 
|  | 1483 | time_interpolator->skips = 0; | 
|  | 1484 | time_interpolator->ns_skipped = 0; | 
|  | 1485 | } | 
|  | 1486 | } | 
|  | 1487 |  | 
|  | 1488 | static inline int | 
|  | 1489 | is_better_time_interpolator(struct time_interpolator *new) | 
|  | 1490 | { | 
|  | 1491 | if (!time_interpolator) | 
|  | 1492 | return 1; | 
|  | 1493 | return new->frequency > 2*time_interpolator->frequency || | 
|  | 1494 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 
|  | 1495 | } | 
|  | 1496 |  | 
|  | 1497 | void | 
|  | 1498 | register_time_interpolator(struct time_interpolator *ti) | 
|  | 1499 | { | 
|  | 1500 | unsigned long flags; | 
|  | 1501 |  | 
|  | 1502 | /* Sanity check */ | 
|  | 1503 | if (ti->frequency == 0 || ti->mask == 0) | 
|  | 1504 | BUG(); | 
|  | 1505 |  | 
|  | 1506 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 
|  | 1507 | spin_lock(&time_interpolator_lock); | 
|  | 1508 | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | 1509 | if (is_better_time_interpolator(ti)) { | 
|  | 1510 | time_interpolator = ti; | 
|  | 1511 | time_interpolator_reset(); | 
|  | 1512 | } | 
|  | 1513 | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | 1514 |  | 
|  | 1515 | ti->next = time_interpolator_list; | 
|  | 1516 | time_interpolator_list = ti; | 
|  | 1517 | spin_unlock(&time_interpolator_lock); | 
|  | 1518 | } | 
|  | 1519 |  | 
|  | 1520 | void | 
|  | 1521 | unregister_time_interpolator(struct time_interpolator *ti) | 
|  | 1522 | { | 
|  | 1523 | struct time_interpolator *curr, **prev; | 
|  | 1524 | unsigned long flags; | 
|  | 1525 |  | 
|  | 1526 | spin_lock(&time_interpolator_lock); | 
|  | 1527 | prev = &time_interpolator_list; | 
|  | 1528 | for (curr = *prev; curr; curr = curr->next) { | 
|  | 1529 | if (curr == ti) { | 
|  | 1530 | *prev = curr->next; | 
|  | 1531 | break; | 
|  | 1532 | } | 
|  | 1533 | prev = &curr->next; | 
|  | 1534 | } | 
|  | 1535 |  | 
|  | 1536 | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | 1537 | if (ti == time_interpolator) { | 
|  | 1538 | /* we lost the best time-interpolator: */ | 
|  | 1539 | time_interpolator = NULL; | 
|  | 1540 | /* find the next-best interpolator */ | 
|  | 1541 | for (curr = time_interpolator_list; curr; curr = curr->next) | 
|  | 1542 | if (is_better_time_interpolator(curr)) | 
|  | 1543 | time_interpolator = curr; | 
|  | 1544 | time_interpolator_reset(); | 
|  | 1545 | } | 
|  | 1546 | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | 1547 | spin_unlock(&time_interpolator_lock); | 
|  | 1548 | } | 
|  | 1549 | #endif /* CONFIG_TIME_INTERPOLATION */ | 
|  | 1550 |  | 
|  | 1551 | /** | 
|  | 1552 | * msleep - sleep safely even with waitqueue interruptions | 
|  | 1553 | * @msecs: Time in milliseconds to sleep for | 
|  | 1554 | */ | 
|  | 1555 | void msleep(unsigned int msecs) | 
|  | 1556 | { | 
|  | 1557 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  | 1558 |  | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1559 | while (timeout) | 
|  | 1560 | timeout = schedule_timeout_uninterruptible(timeout); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1561 | } | 
|  | 1562 |  | 
|  | 1563 | EXPORT_SYMBOL(msleep); | 
|  | 1564 |  | 
|  | 1565 | /** | 
| Domen Puncer | 96ec3ef | 2005-06-25 14:58:43 -0700 | [diff] [blame] | 1566 | * msleep_interruptible - sleep waiting for signals | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1567 | * @msecs: Time in milliseconds to sleep for | 
|  | 1568 | */ | 
|  | 1569 | unsigned long msleep_interruptible(unsigned int msecs) | 
|  | 1570 | { | 
|  | 1571 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
|  | 1572 |  | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1573 | while (timeout && !signal_pending(current)) | 
|  | 1574 | timeout = schedule_timeout_interruptible(timeout); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1575 | return jiffies_to_msecs(timeout); | 
|  | 1576 | } | 
|  | 1577 |  | 
|  | 1578 | EXPORT_SYMBOL(msleep_interruptible); |