| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 1 | /** | 
|  | 2 | * kmemcheck - a heavyweight memory checker for the linux kernel | 
|  | 3 | * Copyright (C) 2007, 2008  Vegard Nossum <vegardno@ifi.uio.no> | 
|  | 4 | * (With a lot of help from Ingo Molnar and Pekka Enberg.) | 
|  | 5 | * | 
|  | 6 | * This program is free software; you can redistribute it and/or modify | 
|  | 7 | * it under the terms of the GNU General Public License (version 2) as | 
|  | 8 | * published by the Free Software Foundation. | 
|  | 9 | */ | 
|  | 10 |  | 
|  | 11 | #include <linux/init.h> | 
|  | 12 | #include <linux/interrupt.h> | 
|  | 13 | #include <linux/kallsyms.h> | 
|  | 14 | #include <linux/kernel.h> | 
|  | 15 | #include <linux/kmemcheck.h> | 
|  | 16 | #include <linux/mm.h> | 
|  | 17 | #include <linux/module.h> | 
|  | 18 | #include <linux/page-flags.h> | 
|  | 19 | #include <linux/percpu.h> | 
|  | 20 | #include <linux/ptrace.h> | 
|  | 21 | #include <linux/string.h> | 
|  | 22 | #include <linux/types.h> | 
|  | 23 |  | 
|  | 24 | #include <asm/cacheflush.h> | 
|  | 25 | #include <asm/kmemcheck.h> | 
|  | 26 | #include <asm/pgtable.h> | 
|  | 27 | #include <asm/tlbflush.h> | 
|  | 28 |  | 
|  | 29 | #include "error.h" | 
|  | 30 | #include "opcode.h" | 
|  | 31 | #include "pte.h" | 
| Vegard Nossum | ac61a75 | 2009-02-27 11:35:55 +0100 | [diff] [blame] | 32 | #include "selftest.h" | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 33 | #include "shadow.h" | 
|  | 34 |  | 
| Vegard Nossum | ac61a75 | 2009-02-27 11:35:55 +0100 | [diff] [blame] | 35 |  | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 36 | #ifdef CONFIG_KMEMCHECK_DISABLED_BY_DEFAULT | 
|  | 37 | #  define KMEMCHECK_ENABLED 0 | 
|  | 38 | #endif | 
|  | 39 |  | 
|  | 40 | #ifdef CONFIG_KMEMCHECK_ENABLED_BY_DEFAULT | 
|  | 41 | #  define KMEMCHECK_ENABLED 1 | 
|  | 42 | #endif | 
|  | 43 |  | 
|  | 44 | #ifdef CONFIG_KMEMCHECK_ONESHOT_BY_DEFAULT | 
|  | 45 | #  define KMEMCHECK_ENABLED 2 | 
|  | 46 | #endif | 
|  | 47 |  | 
|  | 48 | int kmemcheck_enabled = KMEMCHECK_ENABLED; | 
|  | 49 |  | 
|  | 50 | int __init kmemcheck_init(void) | 
|  | 51 | { | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 52 | #ifdef CONFIG_SMP | 
|  | 53 | /* | 
|  | 54 | * Limit SMP to use a single CPU. We rely on the fact that this code | 
|  | 55 | * runs before SMP is set up. | 
|  | 56 | */ | 
|  | 57 | if (setup_max_cpus > 1) { | 
|  | 58 | printk(KERN_INFO | 
|  | 59 | "kmemcheck: Limiting number of CPUs to 1.\n"); | 
|  | 60 | setup_max_cpus = 1; | 
|  | 61 | } | 
|  | 62 | #endif | 
|  | 63 |  | 
| Vegard Nossum | ac61a75 | 2009-02-27 11:35:55 +0100 | [diff] [blame] | 64 | if (!kmemcheck_selftest()) { | 
|  | 65 | printk(KERN_INFO "kmemcheck: self-tests failed; disabling\n"); | 
|  | 66 | kmemcheck_enabled = 0; | 
|  | 67 | return -EINVAL; | 
|  | 68 | } | 
|  | 69 |  | 
|  | 70 | printk(KERN_INFO "kmemcheck: Initialized\n"); | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 71 | return 0; | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | early_initcall(kmemcheck_init); | 
|  | 75 |  | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 76 | /* | 
|  | 77 | * We need to parse the kmemcheck= option before any memory is allocated. | 
|  | 78 | */ | 
|  | 79 | static int __init param_kmemcheck(char *str) | 
|  | 80 | { | 
|  | 81 | if (!str) | 
|  | 82 | return -EINVAL; | 
|  | 83 |  | 
|  | 84 | sscanf(str, "%d", &kmemcheck_enabled); | 
|  | 85 | return 0; | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | early_param("kmemcheck", param_kmemcheck); | 
|  | 89 |  | 
|  | 90 | int kmemcheck_show_addr(unsigned long address) | 
|  | 91 | { | 
|  | 92 | pte_t *pte; | 
|  | 93 |  | 
|  | 94 | pte = kmemcheck_pte_lookup(address); | 
|  | 95 | if (!pte) | 
|  | 96 | return 0; | 
|  | 97 |  | 
|  | 98 | set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); | 
|  | 99 | __flush_tlb_one(address); | 
|  | 100 | return 1; | 
|  | 101 | } | 
|  | 102 |  | 
|  | 103 | int kmemcheck_hide_addr(unsigned long address) | 
|  | 104 | { | 
|  | 105 | pte_t *pte; | 
|  | 106 |  | 
|  | 107 | pte = kmemcheck_pte_lookup(address); | 
|  | 108 | if (!pte) | 
|  | 109 | return 0; | 
|  | 110 |  | 
|  | 111 | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); | 
|  | 112 | __flush_tlb_one(address); | 
|  | 113 | return 1; | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 | struct kmemcheck_context { | 
|  | 117 | bool busy; | 
|  | 118 | int balance; | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * There can be at most two memory operands to an instruction, but | 
|  | 122 | * each address can cross a page boundary -- so we may need up to | 
|  | 123 | * four addresses that must be hidden/revealed for each fault. | 
|  | 124 | */ | 
|  | 125 | unsigned long addr[4]; | 
|  | 126 | unsigned long n_addrs; | 
|  | 127 | unsigned long flags; | 
|  | 128 |  | 
|  | 129 | /* Data size of the instruction that caused a fault. */ | 
|  | 130 | unsigned int size; | 
|  | 131 | }; | 
|  | 132 |  | 
|  | 133 | static DEFINE_PER_CPU(struct kmemcheck_context, kmemcheck_context); | 
|  | 134 |  | 
|  | 135 | bool kmemcheck_active(struct pt_regs *regs) | 
|  | 136 | { | 
|  | 137 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 138 |  | 
|  | 139 | return data->balance > 0; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | /* Save an address that needs to be shown/hidden */ | 
|  | 143 | static void kmemcheck_save_addr(unsigned long addr) | 
|  | 144 | { | 
|  | 145 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 146 |  | 
|  | 147 | BUG_ON(data->n_addrs >= ARRAY_SIZE(data->addr)); | 
|  | 148 | data->addr[data->n_addrs++] = addr; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | static unsigned int kmemcheck_show_all(void) | 
|  | 152 | { | 
|  | 153 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 154 | unsigned int i; | 
|  | 155 | unsigned int n; | 
|  | 156 |  | 
|  | 157 | n = 0; | 
|  | 158 | for (i = 0; i < data->n_addrs; ++i) | 
|  | 159 | n += kmemcheck_show_addr(data->addr[i]); | 
|  | 160 |  | 
|  | 161 | return n; | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | static unsigned int kmemcheck_hide_all(void) | 
|  | 165 | { | 
|  | 166 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 167 | unsigned int i; | 
|  | 168 | unsigned int n; | 
|  | 169 |  | 
|  | 170 | n = 0; | 
|  | 171 | for (i = 0; i < data->n_addrs; ++i) | 
|  | 172 | n += kmemcheck_hide_addr(data->addr[i]); | 
|  | 173 |  | 
|  | 174 | return n; | 
|  | 175 | } | 
|  | 176 |  | 
|  | 177 | /* | 
|  | 178 | * Called from the #PF handler. | 
|  | 179 | */ | 
|  | 180 | void kmemcheck_show(struct pt_regs *regs) | 
|  | 181 | { | 
|  | 182 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 183 |  | 
|  | 184 | BUG_ON(!irqs_disabled()); | 
|  | 185 |  | 
|  | 186 | if (unlikely(data->balance != 0)) { | 
|  | 187 | kmemcheck_show_all(); | 
|  | 188 | kmemcheck_error_save_bug(regs); | 
|  | 189 | data->balance = 0; | 
|  | 190 | return; | 
|  | 191 | } | 
|  | 192 |  | 
|  | 193 | /* | 
|  | 194 | * None of the addresses actually belonged to kmemcheck. Note that | 
|  | 195 | * this is not an error. | 
|  | 196 | */ | 
|  | 197 | if (kmemcheck_show_all() == 0) | 
|  | 198 | return; | 
|  | 199 |  | 
|  | 200 | ++data->balance; | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * The IF needs to be cleared as well, so that the faulting | 
|  | 204 | * instruction can run "uninterrupted". Otherwise, we might take | 
|  | 205 | * an interrupt and start executing that before we've had a chance | 
|  | 206 | * to hide the page again. | 
|  | 207 | * | 
|  | 208 | * NOTE: In the rare case of multiple faults, we must not override | 
|  | 209 | * the original flags: | 
|  | 210 | */ | 
|  | 211 | if (!(regs->flags & X86_EFLAGS_TF)) | 
|  | 212 | data->flags = regs->flags; | 
|  | 213 |  | 
|  | 214 | regs->flags |= X86_EFLAGS_TF; | 
|  | 215 | regs->flags &= ~X86_EFLAGS_IF; | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* | 
|  | 219 | * Called from the #DB handler. | 
|  | 220 | */ | 
|  | 221 | void kmemcheck_hide(struct pt_regs *regs) | 
|  | 222 | { | 
|  | 223 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 224 | int n; | 
|  | 225 |  | 
|  | 226 | BUG_ON(!irqs_disabled()); | 
|  | 227 |  | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 228 | if (unlikely(data->balance != 1)) { | 
|  | 229 | kmemcheck_show_all(); | 
|  | 230 | kmemcheck_error_save_bug(regs); | 
|  | 231 | data->n_addrs = 0; | 
|  | 232 | data->balance = 0; | 
|  | 233 |  | 
|  | 234 | if (!(data->flags & X86_EFLAGS_TF)) | 
|  | 235 | regs->flags &= ~X86_EFLAGS_TF; | 
|  | 236 | if (data->flags & X86_EFLAGS_IF) | 
|  | 237 | regs->flags |= X86_EFLAGS_IF; | 
|  | 238 | return; | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | if (kmemcheck_enabled) | 
|  | 242 | n = kmemcheck_hide_all(); | 
|  | 243 | else | 
|  | 244 | n = kmemcheck_show_all(); | 
|  | 245 |  | 
|  | 246 | if (n == 0) | 
|  | 247 | return; | 
|  | 248 |  | 
|  | 249 | --data->balance; | 
|  | 250 |  | 
|  | 251 | data->n_addrs = 0; | 
|  | 252 |  | 
|  | 253 | if (!(data->flags & X86_EFLAGS_TF)) | 
|  | 254 | regs->flags &= ~X86_EFLAGS_TF; | 
|  | 255 | if (data->flags & X86_EFLAGS_IF) | 
|  | 256 | regs->flags |= X86_EFLAGS_IF; | 
|  | 257 | } | 
|  | 258 |  | 
|  | 259 | void kmemcheck_show_pages(struct page *p, unsigned int n) | 
|  | 260 | { | 
|  | 261 | unsigned int i; | 
|  | 262 |  | 
|  | 263 | for (i = 0; i < n; ++i) { | 
|  | 264 | unsigned long address; | 
|  | 265 | pte_t *pte; | 
|  | 266 | unsigned int level; | 
|  | 267 |  | 
|  | 268 | address = (unsigned long) page_address(&p[i]); | 
|  | 269 | pte = lookup_address(address, &level); | 
|  | 270 | BUG_ON(!pte); | 
|  | 271 | BUG_ON(level != PG_LEVEL_4K); | 
|  | 272 |  | 
|  | 273 | set_pte(pte, __pte(pte_val(*pte) | _PAGE_PRESENT)); | 
|  | 274 | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_HIDDEN)); | 
|  | 275 | __flush_tlb_one(address); | 
|  | 276 | } | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | bool kmemcheck_page_is_tracked(struct page *p) | 
|  | 280 | { | 
|  | 281 | /* This will also check the "hidden" flag of the PTE. */ | 
|  | 282 | return kmemcheck_pte_lookup((unsigned long) page_address(p)); | 
|  | 283 | } | 
|  | 284 |  | 
|  | 285 | void kmemcheck_hide_pages(struct page *p, unsigned int n) | 
|  | 286 | { | 
|  | 287 | unsigned int i; | 
|  | 288 |  | 
|  | 289 | for (i = 0; i < n; ++i) { | 
|  | 290 | unsigned long address; | 
|  | 291 | pte_t *pte; | 
|  | 292 | unsigned int level; | 
|  | 293 |  | 
|  | 294 | address = (unsigned long) page_address(&p[i]); | 
|  | 295 | pte = lookup_address(address, &level); | 
|  | 296 | BUG_ON(!pte); | 
|  | 297 | BUG_ON(level != PG_LEVEL_4K); | 
|  | 298 |  | 
|  | 299 | set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_PRESENT)); | 
|  | 300 | set_pte(pte, __pte(pte_val(*pte) | _PAGE_HIDDEN)); | 
|  | 301 | __flush_tlb_one(address); | 
|  | 302 | } | 
|  | 303 | } | 
|  | 304 |  | 
|  | 305 | /* Access may NOT cross page boundary */ | 
|  | 306 | static void kmemcheck_read_strict(struct pt_regs *regs, | 
|  | 307 | unsigned long addr, unsigned int size) | 
|  | 308 | { | 
|  | 309 | void *shadow; | 
|  | 310 | enum kmemcheck_shadow status; | 
|  | 311 |  | 
|  | 312 | shadow = kmemcheck_shadow_lookup(addr); | 
|  | 313 | if (!shadow) | 
|  | 314 | return; | 
|  | 315 |  | 
|  | 316 | kmemcheck_save_addr(addr); | 
|  | 317 | status = kmemcheck_shadow_test(shadow, size); | 
|  | 318 | if (status == KMEMCHECK_SHADOW_INITIALIZED) | 
|  | 319 | return; | 
|  | 320 |  | 
|  | 321 | if (kmemcheck_enabled) | 
|  | 322 | kmemcheck_error_save(status, addr, size, regs); | 
|  | 323 |  | 
|  | 324 | if (kmemcheck_enabled == 2) | 
|  | 325 | kmemcheck_enabled = 0; | 
|  | 326 |  | 
|  | 327 | /* Don't warn about it again. */ | 
|  | 328 | kmemcheck_shadow_set(shadow, size); | 
|  | 329 | } | 
|  | 330 |  | 
| Pekka Enberg | 8e01936 | 2009-08-27 14:50:00 +0100 | [diff] [blame] | 331 | bool kmemcheck_is_obj_initialized(unsigned long addr, size_t size) | 
|  | 332 | { | 
|  | 333 | enum kmemcheck_shadow status; | 
|  | 334 | void *shadow; | 
|  | 335 |  | 
|  | 336 | shadow = kmemcheck_shadow_lookup(addr); | 
|  | 337 | if (!shadow) | 
|  | 338 | return true; | 
|  | 339 |  | 
|  | 340 | status = kmemcheck_shadow_test(shadow, size); | 
|  | 341 |  | 
|  | 342 | return status == KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 343 | } | 
|  | 344 |  | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 345 | /* Access may cross page boundary */ | 
|  | 346 | static void kmemcheck_read(struct pt_regs *regs, | 
|  | 347 | unsigned long addr, unsigned int size) | 
|  | 348 | { | 
|  | 349 | unsigned long page = addr & PAGE_MASK; | 
|  | 350 | unsigned long next_addr = addr + size - 1; | 
|  | 351 | unsigned long next_page = next_addr & PAGE_MASK; | 
|  | 352 |  | 
|  | 353 | if (likely(page == next_page)) { | 
|  | 354 | kmemcheck_read_strict(regs, addr, size); | 
|  | 355 | return; | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | /* | 
|  | 359 | * What we do is basically to split the access across the | 
|  | 360 | * two pages and handle each part separately. Yes, this means | 
|  | 361 | * that we may now see reads that are 3 + 5 bytes, for | 
|  | 362 | * example (and if both are uninitialized, there will be two | 
|  | 363 | * reports), but it makes the code a lot simpler. | 
|  | 364 | */ | 
|  | 365 | kmemcheck_read_strict(regs, addr, next_page - addr); | 
|  | 366 | kmemcheck_read_strict(regs, next_page, next_addr - next_page); | 
|  | 367 | } | 
|  | 368 |  | 
|  | 369 | static void kmemcheck_write_strict(struct pt_regs *regs, | 
|  | 370 | unsigned long addr, unsigned int size) | 
|  | 371 | { | 
|  | 372 | void *shadow; | 
|  | 373 |  | 
|  | 374 | shadow = kmemcheck_shadow_lookup(addr); | 
|  | 375 | if (!shadow) | 
|  | 376 | return; | 
|  | 377 |  | 
|  | 378 | kmemcheck_save_addr(addr); | 
|  | 379 | kmemcheck_shadow_set(shadow, size); | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | static void kmemcheck_write(struct pt_regs *regs, | 
|  | 383 | unsigned long addr, unsigned int size) | 
|  | 384 | { | 
|  | 385 | unsigned long page = addr & PAGE_MASK; | 
|  | 386 | unsigned long next_addr = addr + size - 1; | 
|  | 387 | unsigned long next_page = next_addr & PAGE_MASK; | 
|  | 388 |  | 
|  | 389 | if (likely(page == next_page)) { | 
|  | 390 | kmemcheck_write_strict(regs, addr, size); | 
|  | 391 | return; | 
|  | 392 | } | 
|  | 393 |  | 
|  | 394 | /* See comment in kmemcheck_read(). */ | 
|  | 395 | kmemcheck_write_strict(regs, addr, next_page - addr); | 
|  | 396 | kmemcheck_write_strict(regs, next_page, next_addr - next_page); | 
|  | 397 | } | 
|  | 398 |  | 
|  | 399 | /* | 
|  | 400 | * Copying is hard. We have two addresses, each of which may be split across | 
|  | 401 | * a page (and each page will have different shadow addresses). | 
|  | 402 | */ | 
|  | 403 | static void kmemcheck_copy(struct pt_regs *regs, | 
|  | 404 | unsigned long src_addr, unsigned long dst_addr, unsigned int size) | 
|  | 405 | { | 
|  | 406 | uint8_t shadow[8]; | 
|  | 407 | enum kmemcheck_shadow status; | 
|  | 408 |  | 
|  | 409 | unsigned long page; | 
|  | 410 | unsigned long next_addr; | 
|  | 411 | unsigned long next_page; | 
|  | 412 |  | 
|  | 413 | uint8_t *x; | 
|  | 414 | unsigned int i; | 
|  | 415 | unsigned int n; | 
|  | 416 |  | 
|  | 417 | BUG_ON(size > sizeof(shadow)); | 
|  | 418 |  | 
|  | 419 | page = src_addr & PAGE_MASK; | 
|  | 420 | next_addr = src_addr + size - 1; | 
|  | 421 | next_page = next_addr & PAGE_MASK; | 
|  | 422 |  | 
|  | 423 | if (likely(page == next_page)) { | 
|  | 424 | /* Same page */ | 
|  | 425 | x = kmemcheck_shadow_lookup(src_addr); | 
|  | 426 | if (x) { | 
|  | 427 | kmemcheck_save_addr(src_addr); | 
|  | 428 | for (i = 0; i < size; ++i) | 
|  | 429 | shadow[i] = x[i]; | 
|  | 430 | } else { | 
|  | 431 | for (i = 0; i < size; ++i) | 
|  | 432 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 433 | } | 
|  | 434 | } else { | 
|  | 435 | n = next_page - src_addr; | 
|  | 436 | BUG_ON(n > sizeof(shadow)); | 
|  | 437 |  | 
|  | 438 | /* First page */ | 
|  | 439 | x = kmemcheck_shadow_lookup(src_addr); | 
|  | 440 | if (x) { | 
|  | 441 | kmemcheck_save_addr(src_addr); | 
|  | 442 | for (i = 0; i < n; ++i) | 
|  | 443 | shadow[i] = x[i]; | 
|  | 444 | } else { | 
|  | 445 | /* Not tracked */ | 
|  | 446 | for (i = 0; i < n; ++i) | 
|  | 447 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 448 | } | 
|  | 449 |  | 
|  | 450 | /* Second page */ | 
|  | 451 | x = kmemcheck_shadow_lookup(next_page); | 
|  | 452 | if (x) { | 
|  | 453 | kmemcheck_save_addr(next_page); | 
|  | 454 | for (i = n; i < size; ++i) | 
|  | 455 | shadow[i] = x[i - n]; | 
|  | 456 | } else { | 
|  | 457 | /* Not tracked */ | 
|  | 458 | for (i = n; i < size; ++i) | 
|  | 459 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 460 | } | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | page = dst_addr & PAGE_MASK; | 
|  | 464 | next_addr = dst_addr + size - 1; | 
|  | 465 | next_page = next_addr & PAGE_MASK; | 
|  | 466 |  | 
|  | 467 | if (likely(page == next_page)) { | 
|  | 468 | /* Same page */ | 
|  | 469 | x = kmemcheck_shadow_lookup(dst_addr); | 
|  | 470 | if (x) { | 
|  | 471 | kmemcheck_save_addr(dst_addr); | 
|  | 472 | for (i = 0; i < size; ++i) { | 
|  | 473 | x[i] = shadow[i]; | 
|  | 474 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 475 | } | 
|  | 476 | } | 
|  | 477 | } else { | 
|  | 478 | n = next_page - dst_addr; | 
|  | 479 | BUG_ON(n > sizeof(shadow)); | 
|  | 480 |  | 
|  | 481 | /* First page */ | 
|  | 482 | x = kmemcheck_shadow_lookup(dst_addr); | 
|  | 483 | if (x) { | 
|  | 484 | kmemcheck_save_addr(dst_addr); | 
|  | 485 | for (i = 0; i < n; ++i) { | 
|  | 486 | x[i] = shadow[i]; | 
|  | 487 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 488 | } | 
|  | 489 | } | 
|  | 490 |  | 
|  | 491 | /* Second page */ | 
|  | 492 | x = kmemcheck_shadow_lookup(next_page); | 
|  | 493 | if (x) { | 
|  | 494 | kmemcheck_save_addr(next_page); | 
|  | 495 | for (i = n; i < size; ++i) { | 
|  | 496 | x[i - n] = shadow[i]; | 
|  | 497 | shadow[i] = KMEMCHECK_SHADOW_INITIALIZED; | 
|  | 498 | } | 
|  | 499 | } | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | status = kmemcheck_shadow_test(shadow, size); | 
|  | 503 | if (status == KMEMCHECK_SHADOW_INITIALIZED) | 
|  | 504 | return; | 
|  | 505 |  | 
|  | 506 | if (kmemcheck_enabled) | 
|  | 507 | kmemcheck_error_save(status, src_addr, size, regs); | 
|  | 508 |  | 
|  | 509 | if (kmemcheck_enabled == 2) | 
|  | 510 | kmemcheck_enabled = 0; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | enum kmemcheck_method { | 
|  | 514 | KMEMCHECK_READ, | 
|  | 515 | KMEMCHECK_WRITE, | 
|  | 516 | }; | 
|  | 517 |  | 
|  | 518 | static void kmemcheck_access(struct pt_regs *regs, | 
|  | 519 | unsigned long fallback_address, enum kmemcheck_method fallback_method) | 
|  | 520 | { | 
|  | 521 | const uint8_t *insn; | 
|  | 522 | const uint8_t *insn_primary; | 
|  | 523 | unsigned int size; | 
|  | 524 |  | 
|  | 525 | struct kmemcheck_context *data = &__get_cpu_var(kmemcheck_context); | 
|  | 526 |  | 
|  | 527 | /* Recursive fault -- ouch. */ | 
|  | 528 | if (data->busy) { | 
|  | 529 | kmemcheck_show_addr(fallback_address); | 
|  | 530 | kmemcheck_error_save_bug(regs); | 
|  | 531 | return; | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | data->busy = true; | 
|  | 535 |  | 
|  | 536 | insn = (const uint8_t *) regs->ip; | 
|  | 537 | insn_primary = kmemcheck_opcode_get_primary(insn); | 
|  | 538 |  | 
|  | 539 | kmemcheck_opcode_decode(insn, &size); | 
|  | 540 |  | 
|  | 541 | switch (insn_primary[0]) { | 
|  | 542 | #ifdef CONFIG_KMEMCHECK_BITOPS_OK | 
|  | 543 | /* AND, OR, XOR */ | 
|  | 544 | /* | 
|  | 545 | * Unfortunately, these instructions have to be excluded from | 
|  | 546 | * our regular checking since they access only some (and not | 
|  | 547 | * all) bits. This clears out "bogus" bitfield-access warnings. | 
|  | 548 | */ | 
|  | 549 | case 0x80: | 
|  | 550 | case 0x81: | 
|  | 551 | case 0x82: | 
|  | 552 | case 0x83: | 
|  | 553 | switch ((insn_primary[1] >> 3) & 7) { | 
|  | 554 | /* OR */ | 
|  | 555 | case 1: | 
|  | 556 | /* AND */ | 
|  | 557 | case 4: | 
|  | 558 | /* XOR */ | 
|  | 559 | case 6: | 
|  | 560 | kmemcheck_write(regs, fallback_address, size); | 
|  | 561 | goto out; | 
|  | 562 |  | 
|  | 563 | /* ADD */ | 
|  | 564 | case 0: | 
|  | 565 | /* ADC */ | 
|  | 566 | case 2: | 
|  | 567 | /* SBB */ | 
|  | 568 | case 3: | 
|  | 569 | /* SUB */ | 
|  | 570 | case 5: | 
|  | 571 | /* CMP */ | 
|  | 572 | case 7: | 
|  | 573 | break; | 
|  | 574 | } | 
|  | 575 | break; | 
|  | 576 | #endif | 
|  | 577 |  | 
|  | 578 | /* MOVS, MOVSB, MOVSW, MOVSD */ | 
|  | 579 | case 0xa4: | 
|  | 580 | case 0xa5: | 
|  | 581 | /* | 
|  | 582 | * These instructions are special because they take two | 
|  | 583 | * addresses, but we only get one page fault. | 
|  | 584 | */ | 
|  | 585 | kmemcheck_copy(regs, regs->si, regs->di, size); | 
|  | 586 | goto out; | 
|  | 587 |  | 
|  | 588 | /* CMPS, CMPSB, CMPSW, CMPSD */ | 
|  | 589 | case 0xa6: | 
|  | 590 | case 0xa7: | 
|  | 591 | kmemcheck_read(regs, regs->si, size); | 
|  | 592 | kmemcheck_read(regs, regs->di, size); | 
|  | 593 | goto out; | 
|  | 594 | } | 
|  | 595 |  | 
|  | 596 | /* | 
|  | 597 | * If the opcode isn't special in any way, we use the data from the | 
|  | 598 | * page fault handler to determine the address and type of memory | 
|  | 599 | * access. | 
|  | 600 | */ | 
|  | 601 | switch (fallback_method) { | 
|  | 602 | case KMEMCHECK_READ: | 
|  | 603 | kmemcheck_read(regs, fallback_address, size); | 
|  | 604 | goto out; | 
|  | 605 | case KMEMCHECK_WRITE: | 
|  | 606 | kmemcheck_write(regs, fallback_address, size); | 
|  | 607 | goto out; | 
|  | 608 | } | 
|  | 609 |  | 
|  | 610 | out: | 
|  | 611 | data->busy = false; | 
|  | 612 | } | 
|  | 613 |  | 
|  | 614 | bool kmemcheck_fault(struct pt_regs *regs, unsigned long address, | 
|  | 615 | unsigned long error_code) | 
|  | 616 | { | 
|  | 617 | pte_t *pte; | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 618 |  | 
|  | 619 | /* | 
|  | 620 | * XXX: Is it safe to assume that memory accesses from virtual 86 | 
|  | 621 | * mode or non-kernel code segments will _never_ access kernel | 
|  | 622 | * memory (e.g. tracked pages)? For now, we need this to avoid | 
|  | 623 | * invoking kmemcheck for PnP BIOS calls. | 
|  | 624 | */ | 
|  | 625 | if (regs->flags & X86_VM_MASK) | 
|  | 626 | return false; | 
|  | 627 | if (regs->cs != __KERNEL_CS) | 
|  | 628 | return false; | 
|  | 629 |  | 
| Pekka Enberg | f8b4ece | 2009-02-26 11:53:11 +0200 | [diff] [blame] | 630 | pte = kmemcheck_pte_lookup(address); | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 631 | if (!pte) | 
|  | 632 | return false; | 
| Vegard Nossum | dfec072 | 2008-04-04 00:51:41 +0200 | [diff] [blame] | 633 |  | 
|  | 634 | if (error_code & 2) | 
|  | 635 | kmemcheck_access(regs, address, KMEMCHECK_WRITE); | 
|  | 636 | else | 
|  | 637 | kmemcheck_access(regs, address, KMEMCHECK_READ); | 
|  | 638 |  | 
|  | 639 | kmemcheck_show(regs); | 
|  | 640 | return true; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | bool kmemcheck_trap(struct pt_regs *regs) | 
|  | 644 | { | 
|  | 645 | if (!kmemcheck_active(regs)) | 
|  | 646 | return false; | 
|  | 647 |  | 
|  | 648 | /* We're done. */ | 
|  | 649 | kmemcheck_hide(regs); | 
|  | 650 | return true; | 
|  | 651 | } |