| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN"> | 
|  | 2 |  | 
|  | 3 | <book> | 
|  | 4 | <?dbhtml filename="index.html"> | 
|  | 5 |  | 
|  | 6 | <!-- ****************************************************** --> | 
|  | 7 | <!-- Header  --> | 
|  | 8 | <!-- ****************************************************** --> | 
|  | 9 | <bookinfo> | 
|  | 10 | <title>Writing an ALSA Driver</title> | 
|  | 11 | <author> | 
|  | 12 | <firstname>Takashi</firstname> | 
|  | 13 | <surname>Iwai</surname> | 
|  | 14 | <affiliation> | 
|  | 15 | <address> | 
|  | 16 | <email>tiwai@suse.de</email> | 
|  | 17 | </address> | 
|  | 18 | </affiliation> | 
|  | 19 | </author> | 
|  | 20 |  | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 21 | <date>November 17, 2005</date> | 
|  | 22 | <edition>0.3.6</edition> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 |  | 
|  | 24 | <abstract> | 
|  | 25 | <para> | 
|  | 26 | This document describes how to write an ALSA (Advanced Linux | 
|  | 27 | Sound Architecture) driver. | 
|  | 28 | </para> | 
|  | 29 | </abstract> | 
|  | 30 |  | 
|  | 31 | <legalnotice> | 
|  | 32 | <para> | 
| Takashi Iwai | 7c22f1a | 2005-10-10 11:46:31 +0200 | [diff] [blame] | 33 | Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 34 | </para> | 
|  | 35 |  | 
|  | 36 | <para> | 
|  | 37 | This document is free; you can redistribute it and/or modify it | 
|  | 38 | under the terms of the GNU General Public License as published by | 
|  | 39 | the Free Software Foundation; either version 2 of the License, or | 
|  | 40 | (at your option) any later version. | 
|  | 41 | </para> | 
|  | 42 |  | 
|  | 43 | <para> | 
|  | 44 | This document is distributed in the hope that it will be useful, | 
|  | 45 | but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the | 
|  | 46 | implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A | 
|  | 47 | PARTICULAR PURPOSE</emphasis>. See the GNU General Public License | 
|  | 48 | for more details. | 
|  | 49 | </para> | 
|  | 50 |  | 
|  | 51 | <para> | 
|  | 52 | You should have received a copy of the GNU General Public | 
|  | 53 | License along with this program; if not, write to the Free | 
|  | 54 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | 55 | MA 02111-1307 USA | 
|  | 56 | </para> | 
|  | 57 | </legalnotice> | 
|  | 58 |  | 
|  | 59 | </bookinfo> | 
|  | 60 |  | 
|  | 61 | <!-- ****************************************************** --> | 
|  | 62 | <!-- Preface  --> | 
|  | 63 | <!-- ****************************************************** --> | 
|  | 64 | <preface id="preface"> | 
|  | 65 | <title>Preface</title> | 
|  | 66 | <para> | 
|  | 67 | This document describes how to write an | 
|  | 68 | <ulink url="http://www.alsa-project.org/"><citetitle> | 
|  | 69 | ALSA (Advanced Linux Sound Architecture)</citetitle></ulink> | 
|  | 70 | driver. The document focuses mainly on the PCI soundcard. | 
|  | 71 | In the case of other device types, the API might | 
|  | 72 | be different, too. However, at least the ALSA kernel API is | 
|  | 73 | consistent, and therefore it would be still a bit help for | 
|  | 74 | writing them. | 
|  | 75 | </para> | 
|  | 76 |  | 
|  | 77 | <para> | 
|  | 78 | The target of this document is ones who already have enough | 
|  | 79 | skill of C language and have the basic knowledge of linux | 
|  | 80 | kernel programming.  This document doesn't explain the general | 
|  | 81 | topics of linux kernel codes and doesn't cover the detail of | 
|  | 82 | implementation of each low-level driver.  It describes only how is | 
|  | 83 | the standard way to write a PCI sound driver on ALSA. | 
|  | 84 | </para> | 
|  | 85 |  | 
|  | 86 | <para> | 
|  | 87 | If you are already familiar with the older ALSA ver.0.5.x, you | 
|  | 88 | can check the drivers such as <filename>es1938.c</filename> or | 
|  | 89 | <filename>maestro3.c</filename> which have also almost the same | 
|  | 90 | code-base in the ALSA 0.5.x tree, so you can compare the differences. | 
|  | 91 | </para> | 
|  | 92 |  | 
|  | 93 | <para> | 
|  | 94 | This document is still a draft version. Any feedbacks and | 
|  | 95 | corrections, please!! | 
|  | 96 | </para> | 
|  | 97 | </preface> | 
|  | 98 |  | 
|  | 99 |  | 
|  | 100 | <!-- ****************************************************** --> | 
|  | 101 | <!-- File Tree Structure  --> | 
|  | 102 | <!-- ****************************************************** --> | 
|  | 103 | <chapter id="file-tree"> | 
|  | 104 | <title>File Tree Structure</title> | 
|  | 105 |  | 
|  | 106 | <section id="file-tree-general"> | 
|  | 107 | <title>General</title> | 
|  | 108 | <para> | 
|  | 109 | The ALSA drivers are provided in the two ways. | 
|  | 110 | </para> | 
|  | 111 |  | 
|  | 112 | <para> | 
|  | 113 | One is the trees provided as a tarball or via cvs from the | 
|  | 114 | ALSA's ftp site, and another is the 2.6 (or later) Linux kernel | 
|  | 115 | tree. To synchronize both, the ALSA driver tree is split into | 
|  | 116 | two different trees: alsa-kernel and alsa-driver. The former | 
|  | 117 | contains purely the source codes for the Linux 2.6 (or later) | 
|  | 118 | tree. This tree is designed only for compilation on 2.6 or | 
|  | 119 | later environment. The latter, alsa-driver, contains many subtle | 
|  | 120 | files for compiling the ALSA driver on the outside of Linux | 
|  | 121 | kernel like configure script, the wrapper functions for older, | 
|  | 122 | 2.2 and 2.4 kernels, to adapt the latest kernel API, | 
|  | 123 | and additional drivers which are still in development or in | 
|  | 124 | tests.  The drivers in alsa-driver tree will be moved to | 
|  | 125 | alsa-kernel (eventually 2.6 kernel tree) once when they are | 
|  | 126 | finished and confirmed to work fine. | 
|  | 127 | </para> | 
|  | 128 |  | 
|  | 129 | <para> | 
|  | 130 | The file tree structure of ALSA driver is depicted below. Both | 
|  | 131 | alsa-kernel and alsa-driver have almost the same file | 
|  | 132 | structure, except for <quote>core</quote> directory. It's | 
|  | 133 | named as <quote>acore</quote> in alsa-driver tree. | 
|  | 134 |  | 
|  | 135 | <example> | 
|  | 136 | <title>ALSA File Tree Structure</title> | 
|  | 137 | <literallayout> | 
|  | 138 | sound | 
|  | 139 | /core | 
|  | 140 | /oss | 
|  | 141 | /seq | 
|  | 142 | /oss | 
|  | 143 | /instr | 
|  | 144 | /ioctl32 | 
|  | 145 | /include | 
|  | 146 | /drivers | 
|  | 147 | /mpu401 | 
|  | 148 | /opl3 | 
|  | 149 | /i2c | 
|  | 150 | /l3 | 
|  | 151 | /synth | 
|  | 152 | /emux | 
|  | 153 | /pci | 
|  | 154 | /(cards) | 
|  | 155 | /isa | 
|  | 156 | /(cards) | 
|  | 157 | /arm | 
|  | 158 | /ppc | 
|  | 159 | /sparc | 
|  | 160 | /usb | 
|  | 161 | /pcmcia /(cards) | 
|  | 162 | /oss | 
|  | 163 | </literallayout> | 
|  | 164 | </example> | 
|  | 165 | </para> | 
|  | 166 | </section> | 
|  | 167 |  | 
|  | 168 | <section id="file-tree-core-directory"> | 
|  | 169 | <title>core directory</title> | 
|  | 170 | <para> | 
|  | 171 | This directory contains the middle layer, that is, the heart | 
|  | 172 | of ALSA drivers. In this directory, the native ALSA modules are | 
|  | 173 | stored. The sub-directories contain different modules and are | 
|  | 174 | dependent upon the kernel config. | 
|  | 175 | </para> | 
|  | 176 |  | 
|  | 177 | <section id="file-tree-core-directory-oss"> | 
|  | 178 | <title>core/oss</title> | 
|  | 179 |  | 
|  | 180 | <para> | 
|  | 181 | The codes for PCM and mixer OSS emulation modules are stored | 
|  | 182 | in this directory. The rawmidi OSS emulation is included in | 
|  | 183 | the ALSA rawmidi code since it's quite small. The sequencer | 
|  | 184 | code is stored in core/seq/oss directory (see | 
|  | 185 | <link linkend="file-tree-core-directory-seq-oss"><citetitle> | 
|  | 186 | below</citetitle></link>). | 
|  | 187 | </para> | 
|  | 188 | </section> | 
|  | 189 |  | 
|  | 190 | <section id="file-tree-core-directory-ioctl32"> | 
|  | 191 | <title>core/ioctl32</title> | 
|  | 192 |  | 
|  | 193 | <para> | 
|  | 194 | This directory contains the 32bit-ioctl wrappers for 64bit | 
|  | 195 | architectures such like x86-64, ppc64 and sparc64. For 32bit | 
|  | 196 | and alpha architectures, these are not compiled. | 
|  | 197 | </para> | 
|  | 198 | </section> | 
|  | 199 |  | 
|  | 200 | <section id="file-tree-core-directory-seq"> | 
|  | 201 | <title>core/seq</title> | 
|  | 202 | <para> | 
|  | 203 | This and its sub-directories are for the ALSA | 
|  | 204 | sequencer. This directory contains the sequencer core and | 
|  | 205 | primary sequencer modules such like snd-seq-midi, | 
|  | 206 | snd-seq-virmidi, etc. They are compiled only when | 
|  | 207 | <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel | 
|  | 208 | config. | 
|  | 209 | </para> | 
|  | 210 | </section> | 
|  | 211 |  | 
|  | 212 | <section id="file-tree-core-directory-seq-oss"> | 
|  | 213 | <title>core/seq/oss</title> | 
|  | 214 | <para> | 
|  | 215 | This contains the OSS sequencer emulation codes. | 
|  | 216 | </para> | 
|  | 217 | </section> | 
|  | 218 |  | 
|  | 219 | <section id="file-tree-core-directory-deq-instr"> | 
|  | 220 | <title>core/seq/instr</title> | 
|  | 221 | <para> | 
|  | 222 | This directory contains the modules for the sequencer | 
|  | 223 | instrument layer. | 
|  | 224 | </para> | 
|  | 225 | </section> | 
|  | 226 | </section> | 
|  | 227 |  | 
|  | 228 | <section id="file-tree-include-directory"> | 
|  | 229 | <title>include directory</title> | 
|  | 230 | <para> | 
|  | 231 | This is the place for the public header files of ALSA drivers, | 
|  | 232 | which are to be exported to the user-space, or included by | 
|  | 233 | several files at different directories. Basically, the private | 
|  | 234 | header files should not be placed in this directory, but you may | 
|  | 235 | still find files there, due to historical reason :) | 
|  | 236 | </para> | 
|  | 237 | </section> | 
|  | 238 |  | 
|  | 239 | <section id="file-tree-drivers-directory"> | 
|  | 240 | <title>drivers directory</title> | 
|  | 241 | <para> | 
|  | 242 | This directory contains the codes shared among different drivers | 
|  | 243 | on the different architectures.  They are hence supposed not to be | 
|  | 244 | architecture-specific. | 
|  | 245 | For example, the dummy pcm driver and the serial MIDI | 
|  | 246 | driver are found in this directory. In the sub-directories, | 
|  | 247 | there are the codes for components which are independent from | 
|  | 248 | bus and cpu architectures. | 
|  | 249 | </para> | 
|  | 250 |  | 
|  | 251 | <section id="file-tree-drivers-directory-mpu401"> | 
|  | 252 | <title>drivers/mpu401</title> | 
|  | 253 | <para> | 
|  | 254 | The MPU401 and MPU401-UART modules are stored here. | 
|  | 255 | </para> | 
|  | 256 | </section> | 
|  | 257 |  | 
|  | 258 | <section id="file-tree-drivers-directory-opl3"> | 
|  | 259 | <title>drivers/opl3 and opl4</title> | 
|  | 260 | <para> | 
|  | 261 | The OPL3 and OPL4 FM-synth stuff is found here. | 
|  | 262 | </para> | 
|  | 263 | </section> | 
|  | 264 | </section> | 
|  | 265 |  | 
|  | 266 | <section id="file-tree-i2c-directory"> | 
|  | 267 | <title>i2c directory</title> | 
|  | 268 | <para> | 
|  | 269 | This contains the ALSA i2c components. | 
|  | 270 | </para> | 
|  | 271 |  | 
|  | 272 | <para> | 
|  | 273 | Although there is a standard i2c layer on Linux, ALSA has its | 
|  | 274 | own i2c codes for some cards, because the soundcard needs only a | 
|  | 275 | simple operation and the standard i2c API is too complicated for | 
|  | 276 | such a purpose. | 
|  | 277 | </para> | 
|  | 278 |  | 
|  | 279 | <section id="file-tree-i2c-directory-l3"> | 
|  | 280 | <title>i2c/l3</title> | 
|  | 281 | <para> | 
|  | 282 | This is a sub-directory for ARM L3 i2c. | 
|  | 283 | </para> | 
|  | 284 | </section> | 
|  | 285 | </section> | 
|  | 286 |  | 
|  | 287 | <section id="file-tree-synth-directory"> | 
|  | 288 | <title>synth directory</title> | 
|  | 289 | <para> | 
|  | 290 | This contains the synth middle-level modules. | 
|  | 291 | </para> | 
|  | 292 |  | 
|  | 293 | <para> | 
|  | 294 | So far, there is only Emu8000/Emu10k1 synth driver under | 
|  | 295 | synth/emux sub-directory. | 
|  | 296 | </para> | 
|  | 297 | </section> | 
|  | 298 |  | 
|  | 299 | <section id="file-tree-pci-directory"> | 
|  | 300 | <title>pci directory</title> | 
|  | 301 | <para> | 
|  | 302 | This and its sub-directories hold the top-level card modules | 
|  | 303 | for PCI soundcards and the codes specific to the PCI BUS. | 
|  | 304 | </para> | 
|  | 305 |  | 
|  | 306 | <para> | 
|  | 307 | The drivers compiled from a single file is stored directly on | 
|  | 308 | pci directory, while the drivers with several source files are | 
|  | 309 | stored on its own sub-directory (e.g. emu10k1, ice1712). | 
|  | 310 | </para> | 
|  | 311 | </section> | 
|  | 312 |  | 
|  | 313 | <section id="file-tree-isa-directory"> | 
|  | 314 | <title>isa directory</title> | 
|  | 315 | <para> | 
|  | 316 | This and its sub-directories hold the top-level card modules | 
|  | 317 | for ISA soundcards. | 
|  | 318 | </para> | 
|  | 319 | </section> | 
|  | 320 |  | 
|  | 321 | <section id="file-tree-arm-ppc-sparc-directories"> | 
|  | 322 | <title>arm, ppc, and sparc directories</title> | 
|  | 323 | <para> | 
|  | 324 | These are for the top-level card modules which are | 
|  | 325 | specific to each given architecture. | 
|  | 326 | </para> | 
|  | 327 | </section> | 
|  | 328 |  | 
|  | 329 | <section id="file-tree-usb-directory"> | 
|  | 330 | <title>usb directory</title> | 
|  | 331 | <para> | 
|  | 332 | This contains the USB-audio driver. On the latest version, the | 
|  | 333 | USB MIDI driver is integrated together with usb-audio driver. | 
|  | 334 | </para> | 
|  | 335 | </section> | 
|  | 336 |  | 
|  | 337 | <section id="file-tree-pcmcia-directory"> | 
|  | 338 | <title>pcmcia directory</title> | 
|  | 339 | <para> | 
|  | 340 | The PCMCIA, especially PCCard drivers will go here. CardBus | 
|  | 341 | drivers will be on pci directory, because its API is identical | 
|  | 342 | with the standard PCI cards. | 
|  | 343 | </para> | 
|  | 344 | </section> | 
|  | 345 |  | 
|  | 346 | <section id="file-tree-oss-directory"> | 
|  | 347 | <title>oss directory</title> | 
|  | 348 | <para> | 
|  | 349 | The OSS/Lite source files are stored here on Linux 2.6 (or | 
|  | 350 | later) tree. (In the ALSA driver tarball, it's empty, of course :) | 
|  | 351 | </para> | 
|  | 352 | </section> | 
|  | 353 | </chapter> | 
|  | 354 |  | 
|  | 355 |  | 
|  | 356 | <!-- ****************************************************** --> | 
|  | 357 | <!-- Basic Flow for PCI Drivers  --> | 
|  | 358 | <!-- ****************************************************** --> | 
|  | 359 | <chapter id="basic-flow"> | 
|  | 360 | <title>Basic Flow for PCI Drivers</title> | 
|  | 361 |  | 
|  | 362 | <section id="basic-flow-outline"> | 
|  | 363 | <title>Outline</title> | 
|  | 364 | <para> | 
|  | 365 | The minimum flow of PCI soundcard is like the following: | 
|  | 366 |  | 
|  | 367 | <itemizedlist> | 
|  | 368 | <listitem><para>define the PCI ID table (see the section | 
|  | 369 | <link linkend="pci-resource-entries"><citetitle>PCI Entries | 
|  | 370 | </citetitle></link>).</para></listitem> | 
|  | 371 | <listitem><para>create <function>probe()</function> callback.</para></listitem> | 
|  | 372 | <listitem><para>create <function>remove()</function> callback.</para></listitem> | 
|  | 373 | <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem> | 
| Takashi Iwai | 01d25d4 | 2005-04-11 16:58:24 +0200 | [diff] [blame] | 374 | <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 375 | <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem> | 
|  | 376 | </itemizedlist> | 
|  | 377 | </para> | 
|  | 378 | </section> | 
|  | 379 |  | 
|  | 380 | <section id="basic-flow-example"> | 
|  | 381 | <title>Full Code Example</title> | 
|  | 382 | <para> | 
|  | 383 | The code example is shown below. Some parts are kept | 
|  | 384 | unimplemented at this moment but will be filled in the | 
|  | 385 | succeeding sections. The numbers in comment lines of | 
|  | 386 | <function>snd_mychip_probe()</function> function are the | 
|  | 387 | markers. | 
|  | 388 |  | 
|  | 389 | <example> | 
|  | 390 | <title>Basic Flow for PCI Drivers Example</title> | 
|  | 391 | <programlisting> | 
|  | 392 | <![CDATA[ | 
|  | 393 | #include <sound/driver.h> | 
|  | 394 | #include <linux/init.h> | 
|  | 395 | #include <linux/pci.h> | 
|  | 396 | #include <linux/slab.h> | 
|  | 397 | #include <sound/core.h> | 
|  | 398 | #include <sound/initval.h> | 
|  | 399 |  | 
|  | 400 | /* module parameters (see "Module Parameters") */ | 
|  | 401 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | 
|  | 402 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | 
|  | 403 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | 
|  | 404 |  | 
|  | 405 | /* definition of the chip-specific record */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 406 | struct mychip { | 
|  | 407 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 408 | // rest of implementation will be in the section | 
|  | 409 | // "PCI Resource Managements" | 
|  | 410 | }; | 
|  | 411 |  | 
|  | 412 | /* chip-specific destructor | 
|  | 413 | * (see "PCI Resource Managements") | 
|  | 414 | */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 415 | static int snd_mychip_free(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 416 | { | 
|  | 417 | .... // will be implemented later... | 
|  | 418 | } | 
|  | 419 |  | 
|  | 420 | /* component-destructor | 
|  | 421 | * (see "Management of Cards and Components") | 
|  | 422 | */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 423 | static int snd_mychip_dev_free(struct snd_device *device) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 424 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 425 | return snd_mychip_free(device->device_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 426 | } | 
|  | 427 |  | 
|  | 428 | /* chip-specific constructor | 
|  | 429 | * (see "Management of Cards and Components") | 
|  | 430 | */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 431 | static int __devinit snd_mychip_create(struct snd_card *card, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 432 | struct pci_dev *pci, | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 433 | struct mychip **rchip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 434 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 435 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 436 | int err; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 437 | static struct snd_device_ops ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 438 | .dev_free = snd_mychip_dev_free, | 
|  | 439 | }; | 
|  | 440 |  | 
|  | 441 | *rchip = NULL; | 
|  | 442 |  | 
|  | 443 | // check PCI availability here | 
|  | 444 | // (see "PCI Resource Managements") | 
|  | 445 | .... | 
|  | 446 |  | 
|  | 447 | /* allocate a chip-specific data with zero filled */ | 
| Takashi Iwai | 561b220 | 2005-09-09 14:22:34 +0200 | [diff] [blame] | 448 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 449 | if (chip == NULL) | 
|  | 450 | return -ENOMEM; | 
|  | 451 |  | 
|  | 452 | chip->card = card; | 
|  | 453 |  | 
|  | 454 | // rest of initialization here; will be implemented | 
|  | 455 | // later, see "PCI Resource Managements" | 
|  | 456 | .... | 
|  | 457 |  | 
|  | 458 | if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, | 
|  | 459 | chip, &ops)) < 0) { | 
|  | 460 | snd_mychip_free(chip); | 
|  | 461 | return err; | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | snd_card_set_dev(card, &pci->dev); | 
|  | 465 |  | 
|  | 466 | *rchip = chip; | 
|  | 467 | return 0; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | /* constructor -- see "Constructor" sub-section */ | 
|  | 471 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | 
|  | 472 | const struct pci_device_id *pci_id) | 
|  | 473 | { | 
|  | 474 | static int dev; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 475 | struct snd_card *card; | 
|  | 476 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 477 | int err; | 
|  | 478 |  | 
|  | 479 | /* (1) */ | 
|  | 480 | if (dev >= SNDRV_CARDS) | 
|  | 481 | return -ENODEV; | 
|  | 482 | if (!enable[dev]) { | 
|  | 483 | dev++; | 
|  | 484 | return -ENOENT; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | /* (2) */ | 
|  | 488 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); | 
|  | 489 | if (card == NULL) | 
|  | 490 | return -ENOMEM; | 
|  | 491 |  | 
|  | 492 | /* (3) */ | 
|  | 493 | if ((err = snd_mychip_create(card, pci, &chip)) < 0) { | 
|  | 494 | snd_card_free(card); | 
|  | 495 | return err; | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | /* (4) */ | 
|  | 499 | strcpy(card->driver, "My Chip"); | 
|  | 500 | strcpy(card->shortname, "My Own Chip 123"); | 
|  | 501 | sprintf(card->longname, "%s at 0x%lx irq %i", | 
|  | 502 | card->shortname, chip->ioport, chip->irq); | 
|  | 503 |  | 
|  | 504 | /* (5) */ | 
|  | 505 | .... // implemented later | 
|  | 506 |  | 
|  | 507 | /* (6) */ | 
|  | 508 | if ((err = snd_card_register(card)) < 0) { | 
|  | 509 | snd_card_free(card); | 
|  | 510 | return err; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | /* (7) */ | 
|  | 514 | pci_set_drvdata(pci, card); | 
|  | 515 | dev++; | 
|  | 516 | return 0; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | /* destructor -- see "Destructor" sub-section */ | 
|  | 520 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | 
|  | 521 | { | 
|  | 522 | snd_card_free(pci_get_drvdata(pci)); | 
|  | 523 | pci_set_drvdata(pci, NULL); | 
|  | 524 | } | 
|  | 525 | ]]> | 
|  | 526 | </programlisting> | 
|  | 527 | </example> | 
|  | 528 | </para> | 
|  | 529 | </section> | 
|  | 530 |  | 
|  | 531 | <section id="basic-flow-constructor"> | 
|  | 532 | <title>Constructor</title> | 
|  | 533 | <para> | 
|  | 534 | The real constructor of PCI drivers is probe callback. The | 
|  | 535 | probe callback and other component-constructors which are called | 
|  | 536 | from probe callback should be defined with | 
|  | 537 | <parameter>__devinit</parameter> prefix. You | 
|  | 538 | cannot use <parameter>__init</parameter> prefix for them, | 
|  | 539 | because any PCI device could be a hotplug device. | 
|  | 540 | </para> | 
|  | 541 |  | 
|  | 542 | <para> | 
|  | 543 | In the probe callback, the following scheme is often used. | 
|  | 544 | </para> | 
|  | 545 |  | 
|  | 546 | <section id="basic-flow-constructor-device-index"> | 
|  | 547 | <title>1) Check and increment the device index.</title> | 
|  | 548 | <para> | 
|  | 549 | <informalexample> | 
|  | 550 | <programlisting> | 
|  | 551 | <![CDATA[ | 
|  | 552 | static int dev; | 
|  | 553 | .... | 
|  | 554 | if (dev >= SNDRV_CARDS) | 
|  | 555 | return -ENODEV; | 
|  | 556 | if (!enable[dev]) { | 
|  | 557 | dev++; | 
|  | 558 | return -ENOENT; | 
|  | 559 | } | 
|  | 560 | ]]> | 
|  | 561 | </programlisting> | 
|  | 562 | </informalexample> | 
|  | 563 |  | 
|  | 564 | where enable[dev] is the module option. | 
|  | 565 | </para> | 
|  | 566 |  | 
|  | 567 | <para> | 
|  | 568 | At each time probe callback is called, check the | 
|  | 569 | availability of the device. If not available, simply increment | 
|  | 570 | the device index and returns. dev will be incremented also | 
|  | 571 | later (<link | 
|  | 572 | linkend="basic-flow-constructor-set-pci"><citetitle>step | 
|  | 573 | 7</citetitle></link>). | 
|  | 574 | </para> | 
|  | 575 | </section> | 
|  | 576 |  | 
|  | 577 | <section id="basic-flow-constructor-create-card"> | 
|  | 578 | <title>2) Create a card instance</title> | 
|  | 579 | <para> | 
|  | 580 | <informalexample> | 
|  | 581 | <programlisting> | 
|  | 582 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 583 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 584 | .... | 
|  | 585 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); | 
|  | 586 | ]]> | 
|  | 587 | </programlisting> | 
|  | 588 | </informalexample> | 
|  | 589 | </para> | 
|  | 590 |  | 
|  | 591 | <para> | 
|  | 592 | The detail will be explained in the section | 
|  | 593 | <link linkend="card-management-card-instance"><citetitle> | 
|  | 594 | Management of Cards and Components</citetitle></link>. | 
|  | 595 | </para> | 
|  | 596 | </section> | 
|  | 597 |  | 
|  | 598 | <section id="basic-flow-constructor-create-main"> | 
|  | 599 | <title>3) Create a main component</title> | 
|  | 600 | <para> | 
|  | 601 | In this part, the PCI resources are allocated. | 
|  | 602 |  | 
|  | 603 | <informalexample> | 
|  | 604 | <programlisting> | 
|  | 605 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 606 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 607 | .... | 
|  | 608 | if ((err = snd_mychip_create(card, pci, &chip)) < 0) { | 
|  | 609 | snd_card_free(card); | 
|  | 610 | return err; | 
|  | 611 | } | 
|  | 612 | ]]> | 
|  | 613 | </programlisting> | 
|  | 614 | </informalexample> | 
|  | 615 |  | 
|  | 616 | The detail will be explained in the section <link | 
|  | 617 | linkend="pci-resource"><citetitle>PCI Resource | 
|  | 618 | Managements</citetitle></link>. | 
|  | 619 | </para> | 
|  | 620 | </section> | 
|  | 621 |  | 
|  | 622 | <section id="basic-flow-constructor-main-component"> | 
|  | 623 | <title>4) Set the driver ID and name strings.</title> | 
|  | 624 | <para> | 
|  | 625 | <informalexample> | 
|  | 626 | <programlisting> | 
|  | 627 | <![CDATA[ | 
|  | 628 | strcpy(card->driver, "My Chip"); | 
|  | 629 | strcpy(card->shortname, "My Own Chip 123"); | 
|  | 630 | sprintf(card->longname, "%s at 0x%lx irq %i", | 
|  | 631 | card->shortname, chip->ioport, chip->irq); | 
|  | 632 | ]]> | 
|  | 633 | </programlisting> | 
|  | 634 | </informalexample> | 
|  | 635 |  | 
|  | 636 | The driver field holds the minimal ID string of the | 
|  | 637 | chip. This is referred by alsa-lib's configurator, so keep it | 
|  | 638 | simple but unique. | 
|  | 639 | Even the same driver can have different driver IDs to | 
|  | 640 | distinguish the functionality of each chip type. | 
|  | 641 | </para> | 
|  | 642 |  | 
|  | 643 | <para> | 
|  | 644 | The shortname field is a string shown as more verbose | 
|  | 645 | name. The longname field contains the information which is | 
|  | 646 | shown in <filename>/proc/asound/cards</filename>. | 
|  | 647 | </para> | 
|  | 648 | </section> | 
|  | 649 |  | 
|  | 650 | <section id="basic-flow-constructor-create-other"> | 
|  | 651 | <title>5) Create other components, such as mixer, MIDI, etc.</title> | 
|  | 652 | <para> | 
|  | 653 | Here you define the basic components such as | 
|  | 654 | <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>, | 
|  | 655 | mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>), | 
|  | 656 | MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>), | 
|  | 657 | and other interfaces. | 
|  | 658 | Also, if you want a <link linkend="proc-interface"><citetitle>proc | 
|  | 659 | file</citetitle></link>, define it here, too. | 
|  | 660 | </para> | 
|  | 661 | </section> | 
|  | 662 |  | 
|  | 663 | <section id="basic-flow-constructor-register-card"> | 
|  | 664 | <title>6) Register the card instance.</title> | 
|  | 665 | <para> | 
|  | 666 | <informalexample> | 
|  | 667 | <programlisting> | 
|  | 668 | <![CDATA[ | 
|  | 669 | if ((err = snd_card_register(card)) < 0) { | 
|  | 670 | snd_card_free(card); | 
|  | 671 | return err; | 
|  | 672 | } | 
|  | 673 | ]]> | 
|  | 674 | </programlisting> | 
|  | 675 | </informalexample> | 
|  | 676 | </para> | 
|  | 677 |  | 
|  | 678 | <para> | 
|  | 679 | Will be explained in the section <link | 
|  | 680 | linkend="card-management-registration"><citetitle>Management | 
|  | 681 | of Cards and Components</citetitle></link>, too. | 
|  | 682 | </para> | 
|  | 683 | </section> | 
|  | 684 |  | 
|  | 685 | <section id="basic-flow-constructor-set-pci"> | 
|  | 686 | <title>7) Set the PCI driver data and return zero.</title> | 
|  | 687 | <para> | 
|  | 688 | <informalexample> | 
|  | 689 | <programlisting> | 
|  | 690 | <![CDATA[ | 
|  | 691 | pci_set_drvdata(pci, card); | 
|  | 692 | dev++; | 
|  | 693 | return 0; | 
|  | 694 | ]]> | 
|  | 695 | </programlisting> | 
|  | 696 | </informalexample> | 
|  | 697 |  | 
|  | 698 | In the above, the card record is stored. This pointer is | 
|  | 699 | referred in the remove callback and power-management | 
|  | 700 | callbacks, too. | 
|  | 701 | </para> | 
|  | 702 | </section> | 
|  | 703 | </section> | 
|  | 704 |  | 
|  | 705 | <section id="basic-flow-destructor"> | 
|  | 706 | <title>Destructor</title> | 
|  | 707 | <para> | 
|  | 708 | The destructor, remove callback, simply releases the card | 
|  | 709 | instance. Then the ALSA middle layer will release all the | 
|  | 710 | attached components automatically. | 
|  | 711 | </para> | 
|  | 712 |  | 
|  | 713 | <para> | 
|  | 714 | It would be typically like the following: | 
|  | 715 |  | 
|  | 716 | <informalexample> | 
|  | 717 | <programlisting> | 
|  | 718 | <![CDATA[ | 
|  | 719 | static void __devexit snd_mychip_remove(struct pci_dev *pci) | 
|  | 720 | { | 
|  | 721 | snd_card_free(pci_get_drvdata(pci)); | 
|  | 722 | pci_set_drvdata(pci, NULL); | 
|  | 723 | } | 
|  | 724 | ]]> | 
|  | 725 | </programlisting> | 
|  | 726 | </informalexample> | 
|  | 727 |  | 
|  | 728 | The above code assumes that the card pointer is set to the PCI | 
|  | 729 | driver data. | 
|  | 730 | </para> | 
|  | 731 | </section> | 
|  | 732 |  | 
|  | 733 | <section id="basic-flow-header-files"> | 
|  | 734 | <title>Header Files</title> | 
|  | 735 | <para> | 
|  | 736 | For the above example, at least the following include files | 
|  | 737 | are necessary. | 
|  | 738 |  | 
|  | 739 | <informalexample> | 
|  | 740 | <programlisting> | 
|  | 741 | <![CDATA[ | 
|  | 742 | #include <sound/driver.h> | 
|  | 743 | #include <linux/init.h> | 
|  | 744 | #include <linux/pci.h> | 
|  | 745 | #include <linux/slab.h> | 
|  | 746 | #include <sound/core.h> | 
|  | 747 | #include <sound/initval.h> | 
|  | 748 | ]]> | 
|  | 749 | </programlisting> | 
|  | 750 | </informalexample> | 
|  | 751 |  | 
|  | 752 | where the last one is necessary only when module options are | 
|  | 753 | defined in the source file.  If the codes are split to several | 
|  | 754 | files, the file without module options don't need them. | 
|  | 755 | </para> | 
|  | 756 |  | 
|  | 757 | <para> | 
|  | 758 | In addition to them, you'll need | 
|  | 759 | <filename><linux/interrupt.h></filename> for the interrupt | 
|  | 760 | handling, and <filename><asm/io.h></filename> for the i/o | 
|  | 761 | access. If you use <function>mdelay()</function> or | 
|  | 762 | <function>udelay()</function> functions, you'll need to include | 
|  | 763 | <filename><linux/delay.h></filename>, too. | 
|  | 764 | </para> | 
|  | 765 |  | 
|  | 766 | <para> | 
|  | 767 | The ALSA interfaces like PCM or control API are defined in other | 
|  | 768 | header files as <filename><sound/xxx.h></filename>. | 
|  | 769 | They have to be included after | 
|  | 770 | <filename><sound/core.h></filename>. | 
|  | 771 | </para> | 
|  | 772 |  | 
|  | 773 | </section> | 
|  | 774 | </chapter> | 
|  | 775 |  | 
|  | 776 |  | 
|  | 777 | <!-- ****************************************************** --> | 
|  | 778 | <!-- Management of Cards and Components  --> | 
|  | 779 | <!-- ****************************************************** --> | 
|  | 780 | <chapter id="card-management"> | 
|  | 781 | <title>Management of Cards and Components</title> | 
|  | 782 |  | 
|  | 783 | <section id="card-management-card-instance"> | 
|  | 784 | <title>Card Instance</title> | 
|  | 785 | <para> | 
|  | 786 | For each soundcard, a <quote>card</quote> record must be allocated. | 
|  | 787 | </para> | 
|  | 788 |  | 
|  | 789 | <para> | 
|  | 790 | A card record is the headquarters of the soundcard.  It manages | 
|  | 791 | the list of whole devices (components) on the soundcard, such as | 
|  | 792 | PCM, mixers, MIDI, synthesizer, and so on.  Also, the card | 
|  | 793 | record holds the ID and the name strings of the card, manages | 
|  | 794 | the root of proc files, and controls the power-management states | 
|  | 795 | and hotplug disconnections.  The component list on the card | 
|  | 796 | record is used to manage the proper releases of resources at | 
|  | 797 | destruction. | 
|  | 798 | </para> | 
|  | 799 |  | 
|  | 800 | <para> | 
|  | 801 | As mentioned above, to create a card instance, call | 
|  | 802 | <function>snd_card_new()</function>. | 
|  | 803 |  | 
|  | 804 | <informalexample> | 
|  | 805 | <programlisting> | 
|  | 806 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 807 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 808 | card = snd_card_new(index, id, module, extra_size); | 
|  | 809 | ]]> | 
|  | 810 | </programlisting> | 
|  | 811 | </informalexample> | 
|  | 812 | </para> | 
|  | 813 |  | 
|  | 814 | <para> | 
|  | 815 | The function takes four arguments, the card-index number, the | 
|  | 816 | id string, the module pointer (usually | 
|  | 817 | <constant>THIS_MODULE</constant>), | 
|  | 818 | and the size of extra-data space.  The last argument is used to | 
|  | 819 | allocate card->private_data for the | 
|  | 820 | chip-specific data.  Note that this data | 
|  | 821 | <emphasis>is</emphasis> allocated by | 
|  | 822 | <function>snd_card_new()</function>. | 
|  | 823 | </para> | 
|  | 824 | </section> | 
|  | 825 |  | 
|  | 826 | <section id="card-management-component"> | 
|  | 827 | <title>Components</title> | 
|  | 828 | <para> | 
|  | 829 | After the card is created, you can attach the components | 
|  | 830 | (devices) to the card instance. On ALSA driver, a component is | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 831 | represented as a struct <structname>snd_device</structname> object. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 832 | A component can be a PCM instance, a control interface, a raw | 
|  | 833 | MIDI interface, etc.  Each of such instances has one component | 
|  | 834 | entry. | 
|  | 835 | </para> | 
|  | 836 |  | 
|  | 837 | <para> | 
|  | 838 | A component can be created via | 
|  | 839 | <function>snd_device_new()</function> function. | 
|  | 840 |  | 
|  | 841 | <informalexample> | 
|  | 842 | <programlisting> | 
|  | 843 | <![CDATA[ | 
|  | 844 | snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); | 
|  | 845 | ]]> | 
|  | 846 | </programlisting> | 
|  | 847 | </informalexample> | 
|  | 848 | </para> | 
|  | 849 |  | 
|  | 850 | <para> | 
|  | 851 | This takes the card pointer, the device-level | 
|  | 852 | (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the | 
|  | 853 | callback pointers (<parameter>&ops</parameter>). The | 
|  | 854 | device-level defines the type of components and the order of | 
|  | 855 | registration and de-registration.  For most of components, the | 
|  | 856 | device-level is already defined.  For a user-defined component, | 
|  | 857 | you can use <constant>SNDRV_DEV_LOWLEVEL</constant>. | 
|  | 858 | </para> | 
|  | 859 |  | 
|  | 860 | <para> | 
|  | 861 | This function itself doesn't allocate the data space. The data | 
|  | 862 | must be allocated manually beforehand, and its pointer is passed | 
|  | 863 | as the argument. This pointer is used as the identifier | 
|  | 864 | (<parameter>chip</parameter> in the above example) for the | 
|  | 865 | instance. | 
|  | 866 | </para> | 
|  | 867 |  | 
|  | 868 | <para> | 
|  | 869 | Each ALSA pre-defined component such as ac97 or pcm calls | 
|  | 870 | <function>snd_device_new()</function> inside its | 
|  | 871 | constructor. The destructor for each component is defined in the | 
|  | 872 | callback pointers.  Hence, you don't need to take care of | 
|  | 873 | calling a destructor for such a component. | 
|  | 874 | </para> | 
|  | 875 |  | 
|  | 876 | <para> | 
|  | 877 | If you would like to create your own component, you need to | 
|  | 878 | set the destructor function to dev_free callback in | 
|  | 879 | <parameter>ops</parameter>, so that it can be released | 
|  | 880 | automatically via <function>snd_card_free()</function>. The | 
|  | 881 | example will be shown later as an implementation of a | 
|  | 882 | chip-specific data. | 
|  | 883 | </para> | 
|  | 884 | </section> | 
|  | 885 |  | 
|  | 886 | <section id="card-management-chip-specific"> | 
|  | 887 | <title>Chip-Specific Data</title> | 
|  | 888 | <para> | 
|  | 889 | The chip-specific information, e.g. the i/o port address, its | 
|  | 890 | resource pointer, or the irq number, is stored in the | 
|  | 891 | chip-specific record. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 892 |  | 
|  | 893 | <informalexample> | 
|  | 894 | <programlisting> | 
|  | 895 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 896 | struct mychip { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 897 | .... | 
|  | 898 | }; | 
|  | 899 | ]]> | 
|  | 900 | </programlisting> | 
|  | 901 | </informalexample> | 
|  | 902 | </para> | 
|  | 903 |  | 
|  | 904 | <para> | 
|  | 905 | In general, there are two ways to allocate the chip record. | 
|  | 906 | </para> | 
|  | 907 |  | 
|  | 908 | <section id="card-management-chip-specific-snd-card-new"> | 
|  | 909 | <title>1. Allocating via <function>snd_card_new()</function>.</title> | 
|  | 910 | <para> | 
|  | 911 | As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e. | 
|  | 912 |  | 
|  | 913 | <informalexample> | 
|  | 914 | <programlisting> | 
|  | 915 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 916 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 917 | ]]> | 
|  | 918 | </programlisting> | 
|  | 919 | </informalexample> | 
|  | 920 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 921 | whether struct <structname>mychip</structname> is the type of the chip record. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 922 | </para> | 
|  | 923 |  | 
|  | 924 | <para> | 
|  | 925 | In return, the allocated record can be accessed as | 
|  | 926 |  | 
|  | 927 | <informalexample> | 
|  | 928 | <programlisting> | 
|  | 929 | <![CDATA[ | 
| Takashi Iwai | 437a5a4 | 2006-11-21 12:14:23 +0100 | [diff] [blame] | 930 | struct mychip *chip = card->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 931 | ]]> | 
|  | 932 | </programlisting> | 
|  | 933 | </informalexample> | 
|  | 934 |  | 
|  | 935 | With this method, you don't have to allocate twice. | 
|  | 936 | The record is released together with the card instance. | 
|  | 937 | </para> | 
|  | 938 | </section> | 
|  | 939 |  | 
|  | 940 | <section id="card-management-chip-specific-allocate-extra"> | 
|  | 941 | <title>2. Allocating an extra device.</title> | 
|  | 942 |  | 
|  | 943 | <para> | 
|  | 944 | After allocating a card instance via | 
|  | 945 | <function>snd_card_new()</function> (with | 
|  | 946 | <constant>NULL</constant> on the 4th arg), call | 
| Takashi Iwai | 561b220 | 2005-09-09 14:22:34 +0200 | [diff] [blame] | 947 | <function>kzalloc()</function>. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 948 |  | 
|  | 949 | <informalexample> | 
|  | 950 | <programlisting> | 
|  | 951 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 952 | struct snd_card *card; | 
|  | 953 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 954 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL); | 
|  | 955 | ..... | 
| Takashi Iwai | 561b220 | 2005-09-09 14:22:34 +0200 | [diff] [blame] | 956 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 957 | ]]> | 
|  | 958 | </programlisting> | 
|  | 959 | </informalexample> | 
|  | 960 | </para> | 
|  | 961 |  | 
|  | 962 | <para> | 
|  | 963 | The chip record should have the field to hold the card | 
|  | 964 | pointer at least, | 
|  | 965 |  | 
|  | 966 | <informalexample> | 
|  | 967 | <programlisting> | 
|  | 968 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 969 | struct mychip { | 
|  | 970 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 971 | .... | 
|  | 972 | }; | 
|  | 973 | ]]> | 
|  | 974 | </programlisting> | 
|  | 975 | </informalexample> | 
|  | 976 | </para> | 
|  | 977 |  | 
|  | 978 | <para> | 
|  | 979 | Then, set the card pointer in the returned chip instance. | 
|  | 980 |  | 
|  | 981 | <informalexample> | 
|  | 982 | <programlisting> | 
|  | 983 | <![CDATA[ | 
|  | 984 | chip->card = card; | 
|  | 985 | ]]> | 
|  | 986 | </programlisting> | 
|  | 987 | </informalexample> | 
|  | 988 | </para> | 
|  | 989 |  | 
|  | 990 | <para> | 
|  | 991 | Next, initialize the fields, and register this chip | 
|  | 992 | record as a low-level device with a specified | 
|  | 993 | <parameter>ops</parameter>, | 
|  | 994 |  | 
|  | 995 | <informalexample> | 
|  | 996 | <programlisting> | 
|  | 997 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 998 | static struct snd_device_ops ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 999 | .dev_free =        snd_mychip_dev_free, | 
|  | 1000 | }; | 
|  | 1001 | .... | 
|  | 1002 | snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); | 
|  | 1003 | ]]> | 
|  | 1004 | </programlisting> | 
|  | 1005 | </informalexample> | 
|  | 1006 |  | 
|  | 1007 | <function>snd_mychip_dev_free()</function> is the | 
|  | 1008 | device-destructor function, which will call the real | 
|  | 1009 | destructor. | 
|  | 1010 | </para> | 
|  | 1011 |  | 
|  | 1012 | <para> | 
|  | 1013 | <informalexample> | 
|  | 1014 | <programlisting> | 
|  | 1015 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1016 | static int snd_mychip_dev_free(struct snd_device *device) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1017 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1018 | return snd_mychip_free(device->device_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1019 | } | 
|  | 1020 | ]]> | 
|  | 1021 | </programlisting> | 
|  | 1022 | </informalexample> | 
|  | 1023 |  | 
|  | 1024 | where <function>snd_mychip_free()</function> is the real destructor. | 
|  | 1025 | </para> | 
|  | 1026 | </section> | 
|  | 1027 | </section> | 
|  | 1028 |  | 
|  | 1029 | <section id="card-management-registration"> | 
|  | 1030 | <title>Registration and Release</title> | 
|  | 1031 | <para> | 
|  | 1032 | After all components are assigned, register the card instance | 
|  | 1033 | by calling <function>snd_card_register()</function>. The access | 
|  | 1034 | to the device files are enabled at this point. That is, before | 
|  | 1035 | <function>snd_card_register()</function> is called, the | 
|  | 1036 | components are safely inaccessible from external side. If this | 
|  | 1037 | call fails, exit the probe function after releasing the card via | 
|  | 1038 | <function>snd_card_free()</function>. | 
|  | 1039 | </para> | 
|  | 1040 |  | 
|  | 1041 | <para> | 
|  | 1042 | For releasing the card instance, you can call simply | 
|  | 1043 | <function>snd_card_free()</function>. As already mentioned, all | 
|  | 1044 | components are released automatically by this call. | 
|  | 1045 | </para> | 
|  | 1046 |  | 
|  | 1047 | <para> | 
|  | 1048 | As further notes, the destructors (both | 
|  | 1049 | <function>snd_mychip_dev_free</function> and | 
|  | 1050 | <function>snd_mychip_free</function>) cannot be defined with | 
|  | 1051 | <parameter>__devexit</parameter> prefix, because they may be | 
|  | 1052 | called from the constructor, too, at the false path. | 
|  | 1053 | </para> | 
|  | 1054 |  | 
|  | 1055 | <para> | 
|  | 1056 | For a device which allows hotplugging, you can use | 
| Takashi Iwai | 2b29b13 | 2006-06-23 14:38:26 +0200 | [diff] [blame] | 1057 | <function>snd_card_free_when_closed</function>.  This one will | 
|  | 1058 | postpone the destruction until all devices are closed. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1059 | </para> | 
|  | 1060 |  | 
|  | 1061 | </section> | 
|  | 1062 |  | 
|  | 1063 | </chapter> | 
|  | 1064 |  | 
|  | 1065 |  | 
|  | 1066 | <!-- ****************************************************** --> | 
|  | 1067 | <!-- PCI Resource Managements  --> | 
|  | 1068 | <!-- ****************************************************** --> | 
|  | 1069 | <chapter id="pci-resource"> | 
|  | 1070 | <title>PCI Resource Managements</title> | 
|  | 1071 |  | 
|  | 1072 | <section id="pci-resource-example"> | 
|  | 1073 | <title>Full Code Example</title> | 
|  | 1074 | <para> | 
|  | 1075 | In this section, we'll finish the chip-specific constructor, | 
|  | 1076 | destructor and PCI entries. The example code is shown first, | 
|  | 1077 | below. | 
|  | 1078 |  | 
|  | 1079 | <example> | 
|  | 1080 | <title>PCI Resource Managements Example</title> | 
|  | 1081 | <programlisting> | 
|  | 1082 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1083 | struct mychip { | 
|  | 1084 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1085 | struct pci_dev *pci; | 
|  | 1086 |  | 
|  | 1087 | unsigned long port; | 
|  | 1088 | int irq; | 
|  | 1089 | }; | 
|  | 1090 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1091 | static int snd_mychip_free(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1092 | { | 
|  | 1093 | /* disable hardware here if any */ | 
|  | 1094 | .... // (not implemented in this document) | 
|  | 1095 |  | 
|  | 1096 | /* release the irq */ | 
|  | 1097 | if (chip->irq >= 0) | 
| Takashi Iwai | 437a5a4 | 2006-11-21 12:14:23 +0100 | [diff] [blame] | 1098 | free_irq(chip->irq, chip); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1099 | /* release the i/o ports & memory */ | 
|  | 1100 | pci_release_regions(chip->pci); | 
|  | 1101 | /* disable the PCI entry */ | 
|  | 1102 | pci_disable_device(chip->pci); | 
|  | 1103 | /* release the data */ | 
|  | 1104 | kfree(chip); | 
|  | 1105 | return 0; | 
|  | 1106 | } | 
|  | 1107 |  | 
|  | 1108 | /* chip-specific constructor */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1109 | static int __devinit snd_mychip_create(struct snd_card *card, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1110 | struct pci_dev *pci, | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1111 | struct mychip **rchip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1112 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1113 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1114 | int err; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1115 | static struct snd_device_ops ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1116 | .dev_free = snd_mychip_dev_free, | 
|  | 1117 | }; | 
|  | 1118 |  | 
|  | 1119 | *rchip = NULL; | 
|  | 1120 |  | 
|  | 1121 | /* initialize the PCI entry */ | 
|  | 1122 | if ((err = pci_enable_device(pci)) < 0) | 
|  | 1123 | return err; | 
|  | 1124 | /* check PCI availability (28bit DMA) */ | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1125 | if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || | 
|  | 1126 | pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1127 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | 
|  | 1128 | pci_disable_device(pci); | 
|  | 1129 | return -ENXIO; | 
|  | 1130 | } | 
|  | 1131 |  | 
| Takashi Iwai | 561b220 | 2005-09-09 14:22:34 +0200 | [diff] [blame] | 1132 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1133 | if (chip == NULL) { | 
|  | 1134 | pci_disable_device(pci); | 
|  | 1135 | return -ENOMEM; | 
|  | 1136 | } | 
|  | 1137 |  | 
|  | 1138 | /* initialize the stuff */ | 
|  | 1139 | chip->card = card; | 
|  | 1140 | chip->pci = pci; | 
|  | 1141 | chip->irq = -1; | 
|  | 1142 |  | 
|  | 1143 | /* (1) PCI resource allocation */ | 
|  | 1144 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | 
|  | 1145 | kfree(chip); | 
|  | 1146 | pci_disable_device(pci); | 
|  | 1147 | return err; | 
|  | 1148 | } | 
|  | 1149 | chip->port = pci_resource_start(pci, 0); | 
|  | 1150 | if (request_irq(pci->irq, snd_mychip_interrupt, | 
| Takashi Iwai | 437a5a4 | 2006-11-21 12:14:23 +0100 | [diff] [blame] | 1151 | IRQF_SHARED, "My Chip", chip)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1152 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | 
|  | 1153 | snd_mychip_free(chip); | 
|  | 1154 | return -EBUSY; | 
|  | 1155 | } | 
|  | 1156 | chip->irq = pci->irq; | 
|  | 1157 |  | 
|  | 1158 | /* (2) initialization of the chip hardware */ | 
|  | 1159 | .... //   (not implemented in this document) | 
|  | 1160 |  | 
|  | 1161 | if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, | 
|  | 1162 | chip, &ops)) < 0) { | 
|  | 1163 | snd_mychip_free(chip); | 
|  | 1164 | return err; | 
|  | 1165 | } | 
|  | 1166 |  | 
|  | 1167 | snd_card_set_dev(card, &pci->dev); | 
|  | 1168 |  | 
|  | 1169 | *rchip = chip; | 
|  | 1170 | return 0; | 
|  | 1171 | } | 
|  | 1172 |  | 
|  | 1173 | /* PCI IDs */ | 
| Takashi Iwai | f40b689 | 2006-07-05 16:51:05 +0200 | [diff] [blame] | 1174 | static struct pci_device_id snd_mychip_ids[] = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1175 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | 
|  | 1176 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | 
|  | 1177 | .... | 
|  | 1178 | { 0, } | 
|  | 1179 | }; | 
|  | 1180 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | 
|  | 1181 |  | 
|  | 1182 | /* pci_driver definition */ | 
|  | 1183 | static struct pci_driver driver = { | 
|  | 1184 | .name = "My Own Chip", | 
|  | 1185 | .id_table = snd_mychip_ids, | 
|  | 1186 | .probe = snd_mychip_probe, | 
|  | 1187 | .remove = __devexit_p(snd_mychip_remove), | 
|  | 1188 | }; | 
|  | 1189 |  | 
|  | 1190 | /* initialization of the module */ | 
|  | 1191 | static int __init alsa_card_mychip_init(void) | 
|  | 1192 | { | 
| Takashi Iwai | 01d25d4 | 2005-04-11 16:58:24 +0200 | [diff] [blame] | 1193 | return pci_register_driver(&driver); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | /* clean up the module */ | 
|  | 1197 | static void __exit alsa_card_mychip_exit(void) | 
|  | 1198 | { | 
|  | 1199 | pci_unregister_driver(&driver); | 
|  | 1200 | } | 
|  | 1201 |  | 
|  | 1202 | module_init(alsa_card_mychip_init) | 
|  | 1203 | module_exit(alsa_card_mychip_exit) | 
|  | 1204 |  | 
|  | 1205 | EXPORT_NO_SYMBOLS; /* for old kernels only */ | 
|  | 1206 | ]]> | 
|  | 1207 | </programlisting> | 
|  | 1208 | </example> | 
|  | 1209 | </para> | 
|  | 1210 | </section> | 
|  | 1211 |  | 
|  | 1212 | <section id="pci-resource-some-haftas"> | 
|  | 1213 | <title>Some Hafta's</title> | 
|  | 1214 | <para> | 
|  | 1215 | The allocation of PCI resources is done in the | 
|  | 1216 | <function>probe()</function> function, and usually an extra | 
|  | 1217 | <function>xxx_create()</function> function is written for this | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1218 | purpose. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1219 | </para> | 
|  | 1220 |  | 
|  | 1221 | <para> | 
|  | 1222 | In the case of PCI devices, you have to call at first | 
|  | 1223 | <function>pci_enable_device()</function> function before | 
|  | 1224 | allocating resources. Also, you need to set the proper PCI DMA | 
|  | 1225 | mask to limit the accessed i/o range. In some cases, you might | 
|  | 1226 | need to call <function>pci_set_master()</function> function, | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1227 | too. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1228 | </para> | 
|  | 1229 |  | 
|  | 1230 | <para> | 
|  | 1231 | Suppose the 28bit mask, and the code to be added would be like: | 
|  | 1232 |  | 
|  | 1233 | <informalexample> | 
|  | 1234 | <programlisting> | 
|  | 1235 | <![CDATA[ | 
|  | 1236 | if ((err = pci_enable_device(pci)) < 0) | 
|  | 1237 | return err; | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1238 | if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 || | 
|  | 1239 | pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1240 | printk(KERN_ERR "error to set 28bit mask DMA\n"); | 
|  | 1241 | pci_disable_device(pci); | 
|  | 1242 | return -ENXIO; | 
|  | 1243 | } | 
|  | 1244 |  | 
|  | 1245 | ]]> | 
|  | 1246 | </programlisting> | 
|  | 1247 | </informalexample> | 
|  | 1248 | </para> | 
|  | 1249 | </section> | 
|  | 1250 |  | 
|  | 1251 | <section id="pci-resource-resource-allocation"> | 
|  | 1252 | <title>Resource Allocation</title> | 
|  | 1253 | <para> | 
|  | 1254 | The allocation of I/O ports and irqs are done via standard kernel | 
|  | 1255 | functions. Unlike ALSA ver.0.5.x., there are no helpers for | 
|  | 1256 | that. And these resources must be released in the destructor | 
|  | 1257 | function (see below). Also, on ALSA 0.9.x, you don't need to | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1258 | allocate (pseudo-)DMA for PCI like ALSA 0.5.x. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1259 | </para> | 
|  | 1260 |  | 
|  | 1261 | <para> | 
|  | 1262 | Now assume that this PCI device has an I/O port with 8 bytes | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1263 | and an interrupt. Then struct <structname>mychip</structname> will have the | 
| Tobias Klauser | 56b146d | 2006-04-10 22:54:21 -0700 | [diff] [blame] | 1264 | following fields: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1265 |  | 
|  | 1266 | <informalexample> | 
|  | 1267 | <programlisting> | 
|  | 1268 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1269 | struct mychip { | 
|  | 1270 | struct snd_card *card; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1271 |  | 
|  | 1272 | unsigned long port; | 
|  | 1273 | int irq; | 
|  | 1274 | }; | 
|  | 1275 | ]]> | 
|  | 1276 | </programlisting> | 
|  | 1277 | </informalexample> | 
|  | 1278 | </para> | 
|  | 1279 |  | 
|  | 1280 | <para> | 
|  | 1281 | For an i/o port (and also a memory region), you need to have | 
|  | 1282 | the resource pointer for the standard resource management. For | 
|  | 1283 | an irq, you have to keep only the irq number (integer). But you | 
|  | 1284 | need to initialize this number as -1 before actual allocation, | 
|  | 1285 | since irq 0 is valid. The port address and its resource pointer | 
|  | 1286 | can be initialized as null by | 
| Takashi Iwai | 561b220 | 2005-09-09 14:22:34 +0200 | [diff] [blame] | 1287 | <function>kzalloc()</function> automatically, so you | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1288 | don't have to take care of resetting them. | 
|  | 1289 | </para> | 
|  | 1290 |  | 
|  | 1291 | <para> | 
|  | 1292 | The allocation of an i/o port is done like this: | 
|  | 1293 |  | 
|  | 1294 | <informalexample> | 
|  | 1295 | <programlisting> | 
|  | 1296 | <![CDATA[ | 
|  | 1297 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | 
|  | 1298 | kfree(chip); | 
|  | 1299 | pci_disable_device(pci); | 
|  | 1300 | return err; | 
|  | 1301 | } | 
|  | 1302 | chip->port = pci_resource_start(pci, 0); | 
|  | 1303 | ]]> | 
|  | 1304 | </programlisting> | 
|  | 1305 | </informalexample> | 
|  | 1306 | </para> | 
|  | 1307 |  | 
|  | 1308 | <para> | 
|  | 1309 | <!-- obsolete --> | 
|  | 1310 | It will reserve the i/o port region of 8 bytes of the given | 
|  | 1311 | PCI device. The returned value, chip->res_port, is allocated | 
|  | 1312 | via <function>kmalloc()</function> by | 
|  | 1313 | <function>request_region()</function>. The pointer must be | 
|  | 1314 | released via <function>kfree()</function>, but there is some | 
|  | 1315 | problem regarding this. This issue will be explained more below. | 
|  | 1316 | </para> | 
|  | 1317 |  | 
|  | 1318 | <para> | 
|  | 1319 | The allocation of an interrupt source is done like this: | 
|  | 1320 |  | 
|  | 1321 | <informalexample> | 
|  | 1322 | <programlisting> | 
|  | 1323 | <![CDATA[ | 
|  | 1324 | if (request_irq(pci->irq, snd_mychip_interrupt, | 
| Thomas Gleixner | 6ce6c7f | 2006-07-01 19:29:47 -0700 | [diff] [blame] | 1325 | IRQF_DISABLED|IRQF_SHARED, "My Chip", chip)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1326 | printk(KERN_ERR "cannot grab irq %d\n", pci->irq); | 
|  | 1327 | snd_mychip_free(chip); | 
|  | 1328 | return -EBUSY; | 
|  | 1329 | } | 
|  | 1330 | chip->irq = pci->irq; | 
|  | 1331 | ]]> | 
|  | 1332 | </programlisting> | 
|  | 1333 | </informalexample> | 
|  | 1334 |  | 
|  | 1335 | where <function>snd_mychip_interrupt()</function> is the | 
|  | 1336 | interrupt handler defined <link | 
|  | 1337 | linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>. | 
|  | 1338 | Note that chip->irq should be defined | 
|  | 1339 | only when <function>request_irq()</function> succeeded. | 
|  | 1340 | </para> | 
|  | 1341 |  | 
|  | 1342 | <para> | 
|  | 1343 | On the PCI bus, the interrupts can be shared. Thus, | 
| Thomas Gleixner | 6ce6c7f | 2006-07-01 19:29:47 -0700 | [diff] [blame] | 1344 | <constant>IRQF_SHARED</constant> is given as the interrupt flag of | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1345 | <function>request_irq()</function>. | 
|  | 1346 | </para> | 
|  | 1347 |  | 
|  | 1348 | <para> | 
|  | 1349 | The last argument of <function>request_irq()</function> is the | 
|  | 1350 | data pointer passed to the interrupt handler. Usually, the | 
|  | 1351 | chip-specific record is used for that, but you can use what you | 
|  | 1352 | like, too. | 
|  | 1353 | </para> | 
|  | 1354 |  | 
|  | 1355 | <para> | 
|  | 1356 | I won't define the detail of the interrupt handler at this | 
|  | 1357 | point, but at least its appearance can be explained now. The | 
|  | 1358 | interrupt handler looks usually like the following: | 
|  | 1359 |  | 
|  | 1360 | <informalexample> | 
|  | 1361 | <programlisting> | 
|  | 1362 | <![CDATA[ | 
| Takashi Iwai | ad4d1de | 2007-01-16 17:46:35 +0100 | [diff] [blame] | 1363 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1364 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1365 | struct mychip *chip = dev_id; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1366 | .... | 
|  | 1367 | return IRQ_HANDLED; | 
|  | 1368 | } | 
|  | 1369 | ]]> | 
|  | 1370 | </programlisting> | 
|  | 1371 | </informalexample> | 
|  | 1372 | </para> | 
|  | 1373 |  | 
|  | 1374 | <para> | 
|  | 1375 | Now let's write the corresponding destructor for the resources | 
|  | 1376 | above. The role of destructor is simple: disable the hardware | 
|  | 1377 | (if already activated) and release the resources. So far, we | 
|  | 1378 | have no hardware part, so the disabling is not written here. | 
|  | 1379 | </para> | 
|  | 1380 |  | 
|  | 1381 | <para> | 
|  | 1382 | For releasing the resources, <quote>check-and-release</quote> | 
|  | 1383 | method is a safer way. For the interrupt, do like this: | 
|  | 1384 |  | 
|  | 1385 | <informalexample> | 
|  | 1386 | <programlisting> | 
|  | 1387 | <![CDATA[ | 
|  | 1388 | if (chip->irq >= 0) | 
| Takashi Iwai | 437a5a4 | 2006-11-21 12:14:23 +0100 | [diff] [blame] | 1389 | free_irq(chip->irq, chip); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1390 | ]]> | 
|  | 1391 | </programlisting> | 
|  | 1392 | </informalexample> | 
|  | 1393 |  | 
|  | 1394 | Since the irq number can start from 0, you should initialize | 
|  | 1395 | chip->irq with a negative value (e.g. -1), so that you can | 
|  | 1396 | check the validity of the irq number as above. | 
|  | 1397 | </para> | 
|  | 1398 |  | 
|  | 1399 | <para> | 
|  | 1400 | When you requested I/O ports or memory regions via | 
|  | 1401 | <function>pci_request_region()</function> or | 
|  | 1402 | <function>pci_request_regions()</function> like this example, | 
|  | 1403 | release the resource(s) using the corresponding function, | 
|  | 1404 | <function>pci_release_region()</function> or | 
|  | 1405 | <function>pci_release_regions()</function>. | 
|  | 1406 |  | 
|  | 1407 | <informalexample> | 
|  | 1408 | <programlisting> | 
|  | 1409 | <![CDATA[ | 
|  | 1410 | pci_release_regions(chip->pci); | 
|  | 1411 | ]]> | 
|  | 1412 | </programlisting> | 
|  | 1413 | </informalexample> | 
|  | 1414 | </para> | 
|  | 1415 |  | 
|  | 1416 | <para> | 
|  | 1417 | When you requested manually via <function>request_region()</function> | 
|  | 1418 | or <function>request_mem_region</function>, you can release it via | 
|  | 1419 | <function>release_resource()</function>.  Suppose that you keep | 
|  | 1420 | the resource pointer returned from <function>request_region()</function> | 
|  | 1421 | in chip->res_port, the release procedure looks like below: | 
|  | 1422 |  | 
|  | 1423 | <informalexample> | 
|  | 1424 | <programlisting> | 
|  | 1425 | <![CDATA[ | 
| Takashi Iwai | b1d5776 | 2005-10-10 11:56:31 +0200 | [diff] [blame] | 1426 | release_and_free_resource(chip->res_port); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1427 | ]]> | 
|  | 1428 | </programlisting> | 
|  | 1429 | </informalexample> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1430 | </para> | 
|  | 1431 |  | 
|  | 1432 | <para> | 
|  | 1433 | Don't forget to call <function>pci_disable_device()</function> | 
|  | 1434 | before all finished. | 
|  | 1435 | </para> | 
|  | 1436 |  | 
|  | 1437 | <para> | 
|  | 1438 | And finally, release the chip-specific record. | 
|  | 1439 |  | 
|  | 1440 | <informalexample> | 
|  | 1441 | <programlisting> | 
|  | 1442 | <![CDATA[ | 
|  | 1443 | kfree(chip); | 
|  | 1444 | ]]> | 
|  | 1445 | </programlisting> | 
|  | 1446 | </informalexample> | 
|  | 1447 | </para> | 
|  | 1448 |  | 
|  | 1449 | <para> | 
|  | 1450 | Again, remember that you cannot | 
|  | 1451 | set <parameter>__devexit</parameter> prefix for this destructor. | 
|  | 1452 | </para> | 
|  | 1453 |  | 
|  | 1454 | <para> | 
|  | 1455 | We didn't implement the hardware-disabling part in the above. | 
|  | 1456 | If you need to do this, please note that the destructor may be | 
|  | 1457 | called even before the initialization of the chip is completed. | 
|  | 1458 | It would be better to have a flag to skip the hardware-disabling | 
|  | 1459 | if the hardware was not initialized yet. | 
|  | 1460 | </para> | 
|  | 1461 |  | 
|  | 1462 | <para> | 
|  | 1463 | When the chip-data is assigned to the card using | 
|  | 1464 | <function>snd_device_new()</function> with | 
|  | 1465 | <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is | 
|  | 1466 | called at the last.  That is, it is assured that all other | 
|  | 1467 | components like PCMs and controls have been already released. | 
|  | 1468 | You don't have to call stopping PCMs, etc. explicitly, but just | 
|  | 1469 | stop the hardware in the low-level. | 
|  | 1470 | </para> | 
|  | 1471 |  | 
|  | 1472 | <para> | 
|  | 1473 | The management of a memory-mapped region is almost as same as | 
|  | 1474 | the management of an i/o port. You'll need three fields like | 
|  | 1475 | the following: | 
|  | 1476 |  | 
|  | 1477 | <informalexample> | 
|  | 1478 | <programlisting> | 
|  | 1479 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1480 | struct mychip { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1481 | .... | 
|  | 1482 | unsigned long iobase_phys; | 
|  | 1483 | void __iomem *iobase_virt; | 
|  | 1484 | }; | 
|  | 1485 | ]]> | 
|  | 1486 | </programlisting> | 
|  | 1487 | </informalexample> | 
|  | 1488 |  | 
|  | 1489 | and the allocation would be like below: | 
|  | 1490 |  | 
|  | 1491 | <informalexample> | 
|  | 1492 | <programlisting> | 
|  | 1493 | <![CDATA[ | 
|  | 1494 | if ((err = pci_request_regions(pci, "My Chip")) < 0) { | 
|  | 1495 | kfree(chip); | 
|  | 1496 | return err; | 
|  | 1497 | } | 
|  | 1498 | chip->iobase_phys = pci_resource_start(pci, 0); | 
|  | 1499 | chip->iobase_virt = ioremap_nocache(chip->iobase_phys, | 
|  | 1500 | pci_resource_len(pci, 0)); | 
|  | 1501 | ]]> | 
|  | 1502 | </programlisting> | 
|  | 1503 | </informalexample> | 
|  | 1504 |  | 
|  | 1505 | and the corresponding destructor would be: | 
|  | 1506 |  | 
|  | 1507 | <informalexample> | 
|  | 1508 | <programlisting> | 
|  | 1509 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1510 | static int snd_mychip_free(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1511 | { | 
|  | 1512 | .... | 
|  | 1513 | if (chip->iobase_virt) | 
|  | 1514 | iounmap(chip->iobase_virt); | 
|  | 1515 | .... | 
|  | 1516 | pci_release_regions(chip->pci); | 
|  | 1517 | .... | 
|  | 1518 | } | 
|  | 1519 | ]]> | 
|  | 1520 | </programlisting> | 
|  | 1521 | </informalexample> | 
|  | 1522 | </para> | 
|  | 1523 |  | 
|  | 1524 | </section> | 
|  | 1525 |  | 
|  | 1526 | <section id="pci-resource-device-struct"> | 
|  | 1527 | <title>Registration of Device Struct</title> | 
|  | 1528 | <para> | 
|  | 1529 | At some point, typically after calling <function>snd_device_new()</function>, | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1530 | you need to register the struct <structname>device</structname> of the chip | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1531 | you're handling for udev and co.  ALSA provides a macro for compatibility with | 
|  | 1532 | older kernels.  Simply call like the following: | 
|  | 1533 | <informalexample> | 
|  | 1534 | <programlisting> | 
|  | 1535 | <![CDATA[ | 
|  | 1536 | snd_card_set_dev(card, &pci->dev); | 
|  | 1537 | ]]> | 
|  | 1538 | </programlisting> | 
|  | 1539 | </informalexample> | 
|  | 1540 | so that it stores the PCI's device pointer to the card.  This will be | 
|  | 1541 | referred by ALSA core functions later when the devices are registered. | 
|  | 1542 | </para> | 
|  | 1543 | <para> | 
|  | 1544 | In the case of non-PCI, pass the proper device struct pointer of the BUS | 
|  | 1545 | instead.  (In the case of legacy ISA without PnP, you don't have to do | 
|  | 1546 | anything.) | 
|  | 1547 | </para> | 
|  | 1548 | </section> | 
|  | 1549 |  | 
|  | 1550 | <section id="pci-resource-entries"> | 
|  | 1551 | <title>PCI Entries</title> | 
|  | 1552 | <para> | 
|  | 1553 | So far, so good. Let's finish the rest of missing PCI | 
|  | 1554 | stuffs. At first, we need a | 
|  | 1555 | <structname>pci_device_id</structname> table for this | 
|  | 1556 | chipset. It's a table of PCI vendor/device ID number, and some | 
|  | 1557 | masks. | 
|  | 1558 | </para> | 
|  | 1559 |  | 
|  | 1560 | <para> | 
|  | 1561 | For example, | 
|  | 1562 |  | 
|  | 1563 | <informalexample> | 
|  | 1564 | <programlisting> | 
|  | 1565 | <![CDATA[ | 
| Takashi Iwai | f40b689 | 2006-07-05 16:51:05 +0200 | [diff] [blame] | 1566 | static struct pci_device_id snd_mychip_ids[] = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1567 | { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, | 
|  | 1568 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, | 
|  | 1569 | .... | 
|  | 1570 | { 0, } | 
|  | 1571 | }; | 
|  | 1572 | MODULE_DEVICE_TABLE(pci, snd_mychip_ids); | 
|  | 1573 | ]]> | 
|  | 1574 | </programlisting> | 
|  | 1575 | </informalexample> | 
|  | 1576 | </para> | 
|  | 1577 |  | 
|  | 1578 | <para> | 
|  | 1579 | The first and second fields of | 
|  | 1580 | <structname>pci_device_id</structname> struct are the vendor and | 
|  | 1581 | device IDs. If you have nothing special to filter the matching | 
|  | 1582 | devices, you can use the rest of fields like above. The last | 
|  | 1583 | field of <structname>pci_device_id</structname> struct is a | 
|  | 1584 | private data for this entry. You can specify any value here, for | 
|  | 1585 | example, to tell the type of different operations per each | 
|  | 1586 | device IDs. Such an example is found in intel8x0 driver. | 
|  | 1587 | </para> | 
|  | 1588 |  | 
|  | 1589 | <para> | 
|  | 1590 | The last entry of this list is the terminator. You must | 
|  | 1591 | specify this all-zero entry. | 
|  | 1592 | </para> | 
|  | 1593 |  | 
|  | 1594 | <para> | 
|  | 1595 | Then, prepare the <structname>pci_driver</structname> record: | 
|  | 1596 |  | 
|  | 1597 | <informalexample> | 
|  | 1598 | <programlisting> | 
|  | 1599 | <![CDATA[ | 
|  | 1600 | static struct pci_driver driver = { | 
|  | 1601 | .name = "My Own Chip", | 
|  | 1602 | .id_table = snd_mychip_ids, | 
|  | 1603 | .probe = snd_mychip_probe, | 
|  | 1604 | .remove = __devexit_p(snd_mychip_remove), | 
|  | 1605 | }; | 
|  | 1606 | ]]> | 
|  | 1607 | </programlisting> | 
|  | 1608 | </informalexample> | 
|  | 1609 | </para> | 
|  | 1610 |  | 
|  | 1611 | <para> | 
|  | 1612 | The <structfield>probe</structfield> and | 
|  | 1613 | <structfield>remove</structfield> functions are what we already | 
|  | 1614 | defined in | 
|  | 1615 | the previous sections. The <structfield>remove</structfield> should | 
|  | 1616 | be defined with | 
|  | 1617 | <function>__devexit_p()</function> macro, so that it's not | 
|  | 1618 | defined for built-in (and non-hot-pluggable) case. The | 
|  | 1619 | <structfield>name</structfield> | 
|  | 1620 | field is the name string of this device. Note that you must not | 
|  | 1621 | use a slash <quote>/</quote> in this string. | 
|  | 1622 | </para> | 
|  | 1623 |  | 
|  | 1624 | <para> | 
|  | 1625 | And at last, the module entries: | 
|  | 1626 |  | 
|  | 1627 | <informalexample> | 
|  | 1628 | <programlisting> | 
|  | 1629 | <![CDATA[ | 
|  | 1630 | static int __init alsa_card_mychip_init(void) | 
|  | 1631 | { | 
| Takashi Iwai | 01d25d4 | 2005-04-11 16:58:24 +0200 | [diff] [blame] | 1632 | return pci_register_driver(&driver); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1633 | } | 
|  | 1634 |  | 
|  | 1635 | static void __exit alsa_card_mychip_exit(void) | 
|  | 1636 | { | 
|  | 1637 | pci_unregister_driver(&driver); | 
|  | 1638 | } | 
|  | 1639 |  | 
|  | 1640 | module_init(alsa_card_mychip_init) | 
|  | 1641 | module_exit(alsa_card_mychip_exit) | 
|  | 1642 | ]]> | 
|  | 1643 | </programlisting> | 
|  | 1644 | </informalexample> | 
|  | 1645 | </para> | 
|  | 1646 |  | 
|  | 1647 | <para> | 
|  | 1648 | Note that these module entries are tagged with | 
|  | 1649 | <parameter>__init</parameter> and | 
|  | 1650 | <parameter>__exit</parameter> prefixes, not | 
|  | 1651 | <parameter>__devinit</parameter> nor | 
|  | 1652 | <parameter>__devexit</parameter>. | 
|  | 1653 | </para> | 
|  | 1654 |  | 
|  | 1655 | <para> | 
|  | 1656 | Oh, one thing was forgotten. If you have no exported symbols, | 
|  | 1657 | you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels | 
|  | 1658 | it's not necessary, though). | 
|  | 1659 |  | 
|  | 1660 | <informalexample> | 
|  | 1661 | <programlisting> | 
|  | 1662 | <![CDATA[ | 
|  | 1663 | EXPORT_NO_SYMBOLS; | 
|  | 1664 | ]]> | 
|  | 1665 | </programlisting> | 
|  | 1666 | </informalexample> | 
|  | 1667 |  | 
|  | 1668 | That's all! | 
|  | 1669 | </para> | 
|  | 1670 | </section> | 
|  | 1671 | </chapter> | 
|  | 1672 |  | 
|  | 1673 |  | 
|  | 1674 | <!-- ****************************************************** --> | 
|  | 1675 | <!-- PCM Interface  --> | 
|  | 1676 | <!-- ****************************************************** --> | 
|  | 1677 | <chapter id="pcm-interface"> | 
|  | 1678 | <title>PCM Interface</title> | 
|  | 1679 |  | 
|  | 1680 | <section id="pcm-interface-general"> | 
|  | 1681 | <title>General</title> | 
|  | 1682 | <para> | 
|  | 1683 | The PCM middle layer of ALSA is quite powerful and it is only | 
|  | 1684 | necessary for each driver to implement the low-level functions | 
|  | 1685 | to access its hardware. | 
|  | 1686 | </para> | 
|  | 1687 |  | 
|  | 1688 | <para> | 
|  | 1689 | For accessing to the PCM layer, you need to include | 
|  | 1690 | <filename><sound/pcm.h></filename> above all. In addition, | 
|  | 1691 | <filename><sound/pcm_params.h></filename> might be needed | 
|  | 1692 | if you access to some functions related with hw_param. | 
|  | 1693 | </para> | 
|  | 1694 |  | 
|  | 1695 | <para> | 
|  | 1696 | Each card device can have up to four pcm instances. A pcm | 
|  | 1697 | instance corresponds to a pcm device file. The limitation of | 
|  | 1698 | number of instances comes only from the available bit size of | 
|  | 1699 | the linux's device number. Once when 64bit device number is | 
|  | 1700 | used, we'll have more available pcm instances. | 
|  | 1701 | </para> | 
|  | 1702 |  | 
|  | 1703 | <para> | 
|  | 1704 | A pcm instance consists of pcm playback and capture streams, | 
|  | 1705 | and each pcm stream consists of one or more pcm substreams. Some | 
|  | 1706 | soundcard supports the multiple-playback function. For example, | 
|  | 1707 | emu10k1 has a PCM playback of 32 stereo substreams. In this case, at | 
|  | 1708 | each open, a free substream is (usually) automatically chosen | 
|  | 1709 | and opened. Meanwhile, when only one substream exists and it was | 
|  | 1710 | already opened, the succeeding open will result in the blocking | 
|  | 1711 | or the error with <constant>EAGAIN</constant> according to the | 
|  | 1712 | file open mode. But you don't have to know the detail in your | 
|  | 1713 | driver. The PCM middle layer will take all such jobs. | 
|  | 1714 | </para> | 
|  | 1715 | </section> | 
|  | 1716 |  | 
|  | 1717 | <section id="pcm-interface-example"> | 
|  | 1718 | <title>Full Code Example</title> | 
|  | 1719 | <para> | 
|  | 1720 | The example code below does not include any hardware access | 
|  | 1721 | routines but shows only the skeleton, how to build up the PCM | 
|  | 1722 | interfaces. | 
|  | 1723 |  | 
|  | 1724 | <example> | 
|  | 1725 | <title>PCM Example Code</title> | 
|  | 1726 | <programlisting> | 
|  | 1727 | <![CDATA[ | 
|  | 1728 | #include <sound/pcm.h> | 
|  | 1729 | .... | 
|  | 1730 |  | 
|  | 1731 | /* hardware definition */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1732 | static struct snd_pcm_hardware snd_mychip_playback_hw = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1733 | .info = (SNDRV_PCM_INFO_MMAP | | 
|  | 1734 | SNDRV_PCM_INFO_INTERLEAVED | | 
|  | 1735 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
|  | 1736 | SNDRV_PCM_INFO_MMAP_VALID), | 
|  | 1737 | .formats =          SNDRV_PCM_FMTBIT_S16_LE, | 
|  | 1738 | .rates =            SNDRV_PCM_RATE_8000_48000, | 
|  | 1739 | .rate_min =         8000, | 
|  | 1740 | .rate_max =         48000, | 
|  | 1741 | .channels_min =     2, | 
|  | 1742 | .channels_max =     2, | 
|  | 1743 | .buffer_bytes_max = 32768, | 
|  | 1744 | .period_bytes_min = 4096, | 
|  | 1745 | .period_bytes_max = 32768, | 
|  | 1746 | .periods_min =      1, | 
|  | 1747 | .periods_max =      1024, | 
|  | 1748 | }; | 
|  | 1749 |  | 
|  | 1750 | /* hardware definition */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1751 | static struct snd_pcm_hardware snd_mychip_capture_hw = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1752 | .info = (SNDRV_PCM_INFO_MMAP | | 
|  | 1753 | SNDRV_PCM_INFO_INTERLEAVED | | 
|  | 1754 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
|  | 1755 | SNDRV_PCM_INFO_MMAP_VALID), | 
|  | 1756 | .formats =          SNDRV_PCM_FMTBIT_S16_LE, | 
|  | 1757 | .rates =            SNDRV_PCM_RATE_8000_48000, | 
|  | 1758 | .rate_min =         8000, | 
|  | 1759 | .rate_max =         48000, | 
|  | 1760 | .channels_min =     2, | 
|  | 1761 | .channels_max =     2, | 
|  | 1762 | .buffer_bytes_max = 32768, | 
|  | 1763 | .period_bytes_min = 4096, | 
|  | 1764 | .period_bytes_max = 32768, | 
|  | 1765 | .periods_min =      1, | 
|  | 1766 | .periods_max =      1024, | 
|  | 1767 | }; | 
|  | 1768 |  | 
|  | 1769 | /* open callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1770 | static int snd_mychip_playback_open(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1771 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1772 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
|  | 1773 | struct snd_pcm_runtime *runtime = substream->runtime; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1774 |  | 
|  | 1775 | runtime->hw = snd_mychip_playback_hw; | 
|  | 1776 | // more hardware-initialization will be done here | 
|  | 1777 | return 0; | 
|  | 1778 | } | 
|  | 1779 |  | 
|  | 1780 | /* close callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1781 | static int snd_mychip_playback_close(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1782 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1783 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1784 | // the hardware-specific codes will be here | 
|  | 1785 | return 0; | 
|  | 1786 |  | 
|  | 1787 | } | 
|  | 1788 |  | 
|  | 1789 | /* open callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1790 | static int snd_mychip_capture_open(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1791 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1792 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
|  | 1793 | struct snd_pcm_runtime *runtime = substream->runtime; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1794 |  | 
|  | 1795 | runtime->hw = snd_mychip_capture_hw; | 
|  | 1796 | // more hardware-initialization will be done here | 
|  | 1797 | return 0; | 
|  | 1798 | } | 
|  | 1799 |  | 
|  | 1800 | /* close callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1801 | static int snd_mychip_capture_close(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1802 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1803 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1804 | // the hardware-specific codes will be here | 
|  | 1805 | return 0; | 
|  | 1806 |  | 
|  | 1807 | } | 
|  | 1808 |  | 
|  | 1809 | /* hw_params callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1810 | static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, | 
|  | 1811 | struct snd_pcm_hw_params *hw_params) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1812 | { | 
|  | 1813 | return snd_pcm_lib_malloc_pages(substream, | 
|  | 1814 | params_buffer_bytes(hw_params)); | 
|  | 1815 | } | 
|  | 1816 |  | 
|  | 1817 | /* hw_free callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1818 | static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1819 | { | 
|  | 1820 | return snd_pcm_lib_free_pages(substream); | 
|  | 1821 | } | 
|  | 1822 |  | 
|  | 1823 | /* prepare callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1824 | static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1825 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1826 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
|  | 1827 | struct snd_pcm_runtime *runtime = substream->runtime; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1828 |  | 
|  | 1829 | /* set up the hardware with the current configuration | 
|  | 1830 | * for example... | 
|  | 1831 | */ | 
|  | 1832 | mychip_set_sample_format(chip, runtime->format); | 
|  | 1833 | mychip_set_sample_rate(chip, runtime->rate); | 
|  | 1834 | mychip_set_channels(chip, runtime->channels); | 
| Takashi Iwai | 0b7bed4 | 2006-03-02 15:35:55 +0100 | [diff] [blame] | 1835 | mychip_set_dma_setup(chip, runtime->dma_addr, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1836 | chip->buffer_size, | 
|  | 1837 | chip->period_size); | 
|  | 1838 | return 0; | 
|  | 1839 | } | 
|  | 1840 |  | 
|  | 1841 | /* trigger callback */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1842 | static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1843 | int cmd) | 
|  | 1844 | { | 
|  | 1845 | switch (cmd) { | 
|  | 1846 | case SNDRV_PCM_TRIGGER_START: | 
|  | 1847 | // do something to start the PCM engine | 
|  | 1848 | break; | 
|  | 1849 | case SNDRV_PCM_TRIGGER_STOP: | 
|  | 1850 | // do something to stop the PCM engine | 
|  | 1851 | break; | 
|  | 1852 | default: | 
|  | 1853 | return -EINVAL; | 
|  | 1854 | } | 
|  | 1855 | } | 
|  | 1856 |  | 
|  | 1857 | /* pointer callback */ | 
|  | 1858 | static snd_pcm_uframes_t | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1859 | snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1860 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1861 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1862 | unsigned int current_ptr; | 
|  | 1863 |  | 
|  | 1864 | /* get the current hardware pointer */ | 
|  | 1865 | current_ptr = mychip_get_hw_pointer(chip); | 
|  | 1866 | return current_ptr; | 
|  | 1867 | } | 
|  | 1868 |  | 
|  | 1869 | /* operators */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1870 | static struct snd_pcm_ops snd_mychip_playback_ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1871 | .open =        snd_mychip_playback_open, | 
|  | 1872 | .close =       snd_mychip_playback_close, | 
|  | 1873 | .ioctl =       snd_pcm_lib_ioctl, | 
|  | 1874 | .hw_params =   snd_mychip_pcm_hw_params, | 
|  | 1875 | .hw_free =     snd_mychip_pcm_hw_free, | 
|  | 1876 | .prepare =     snd_mychip_pcm_prepare, | 
|  | 1877 | .trigger =     snd_mychip_pcm_trigger, | 
|  | 1878 | .pointer =     snd_mychip_pcm_pointer, | 
|  | 1879 | }; | 
|  | 1880 |  | 
|  | 1881 | /* operators */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1882 | static struct snd_pcm_ops snd_mychip_capture_ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1883 | .open =        snd_mychip_capture_open, | 
|  | 1884 | .close =       snd_mychip_capture_close, | 
|  | 1885 | .ioctl =       snd_pcm_lib_ioctl, | 
|  | 1886 | .hw_params =   snd_mychip_pcm_hw_params, | 
|  | 1887 | .hw_free =     snd_mychip_pcm_hw_free, | 
|  | 1888 | .prepare =     snd_mychip_pcm_prepare, | 
|  | 1889 | .trigger =     snd_mychip_pcm_trigger, | 
|  | 1890 | .pointer =     snd_mychip_pcm_pointer, | 
|  | 1891 | }; | 
|  | 1892 |  | 
|  | 1893 | /* | 
|  | 1894 | *  definitions of capture are omitted here... | 
|  | 1895 | */ | 
|  | 1896 |  | 
|  | 1897 | /* create a pcm device */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1898 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1899 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1900 | struct snd_pcm *pcm; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1901 | int err; | 
|  | 1902 |  | 
|  | 1903 | if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, | 
|  | 1904 | &pcm)) < 0) | 
|  | 1905 | return err; | 
|  | 1906 | pcm->private_data = chip; | 
|  | 1907 | strcpy(pcm->name, "My Chip"); | 
|  | 1908 | chip->pcm = pcm; | 
|  | 1909 | /* set operators */ | 
|  | 1910 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | 
|  | 1911 | &snd_mychip_playback_ops); | 
|  | 1912 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | 
|  | 1913 | &snd_mychip_capture_ops); | 
|  | 1914 | /* pre-allocation of buffers */ | 
|  | 1915 | /* NOTE: this may fail */ | 
|  | 1916 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | 
|  | 1917 | snd_dma_pci_data(chip->pci), | 
|  | 1918 | 64*1024, 64*1024); | 
|  | 1919 | return 0; | 
|  | 1920 | } | 
|  | 1921 | ]]> | 
|  | 1922 | </programlisting> | 
|  | 1923 | </example> | 
|  | 1924 | </para> | 
|  | 1925 | </section> | 
|  | 1926 |  | 
|  | 1927 | <section id="pcm-interface-constructor"> | 
|  | 1928 | <title>Constructor</title> | 
|  | 1929 | <para> | 
|  | 1930 | A pcm instance is allocated by <function>snd_pcm_new()</function> | 
|  | 1931 | function. It would be better to create a constructor for pcm, | 
|  | 1932 | namely, | 
|  | 1933 |  | 
|  | 1934 | <informalexample> | 
|  | 1935 | <programlisting> | 
|  | 1936 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1937 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1938 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1939 | struct snd_pcm *pcm; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1940 | int err; | 
|  | 1941 |  | 
|  | 1942 | if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, | 
|  | 1943 | &pcm)) < 0) | 
|  | 1944 | return err; | 
|  | 1945 | pcm->private_data = chip; | 
|  | 1946 | strcpy(pcm->name, "My Chip"); | 
|  | 1947 | chip->pcm = pcm; | 
|  | 1948 | .... | 
|  | 1949 | return 0; | 
|  | 1950 | } | 
|  | 1951 | ]]> | 
|  | 1952 | </programlisting> | 
|  | 1953 | </informalexample> | 
|  | 1954 | </para> | 
|  | 1955 |  | 
|  | 1956 | <para> | 
|  | 1957 | The <function>snd_pcm_new()</function> function takes the four | 
|  | 1958 | arguments. The first argument is the card pointer to which this | 
|  | 1959 | pcm is assigned, and the second is the ID string. | 
|  | 1960 | </para> | 
|  | 1961 |  | 
|  | 1962 | <para> | 
|  | 1963 | The third argument (<parameter>index</parameter>, 0 in the | 
|  | 1964 | above) is the index of this new pcm. It begins from zero. When | 
|  | 1965 | you will create more than one pcm instances, specify the | 
|  | 1966 | different numbers in this argument. For example, | 
|  | 1967 | <parameter>index</parameter> = 1 for the second PCM device. | 
|  | 1968 | </para> | 
|  | 1969 |  | 
|  | 1970 | <para> | 
|  | 1971 | The fourth and fifth arguments are the number of substreams | 
|  | 1972 | for playback and capture, respectively. Here both 1 are given in | 
|  | 1973 | the above example.  When no playback or no capture is available, | 
|  | 1974 | pass 0 to the corresponding argument. | 
|  | 1975 | </para> | 
|  | 1976 |  | 
|  | 1977 | <para> | 
|  | 1978 | If a chip supports multiple playbacks or captures, you can | 
|  | 1979 | specify more numbers, but they must be handled properly in | 
|  | 1980 | open/close, etc. callbacks.  When you need to know which | 
|  | 1981 | substream you are referring to, then it can be obtained from | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1982 | struct <structname>snd_pcm_substream</structname> data passed to each callback | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1983 | as follows: | 
|  | 1984 |  | 
|  | 1985 | <informalexample> | 
|  | 1986 | <programlisting> | 
|  | 1987 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 1988 | struct snd_pcm_substream *substream; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1989 | int index = substream->number; | 
|  | 1990 | ]]> | 
|  | 1991 | </programlisting> | 
|  | 1992 | </informalexample> | 
|  | 1993 | </para> | 
|  | 1994 |  | 
|  | 1995 | <para> | 
|  | 1996 | After the pcm is created, you need to set operators for each | 
|  | 1997 | pcm stream. | 
|  | 1998 |  | 
|  | 1999 | <informalexample> | 
|  | 2000 | <programlisting> | 
|  | 2001 | <![CDATA[ | 
|  | 2002 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, | 
|  | 2003 | &snd_mychip_playback_ops); | 
|  | 2004 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, | 
|  | 2005 | &snd_mychip_capture_ops); | 
|  | 2006 | ]]> | 
|  | 2007 | </programlisting> | 
|  | 2008 | </informalexample> | 
|  | 2009 | </para> | 
|  | 2010 |  | 
|  | 2011 | <para> | 
|  | 2012 | The operators are defined typically like this: | 
|  | 2013 |  | 
|  | 2014 | <informalexample> | 
|  | 2015 | <programlisting> | 
|  | 2016 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2017 | static struct snd_pcm_ops snd_mychip_playback_ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2018 | .open =        snd_mychip_pcm_open, | 
|  | 2019 | .close =       snd_mychip_pcm_close, | 
|  | 2020 | .ioctl =       snd_pcm_lib_ioctl, | 
|  | 2021 | .hw_params =   snd_mychip_pcm_hw_params, | 
|  | 2022 | .hw_free =     snd_mychip_pcm_hw_free, | 
|  | 2023 | .prepare =     snd_mychip_pcm_prepare, | 
|  | 2024 | .trigger =     snd_mychip_pcm_trigger, | 
|  | 2025 | .pointer =     snd_mychip_pcm_pointer, | 
|  | 2026 | }; | 
|  | 2027 | ]]> | 
|  | 2028 | </programlisting> | 
|  | 2029 | </informalexample> | 
|  | 2030 |  | 
|  | 2031 | Each of callbacks is explained in the subsection | 
|  | 2032 | <link linkend="pcm-interface-operators"><citetitle> | 
|  | 2033 | Operators</citetitle></link>. | 
|  | 2034 | </para> | 
|  | 2035 |  | 
|  | 2036 | <para> | 
|  | 2037 | After setting the operators, most likely you'd like to | 
|  | 2038 | pre-allocate the buffer. For the pre-allocation, simply call | 
|  | 2039 | the following: | 
|  | 2040 |  | 
|  | 2041 | <informalexample> | 
|  | 2042 | <programlisting> | 
|  | 2043 | <![CDATA[ | 
|  | 2044 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | 
|  | 2045 | snd_dma_pci_data(chip->pci), | 
|  | 2046 | 64*1024, 64*1024); | 
|  | 2047 | ]]> | 
|  | 2048 | </programlisting> | 
|  | 2049 | </informalexample> | 
|  | 2050 |  | 
|  | 2051 | It will allocate up to 64kB buffer as default. The details of | 
|  | 2052 | buffer management will be described in the later section <link | 
|  | 2053 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | 
|  | 2054 | Management</citetitle></link>. | 
|  | 2055 | </para> | 
|  | 2056 |  | 
|  | 2057 | <para> | 
|  | 2058 | Additionally, you can set some extra information for this pcm | 
|  | 2059 | in pcm->info_flags. | 
|  | 2060 | The available values are defined as | 
|  | 2061 | <constant>SNDRV_PCM_INFO_XXX</constant> in | 
|  | 2062 | <filename><sound/asound.h></filename>, which is used for | 
|  | 2063 | the hardware definition (described later). When your soundchip | 
|  | 2064 | supports only half-duplex, specify like this: | 
|  | 2065 |  | 
|  | 2066 | <informalexample> | 
|  | 2067 | <programlisting> | 
|  | 2068 | <![CDATA[ | 
|  | 2069 | pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; | 
|  | 2070 | ]]> | 
|  | 2071 | </programlisting> | 
|  | 2072 | </informalexample> | 
|  | 2073 | </para> | 
|  | 2074 | </section> | 
|  | 2075 |  | 
|  | 2076 | <section id="pcm-interface-destructor"> | 
|  | 2077 | <title>... And the Destructor?</title> | 
|  | 2078 | <para> | 
|  | 2079 | The destructor for a pcm instance is not always | 
|  | 2080 | necessary. Since the pcm device will be released by the middle | 
|  | 2081 | layer code automatically, you don't have to call destructor | 
|  | 2082 | explicitly. | 
|  | 2083 | </para> | 
|  | 2084 |  | 
|  | 2085 | <para> | 
|  | 2086 | The destructor would be necessary when you created some | 
|  | 2087 | special records internally and need to release them. In such a | 
|  | 2088 | case, set the destructor function to | 
|  | 2089 | pcm->private_free: | 
|  | 2090 |  | 
|  | 2091 | <example> | 
|  | 2092 | <title>PCM Instance with a Destructor</title> | 
|  | 2093 | <programlisting> | 
|  | 2094 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2095 | static void mychip_pcm_free(struct snd_pcm *pcm) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2096 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2097 | struct mychip *chip = snd_pcm_chip(pcm); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2098 | /* free your own data */ | 
|  | 2099 | kfree(chip->my_private_pcm_data); | 
|  | 2100 | // do what you like else | 
|  | 2101 | .... | 
|  | 2102 | } | 
|  | 2103 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2104 | static int __devinit snd_mychip_new_pcm(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2105 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2106 | struct snd_pcm *pcm; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2107 | .... | 
|  | 2108 | /* allocate your own data */ | 
|  | 2109 | chip->my_private_pcm_data = kmalloc(...); | 
|  | 2110 | /* set the destructor */ | 
|  | 2111 | pcm->private_data = chip; | 
|  | 2112 | pcm->private_free = mychip_pcm_free; | 
|  | 2113 | .... | 
|  | 2114 | } | 
|  | 2115 | ]]> | 
|  | 2116 | </programlisting> | 
|  | 2117 | </example> | 
|  | 2118 | </para> | 
|  | 2119 | </section> | 
|  | 2120 |  | 
|  | 2121 | <section id="pcm-interface-runtime"> | 
|  | 2122 | <title>Runtime Pointer - The Chest of PCM Information</title> | 
|  | 2123 | <para> | 
|  | 2124 | When the PCM substream is opened, a PCM runtime instance is | 
|  | 2125 | allocated and assigned to the substream. This pointer is | 
|  | 2126 | accessible via <constant>substream->runtime</constant>. | 
|  | 2127 | This runtime pointer holds the various information; it holds | 
|  | 2128 | the copy of hw_params and sw_params configurations, the buffer | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 2129 | pointers, mmap records, spinlocks, etc.  Almost everything you | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2130 | need for controlling the PCM can be found there. | 
|  | 2131 | </para> | 
|  | 2132 |  | 
|  | 2133 | <para> | 
|  | 2134 | The definition of runtime instance is found in | 
|  | 2135 | <filename><sound/pcm.h></filename>.  Here is the | 
|  | 2136 | copy from the file. | 
|  | 2137 | <informalexample> | 
|  | 2138 | <programlisting> | 
|  | 2139 | <![CDATA[ | 
|  | 2140 | struct _snd_pcm_runtime { | 
|  | 2141 | /* -- Status -- */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2142 | struct snd_pcm_substream *trigger_master; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2143 | snd_timestamp_t trigger_tstamp;	/* trigger timestamp */ | 
|  | 2144 | int overrange; | 
|  | 2145 | snd_pcm_uframes_t avail_max; | 
|  | 2146 | snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */ | 
|  | 2147 | snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ | 
|  | 2148 |  | 
|  | 2149 | /* -- HW params -- */ | 
|  | 2150 | snd_pcm_access_t access;	/* access mode */ | 
|  | 2151 | snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */ | 
|  | 2152 | snd_pcm_subformat_t subformat;	/* subformat */ | 
|  | 2153 | unsigned int rate;		/* rate in Hz */ | 
|  | 2154 | unsigned int channels;		/* channels */ | 
|  | 2155 | snd_pcm_uframes_t period_size;	/* period size */ | 
|  | 2156 | unsigned int periods;		/* periods */ | 
|  | 2157 | snd_pcm_uframes_t buffer_size;	/* buffer size */ | 
|  | 2158 | unsigned int tick_time;		/* tick time */ | 
|  | 2159 | snd_pcm_uframes_t min_align;	/* Min alignment for the format */ | 
|  | 2160 | size_t byte_align; | 
|  | 2161 | unsigned int frame_bits; | 
|  | 2162 | unsigned int sample_bits; | 
|  | 2163 | unsigned int info; | 
|  | 2164 | unsigned int rate_num; | 
|  | 2165 | unsigned int rate_den; | 
|  | 2166 |  | 
|  | 2167 | /* -- SW params -- */ | 
| Takashi Iwai | 07799e7 | 2005-10-10 11:49:49 +0200 | [diff] [blame] | 2168 | struct timespec tstamp_mode;	/* mmap timestamp is updated */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2169 | unsigned int period_step; | 
|  | 2170 | unsigned int sleep_min;		/* min ticks to sleep */ | 
|  | 2171 | snd_pcm_uframes_t xfer_align;	/* xfer size need to be a multiple */ | 
|  | 2172 | snd_pcm_uframes_t start_threshold; | 
|  | 2173 | snd_pcm_uframes_t stop_threshold; | 
|  | 2174 | snd_pcm_uframes_t silence_threshold; /* Silence filling happens when | 
|  | 2175 | noise is nearest than this */ | 
|  | 2176 | snd_pcm_uframes_t silence_size;	/* Silence filling size */ | 
|  | 2177 | snd_pcm_uframes_t boundary;	/* pointers wrap point */ | 
|  | 2178 |  | 
|  | 2179 | snd_pcm_uframes_t silenced_start; | 
|  | 2180 | snd_pcm_uframes_t silenced_size; | 
|  | 2181 |  | 
|  | 2182 | snd_pcm_sync_id_t sync;		/* hardware synchronization ID */ | 
|  | 2183 |  | 
|  | 2184 | /* -- mmap -- */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2185 | volatile struct snd_pcm_mmap_status *status; | 
|  | 2186 | volatile struct snd_pcm_mmap_control *control; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2187 | atomic_t mmap_count; | 
|  | 2188 |  | 
|  | 2189 | /* -- locking / scheduling -- */ | 
|  | 2190 | spinlock_t lock; | 
|  | 2191 | wait_queue_head_t sleep; | 
|  | 2192 | struct timer_list tick_timer; | 
|  | 2193 | struct fasync_struct *fasync; | 
|  | 2194 |  | 
|  | 2195 | /* -- private section -- */ | 
|  | 2196 | void *private_data; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2197 | void (*private_free)(struct snd_pcm_runtime *runtime); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2198 |  | 
|  | 2199 | /* -- hardware description -- */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2200 | struct snd_pcm_hardware hw; | 
|  | 2201 | struct snd_pcm_hw_constraints hw_constraints; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2202 |  | 
|  | 2203 | /* -- interrupt callbacks -- */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2204 | void (*transfer_ack_begin)(struct snd_pcm_substream *substream); | 
|  | 2205 | void (*transfer_ack_end)(struct snd_pcm_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2206 |  | 
|  | 2207 | /* -- timer -- */ | 
|  | 2208 | unsigned int timer_resolution;	/* timer resolution */ | 
|  | 2209 |  | 
|  | 2210 | /* -- DMA -- */ | 
|  | 2211 | unsigned char *dma_area;	/* DMA area */ | 
|  | 2212 | dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */ | 
|  | 2213 | size_t dma_bytes;		/* size of DMA area */ | 
|  | 2214 |  | 
|  | 2215 | struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */ | 
|  | 2216 |  | 
|  | 2217 | #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) | 
|  | 2218 | /* -- OSS things -- */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2219 | struct snd_pcm_oss_runtime oss; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2220 | #endif | 
|  | 2221 | }; | 
|  | 2222 | ]]> | 
|  | 2223 | </programlisting> | 
|  | 2224 | </informalexample> | 
|  | 2225 | </para> | 
|  | 2226 |  | 
|  | 2227 | <para> | 
|  | 2228 | For the operators (callbacks) of each sound driver, most of | 
|  | 2229 | these records are supposed to be read-only.  Only the PCM | 
|  | 2230 | middle-layer changes / updates these info.  The exceptions are | 
|  | 2231 | the hardware description (hw), interrupt callbacks | 
|  | 2232 | (transfer_ack_xxx), DMA buffer information, and the private | 
|  | 2233 | data.  Besides, if you use the standard buffer allocation | 
|  | 2234 | method via <function>snd_pcm_lib_malloc_pages()</function>, | 
|  | 2235 | you don't need to set the DMA buffer information by yourself. | 
|  | 2236 | </para> | 
|  | 2237 |  | 
|  | 2238 | <para> | 
|  | 2239 | In the sections below, important records are explained. | 
|  | 2240 | </para> | 
|  | 2241 |  | 
|  | 2242 | <section id="pcm-interface-runtime-hw"> | 
|  | 2243 | <title>Hardware Description</title> | 
|  | 2244 | <para> | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2245 | The hardware descriptor (struct <structname>snd_pcm_hardware</structname>) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2246 | contains the definitions of the fundamental hardware | 
|  | 2247 | configuration.  Above all, you'll need to define this in | 
|  | 2248 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | 
|  | 2249 | the open callback</citetitle></link>. | 
|  | 2250 | Note that the runtime instance holds the copy of the | 
|  | 2251 | descriptor, not the pointer to the existing descriptor.  That | 
|  | 2252 | is, in the open callback, you can modify the copied descriptor | 
|  | 2253 | (<constant>runtime->hw</constant>) as you need.  For example, if the maximum | 
|  | 2254 | number of channels is 1 only on some chip models, you can | 
|  | 2255 | still use the same hardware descriptor and change the | 
|  | 2256 | channels_max later: | 
|  | 2257 | <informalexample> | 
|  | 2258 | <programlisting> | 
|  | 2259 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2260 | struct snd_pcm_runtime *runtime = substream->runtime; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2261 | ... | 
|  | 2262 | runtime->hw = snd_mychip_playback_hw; /* common definition */ | 
|  | 2263 | if (chip->model == VERY_OLD_ONE) | 
|  | 2264 | runtime->hw.channels_max = 1; | 
|  | 2265 | ]]> | 
|  | 2266 | </programlisting> | 
|  | 2267 | </informalexample> | 
|  | 2268 | </para> | 
|  | 2269 |  | 
|  | 2270 | <para> | 
|  | 2271 | Typically, you'll have a hardware descriptor like below: | 
|  | 2272 | <informalexample> | 
|  | 2273 | <programlisting> | 
|  | 2274 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2275 | static struct snd_pcm_hardware snd_mychip_playback_hw = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2276 | .info = (SNDRV_PCM_INFO_MMAP | | 
|  | 2277 | SNDRV_PCM_INFO_INTERLEAVED | | 
|  | 2278 | SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
|  | 2279 | SNDRV_PCM_INFO_MMAP_VALID), | 
|  | 2280 | .formats =          SNDRV_PCM_FMTBIT_S16_LE, | 
|  | 2281 | .rates =            SNDRV_PCM_RATE_8000_48000, | 
|  | 2282 | .rate_min =         8000, | 
|  | 2283 | .rate_max =         48000, | 
|  | 2284 | .channels_min =     2, | 
|  | 2285 | .channels_max =     2, | 
|  | 2286 | .buffer_bytes_max = 32768, | 
|  | 2287 | .period_bytes_min = 4096, | 
|  | 2288 | .period_bytes_max = 32768, | 
|  | 2289 | .periods_min =      1, | 
|  | 2290 | .periods_max =      1024, | 
|  | 2291 | }; | 
|  | 2292 | ]]> | 
|  | 2293 | </programlisting> | 
|  | 2294 | </informalexample> | 
|  | 2295 | </para> | 
|  | 2296 |  | 
|  | 2297 | <para> | 
|  | 2298 | <itemizedlist> | 
|  | 2299 | <listitem><para> | 
|  | 2300 | The <structfield>info</structfield> field contains the type and | 
|  | 2301 | capabilities of this pcm. The bit flags are defined in | 
|  | 2302 | <filename><sound/asound.h></filename> as | 
|  | 2303 | <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you | 
|  | 2304 | have to specify whether the mmap is supported and which | 
|  | 2305 | interleaved format is supported. | 
|  | 2306 | When the mmap is supported, add | 
|  | 2307 | <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the | 
|  | 2308 | hardware supports the interleaved or the non-interleaved | 
|  | 2309 | format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or | 
|  | 2310 | <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must | 
|  | 2311 | be set, respectively. If both are supported, you can set both, | 
|  | 2312 | too. | 
|  | 2313 | </para> | 
|  | 2314 |  | 
|  | 2315 | <para> | 
|  | 2316 | In the above example, <constant>MMAP_VALID</constant> and | 
|  | 2317 | <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap | 
|  | 2318 | mode. Usually both are set. Of course, | 
|  | 2319 | <constant>MMAP_VALID</constant> is set only if the mmap is | 
|  | 2320 | really supported. | 
|  | 2321 | </para> | 
|  | 2322 |  | 
|  | 2323 | <para> | 
|  | 2324 | The other possible flags are | 
|  | 2325 | <constant>SNDRV_PCM_INFO_PAUSE</constant> and | 
|  | 2326 | <constant>SNDRV_PCM_INFO_RESUME</constant>. The | 
|  | 2327 | <constant>PAUSE</constant> bit means that the pcm supports the | 
|  | 2328 | <quote>pause</quote> operation, while the | 
|  | 2329 | <constant>RESUME</constant> bit means that the pcm supports | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 2330 | the full <quote>suspend/resume</quote> operation. | 
|  | 2331 | If <constant>PAUSE</constant> flag is set, | 
|  | 2332 | the <structfield>trigger</structfield> callback below | 
|  | 2333 | must handle the corresponding (pause push/release) commands. | 
|  | 2334 | The suspend/resume trigger commands can be defined even without | 
|  | 2335 | <constant>RESUME</constant> flag.  See <link | 
|  | 2336 | linkend="power-management"><citetitle> | 
|  | 2337 | Power Management</citetitle></link> section for details. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2338 | </para> | 
|  | 2339 |  | 
|  | 2340 | <para> | 
|  | 2341 | When the PCM substreams can be synchronized (typically, | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 2342 | synchronized start/stop of a playback and a capture streams), | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2343 | you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>, | 
|  | 2344 | too.  In this case, you'll need to check the linked-list of | 
|  | 2345 | PCM substreams in the trigger callback.  This will be | 
|  | 2346 | described in the later section. | 
|  | 2347 | </para> | 
|  | 2348 | </listitem> | 
|  | 2349 |  | 
|  | 2350 | <listitem> | 
|  | 2351 | <para> | 
|  | 2352 | <structfield>formats</structfield> field contains the bit-flags | 
|  | 2353 | of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>). | 
|  | 2354 | If the hardware supports more than one format, give all or'ed | 
|  | 2355 | bits.  In the example above, the signed 16bit little-endian | 
|  | 2356 | format is specified. | 
|  | 2357 | </para> | 
|  | 2358 | </listitem> | 
|  | 2359 |  | 
|  | 2360 | <listitem> | 
|  | 2361 | <para> | 
|  | 2362 | <structfield>rates</structfield> field contains the bit-flags of | 
|  | 2363 | supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>). | 
|  | 2364 | When the chip supports continuous rates, pass | 
|  | 2365 | <constant>CONTINUOUS</constant> bit additionally. | 
|  | 2366 | The pre-defined rate bits are provided only for typical | 
|  | 2367 | rates. If your chip supports unconventional rates, you need to add | 
|  | 2368 | <constant>KNOT</constant> bit and set up the hardware | 
|  | 2369 | constraint manually (explained later). | 
|  | 2370 | </para> | 
|  | 2371 | </listitem> | 
|  | 2372 |  | 
|  | 2373 | <listitem> | 
|  | 2374 | <para> | 
|  | 2375 | <structfield>rate_min</structfield> and | 
|  | 2376 | <structfield>rate_max</structfield> define the minimal and | 
|  | 2377 | maximal sample rate.  This should correspond somehow to | 
|  | 2378 | <structfield>rates</structfield> bits. | 
|  | 2379 | </para> | 
|  | 2380 | </listitem> | 
|  | 2381 |  | 
|  | 2382 | <listitem> | 
|  | 2383 | <para> | 
|  | 2384 | <structfield>channel_min</structfield> and | 
|  | 2385 | <structfield>channel_max</structfield> | 
|  | 2386 | define, as you might already expected, the minimal and maximal | 
|  | 2387 | number of channels. | 
|  | 2388 | </para> | 
|  | 2389 | </listitem> | 
|  | 2390 |  | 
|  | 2391 | <listitem> | 
|  | 2392 | <para> | 
|  | 2393 | <structfield>buffer_bytes_max</structfield> defines the | 
|  | 2394 | maximal buffer size in bytes.  There is no | 
|  | 2395 | <structfield>buffer_bytes_min</structfield> field, since | 
|  | 2396 | it can be calculated from the minimal period size and the | 
|  | 2397 | minimal number of periods. | 
|  | 2398 | Meanwhile, <structfield>period_bytes_min</structfield> and | 
|  | 2399 | define the minimal and maximal size of the period in bytes. | 
|  | 2400 | <structfield>periods_max</structfield> and | 
|  | 2401 | <structfield>periods_min</structfield> define the maximal and | 
|  | 2402 | minimal number of periods in the buffer. | 
|  | 2403 | </para> | 
|  | 2404 |  | 
|  | 2405 | <para> | 
|  | 2406 | The <quote>period</quote> is a term, that corresponds to | 
|  | 2407 | fragment in the OSS world.  The period defines the size at | 
|  | 2408 | which the PCM interrupt is generated. This size strongly | 
|  | 2409 | depends on the hardware. | 
|  | 2410 | Generally, the smaller period size will give you more | 
|  | 2411 | interrupts, that is, more controls. | 
|  | 2412 | In the case of capture, this size defines the input latency. | 
|  | 2413 | On the other hand, the whole buffer size defines the | 
|  | 2414 | output latency for the playback direction. | 
|  | 2415 | </para> | 
|  | 2416 | </listitem> | 
|  | 2417 |  | 
|  | 2418 | <listitem> | 
|  | 2419 | <para> | 
|  | 2420 | There is also a field <structfield>fifo_size</structfield>. | 
|  | 2421 | This specifies the size of the hardware FIFO, but it's not | 
|  | 2422 | used currently in the driver nor in the alsa-lib.  So, you | 
|  | 2423 | can ignore this field. | 
|  | 2424 | </para> | 
|  | 2425 | </listitem> | 
|  | 2426 | </itemizedlist> | 
|  | 2427 | </para> | 
|  | 2428 | </section> | 
|  | 2429 |  | 
|  | 2430 | <section id="pcm-interface-runtime-config"> | 
|  | 2431 | <title>PCM Configurations</title> | 
|  | 2432 | <para> | 
|  | 2433 | Ok, let's go back again to the PCM runtime records. | 
|  | 2434 | The most frequently referred records in the runtime instance are | 
|  | 2435 | the PCM configurations. | 
|  | 2436 | The PCM configurations are stored on runtime instance | 
|  | 2437 | after the application sends <type>hw_params</type> data via | 
|  | 2438 | alsa-lib.  There are many fields copied from hw_params and | 
|  | 2439 | sw_params structs.  For example, | 
|  | 2440 | <structfield>format</structfield> holds the format type | 
|  | 2441 | chosen by the application.  This field contains the enum value | 
|  | 2442 | <constant>SNDRV_PCM_FORMAT_XXX</constant>. | 
|  | 2443 | </para> | 
|  | 2444 |  | 
|  | 2445 | <para> | 
|  | 2446 | One thing to be noted is that the configured buffer and period | 
|  | 2447 | sizes are stored in <quote>frames</quote> in the runtime | 
|  | 2448 | In the ALSA world, 1 frame = channels * samples-size. | 
|  | 2449 | For conversion between frames and bytes, you can use the | 
|  | 2450 | helper functions, <function>frames_to_bytes()</function> and | 
|  | 2451 | <function>bytes_to_frames()</function>. | 
|  | 2452 | <informalexample> | 
|  | 2453 | <programlisting> | 
|  | 2454 | <![CDATA[ | 
|  | 2455 | period_bytes = frames_to_bytes(runtime, runtime->period_size); | 
|  | 2456 | ]]> | 
|  | 2457 | </programlisting> | 
|  | 2458 | </informalexample> | 
|  | 2459 | </para> | 
|  | 2460 |  | 
|  | 2461 | <para> | 
|  | 2462 | Also, many software parameters (sw_params) are | 
|  | 2463 | stored in frames, too.  Please check the type of the field. | 
|  | 2464 | <type>snd_pcm_uframes_t</type> is for the frames as unsigned | 
|  | 2465 | integer while <type>snd_pcm_sframes_t</type> is for the frames | 
|  | 2466 | as signed integer. | 
|  | 2467 | </para> | 
|  | 2468 | </section> | 
|  | 2469 |  | 
|  | 2470 | <section id="pcm-interface-runtime-dma"> | 
|  | 2471 | <title>DMA Buffer Information</title> | 
|  | 2472 | <para> | 
|  | 2473 | The DMA buffer is defined by the following four fields, | 
|  | 2474 | <structfield>dma_area</structfield>, | 
|  | 2475 | <structfield>dma_addr</structfield>, | 
|  | 2476 | <structfield>dma_bytes</structfield> and | 
|  | 2477 | <structfield>dma_private</structfield>. | 
|  | 2478 | The <structfield>dma_area</structfield> holds the buffer | 
|  | 2479 | pointer (the logical address).  You can call | 
|  | 2480 | <function>memcpy</function> from/to | 
|  | 2481 | this pointer.  Meanwhile, <structfield>dma_addr</structfield> | 
|  | 2482 | holds the physical address of the buffer.  This field is | 
|  | 2483 | specified only when the buffer is a linear buffer. | 
|  | 2484 | <structfield>dma_bytes</structfield> holds the size of buffer | 
|  | 2485 | in bytes.  <structfield>dma_private</structfield> is used for | 
|  | 2486 | the ALSA DMA allocator. | 
|  | 2487 | </para> | 
|  | 2488 |  | 
|  | 2489 | <para> | 
|  | 2490 | If you use a standard ALSA function, | 
|  | 2491 | <function>snd_pcm_lib_malloc_pages()</function>, for | 
|  | 2492 | allocating the buffer, these fields are set by the ALSA middle | 
|  | 2493 | layer, and you should <emphasis>not</emphasis> change them by | 
|  | 2494 | yourself.  You can read them but not write them. | 
|  | 2495 | On the other hand, if you want to allocate the buffer by | 
|  | 2496 | yourself, you'll need to manage it in hw_params callback. | 
|  | 2497 | At least, <structfield>dma_bytes</structfield> is mandatory. | 
|  | 2498 | <structfield>dma_area</structfield> is necessary when the | 
|  | 2499 | buffer is mmapped.  If your driver doesn't support mmap, this | 
|  | 2500 | field is not necessary.  <structfield>dma_addr</structfield> | 
|  | 2501 | is also not mandatory.  You can use | 
|  | 2502 | <structfield>dma_private</structfield> as you like, too. | 
|  | 2503 | </para> | 
|  | 2504 | </section> | 
|  | 2505 |  | 
|  | 2506 | <section id="pcm-interface-runtime-status"> | 
|  | 2507 | <title>Running Status</title> | 
|  | 2508 | <para> | 
|  | 2509 | The running status can be referred via <constant>runtime->status</constant>. | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2510 | This is the pointer to struct <structname>snd_pcm_mmap_status</structname> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2511 | record.  For example, you can get the current DMA hardware | 
|  | 2512 | pointer via <constant>runtime->status->hw_ptr</constant>. | 
|  | 2513 | </para> | 
|  | 2514 |  | 
|  | 2515 | <para> | 
|  | 2516 | The DMA application pointer can be referred via | 
|  | 2517 | <constant>runtime->control</constant>, which points | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2518 | struct <structname>snd_pcm_mmap_control</structname> record. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2519 | However, accessing directly to this value is not recommended. | 
|  | 2520 | </para> | 
|  | 2521 | </section> | 
|  | 2522 |  | 
|  | 2523 | <section id="pcm-interface-runtime-private"> | 
|  | 2524 | <title>Private Data</title> | 
|  | 2525 | <para> | 
|  | 2526 | You can allocate a record for the substream and store it in | 
|  | 2527 | <constant>runtime->private_data</constant>.  Usually, this | 
|  | 2528 | done in | 
|  | 2529 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | 
|  | 2530 | the open callback</citetitle></link>. | 
|  | 2531 | Don't mix this with <constant>pcm->private_data</constant>. | 
|  | 2532 | The <constant>pcm->private_data</constant> usually points the | 
|  | 2533 | chip instance assigned statically at the creation of PCM, while the | 
|  | 2534 | <constant>runtime->private_data</constant> points a dynamic | 
|  | 2535 | data created at the PCM open callback. | 
|  | 2536 |  | 
|  | 2537 | <informalexample> | 
|  | 2538 | <programlisting> | 
|  | 2539 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2540 | static int snd_xxx_open(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2541 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2542 | struct my_pcm_data *data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2543 | .... | 
|  | 2544 | data = kmalloc(sizeof(*data), GFP_KERNEL); | 
|  | 2545 | substream->runtime->private_data = data; | 
|  | 2546 | .... | 
|  | 2547 | } | 
|  | 2548 | ]]> | 
|  | 2549 | </programlisting> | 
|  | 2550 | </informalexample> | 
|  | 2551 | </para> | 
|  | 2552 |  | 
|  | 2553 | <para> | 
|  | 2554 | The allocated object must be released in | 
|  | 2555 | <link linkend="pcm-interface-operators-open-callback"><citetitle> | 
|  | 2556 | the close callback</citetitle></link>. | 
|  | 2557 | </para> | 
|  | 2558 | </section> | 
|  | 2559 |  | 
|  | 2560 | <section id="pcm-interface-runtime-intr"> | 
|  | 2561 | <title>Interrupt Callbacks</title> | 
|  | 2562 | <para> | 
|  | 2563 | The field <structfield>transfer_ack_begin</structfield> and | 
|  | 2564 | <structfield>transfer_ack_end</structfield> are called at | 
|  | 2565 | the beginning and the end of | 
|  | 2566 | <function>snd_pcm_period_elapsed()</function>, respectively. | 
|  | 2567 | </para> | 
|  | 2568 | </section> | 
|  | 2569 |  | 
|  | 2570 | </section> | 
|  | 2571 |  | 
|  | 2572 | <section id="pcm-interface-operators"> | 
|  | 2573 | <title>Operators</title> | 
|  | 2574 | <para> | 
|  | 2575 | OK, now let me explain the detail of each pcm callback | 
|  | 2576 | (<parameter>ops</parameter>). In general, every callback must | 
|  | 2577 | return 0 if successful, or a negative number with the error | 
|  | 2578 | number such as <constant>-EINVAL</constant> at any | 
|  | 2579 | error. | 
|  | 2580 | </para> | 
|  | 2581 |  | 
|  | 2582 | <para> | 
|  | 2583 | The callback function takes at least the argument with | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2584 | <structname>snd_pcm_substream</structname> pointer. For retrieving the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2585 | chip record from the given substream instance, you can use the | 
|  | 2586 | following macro. | 
|  | 2587 |  | 
|  | 2588 | <informalexample> | 
|  | 2589 | <programlisting> | 
|  | 2590 | <![CDATA[ | 
|  | 2591 | int xxx() { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2592 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2593 | .... | 
|  | 2594 | } | 
|  | 2595 | ]]> | 
|  | 2596 | </programlisting> | 
|  | 2597 | </informalexample> | 
|  | 2598 |  | 
|  | 2599 | The macro reads <constant>substream->private_data</constant>, | 
|  | 2600 | which is a copy of <constant>pcm->private_data</constant>. | 
|  | 2601 | You can override the former if you need to assign different data | 
|  | 2602 | records per PCM substream.  For example, cmi8330 driver assigns | 
|  | 2603 | different private_data for playback and capture directions, | 
|  | 2604 | because it uses two different codecs (SB- and AD-compatible) for | 
|  | 2605 | different directions. | 
|  | 2606 | </para> | 
|  | 2607 |  | 
|  | 2608 | <section id="pcm-interface-operators-open-callback"> | 
|  | 2609 | <title>open callback</title> | 
|  | 2610 | <para> | 
|  | 2611 | <informalexample> | 
|  | 2612 | <programlisting> | 
|  | 2613 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2614 | static int snd_xxx_open(struct snd_pcm_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2615 | ]]> | 
|  | 2616 | </programlisting> | 
|  | 2617 | </informalexample> | 
|  | 2618 |  | 
|  | 2619 | This is called when a pcm substream is opened. | 
|  | 2620 | </para> | 
|  | 2621 |  | 
|  | 2622 | <para> | 
|  | 2623 | At least, here you have to initialize the runtime->hw | 
|  | 2624 | record. Typically, this is done by like this: | 
|  | 2625 |  | 
|  | 2626 | <informalexample> | 
|  | 2627 | <programlisting> | 
|  | 2628 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2629 | static int snd_xxx_open(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2630 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2631 | struct mychip *chip = snd_pcm_substream_chip(substream); | 
|  | 2632 | struct snd_pcm_runtime *runtime = substream->runtime; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2633 |  | 
|  | 2634 | runtime->hw = snd_mychip_playback_hw; | 
|  | 2635 | return 0; | 
|  | 2636 | } | 
|  | 2637 | ]]> | 
|  | 2638 | </programlisting> | 
|  | 2639 | </informalexample> | 
|  | 2640 |  | 
|  | 2641 | where <parameter>snd_mychip_playback_hw</parameter> is the | 
|  | 2642 | pre-defined hardware description. | 
|  | 2643 | </para> | 
|  | 2644 |  | 
|  | 2645 | <para> | 
|  | 2646 | You can allocate a private data in this callback, as described | 
|  | 2647 | in <link linkend="pcm-interface-runtime-private"><citetitle> | 
|  | 2648 | Private Data</citetitle></link> section. | 
|  | 2649 | </para> | 
|  | 2650 |  | 
|  | 2651 | <para> | 
|  | 2652 | If the hardware configuration needs more constraints, set the | 
|  | 2653 | hardware constraints here, too. | 
|  | 2654 | See <link linkend="pcm-interface-constraints"><citetitle> | 
|  | 2655 | Constraints</citetitle></link> for more details. | 
|  | 2656 | </para> | 
|  | 2657 | </section> | 
|  | 2658 |  | 
|  | 2659 | <section id="pcm-interface-operators-close-callback"> | 
|  | 2660 | <title>close callback</title> | 
|  | 2661 | <para> | 
|  | 2662 | <informalexample> | 
|  | 2663 | <programlisting> | 
|  | 2664 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2665 | static int snd_xxx_close(struct snd_pcm_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2666 | ]]> | 
|  | 2667 | </programlisting> | 
|  | 2668 | </informalexample> | 
|  | 2669 |  | 
|  | 2670 | Obviously, this is called when a pcm substream is closed. | 
|  | 2671 | </para> | 
|  | 2672 |  | 
|  | 2673 | <para> | 
|  | 2674 | Any private instance for a pcm substream allocated in the | 
|  | 2675 | open callback will be released here. | 
|  | 2676 |  | 
|  | 2677 | <informalexample> | 
|  | 2678 | <programlisting> | 
|  | 2679 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2680 | static int snd_xxx_close(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2681 | { | 
|  | 2682 | .... | 
|  | 2683 | kfree(substream->runtime->private_data); | 
|  | 2684 | .... | 
|  | 2685 | } | 
|  | 2686 | ]]> | 
|  | 2687 | </programlisting> | 
|  | 2688 | </informalexample> | 
|  | 2689 | </para> | 
|  | 2690 | </section> | 
|  | 2691 |  | 
|  | 2692 | <section id="pcm-interface-operators-ioctl-callback"> | 
|  | 2693 | <title>ioctl callback</title> | 
|  | 2694 | <para> | 
|  | 2695 | This is used for any special action to pcm ioctls. But | 
|  | 2696 | usually you can pass a generic ioctl callback, | 
|  | 2697 | <function>snd_pcm_lib_ioctl</function>. | 
|  | 2698 | </para> | 
|  | 2699 | </section> | 
|  | 2700 |  | 
|  | 2701 | <section id="pcm-interface-operators-hw-params-callback"> | 
|  | 2702 | <title>hw_params callback</title> | 
|  | 2703 | <para> | 
|  | 2704 | <informalexample> | 
|  | 2705 | <programlisting> | 
|  | 2706 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2707 | static int snd_xxx_hw_params(struct snd_pcm_substream *substream, | 
|  | 2708 | struct snd_pcm_hw_params *hw_params); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2709 | ]]> | 
|  | 2710 | </programlisting> | 
|  | 2711 | </informalexample> | 
|  | 2712 |  | 
|  | 2713 | This and <structfield>hw_free</structfield> callbacks exist | 
|  | 2714 | only on ALSA 0.9.x. | 
|  | 2715 | </para> | 
|  | 2716 |  | 
|  | 2717 | <para> | 
|  | 2718 | This is called when the hardware parameter | 
|  | 2719 | (<structfield>hw_params</structfield>) is set | 
|  | 2720 | up by the application, | 
|  | 2721 | that is, once when the buffer size, the period size, the | 
|  | 2722 | format, etc. are defined for the pcm substream. | 
|  | 2723 | </para> | 
|  | 2724 |  | 
|  | 2725 | <para> | 
|  | 2726 | Many hardware set-up should be done in this callback, | 
|  | 2727 | including the allocation of buffers. | 
|  | 2728 | </para> | 
|  | 2729 |  | 
|  | 2730 | <para> | 
|  | 2731 | Parameters to be initialized are retrieved by | 
|  | 2732 | <function>params_xxx()</function> macros. For allocating a | 
|  | 2733 | buffer, you can call a helper function, | 
|  | 2734 |  | 
|  | 2735 | <informalexample> | 
|  | 2736 | <programlisting> | 
|  | 2737 | <![CDATA[ | 
|  | 2738 | snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); | 
|  | 2739 | ]]> | 
|  | 2740 | </programlisting> | 
|  | 2741 | </informalexample> | 
|  | 2742 |  | 
|  | 2743 | <function>snd_pcm_lib_malloc_pages()</function> is available | 
|  | 2744 | only when the DMA buffers have been pre-allocated. | 
|  | 2745 | See the section <link | 
|  | 2746 | linkend="buffer-and-memory-buffer-types"><citetitle> | 
|  | 2747 | Buffer Types</citetitle></link> for more details. | 
|  | 2748 | </para> | 
|  | 2749 |  | 
|  | 2750 | <para> | 
|  | 2751 | Note that this and <structfield>prepare</structfield> callbacks | 
|  | 2752 | may be called multiple times per initialization. | 
|  | 2753 | For example, the OSS emulation may | 
|  | 2754 | call these callbacks at each change via its ioctl. | 
|  | 2755 | </para> | 
|  | 2756 |  | 
|  | 2757 | <para> | 
|  | 2758 | Thus, you need to take care not to allocate the same buffers | 
|  | 2759 | many times, which will lead to memory leak!  Calling the | 
|  | 2760 | helper function above many times is OK. It will release the | 
|  | 2761 | previous buffer automatically when it was already allocated. | 
|  | 2762 | </para> | 
|  | 2763 |  | 
|  | 2764 | <para> | 
|  | 2765 | Another note is that this callback is non-atomic | 
|  | 2766 | (schedulable). This is important, because the | 
|  | 2767 | <structfield>trigger</structfield> callback | 
|  | 2768 | is atomic (non-schedulable). That is, mutex or any | 
|  | 2769 | schedule-related functions are not available in | 
|  | 2770 | <structfield>trigger</structfield> callback. | 
|  | 2771 | Please see the subsection | 
|  | 2772 | <link linkend="pcm-interface-atomicity"><citetitle> | 
|  | 2773 | Atomicity</citetitle></link> for details. | 
|  | 2774 | </para> | 
|  | 2775 | </section> | 
|  | 2776 |  | 
|  | 2777 | <section id="pcm-interface-operators-hw-free-callback"> | 
|  | 2778 | <title>hw_free callback</title> | 
|  | 2779 | <para> | 
|  | 2780 | <informalexample> | 
|  | 2781 | <programlisting> | 
|  | 2782 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2783 | static int snd_xxx_hw_free(struct snd_pcm_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2784 | ]]> | 
|  | 2785 | </programlisting> | 
|  | 2786 | </informalexample> | 
|  | 2787 | </para> | 
|  | 2788 |  | 
|  | 2789 | <para> | 
|  | 2790 | This is called to release the resources allocated via | 
|  | 2791 | <structfield>hw_params</structfield>. For example, releasing the | 
|  | 2792 | buffer via | 
|  | 2793 | <function>snd_pcm_lib_malloc_pages()</function> is done by | 
|  | 2794 | calling the following: | 
|  | 2795 |  | 
|  | 2796 | <informalexample> | 
|  | 2797 | <programlisting> | 
|  | 2798 | <![CDATA[ | 
|  | 2799 | snd_pcm_lib_free_pages(substream); | 
|  | 2800 | ]]> | 
|  | 2801 | </programlisting> | 
|  | 2802 | </informalexample> | 
|  | 2803 | </para> | 
|  | 2804 |  | 
|  | 2805 | <para> | 
|  | 2806 | This function is always called before the close callback is called. | 
|  | 2807 | Also, the callback may be called multiple times, too. | 
|  | 2808 | Keep track whether the resource was already released. | 
|  | 2809 | </para> | 
|  | 2810 | </section> | 
|  | 2811 |  | 
|  | 2812 | <section id="pcm-interface-operators-prepare-callback"> | 
|  | 2813 | <title>prepare callback</title> | 
|  | 2814 | <para> | 
|  | 2815 | <informalexample> | 
|  | 2816 | <programlisting> | 
|  | 2817 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2818 | static int snd_xxx_prepare(struct snd_pcm_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2819 | ]]> | 
|  | 2820 | </programlisting> | 
|  | 2821 | </informalexample> | 
|  | 2822 | </para> | 
|  | 2823 |  | 
|  | 2824 | <para> | 
|  | 2825 | This callback is called when the pcm is | 
|  | 2826 | <quote>prepared</quote>. You can set the format type, sample | 
|  | 2827 | rate, etc. here. The difference from | 
|  | 2828 | <structfield>hw_params</structfield> is that the | 
|  | 2829 | <structfield>prepare</structfield> callback will be called at each | 
|  | 2830 | time | 
|  | 2831 | <function>snd_pcm_prepare()</function> is called, i.e. when | 
|  | 2832 | recovered after underruns, etc. | 
|  | 2833 | </para> | 
|  | 2834 |  | 
|  | 2835 | <para> | 
|  | 2836 | Note that this callback became non-atomic since the recent version. | 
| Akinobu Mita | 0b28002 | 2006-03-26 01:38:58 -0800 | [diff] [blame] | 2837 | You can use schedule-related functions safely in this callback now. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2838 | </para> | 
|  | 2839 |  | 
|  | 2840 | <para> | 
|  | 2841 | In this and the following callbacks, you can refer to the | 
|  | 2842 | values via the runtime record, | 
|  | 2843 | substream->runtime. | 
|  | 2844 | For example, to get the current | 
|  | 2845 | rate, format or channels, access to | 
|  | 2846 | runtime->rate, | 
|  | 2847 | runtime->format or | 
|  | 2848 | runtime->channels, respectively. | 
|  | 2849 | The physical address of the allocated buffer is set to | 
|  | 2850 | runtime->dma_area.  The buffer and period sizes are | 
|  | 2851 | in runtime->buffer_size and runtime->period_size, | 
|  | 2852 | respectively. | 
|  | 2853 | </para> | 
|  | 2854 |  | 
|  | 2855 | <para> | 
|  | 2856 | Be careful that this callback will be called many times at | 
|  | 2857 | each set up, too. | 
|  | 2858 | </para> | 
|  | 2859 | </section> | 
|  | 2860 |  | 
|  | 2861 | <section id="pcm-interface-operators-trigger-callback"> | 
|  | 2862 | <title>trigger callback</title> | 
|  | 2863 | <para> | 
|  | 2864 | <informalexample> | 
|  | 2865 | <programlisting> | 
|  | 2866 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2867 | static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2868 | ]]> | 
|  | 2869 | </programlisting> | 
|  | 2870 | </informalexample> | 
|  | 2871 |  | 
|  | 2872 | This is called when the pcm is started, stopped or paused. | 
|  | 2873 | </para> | 
|  | 2874 |  | 
|  | 2875 | <para> | 
|  | 2876 | Which action is specified in the second argument, | 
|  | 2877 | <constant>SNDRV_PCM_TRIGGER_XXX</constant> in | 
|  | 2878 | <filename><sound/pcm.h></filename>. At least, | 
|  | 2879 | <constant>START</constant> and <constant>STOP</constant> | 
|  | 2880 | commands must be defined in this callback. | 
|  | 2881 |  | 
|  | 2882 | <informalexample> | 
|  | 2883 | <programlisting> | 
|  | 2884 | <![CDATA[ | 
|  | 2885 | switch (cmd) { | 
|  | 2886 | case SNDRV_PCM_TRIGGER_START: | 
|  | 2887 | // do something to start the PCM engine | 
|  | 2888 | break; | 
|  | 2889 | case SNDRV_PCM_TRIGGER_STOP: | 
|  | 2890 | // do something to stop the PCM engine | 
|  | 2891 | break; | 
|  | 2892 | default: | 
|  | 2893 | return -EINVAL; | 
|  | 2894 | } | 
|  | 2895 | ]]> | 
|  | 2896 | </programlisting> | 
|  | 2897 | </informalexample> | 
|  | 2898 | </para> | 
|  | 2899 |  | 
|  | 2900 | <para> | 
|  | 2901 | When the pcm supports the pause operation (given in info | 
|  | 2902 | field of the hardware table), <constant>PAUSE_PUSE</constant> | 
|  | 2903 | and <constant>PAUSE_RELEASE</constant> commands must be | 
|  | 2904 | handled here, too. The former is the command to pause the pcm, | 
|  | 2905 | and the latter to restart the pcm again. | 
|  | 2906 | </para> | 
|  | 2907 |  | 
|  | 2908 | <para> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 2909 | When the pcm supports the suspend/resume operation, | 
|  | 2910 | regardless of full or partial suspend/resume support, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2911 | <constant>SUSPEND</constant> and <constant>RESUME</constant> | 
|  | 2912 | commands must be handled, too. | 
|  | 2913 | These commands are issued when the power-management status is | 
|  | 2914 | changed.  Obviously, the <constant>SUSPEND</constant> and | 
|  | 2915 | <constant>RESUME</constant> | 
|  | 2916 | do suspend and resume of the pcm substream, and usually, they | 
|  | 2917 | are identical with <constant>STOP</constant> and | 
|  | 2918 | <constant>START</constant> commands, respectively. | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 2919 | See <link linkend="power-management"><citetitle> | 
|  | 2920 | Power Management</citetitle></link> section for details. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2921 | </para> | 
|  | 2922 |  | 
|  | 2923 | <para> | 
|  | 2924 | As mentioned, this callback is atomic.  You cannot call | 
|  | 2925 | the function going to sleep. | 
|  | 2926 | The trigger callback should be as minimal as possible, | 
|  | 2927 | just really triggering the DMA.  The other stuff should be | 
|  | 2928 | initialized hw_params and prepare callbacks properly | 
|  | 2929 | beforehand. | 
|  | 2930 | </para> | 
|  | 2931 | </section> | 
|  | 2932 |  | 
|  | 2933 | <section id="pcm-interface-operators-pointer-callback"> | 
|  | 2934 | <title>pointer callback</title> | 
|  | 2935 | <para> | 
|  | 2936 | <informalexample> | 
|  | 2937 | <programlisting> | 
|  | 2938 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 2939 | static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2940 | ]]> | 
|  | 2941 | </programlisting> | 
|  | 2942 | </informalexample> | 
|  | 2943 |  | 
|  | 2944 | This callback is called when the PCM middle layer inquires | 
|  | 2945 | the current hardware position on the buffer. The position must | 
|  | 2946 | be returned in frames (which was in bytes on ALSA 0.5.x), | 
|  | 2947 | ranged from 0 to buffer_size - 1. | 
|  | 2948 | </para> | 
|  | 2949 |  | 
|  | 2950 | <para> | 
|  | 2951 | This is called usually from the buffer-update routine in the | 
|  | 2952 | pcm middle layer, which is invoked when | 
|  | 2953 | <function>snd_pcm_period_elapsed()</function> is called in the | 
|  | 2954 | interrupt routine. Then the pcm middle layer updates the | 
|  | 2955 | position and calculates the available space, and wakes up the | 
|  | 2956 | sleeping poll threads, etc. | 
|  | 2957 | </para> | 
|  | 2958 |  | 
|  | 2959 | <para> | 
|  | 2960 | This callback is also atomic. | 
|  | 2961 | </para> | 
|  | 2962 | </section> | 
|  | 2963 |  | 
|  | 2964 | <section id="pcm-interface-operators-copy-silence"> | 
|  | 2965 | <title>copy and silence callbacks</title> | 
|  | 2966 | <para> | 
|  | 2967 | These callbacks are not mandatory, and can be omitted in | 
|  | 2968 | most cases. These callbacks are used when the hardware buffer | 
|  | 2969 | cannot be on the normal memory space. Some chips have their | 
|  | 2970 | own buffer on the hardware which is not mappable. In such a | 
|  | 2971 | case, you have to transfer the data manually from the memory | 
|  | 2972 | buffer to the hardware buffer. Or, if the buffer is | 
|  | 2973 | non-contiguous on both physical and virtual memory spaces, | 
|  | 2974 | these callbacks must be defined, too. | 
|  | 2975 | </para> | 
|  | 2976 |  | 
|  | 2977 | <para> | 
|  | 2978 | If these two callbacks are defined, copy and set-silence | 
|  | 2979 | operations are done by them. The detailed will be described in | 
|  | 2980 | the later section <link | 
|  | 2981 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | 
|  | 2982 | Management</citetitle></link>. | 
|  | 2983 | </para> | 
|  | 2984 | </section> | 
|  | 2985 |  | 
|  | 2986 | <section id="pcm-interface-operators-ack"> | 
|  | 2987 | <title>ack callback</title> | 
|  | 2988 | <para> | 
|  | 2989 | This callback is also not mandatory. This callback is called | 
|  | 2990 | when the appl_ptr is updated in read or write operations. | 
|  | 2991 | Some drivers like emu10k1-fx and cs46xx need to track the | 
|  | 2992 | current appl_ptr for the internal buffer, and this callback | 
|  | 2993 | is useful only for such a purpose. | 
|  | 2994 | </para> | 
|  | 2995 | <para> | 
|  | 2996 | This callback is atomic. | 
|  | 2997 | </para> | 
|  | 2998 | </section> | 
|  | 2999 |  | 
|  | 3000 | <section id="pcm-interface-operators-page-callback"> | 
|  | 3001 | <title>page callback</title> | 
|  | 3002 |  | 
|  | 3003 | <para> | 
|  | 3004 | This callback is also not mandatory. This callback is used | 
|  | 3005 | mainly for the non-contiguous buffer. The mmap calls this | 
|  | 3006 | callback to get the page address. Some examples will be | 
|  | 3007 | explained in the later section <link | 
|  | 3008 | linkend="buffer-and-memory"><citetitle>Buffer and Memory | 
|  | 3009 | Management</citetitle></link>, too. | 
|  | 3010 | </para> | 
|  | 3011 | </section> | 
|  | 3012 | </section> | 
|  | 3013 |  | 
|  | 3014 | <section id="pcm-interface-interrupt-handler"> | 
|  | 3015 | <title>Interrupt Handler</title> | 
|  | 3016 | <para> | 
|  | 3017 | The rest of pcm stuff is the PCM interrupt handler. The | 
|  | 3018 | role of PCM interrupt handler in the sound driver is to update | 
|  | 3019 | the buffer position and to tell the PCM middle layer when the | 
|  | 3020 | buffer position goes across the prescribed period size. To | 
|  | 3021 | inform this, call <function>snd_pcm_period_elapsed()</function> | 
|  | 3022 | function. | 
|  | 3023 | </para> | 
|  | 3024 |  | 
|  | 3025 | <para> | 
|  | 3026 | There are several types of sound chips to generate the interrupts. | 
|  | 3027 | </para> | 
|  | 3028 |  | 
|  | 3029 | <section id="pcm-interface-interrupt-handler-boundary"> | 
|  | 3030 | <title>Interrupts at the period (fragment) boundary</title> | 
|  | 3031 | <para> | 
|  | 3032 | This is the most frequently found type:  the hardware | 
|  | 3033 | generates an interrupt at each period boundary. | 
|  | 3034 | In this case, you can call | 
|  | 3035 | <function>snd_pcm_period_elapsed()</function> at each | 
|  | 3036 | interrupt. | 
|  | 3037 | </para> | 
|  | 3038 |  | 
|  | 3039 | <para> | 
|  | 3040 | <function>snd_pcm_period_elapsed()</function> takes the | 
|  | 3041 | substream pointer as its argument. Thus, you need to keep the | 
|  | 3042 | substream pointer accessible from the chip instance. For | 
|  | 3043 | example, define substream field in the chip record to hold the | 
|  | 3044 | current running substream pointer, and set the pointer value | 
|  | 3045 | at open callback (and reset at close callback). | 
|  | 3046 | </para> | 
|  | 3047 |  | 
|  | 3048 | <para> | 
| Adrian Bunk | 0418726 | 2006-06-30 18:23:04 +0200 | [diff] [blame] | 3049 | If you acquire a spinlock in the interrupt handler, and the | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3050 | lock is used in other pcm callbacks, too, then you have to | 
|  | 3051 | release the lock before calling | 
|  | 3052 | <function>snd_pcm_period_elapsed()</function>, because | 
|  | 3053 | <function>snd_pcm_period_elapsed()</function> calls other pcm | 
|  | 3054 | callbacks inside. | 
|  | 3055 | </para> | 
|  | 3056 |  | 
|  | 3057 | <para> | 
|  | 3058 | A typical coding would be like: | 
|  | 3059 |  | 
|  | 3060 | <example> | 
|  | 3061 | <title>Interrupt Handler Case #1</title> | 
|  | 3062 | <programlisting> | 
|  | 3063 | <![CDATA[ | 
| Takashi Iwai | ad4d1de | 2007-01-16 17:46:35 +0100 | [diff] [blame] | 3064 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3065 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3066 | struct mychip *chip = dev_id; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3067 | spin_lock(&chip->lock); | 
|  | 3068 | .... | 
|  | 3069 | if (pcm_irq_invoked(chip)) { | 
|  | 3070 | /* call updater, unlock before it */ | 
|  | 3071 | spin_unlock(&chip->lock); | 
|  | 3072 | snd_pcm_period_elapsed(chip->substream); | 
|  | 3073 | spin_lock(&chip->lock); | 
|  | 3074 | // acknowledge the interrupt if necessary | 
|  | 3075 | } | 
|  | 3076 | .... | 
|  | 3077 | spin_unlock(&chip->lock); | 
|  | 3078 | return IRQ_HANDLED; | 
|  | 3079 | } | 
|  | 3080 | ]]> | 
|  | 3081 | </programlisting> | 
|  | 3082 | </example> | 
|  | 3083 | </para> | 
|  | 3084 | </section> | 
|  | 3085 |  | 
|  | 3086 | <section id="pcm-interface-interrupt-handler-timer"> | 
|  | 3087 | <title>High-frequent timer interrupts</title> | 
|  | 3088 | <para> | 
|  | 3089 | This is the case when the hardware doesn't generate interrupts | 
|  | 3090 | at the period boundary but do timer-interrupts at the fixed | 
|  | 3091 | timer rate (e.g. es1968 or ymfpci drivers). | 
|  | 3092 | In this case, you need to check the current hardware | 
|  | 3093 | position and accumulates the processed sample length at each | 
|  | 3094 | interrupt.  When the accumulated size overcomes the period | 
|  | 3095 | size, call | 
|  | 3096 | <function>snd_pcm_period_elapsed()</function> and reset the | 
|  | 3097 | accumulator. | 
|  | 3098 | </para> | 
|  | 3099 |  | 
|  | 3100 | <para> | 
|  | 3101 | A typical coding would be like the following. | 
|  | 3102 |  | 
|  | 3103 | <example> | 
|  | 3104 | <title>Interrupt Handler Case #2</title> | 
|  | 3105 | <programlisting> | 
|  | 3106 | <![CDATA[ | 
| Takashi Iwai | ad4d1de | 2007-01-16 17:46:35 +0100 | [diff] [blame] | 3107 | static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3108 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3109 | struct mychip *chip = dev_id; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3110 | spin_lock(&chip->lock); | 
|  | 3111 | .... | 
|  | 3112 | if (pcm_irq_invoked(chip)) { | 
|  | 3113 | unsigned int last_ptr, size; | 
|  | 3114 | /* get the current hardware pointer (in frames) */ | 
|  | 3115 | last_ptr = get_hw_ptr(chip); | 
|  | 3116 | /* calculate the processed frames since the | 
|  | 3117 | * last update | 
|  | 3118 | */ | 
|  | 3119 | if (last_ptr < chip->last_ptr) | 
|  | 3120 | size = runtime->buffer_size + last_ptr | 
|  | 3121 | - chip->last_ptr; | 
|  | 3122 | else | 
|  | 3123 | size = last_ptr - chip->last_ptr; | 
|  | 3124 | /* remember the last updated point */ | 
|  | 3125 | chip->last_ptr = last_ptr; | 
|  | 3126 | /* accumulate the size */ | 
|  | 3127 | chip->size += size; | 
|  | 3128 | /* over the period boundary? */ | 
|  | 3129 | if (chip->size >= runtime->period_size) { | 
|  | 3130 | /* reset the accumulator */ | 
|  | 3131 | chip->size %= runtime->period_size; | 
|  | 3132 | /* call updater */ | 
|  | 3133 | spin_unlock(&chip->lock); | 
|  | 3134 | snd_pcm_period_elapsed(substream); | 
|  | 3135 | spin_lock(&chip->lock); | 
|  | 3136 | } | 
|  | 3137 | // acknowledge the interrupt if necessary | 
|  | 3138 | } | 
|  | 3139 | .... | 
|  | 3140 | spin_unlock(&chip->lock); | 
|  | 3141 | return IRQ_HANDLED; | 
|  | 3142 | } | 
|  | 3143 | ]]> | 
|  | 3144 | </programlisting> | 
|  | 3145 | </example> | 
|  | 3146 | </para> | 
|  | 3147 | </section> | 
|  | 3148 |  | 
|  | 3149 | <section id="pcm-interface-interrupt-handler-both"> | 
|  | 3150 | <title>On calling <function>snd_pcm_period_elapsed()</function></title> | 
|  | 3151 | <para> | 
|  | 3152 | In both cases, even if more than one period are elapsed, you | 
|  | 3153 | don't have to call | 
|  | 3154 | <function>snd_pcm_period_elapsed()</function> many times. Call | 
|  | 3155 | only once. And the pcm layer will check the current hardware | 
|  | 3156 | pointer and update to the latest status. | 
|  | 3157 | </para> | 
|  | 3158 | </section> | 
|  | 3159 | </section> | 
|  | 3160 |  | 
|  | 3161 | <section id="pcm-interface-atomicity"> | 
|  | 3162 | <title>Atomicity</title> | 
|  | 3163 | <para> | 
|  | 3164 | One of the most important (and thus difficult to debug) problem | 
|  | 3165 | on the kernel programming is the race condition. | 
|  | 3166 | On linux kernel, usually it's solved via spin-locks or | 
|  | 3167 | semaphores.  In general, if the race condition may | 
|  | 3168 | happen in the interrupt handler, it's handled as atomic, and you | 
|  | 3169 | have to use spinlock for protecting the critical session.  If it | 
|  | 3170 | never happens in the interrupt and it may take relatively long | 
|  | 3171 | time, you should use semaphore. | 
|  | 3172 | </para> | 
|  | 3173 |  | 
|  | 3174 | <para> | 
|  | 3175 | As already seen, some pcm callbacks are atomic and some are | 
|  | 3176 | not.  For example, <parameter>hw_params</parameter> callback is | 
|  | 3177 | non-atomic, while <parameter>trigger</parameter> callback is | 
|  | 3178 | atomic.  This means, the latter is called already in a spinlock | 
|  | 3179 | held by the PCM middle layer. Please take this atomicity into | 
|  | 3180 | account when you use a spinlock or a semaphore in the callbacks. | 
|  | 3181 | </para> | 
|  | 3182 |  | 
|  | 3183 | <para> | 
|  | 3184 | In the atomic callbacks, you cannot use functions which may call | 
|  | 3185 | <function>schedule</function> or go to | 
|  | 3186 | <function>sleep</function>.  The semaphore and mutex do sleep, | 
|  | 3187 | and hence they cannot be used inside the atomic callbacks | 
|  | 3188 | (e.g. <parameter>trigger</parameter> callback). | 
|  | 3189 | For taking a certain delay in such a callback, please use | 
|  | 3190 | <function>udelay()</function> or <function>mdelay()</function>. | 
|  | 3191 | </para> | 
|  | 3192 |  | 
|  | 3193 | <para> | 
|  | 3194 | All three atomic callbacks (trigger, pointer, and ack) are | 
|  | 3195 | called with local interrupts disabled. | 
|  | 3196 | </para> | 
|  | 3197 |  | 
|  | 3198 | </section> | 
|  | 3199 | <section id="pcm-interface-constraints"> | 
|  | 3200 | <title>Constraints</title> | 
|  | 3201 | <para> | 
|  | 3202 | If your chip supports unconventional sample rates, or only the | 
|  | 3203 | limited samples, you need to set a constraint for the | 
|  | 3204 | condition. | 
|  | 3205 | </para> | 
|  | 3206 |  | 
|  | 3207 | <para> | 
|  | 3208 | For example, in order to restrict the sample rates in the some | 
|  | 3209 | supported values, use | 
|  | 3210 | <function>snd_pcm_hw_constraint_list()</function>. | 
|  | 3211 | You need to call this function in the open callback. | 
|  | 3212 |  | 
|  | 3213 | <example> | 
|  | 3214 | <title>Example of Hardware Constraints</title> | 
|  | 3215 | <programlisting> | 
|  | 3216 | <![CDATA[ | 
|  | 3217 | static unsigned int rates[] = | 
|  | 3218 | {4000, 10000, 22050, 44100}; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3219 | static struct snd_pcm_hw_constraint_list constraints_rates = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3220 | .count = ARRAY_SIZE(rates), | 
|  | 3221 | .list = rates, | 
|  | 3222 | .mask = 0, | 
|  | 3223 | }; | 
|  | 3224 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3225 | static int snd_mychip_pcm_open(struct snd_pcm_substream *substream) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3226 | { | 
|  | 3227 | int err; | 
|  | 3228 | .... | 
|  | 3229 | err = snd_pcm_hw_constraint_list(substream->runtime, 0, | 
|  | 3230 | SNDRV_PCM_HW_PARAM_RATE, | 
|  | 3231 | &constraints_rates); | 
|  | 3232 | if (err < 0) | 
|  | 3233 | return err; | 
|  | 3234 | .... | 
|  | 3235 | } | 
|  | 3236 | ]]> | 
|  | 3237 | </programlisting> | 
|  | 3238 | </example> | 
|  | 3239 | </para> | 
|  | 3240 |  | 
|  | 3241 | <para> | 
|  | 3242 | There are many different constraints. | 
|  | 3243 | Look in <filename>sound/pcm.h</filename> for a complete list. | 
|  | 3244 | You can even define your own constraint rules. | 
|  | 3245 | For example, let's suppose my_chip can manage a substream of 1 channel | 
|  | 3246 | if and only if the format is S16_LE, otherwise it supports any format | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 3247 | specified in the <structname>snd_pcm_hardware</structname> structure (or in any | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3248 | other constraint_list). You can build a rule like this: | 
|  | 3249 |  | 
|  | 3250 | <example> | 
|  | 3251 | <title>Example of Hardware Constraints for Channels</title> | 
|  | 3252 | <programlisting> | 
|  | 3253 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3254 | static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params, | 
|  | 3255 | struct snd_pcm_hw_rule *rule) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3256 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3257 | struct snd_interval *c = hw_param_interval(params, | 
|  | 3258 | SNDRV_PCM_HW_PARAM_CHANNELS); | 
|  | 3259 | struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | 
|  | 3260 | struct snd_mask fmt; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3261 |  | 
|  | 3262 | snd_mask_any(&fmt);    /* Init the struct */ | 
|  | 3263 | if (c->min < 2) { | 
|  | 3264 | fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; | 
|  | 3265 | return snd_mask_refine(f, &fmt); | 
|  | 3266 | } | 
|  | 3267 | return 0; | 
|  | 3268 | } | 
|  | 3269 | ]]> | 
|  | 3270 | </programlisting> | 
|  | 3271 | </example> | 
|  | 3272 | </para> | 
|  | 3273 |  | 
|  | 3274 | <para> | 
|  | 3275 | Then you need to call this function to add your rule: | 
|  | 3276 |  | 
|  | 3277 | <informalexample> | 
|  | 3278 | <programlisting> | 
|  | 3279 | <![CDATA[ | 
|  | 3280 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | 
|  | 3281 | hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT, | 
|  | 3282 | -1); | 
|  | 3283 | ]]> | 
|  | 3284 | </programlisting> | 
|  | 3285 | </informalexample> | 
|  | 3286 | </para> | 
|  | 3287 |  | 
|  | 3288 | <para> | 
|  | 3289 | The rule function is called when an application sets the number of | 
|  | 3290 | channels. But an application can set the format before the number of | 
|  | 3291 | channels. Thus you also need to define the inverse rule: | 
|  | 3292 |  | 
|  | 3293 | <example> | 
|  | 3294 | <title>Example of Hardware Constraints for Channels</title> | 
|  | 3295 | <programlisting> | 
|  | 3296 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3297 | static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params, | 
|  | 3298 | struct snd_pcm_hw_rule *rule) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3299 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3300 | struct snd_interval *c = hw_param_interval(params, | 
|  | 3301 | SNDRV_PCM_HW_PARAM_CHANNELS); | 
|  | 3302 | struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); | 
|  | 3303 | struct snd_interval ch; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3304 |  | 
|  | 3305 | snd_interval_any(&ch); | 
|  | 3306 | if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { | 
|  | 3307 | ch.min = ch.max = 1; | 
|  | 3308 | ch.integer = 1; | 
|  | 3309 | return snd_interval_refine(c, &ch); | 
|  | 3310 | } | 
|  | 3311 | return 0; | 
|  | 3312 | } | 
|  | 3313 | ]]> | 
|  | 3314 | </programlisting> | 
|  | 3315 | </example> | 
|  | 3316 | </para> | 
|  | 3317 |  | 
|  | 3318 | <para> | 
|  | 3319 | ...and in the open callback: | 
|  | 3320 | <informalexample> | 
|  | 3321 | <programlisting> | 
|  | 3322 | <![CDATA[ | 
|  | 3323 | snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, | 
|  | 3324 | hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS, | 
|  | 3325 | -1); | 
|  | 3326 | ]]> | 
|  | 3327 | </programlisting> | 
|  | 3328 | </informalexample> | 
|  | 3329 | </para> | 
|  | 3330 |  | 
|  | 3331 | <para> | 
|  | 3332 | I won't explain more details here, rather I | 
|  | 3333 | would like to say, <quote>Luke, use the source.</quote> | 
|  | 3334 | </para> | 
|  | 3335 | </section> | 
|  | 3336 |  | 
|  | 3337 | </chapter> | 
|  | 3338 |  | 
|  | 3339 |  | 
|  | 3340 | <!-- ****************************************************** --> | 
|  | 3341 | <!-- Control Interface  --> | 
|  | 3342 | <!-- ****************************************************** --> | 
|  | 3343 | <chapter id="control-interface"> | 
|  | 3344 | <title>Control Interface</title> | 
|  | 3345 |  | 
|  | 3346 | <section id="control-interface-general"> | 
|  | 3347 | <title>General</title> | 
|  | 3348 | <para> | 
|  | 3349 | The control interface is used widely for many switches, | 
|  | 3350 | sliders, etc. which are accessed from the user-space. Its most | 
|  | 3351 | important use is the mixer interface. In other words, on ALSA | 
|  | 3352 | 0.9.x, all the mixer stuff is implemented on the control kernel | 
|  | 3353 | API (while there was an independent mixer kernel API on 0.5.x). | 
|  | 3354 | </para> | 
|  | 3355 |  | 
|  | 3356 | <para> | 
|  | 3357 | ALSA has a well-defined AC97 control module. If your chip | 
|  | 3358 | supports only the AC97 and nothing else, you can skip this | 
|  | 3359 | section. | 
|  | 3360 | </para> | 
|  | 3361 |  | 
|  | 3362 | <para> | 
|  | 3363 | The control API is defined in | 
|  | 3364 | <filename><sound/control.h></filename>. | 
|  | 3365 | Include this file if you add your own controls. | 
|  | 3366 | </para> | 
|  | 3367 | </section> | 
|  | 3368 |  | 
|  | 3369 | <section id="control-interface-definition"> | 
|  | 3370 | <title>Definition of Controls</title> | 
|  | 3371 | <para> | 
|  | 3372 | For creating a new control, you need to define the three | 
|  | 3373 | callbacks: <structfield>info</structfield>, | 
|  | 3374 | <structfield>get</structfield> and | 
|  | 3375 | <structfield>put</structfield>. Then, define a | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3376 | struct <structname>snd_kcontrol_new</structname> record, such as: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3377 |  | 
|  | 3378 | <example> | 
|  | 3379 | <title>Definition of a Control</title> | 
|  | 3380 | <programlisting> | 
|  | 3381 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3382 | static struct snd_kcontrol_new my_control __devinitdata = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3383 | .iface = SNDRV_CTL_ELEM_IFACE_MIXER, | 
|  | 3384 | .name = "PCM Playback Switch", | 
|  | 3385 | .index = 0, | 
|  | 3386 | .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, | 
| Takashi Iwai | 0b7bed4 | 2006-03-02 15:35:55 +0100 | [diff] [blame] | 3387 | .private_value = 0xffff, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3388 | .info = my_control_info, | 
|  | 3389 | .get = my_control_get, | 
|  | 3390 | .put = my_control_put | 
|  | 3391 | }; | 
|  | 3392 | ]]> | 
|  | 3393 | </programlisting> | 
|  | 3394 | </example> | 
|  | 3395 | </para> | 
|  | 3396 |  | 
|  | 3397 | <para> | 
|  | 3398 | Most likely the control is created via | 
|  | 3399 | <function>snd_ctl_new1()</function>, and in such a case, you can | 
|  | 3400 | add <parameter>__devinitdata</parameter> prefix to the | 
|  | 3401 | definition like above. | 
|  | 3402 | </para> | 
|  | 3403 |  | 
|  | 3404 | <para> | 
|  | 3405 | The <structfield>iface</structfield> field specifies the type of | 
| Clemens Ladisch | 67ed416 | 2005-07-29 15:32:58 +0200 | [diff] [blame] | 3406 | the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which | 
|  | 3407 | is usually <constant>MIXER</constant>. | 
|  | 3408 | Use <constant>CARD</constant> for global controls that are not | 
|  | 3409 | logically part of the mixer. | 
|  | 3410 | If the control is closely associated with some specific device on | 
|  | 3411 | the sound card, use <constant>HWDEP</constant>, | 
|  | 3412 | <constant>PCM</constant>, <constant>RAWMIDI</constant>, | 
|  | 3413 | <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and | 
|  | 3414 | specify the device number with the | 
|  | 3415 | <structfield>device</structfield> and | 
|  | 3416 | <structfield>subdevice</structfield> fields. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3417 | </para> | 
|  | 3418 |  | 
|  | 3419 | <para> | 
|  | 3420 | The <structfield>name</structfield> is the name identifier | 
|  | 3421 | string. On ALSA 0.9.x, the control name is very important, | 
|  | 3422 | because its role is classified from its name. There are | 
|  | 3423 | pre-defined standard control names. The details are described in | 
|  | 3424 | the subsection | 
|  | 3425 | <link linkend="control-interface-control-names"><citetitle> | 
|  | 3426 | Control Names</citetitle></link>. | 
|  | 3427 | </para> | 
|  | 3428 |  | 
|  | 3429 | <para> | 
|  | 3430 | The <structfield>index</structfield> field holds the index number | 
|  | 3431 | of this control. If there are several different controls with | 
|  | 3432 | the same name, they can be distinguished by the index | 
|  | 3433 | number. This is the case when | 
|  | 3434 | several codecs exist on the card. If the index is zero, you can | 
|  | 3435 | omit the definition above. | 
|  | 3436 | </para> | 
|  | 3437 |  | 
|  | 3438 | <para> | 
|  | 3439 | The <structfield>access</structfield> field contains the access | 
|  | 3440 | type of this control. Give the combination of bit masks, | 
|  | 3441 | <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there. | 
|  | 3442 | The detailed will be explained in the subsection | 
|  | 3443 | <link linkend="control-interface-access-flags"><citetitle> | 
|  | 3444 | Access Flags</citetitle></link>. | 
|  | 3445 | </para> | 
|  | 3446 |  | 
|  | 3447 | <para> | 
| Takashi Iwai | 0b7bed4 | 2006-03-02 15:35:55 +0100 | [diff] [blame] | 3448 | The <structfield>private_value</structfield> field contains | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3449 | an arbitrary long integer value for this record. When using | 
|  | 3450 | generic <structfield>info</structfield>, | 
|  | 3451 | <structfield>get</structfield> and | 
|  | 3452 | <structfield>put</structfield> callbacks, you can pass a value | 
|  | 3453 | through this field. If several small numbers are necessary, you can | 
|  | 3454 | combine them in bitwise. Or, it's possible to give a pointer | 
|  | 3455 | (casted to unsigned long) of some record to this field, too. | 
|  | 3456 | </para> | 
|  | 3457 |  | 
|  | 3458 | <para> | 
|  | 3459 | The other three are | 
|  | 3460 | <link linkend="control-interface-callbacks"><citetitle> | 
|  | 3461 | callback functions</citetitle></link>. | 
|  | 3462 | </para> | 
|  | 3463 | </section> | 
|  | 3464 |  | 
|  | 3465 | <section id="control-interface-control-names"> | 
|  | 3466 | <title>Control Names</title> | 
|  | 3467 | <para> | 
|  | 3468 | There are some standards for defining the control names. A | 
|  | 3469 | control is usually defined from the three parts as | 
|  | 3470 | <quote>SOURCE DIRECTION FUNCTION</quote>. | 
|  | 3471 | </para> | 
|  | 3472 |  | 
|  | 3473 | <para> | 
|  | 3474 | The first, <constant>SOURCE</constant>, specifies the source | 
|  | 3475 | of the control, and is a string such as <quote>Master</quote>, | 
|  | 3476 | <quote>PCM</quote>, <quote>CD</quote> or | 
|  | 3477 | <quote>Line</quote>. There are many pre-defined sources. | 
|  | 3478 | </para> | 
|  | 3479 |  | 
|  | 3480 | <para> | 
|  | 3481 | The second, <constant>DIRECTION</constant>, is one of the | 
|  | 3482 | following strings according to the direction of the control: | 
|  | 3483 | <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass | 
|  | 3484 | Playback</quote> and <quote>Bypass Capture</quote>. Or, it can | 
|  | 3485 | be omitted, meaning both playback and capture directions. | 
|  | 3486 | </para> | 
|  | 3487 |  | 
|  | 3488 | <para> | 
|  | 3489 | The third, <constant>FUNCTION</constant>, is one of the | 
|  | 3490 | following strings according to the function of the control: | 
|  | 3491 | <quote>Switch</quote>, <quote>Volume</quote> and | 
|  | 3492 | <quote>Route</quote>. | 
|  | 3493 | </para> | 
|  | 3494 |  | 
|  | 3495 | <para> | 
|  | 3496 | The example of control names are, thus, <quote>Master Capture | 
|  | 3497 | Switch</quote> or <quote>PCM Playback Volume</quote>. | 
|  | 3498 | </para> | 
|  | 3499 |  | 
|  | 3500 | <para> | 
|  | 3501 | There are some exceptions: | 
|  | 3502 | </para> | 
|  | 3503 |  | 
|  | 3504 | <section id="control-interface-control-names-global"> | 
|  | 3505 | <title>Global capture and playback</title> | 
|  | 3506 | <para> | 
|  | 3507 | <quote>Capture Source</quote>, <quote>Capture Switch</quote> | 
|  | 3508 | and <quote>Capture Volume</quote> are used for the global | 
|  | 3509 | capture (input) source, switch and volume. Similarly, | 
|  | 3510 | <quote>Playback Switch</quote> and <quote>Playback | 
|  | 3511 | Volume</quote> are used for the global output gain switch and | 
|  | 3512 | volume. | 
|  | 3513 | </para> | 
|  | 3514 | </section> | 
|  | 3515 |  | 
|  | 3516 | <section id="control-interface-control-names-tone"> | 
|  | 3517 | <title>Tone-controls</title> | 
|  | 3518 | <para> | 
|  | 3519 | tone-control switch and volumes are specified like | 
|  | 3520 | <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control - | 
|  | 3521 | Switch</quote>, <quote>Tone Control - Bass</quote>, | 
|  | 3522 | <quote>Tone Control - Center</quote>. | 
|  | 3523 | </para> | 
|  | 3524 | </section> | 
|  | 3525 |  | 
|  | 3526 | <section id="control-interface-control-names-3d"> | 
|  | 3527 | <title>3D controls</title> | 
|  | 3528 | <para> | 
|  | 3529 | 3D-control switches and volumes are specified like <quote>3D | 
|  | 3530 | Control - XXX</quote>, e.g. <quote>3D Control - | 
|  | 3531 | Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D | 
|  | 3532 | Control - Space</quote>. | 
|  | 3533 | </para> | 
|  | 3534 | </section> | 
|  | 3535 |  | 
|  | 3536 | <section id="control-interface-control-names-mic"> | 
|  | 3537 | <title>Mic boost</title> | 
|  | 3538 | <para> | 
|  | 3539 | Mic-boost switch is set as <quote>Mic Boost</quote> or | 
|  | 3540 | <quote>Mic Boost (6dB)</quote>. | 
|  | 3541 | </para> | 
|  | 3542 |  | 
|  | 3543 | <para> | 
|  | 3544 | More precise information can be found in | 
|  | 3545 | <filename>Documentation/sound/alsa/ControlNames.txt</filename>. | 
|  | 3546 | </para> | 
|  | 3547 | </section> | 
|  | 3548 | </section> | 
|  | 3549 |  | 
|  | 3550 | <section id="control-interface-access-flags"> | 
|  | 3551 | <title>Access Flags</title> | 
|  | 3552 |  | 
|  | 3553 | <para> | 
|  | 3554 | The access flag is the bit-flags which specifies the access type | 
|  | 3555 | of the given control.  The default access type is | 
|  | 3556 | <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, | 
|  | 3557 | which means both read and write are allowed to this control. | 
|  | 3558 | When the access flag is omitted (i.e. = 0), it is | 
|  | 3559 | regarded as <constant>READWRITE</constant> access as default. | 
|  | 3560 | </para> | 
|  | 3561 |  | 
|  | 3562 | <para> | 
|  | 3563 | When the control is read-only, pass | 
|  | 3564 | <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead. | 
|  | 3565 | In this case, you don't have to define | 
|  | 3566 | <structfield>put</structfield> callback. | 
|  | 3567 | Similarly, when the control is write-only (although it's a rare | 
|  | 3568 | case), you can use <constant>WRITE</constant> flag instead, and | 
|  | 3569 | you don't need <structfield>get</structfield> callback. | 
|  | 3570 | </para> | 
|  | 3571 |  | 
|  | 3572 | <para> | 
|  | 3573 | If the control value changes frequently (e.g. the VU meter), | 
|  | 3574 | <constant>VOLATILE</constant> flag should be given.  This means | 
|  | 3575 | that the control may be changed without | 
|  | 3576 | <link linkend="control-interface-change-notification"><citetitle> | 
|  | 3577 | notification</citetitle></link>.  Applications should poll such | 
|  | 3578 | a control constantly. | 
|  | 3579 | </para> | 
|  | 3580 |  | 
|  | 3581 | <para> | 
|  | 3582 | When the control is inactive, set | 
|  | 3583 | <constant>INACTIVE</constant> flag, too. | 
|  | 3584 | There are <constant>LOCK</constant> and | 
|  | 3585 | <constant>OWNER</constant> flags for changing the write | 
|  | 3586 | permissions. | 
|  | 3587 | </para> | 
|  | 3588 |  | 
|  | 3589 | </section> | 
|  | 3590 |  | 
|  | 3591 | <section id="control-interface-callbacks"> | 
|  | 3592 | <title>Callbacks</title> | 
|  | 3593 |  | 
|  | 3594 | <section id="control-interface-callbacks-info"> | 
|  | 3595 | <title>info callback</title> | 
|  | 3596 | <para> | 
|  | 3597 | The <structfield>info</structfield> callback is used to get | 
|  | 3598 | the detailed information of this control. This must store the | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3599 | values of the given struct <structname>snd_ctl_elem_info</structname> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3600 | object. For example, for a boolean control with a single | 
|  | 3601 | element will be: | 
|  | 3602 |  | 
|  | 3603 | <example> | 
|  | 3604 | <title>Example of info callback</title> | 
|  | 3605 | <programlisting> | 
|  | 3606 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3607 | static int snd_myctl_info(struct snd_kcontrol *kcontrol, | 
|  | 3608 | struct snd_ctl_elem_info *uinfo) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3609 | { | 
|  | 3610 | uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; | 
|  | 3611 | uinfo->count = 1; | 
|  | 3612 | uinfo->value.integer.min = 0; | 
|  | 3613 | uinfo->value.integer.max = 1; | 
|  | 3614 | return 0; | 
|  | 3615 | } | 
|  | 3616 | ]]> | 
|  | 3617 | </programlisting> | 
|  | 3618 | </example> | 
|  | 3619 | </para> | 
|  | 3620 |  | 
|  | 3621 | <para> | 
|  | 3622 | The <structfield>type</structfield> field specifies the type | 
|  | 3623 | of the control. There are <constant>BOOLEAN</constant>, | 
|  | 3624 | <constant>INTEGER</constant>, <constant>ENUMERATED</constant>, | 
|  | 3625 | <constant>BYTES</constant>, <constant>IEC958</constant> and | 
|  | 3626 | <constant>INTEGER64</constant>. The | 
|  | 3627 | <structfield>count</structfield> field specifies the | 
|  | 3628 | number of elements in this control. For example, a stereo | 
|  | 3629 | volume would have count = 2. The | 
|  | 3630 | <structfield>value</structfield> field is a union, and | 
|  | 3631 | the values stored are depending on the type. The boolean and | 
|  | 3632 | integer are identical. | 
|  | 3633 | </para> | 
|  | 3634 |  | 
|  | 3635 | <para> | 
|  | 3636 | The enumerated type is a bit different from others.  You'll | 
|  | 3637 | need to set the string for the currently given item index. | 
|  | 3638 |  | 
|  | 3639 | <informalexample> | 
|  | 3640 | <programlisting> | 
|  | 3641 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3642 | static int snd_myctl_info(struct snd_kcontrol *kcontrol, | 
|  | 3643 | struct snd_ctl_elem_info *uinfo) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3644 | { | 
|  | 3645 | static char *texts[4] = { | 
|  | 3646 | "First", "Second", "Third", "Fourth" | 
|  | 3647 | }; | 
|  | 3648 | uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; | 
|  | 3649 | uinfo->count = 1; | 
|  | 3650 | uinfo->value.enumerated.items = 4; | 
|  | 3651 | if (uinfo->value.enumerated.item > 3) | 
|  | 3652 | uinfo->value.enumerated.item = 3; | 
|  | 3653 | strcpy(uinfo->value.enumerated.name, | 
|  | 3654 | texts[uinfo->value.enumerated.item]); | 
|  | 3655 | return 0; | 
|  | 3656 | } | 
|  | 3657 | ]]> | 
|  | 3658 | </programlisting> | 
|  | 3659 | </informalexample> | 
|  | 3660 | </para> | 
|  | 3661 | </section> | 
|  | 3662 |  | 
|  | 3663 | <section id="control-interface-callbacks-get"> | 
|  | 3664 | <title>get callback</title> | 
|  | 3665 |  | 
|  | 3666 | <para> | 
|  | 3667 | This callback is used to read the current value of the | 
|  | 3668 | control and to return to the user-space. | 
|  | 3669 | </para> | 
|  | 3670 |  | 
|  | 3671 | <para> | 
|  | 3672 | For example, | 
|  | 3673 |  | 
|  | 3674 | <example> | 
|  | 3675 | <title>Example of get callback</title> | 
|  | 3676 | <programlisting> | 
|  | 3677 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3678 | static int snd_myctl_get(struct snd_kcontrol *kcontrol, | 
|  | 3679 | struct snd_ctl_elem_value *ucontrol) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3680 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3681 | struct mychip *chip = snd_kcontrol_chip(kcontrol); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3682 | ucontrol->value.integer.value[0] = get_some_value(chip); | 
|  | 3683 | return 0; | 
|  | 3684 | } | 
|  | 3685 | ]]> | 
|  | 3686 | </programlisting> | 
|  | 3687 | </example> | 
|  | 3688 | </para> | 
|  | 3689 |  | 
|  | 3690 | <para> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3691 | The <structfield>value</structfield> field is depending on | 
|  | 3692 | the type of control as well as on info callback.  For example, | 
|  | 3693 | the sb driver uses this field to store the register offset, | 
|  | 3694 | the bit-shift and the bit-mask.  The | 
|  | 3695 | <structfield>private_value</structfield> is set like | 
|  | 3696 | <informalexample> | 
|  | 3697 | <programlisting> | 
|  | 3698 | <![CDATA[ | 
|  | 3699 | .private_value = reg | (shift << 16) | (mask << 24) | 
|  | 3700 | ]]> | 
|  | 3701 | </programlisting> | 
|  | 3702 | </informalexample> | 
|  | 3703 | and is retrieved in callbacks like | 
|  | 3704 | <informalexample> | 
|  | 3705 | <programlisting> | 
|  | 3706 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3707 | static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, | 
|  | 3708 | struct snd_ctl_elem_value *ucontrol) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3709 | { | 
|  | 3710 | int reg = kcontrol->private_value & 0xff; | 
|  | 3711 | int shift = (kcontrol->private_value >> 16) & 0xff; | 
|  | 3712 | int mask = (kcontrol->private_value >> 24) & 0xff; | 
|  | 3713 | .... | 
|  | 3714 | } | 
|  | 3715 | ]]> | 
|  | 3716 | </programlisting> | 
|  | 3717 | </informalexample> | 
|  | 3718 | </para> | 
|  | 3719 |  | 
|  | 3720 | <para> | 
|  | 3721 | In <structfield>get</structfield> callback, you have to fill all the elements if the | 
|  | 3722 | control has more than one elements, | 
|  | 3723 | i.e. <structfield>count</structfield> > 1. | 
|  | 3724 | In the example above, we filled only one element | 
|  | 3725 | (<structfield>value.integer.value[0]</structfield>) since it's | 
|  | 3726 | assumed as <structfield>count</structfield> = 1. | 
|  | 3727 | </para> | 
|  | 3728 | </section> | 
|  | 3729 |  | 
|  | 3730 | <section id="control-interface-callbacks-put"> | 
|  | 3731 | <title>put callback</title> | 
|  | 3732 |  | 
|  | 3733 | <para> | 
|  | 3734 | This callback is used to write a value from the user-space. | 
|  | 3735 | </para> | 
|  | 3736 |  | 
|  | 3737 | <para> | 
|  | 3738 | For example, | 
|  | 3739 |  | 
|  | 3740 | <example> | 
|  | 3741 | <title>Example of put callback</title> | 
|  | 3742 | <programlisting> | 
|  | 3743 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3744 | static int snd_myctl_put(struct snd_kcontrol *kcontrol, | 
|  | 3745 | struct snd_ctl_elem_value *ucontrol) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3746 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3747 | struct mychip *chip = snd_kcontrol_chip(kcontrol); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3748 | int changed = 0; | 
|  | 3749 | if (chip->current_value != | 
|  | 3750 | ucontrol->value.integer.value[0]) { | 
|  | 3751 | change_current_value(chip, | 
|  | 3752 | ucontrol->value.integer.value[0]); | 
|  | 3753 | changed = 1; | 
|  | 3754 | } | 
|  | 3755 | return changed; | 
|  | 3756 | } | 
|  | 3757 | ]]> | 
|  | 3758 | </programlisting> | 
|  | 3759 | </example> | 
|  | 3760 |  | 
|  | 3761 | As seen above, you have to return 1 if the value is | 
|  | 3762 | changed. If the value is not changed, return 0 instead. | 
|  | 3763 | If any fatal error happens, return a negative error code as | 
|  | 3764 | usual. | 
|  | 3765 | </para> | 
|  | 3766 |  | 
|  | 3767 | <para> | 
|  | 3768 | Like <structfield>get</structfield> callback, | 
|  | 3769 | when the control has more than one elements, | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 3770 | all elements must be evaluated in this callback, too. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3771 | </para> | 
|  | 3772 | </section> | 
|  | 3773 |  | 
|  | 3774 | <section id="control-interface-callbacks-all"> | 
|  | 3775 | <title>Callbacks are not atomic</title> | 
|  | 3776 | <para> | 
|  | 3777 | All these three callbacks are basically not atomic. | 
|  | 3778 | </para> | 
|  | 3779 | </section> | 
|  | 3780 | </section> | 
|  | 3781 |  | 
|  | 3782 | <section id="control-interface-constructor"> | 
|  | 3783 | <title>Constructor</title> | 
|  | 3784 | <para> | 
|  | 3785 | When everything is ready, finally we can create a new | 
|  | 3786 | control. For creating a control, there are two functions to be | 
|  | 3787 | called, <function>snd_ctl_new1()</function> and | 
|  | 3788 | <function>snd_ctl_add()</function>. | 
|  | 3789 | </para> | 
|  | 3790 |  | 
|  | 3791 | <para> | 
|  | 3792 | In the simplest way, you can do like this: | 
|  | 3793 |  | 
|  | 3794 | <informalexample> | 
|  | 3795 | <programlisting> | 
|  | 3796 | <![CDATA[ | 
|  | 3797 | if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0) | 
|  | 3798 | return err; | 
|  | 3799 | ]]> | 
|  | 3800 | </programlisting> | 
|  | 3801 | </informalexample> | 
|  | 3802 |  | 
|  | 3803 | where <parameter>my_control</parameter> is the | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3804 | struct <structname>snd_kcontrol_new</structname> object defined above, and chip | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3805 | is the object pointer to be passed to | 
|  | 3806 | kcontrol->private_data | 
|  | 3807 | which can be referred in callbacks. | 
|  | 3808 | </para> | 
|  | 3809 |  | 
|  | 3810 | <para> | 
|  | 3811 | <function>snd_ctl_new1()</function> allocates a new | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3812 | <structname>snd_kcontrol</structname> instance (that's why the definition | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3813 | of <parameter>my_control</parameter> can be with | 
|  | 3814 | <parameter>__devinitdata</parameter> | 
|  | 3815 | prefix), and <function>snd_ctl_add</function> assigns the given | 
|  | 3816 | control component to the card. | 
|  | 3817 | </para> | 
|  | 3818 | </section> | 
|  | 3819 |  | 
|  | 3820 | <section id="control-interface-change-notification"> | 
|  | 3821 | <title>Change Notification</title> | 
|  | 3822 | <para> | 
|  | 3823 | If you need to change and update a control in the interrupt | 
|  | 3824 | routine, you can call <function>snd_ctl_notify()</function>. For | 
|  | 3825 | example, | 
|  | 3826 |  | 
|  | 3827 | <informalexample> | 
|  | 3828 | <programlisting> | 
|  | 3829 | <![CDATA[ | 
|  | 3830 | snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); | 
|  | 3831 | ]]> | 
|  | 3832 | </programlisting> | 
|  | 3833 | </informalexample> | 
|  | 3834 |  | 
|  | 3835 | This function takes the card pointer, the event-mask, and the | 
|  | 3836 | control id pointer for the notification. The event-mask | 
|  | 3837 | specifies the types of notification, for example, in the above | 
|  | 3838 | example, the change of control values is notified. | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3839 | The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3840 | to be notified. | 
|  | 3841 | You can find some examples in <filename>es1938.c</filename> or | 
|  | 3842 | <filename>es1968.c</filename> for hardware volume interrupts. | 
|  | 3843 | </para> | 
|  | 3844 | </section> | 
|  | 3845 |  | 
|  | 3846 | </chapter> | 
|  | 3847 |  | 
|  | 3848 |  | 
|  | 3849 | <!-- ****************************************************** --> | 
|  | 3850 | <!-- API for AC97 Codec  --> | 
|  | 3851 | <!-- ****************************************************** --> | 
|  | 3852 | <chapter id="api-ac97"> | 
|  | 3853 | <title>API for AC97 Codec</title> | 
|  | 3854 |  | 
|  | 3855 | <section> | 
|  | 3856 | <title>General</title> | 
|  | 3857 | <para> | 
|  | 3858 | The ALSA AC97 codec layer is a well-defined one, and you don't | 
|  | 3859 | have to write many codes to control it. Only low-level control | 
|  | 3860 | routines are necessary. The AC97 codec API is defined in | 
|  | 3861 | <filename><sound/ac97_codec.h></filename>. | 
|  | 3862 | </para> | 
|  | 3863 | </section> | 
|  | 3864 |  | 
|  | 3865 | <section id="api-ac97-example"> | 
|  | 3866 | <title>Full Code Example</title> | 
|  | 3867 | <para> | 
|  | 3868 | <example> | 
|  | 3869 | <title>Example of AC97 Interface</title> | 
|  | 3870 | <programlisting> | 
|  | 3871 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3872 | struct mychip { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3873 | .... | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3874 | struct snd_ac97 *ac97; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3875 | .... | 
|  | 3876 | }; | 
|  | 3877 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3878 | static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3879 | unsigned short reg) | 
|  | 3880 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3881 | struct mychip *chip = ac97->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3882 | .... | 
|  | 3883 | // read a register value here from the codec | 
|  | 3884 | return the_register_value; | 
|  | 3885 | } | 
|  | 3886 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3887 | static void snd_mychip_ac97_write(struct snd_ac97 *ac97, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3888 | unsigned short reg, unsigned short val) | 
|  | 3889 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3890 | struct mychip *chip = ac97->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3891 | .... | 
|  | 3892 | // write the given register value to the codec | 
|  | 3893 | } | 
|  | 3894 |  | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3895 | static int snd_mychip_ac97(struct mychip *chip) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3896 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3897 | struct snd_ac97_bus *bus; | 
|  | 3898 | struct snd_ac97_template ac97; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3899 | int err; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3900 | static struct snd_ac97_bus_ops ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3901 | .write = snd_mychip_ac97_write, | 
|  | 3902 | .read = snd_mychip_ac97_read, | 
|  | 3903 | }; | 
|  | 3904 |  | 
|  | 3905 | if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0) | 
|  | 3906 | return err; | 
|  | 3907 | memset(&ac97, 0, sizeof(ac97)); | 
|  | 3908 | ac97.private_data = chip; | 
|  | 3909 | return snd_ac97_mixer(bus, &ac97, &chip->ac97); | 
|  | 3910 | } | 
|  | 3911 |  | 
|  | 3912 | ]]> | 
|  | 3913 | </programlisting> | 
|  | 3914 | </example> | 
|  | 3915 | </para> | 
|  | 3916 | </section> | 
|  | 3917 |  | 
|  | 3918 | <section id="api-ac97-constructor"> | 
|  | 3919 | <title>Constructor</title> | 
|  | 3920 | <para> | 
|  | 3921 | For creating an ac97 instance, first call <function>snd_ac97_bus</function> | 
|  | 3922 | with an <type>ac97_bus_ops_t</type> record with callback functions. | 
|  | 3923 |  | 
|  | 3924 | <informalexample> | 
|  | 3925 | <programlisting> | 
|  | 3926 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3927 | struct snd_ac97_bus *bus; | 
|  | 3928 | static struct snd_ac97_bus_ops ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3929 | .write = snd_mychip_ac97_write, | 
|  | 3930 | .read = snd_mychip_ac97_read, | 
|  | 3931 | }; | 
|  | 3932 |  | 
|  | 3933 | snd_ac97_bus(card, 0, &ops, NULL, &pbus); | 
|  | 3934 | ]]> | 
|  | 3935 | </programlisting> | 
|  | 3936 | </informalexample> | 
|  | 3937 |  | 
|  | 3938 | The bus record is shared among all belonging ac97 instances. | 
|  | 3939 | </para> | 
|  | 3940 |  | 
|  | 3941 | <para> | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3942 | And then call <function>snd_ac97_mixer()</function> with an | 
|  | 3943 | struct <structname>snd_ac97_template</structname> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3944 | record together with the bus pointer created above. | 
|  | 3945 |  | 
|  | 3946 | <informalexample> | 
|  | 3947 | <programlisting> | 
|  | 3948 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3949 | struct snd_ac97_template ac97; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3950 | int err; | 
|  | 3951 |  | 
|  | 3952 | memset(&ac97, 0, sizeof(ac97)); | 
|  | 3953 | ac97.private_data = chip; | 
|  | 3954 | snd_ac97_mixer(bus, &ac97, &chip->ac97); | 
|  | 3955 | ]]> | 
|  | 3956 | </programlisting> | 
|  | 3957 | </informalexample> | 
|  | 3958 |  | 
|  | 3959 | where chip->ac97 is the pointer of a newly created | 
|  | 3960 | <type>ac97_t</type> instance. | 
|  | 3961 | In this case, the chip pointer is set as the private data, so that | 
|  | 3962 | the read/write callback functions can refer to this chip instance. | 
|  | 3963 | This instance is not necessarily stored in the chip | 
|  | 3964 | record.  When you need to change the register values from the | 
|  | 3965 | driver, or need the suspend/resume of ac97 codecs, keep this | 
|  | 3966 | pointer to pass to the corresponding functions. | 
|  | 3967 | </para> | 
|  | 3968 | </section> | 
|  | 3969 |  | 
|  | 3970 | <section id="api-ac97-callbacks"> | 
|  | 3971 | <title>Callbacks</title> | 
|  | 3972 | <para> | 
|  | 3973 | The standard callbacks are <structfield>read</structfield> and | 
|  | 3974 | <structfield>write</structfield>. Obviously they | 
|  | 3975 | correspond to the functions for read and write accesses to the | 
|  | 3976 | hardware low-level codes. | 
|  | 3977 | </para> | 
|  | 3978 |  | 
|  | 3979 | <para> | 
|  | 3980 | The <structfield>read</structfield> callback returns the | 
|  | 3981 | register value specified in the argument. | 
|  | 3982 |  | 
|  | 3983 | <informalexample> | 
|  | 3984 | <programlisting> | 
|  | 3985 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3986 | static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3987 | unsigned short reg) | 
|  | 3988 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 3989 | struct mychip *chip = ac97->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3990 | .... | 
|  | 3991 | return the_register_value; | 
|  | 3992 | } | 
|  | 3993 | ]]> | 
|  | 3994 | </programlisting> | 
|  | 3995 | </informalexample> | 
|  | 3996 |  | 
|  | 3997 | Here, the chip can be cast from ac97->private_data. | 
|  | 3998 | </para> | 
|  | 3999 |  | 
|  | 4000 | <para> | 
|  | 4001 | Meanwhile, the <structfield>write</structfield> callback is | 
|  | 4002 | used to set the register value. | 
|  | 4003 |  | 
|  | 4004 | <informalexample> | 
|  | 4005 | <programlisting> | 
|  | 4006 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4007 | static void snd_mychip_ac97_write(struct snd_ac97 *ac97, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4008 | unsigned short reg, unsigned short val) | 
|  | 4009 | ]]> | 
|  | 4010 | </programlisting> | 
|  | 4011 | </informalexample> | 
|  | 4012 | </para> | 
|  | 4013 |  | 
|  | 4014 | <para> | 
|  | 4015 | These callbacks are non-atomic like the callbacks of control API. | 
|  | 4016 | </para> | 
|  | 4017 |  | 
|  | 4018 | <para> | 
|  | 4019 | There are also other callbacks: | 
|  | 4020 | <structfield>reset</structfield>, | 
|  | 4021 | <structfield>wait</structfield> and | 
|  | 4022 | <structfield>init</structfield>. | 
|  | 4023 | </para> | 
|  | 4024 |  | 
|  | 4025 | <para> | 
|  | 4026 | The <structfield>reset</structfield> callback is used to reset | 
|  | 4027 | the codec. If the chip requires a special way of reset, you can | 
|  | 4028 | define this callback. | 
|  | 4029 | </para> | 
|  | 4030 |  | 
|  | 4031 | <para> | 
|  | 4032 | The <structfield>wait</structfield> callback is used for a | 
|  | 4033 | certain wait at the standard initialization of the codec. If the | 
|  | 4034 | chip requires the extra wait-time, define this callback. | 
|  | 4035 | </para> | 
|  | 4036 |  | 
|  | 4037 | <para> | 
|  | 4038 | The <structfield>init</structfield> callback is used for | 
|  | 4039 | additional initialization of the codec. | 
|  | 4040 | </para> | 
|  | 4041 | </section> | 
|  | 4042 |  | 
|  | 4043 | <section id="api-ac97-updating-registers"> | 
|  | 4044 | <title>Updating Registers in The Driver</title> | 
|  | 4045 | <para> | 
|  | 4046 | If you need to access to the codec from the driver, you can | 
|  | 4047 | call the following functions: | 
|  | 4048 | <function>snd_ac97_write()</function>, | 
|  | 4049 | <function>snd_ac97_read()</function>, | 
|  | 4050 | <function>snd_ac97_update()</function> and | 
|  | 4051 | <function>snd_ac97_update_bits()</function>. | 
|  | 4052 | </para> | 
|  | 4053 |  | 
|  | 4054 | <para> | 
|  | 4055 | Both <function>snd_ac97_write()</function> and | 
|  | 4056 | <function>snd_ac97_update()</function> functions are used to | 
|  | 4057 | set a value to the given register | 
|  | 4058 | (<constant>AC97_XXX</constant>). The difference between them is | 
|  | 4059 | that <function>snd_ac97_update()</function> doesn't write a | 
|  | 4060 | value if the given value has been already set, while | 
|  | 4061 | <function>snd_ac97_write()</function> always rewrites the | 
|  | 4062 | value. | 
|  | 4063 |  | 
|  | 4064 | <informalexample> | 
|  | 4065 | <programlisting> | 
|  | 4066 | <![CDATA[ | 
|  | 4067 | snd_ac97_write(ac97, AC97_MASTER, 0x8080); | 
|  | 4068 | snd_ac97_update(ac97, AC97_MASTER, 0x8080); | 
|  | 4069 | ]]> | 
|  | 4070 | </programlisting> | 
|  | 4071 | </informalexample> | 
|  | 4072 | </para> | 
|  | 4073 |  | 
|  | 4074 | <para> | 
|  | 4075 | <function>snd_ac97_read()</function> is used to read the value | 
|  | 4076 | of the given register. For example, | 
|  | 4077 |  | 
|  | 4078 | <informalexample> | 
|  | 4079 | <programlisting> | 
|  | 4080 | <![CDATA[ | 
|  | 4081 | value = snd_ac97_read(ac97, AC97_MASTER); | 
|  | 4082 | ]]> | 
|  | 4083 | </programlisting> | 
|  | 4084 | </informalexample> | 
|  | 4085 | </para> | 
|  | 4086 |  | 
|  | 4087 | <para> | 
|  | 4088 | <function>snd_ac97_update_bits()</function> is used to update | 
|  | 4089 | some bits of the given register. | 
|  | 4090 |  | 
|  | 4091 | <informalexample> | 
|  | 4092 | <programlisting> | 
|  | 4093 | <![CDATA[ | 
|  | 4094 | snd_ac97_update_bits(ac97, reg, mask, value); | 
|  | 4095 | ]]> | 
|  | 4096 | </programlisting> | 
|  | 4097 | </informalexample> | 
|  | 4098 | </para> | 
|  | 4099 |  | 
|  | 4100 | <para> | 
|  | 4101 | Also, there is a function to change the sample rate (of a | 
|  | 4102 | certain register such as | 
|  | 4103 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or | 
|  | 4104 | DRA is supported by the codec: | 
|  | 4105 | <function>snd_ac97_set_rate()</function>. | 
|  | 4106 |  | 
|  | 4107 | <informalexample> | 
|  | 4108 | <programlisting> | 
|  | 4109 | <![CDATA[ | 
|  | 4110 | snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); | 
|  | 4111 | ]]> | 
|  | 4112 | </programlisting> | 
|  | 4113 | </informalexample> | 
|  | 4114 | </para> | 
|  | 4115 |  | 
|  | 4116 | <para> | 
|  | 4117 | The following registers are available for setting the rate: | 
|  | 4118 | <constant>AC97_PCM_MIC_ADC_RATE</constant>, | 
|  | 4119 | <constant>AC97_PCM_FRONT_DAC_RATE</constant>, | 
|  | 4120 | <constant>AC97_PCM_LR_ADC_RATE</constant>, | 
|  | 4121 | <constant>AC97_SPDIF</constant>. When the | 
|  | 4122 | <constant>AC97_SPDIF</constant> is specified, the register is | 
|  | 4123 | not really changed but the corresponding IEC958 status bits will | 
|  | 4124 | be updated. | 
|  | 4125 | </para> | 
|  | 4126 | </section> | 
|  | 4127 |  | 
|  | 4128 | <section id="api-ac97-clock-adjustment"> | 
|  | 4129 | <title>Clock Adjustment</title> | 
|  | 4130 | <para> | 
|  | 4131 | On some chip, the clock of the codec isn't 48000 but using a | 
|  | 4132 | PCI clock (to save a quartz!). In this case, change the field | 
|  | 4133 | bus->clock to the corresponding | 
|  | 4134 | value. For example, intel8x0 | 
|  | 4135 | and es1968 drivers have the auto-measurement function of the | 
|  | 4136 | clock. | 
|  | 4137 | </para> | 
|  | 4138 | </section> | 
|  | 4139 |  | 
|  | 4140 | <section id="api-ac97-proc-files"> | 
|  | 4141 | <title>Proc Files</title> | 
|  | 4142 | <para> | 
|  | 4143 | The ALSA AC97 interface will create a proc file such as | 
|  | 4144 | <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and | 
|  | 4145 | <filename>ac97#0-0+regs</filename>. You can refer to these files to | 
|  | 4146 | see the current status and registers of the codec. | 
|  | 4147 | </para> | 
|  | 4148 | </section> | 
|  | 4149 |  | 
|  | 4150 | <section id="api-ac97-multiple-codecs"> | 
|  | 4151 | <title>Multiple Codecs</title> | 
|  | 4152 | <para> | 
|  | 4153 | When there are several codecs on the same card, you need to | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4154 | call <function>snd_ac97_mixer()</function> multiple times with | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4155 | ac97.num=1 or greater. The <structfield>num</structfield> field | 
|  | 4156 | specifies the codec | 
|  | 4157 | number. | 
|  | 4158 | </para> | 
|  | 4159 |  | 
|  | 4160 | <para> | 
|  | 4161 | If you have set up multiple codecs, you need to either write | 
|  | 4162 | different callbacks for each codec or check | 
|  | 4163 | ac97->num in the | 
|  | 4164 | callback routines. | 
|  | 4165 | </para> | 
|  | 4166 | </section> | 
|  | 4167 |  | 
|  | 4168 | </chapter> | 
|  | 4169 |  | 
|  | 4170 |  | 
|  | 4171 | <!-- ****************************************************** --> | 
|  | 4172 | <!-- MIDI (MPU401-UART) Interface  --> | 
|  | 4173 | <!-- ****************************************************** --> | 
|  | 4174 | <chapter id="midi-interface"> | 
|  | 4175 | <title>MIDI (MPU401-UART) Interface</title> | 
|  | 4176 |  | 
|  | 4177 | <section id="midi-interface-general"> | 
|  | 4178 | <title>General</title> | 
|  | 4179 | <para> | 
|  | 4180 | Many soundcards have built-in MIDI (MPU401-UART) | 
|  | 4181 | interfaces. When the soundcard supports the standard MPU401-UART | 
|  | 4182 | interface, most likely you can use the ALSA MPU401-UART API. The | 
|  | 4183 | MPU401-UART API is defined in | 
|  | 4184 | <filename><sound/mpu401.h></filename>. | 
|  | 4185 | </para> | 
|  | 4186 |  | 
|  | 4187 | <para> | 
|  | 4188 | Some soundchips have similar but a little bit different | 
|  | 4189 | implementation of mpu401 stuff. For example, emu10k1 has its own | 
|  | 4190 | mpu401 routines. | 
|  | 4191 | </para> | 
|  | 4192 | </section> | 
|  | 4193 |  | 
|  | 4194 | <section id="midi-interface-constructor"> | 
|  | 4195 | <title>Constructor</title> | 
|  | 4196 | <para> | 
|  | 4197 | For creating a rawmidi object, call | 
|  | 4198 | <function>snd_mpu401_uart_new()</function>. | 
|  | 4199 |  | 
|  | 4200 | <informalexample> | 
|  | 4201 | <programlisting> | 
|  | 4202 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4203 | struct snd_rawmidi *rmidi; | 
| Takashi Iwai | 302e4c2 | 2006-05-23 13:24:30 +0200 | [diff] [blame] | 4204 | snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4205 | irq, irq_flags, &rmidi); | 
|  | 4206 | ]]> | 
|  | 4207 | </programlisting> | 
|  | 4208 | </informalexample> | 
|  | 4209 | </para> | 
|  | 4210 |  | 
|  | 4211 | <para> | 
|  | 4212 | The first argument is the card pointer, and the second is the | 
|  | 4213 | index of this component. You can create up to 8 rawmidi | 
|  | 4214 | devices. | 
|  | 4215 | </para> | 
|  | 4216 |  | 
|  | 4217 | <para> | 
|  | 4218 | The third argument is the type of the hardware, | 
|  | 4219 | <constant>MPU401_HW_XXX</constant>. If it's not a special one, | 
|  | 4220 | you can use <constant>MPU401_HW_MPU401</constant>. | 
|  | 4221 | </para> | 
|  | 4222 |  | 
|  | 4223 | <para> | 
|  | 4224 | The 4th argument is the i/o port address. Many | 
|  | 4225 | backward-compatible MPU401 has an i/o port such as 0x330. Or, it | 
|  | 4226 | might be a part of its own PCI i/o region. It depends on the | 
|  | 4227 | chip design. | 
|  | 4228 | </para> | 
|  | 4229 |  | 
|  | 4230 | <para> | 
| Takashi Iwai | 302e4c2 | 2006-05-23 13:24:30 +0200 | [diff] [blame] | 4231 | The 5th argument is bitflags for additional information. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4232 | When the i/o port address above is a part of the PCI i/o | 
|  | 4233 | region, the MPU401 i/o port might have been already allocated | 
| Takashi Iwai | 302e4c2 | 2006-05-23 13:24:30 +0200 | [diff] [blame] | 4234 | (reserved) by the driver itself. In such a case, pass a bit flag | 
|  | 4235 | <constant>MPU401_INFO_INTEGRATED</constant>, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4236 | and | 
|  | 4237 | the mpu401-uart layer will allocate the i/o ports by itself. | 
|  | 4238 | </para> | 
|  | 4239 |  | 
| Takashi Iwai | 302e4c2 | 2006-05-23 13:24:30 +0200 | [diff] [blame] | 4240 | <para> | 
|  | 4241 | When the controller supports only the input or output MIDI stream, | 
|  | 4242 | pass <constant>MPU401_INFO_INPUT</constant> or | 
|  | 4243 | <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively. | 
|  | 4244 | Then the rawmidi instance is created as a single stream. | 
|  | 4245 | </para> | 
|  | 4246 |  | 
|  | 4247 | <para> | 
|  | 4248 | <constant>MPU401_INFO_MMIO</constant> bitflag is used to change | 
|  | 4249 | the access method to MMIO (via readb and writeb) instead of | 
|  | 4250 | iob and outb.  In this case, you have to pass the iomapped address | 
|  | 4251 | to <function>snd_mpu401_uart_new()</function>. | 
|  | 4252 | </para> | 
|  | 4253 |  | 
|  | 4254 | <para> | 
|  | 4255 | When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output | 
|  | 4256 | stream isn't checked in the default interrupt handler.  The driver | 
|  | 4257 | needs to call <function>snd_mpu401_uart_interrupt_tx()</function> | 
|  | 4258 | by itself to start processing the output stream in irq handler. | 
|  | 4259 | </para> | 
|  | 4260 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4261 | <para> | 
|  | 4262 | Usually, the port address corresponds to the command port and | 
|  | 4263 | port + 1 corresponds to the data port. If not, you may change | 
|  | 4264 | the <structfield>cport</structfield> field of | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4265 | struct <structname>snd_mpu401</structname> manually | 
|  | 4266 | afterward. However, <structname>snd_mpu401</structname> pointer is not | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4267 | returned explicitly by | 
|  | 4268 | <function>snd_mpu401_uart_new()</function>. You need to cast | 
|  | 4269 | rmidi->private_data to | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4270 | <structname>snd_mpu401</structname> explicitly, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4271 |  | 
|  | 4272 | <informalexample> | 
|  | 4273 | <programlisting> | 
|  | 4274 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4275 | struct snd_mpu401 *mpu; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4276 | mpu = rmidi->private_data; | 
|  | 4277 | ]]> | 
|  | 4278 | </programlisting> | 
|  | 4279 | </informalexample> | 
|  | 4280 |  | 
|  | 4281 | and reset the cport as you like: | 
|  | 4282 |  | 
|  | 4283 | <informalexample> | 
|  | 4284 | <programlisting> | 
|  | 4285 | <![CDATA[ | 
|  | 4286 | mpu->cport = my_own_control_port; | 
|  | 4287 | ]]> | 
|  | 4288 | </programlisting> | 
|  | 4289 | </informalexample> | 
|  | 4290 | </para> | 
|  | 4291 |  | 
|  | 4292 | <para> | 
|  | 4293 | The 6th argument specifies the irq number for UART. If the irq | 
|  | 4294 | is already allocated, pass 0 to the 7th argument | 
|  | 4295 | (<parameter>irq_flags</parameter>). Otherwise, pass the flags | 
|  | 4296 | for irq allocation | 
|  | 4297 | (<constant>SA_XXX</constant> bits) to it, and the irq will be | 
|  | 4298 | reserved by the mpu401-uart layer. If the card doesn't generates | 
|  | 4299 | UART interrupts, pass -1 as the irq number. Then a timer | 
|  | 4300 | interrupt will be invoked for polling. | 
|  | 4301 | </para> | 
|  | 4302 | </section> | 
|  | 4303 |  | 
|  | 4304 | <section id="midi-interface-interrupt-handler"> | 
|  | 4305 | <title>Interrupt Handler</title> | 
|  | 4306 | <para> | 
|  | 4307 | When the interrupt is allocated in | 
|  | 4308 | <function>snd_mpu401_uart_new()</function>, the private | 
|  | 4309 | interrupt handler is used, hence you don't have to do nothing | 
|  | 4310 | else than creating the mpu401 stuff. Otherwise, you have to call | 
|  | 4311 | <function>snd_mpu401_uart_interrupt()</function> explicitly when | 
|  | 4312 | a UART interrupt is invoked and checked in your own interrupt | 
|  | 4313 | handler. | 
|  | 4314 | </para> | 
|  | 4315 |  | 
|  | 4316 | <para> | 
|  | 4317 | In this case, you need to pass the private_data of the | 
|  | 4318 | returned rawmidi object from | 
|  | 4319 | <function>snd_mpu401_uart_new()</function> as the second | 
|  | 4320 | argument of <function>snd_mpu401_uart_interrupt()</function>. | 
|  | 4321 |  | 
|  | 4322 | <informalexample> | 
|  | 4323 | <programlisting> | 
|  | 4324 | <![CDATA[ | 
|  | 4325 | snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); | 
|  | 4326 | ]]> | 
|  | 4327 | </programlisting> | 
|  | 4328 | </informalexample> | 
|  | 4329 | </para> | 
|  | 4330 | </section> | 
|  | 4331 |  | 
|  | 4332 | </chapter> | 
|  | 4333 |  | 
|  | 4334 |  | 
|  | 4335 | <!-- ****************************************************** --> | 
|  | 4336 | <!-- RawMIDI Interface  --> | 
|  | 4337 | <!-- ****************************************************** --> | 
|  | 4338 | <chapter id="rawmidi-interface"> | 
|  | 4339 | <title>RawMIDI Interface</title> | 
|  | 4340 |  | 
|  | 4341 | <section id="rawmidi-interface-overview"> | 
|  | 4342 | <title>Overview</title> | 
|  | 4343 |  | 
|  | 4344 | <para> | 
|  | 4345 | The raw MIDI interface is used for hardware MIDI ports that can | 
|  | 4346 | be accessed as a byte stream.  It is not used for synthesizer | 
|  | 4347 | chips that do not directly understand MIDI. | 
|  | 4348 | </para> | 
|  | 4349 |  | 
|  | 4350 | <para> | 
|  | 4351 | ALSA handles file and buffer management.  All you have to do is | 
|  | 4352 | to write some code to move data between the buffer and the | 
|  | 4353 | hardware. | 
|  | 4354 | </para> | 
|  | 4355 |  | 
|  | 4356 | <para> | 
|  | 4357 | The rawmidi API is defined in | 
|  | 4358 | <filename><sound/rawmidi.h></filename>. | 
|  | 4359 | </para> | 
|  | 4360 | </section> | 
|  | 4361 |  | 
|  | 4362 | <section id="rawmidi-interface-constructor"> | 
|  | 4363 | <title>Constructor</title> | 
|  | 4364 |  | 
|  | 4365 | <para> | 
|  | 4366 | To create a rawmidi device, call the | 
|  | 4367 | <function>snd_rawmidi_new</function> function: | 
|  | 4368 | <informalexample> | 
|  | 4369 | <programlisting> | 
|  | 4370 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4371 | struct snd_rawmidi *rmidi; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4372 | err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); | 
|  | 4373 | if (err < 0) | 
|  | 4374 | return err; | 
|  | 4375 | rmidi->private_data = chip; | 
|  | 4376 | strcpy(rmidi->name, "My MIDI"); | 
|  | 4377 | rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | | 
|  | 4378 | SNDRV_RAWMIDI_INFO_INPUT | | 
|  | 4379 | SNDRV_RAWMIDI_INFO_DUPLEX; | 
|  | 4380 | ]]> | 
|  | 4381 | </programlisting> | 
|  | 4382 | </informalexample> | 
|  | 4383 | </para> | 
|  | 4384 |  | 
|  | 4385 | <para> | 
|  | 4386 | The first argument is the card pointer, the second argument is | 
|  | 4387 | the ID string. | 
|  | 4388 | </para> | 
|  | 4389 |  | 
|  | 4390 | <para> | 
|  | 4391 | The third argument is the index of this component.  You can | 
|  | 4392 | create up to 8 rawmidi devices. | 
|  | 4393 | </para> | 
|  | 4394 |  | 
|  | 4395 | <para> | 
|  | 4396 | The fourth and fifth arguments are the number of output and | 
|  | 4397 | input substreams, respectively, of this device.  (A substream is | 
|  | 4398 | the equivalent of a MIDI port.) | 
|  | 4399 | </para> | 
|  | 4400 |  | 
|  | 4401 | <para> | 
|  | 4402 | Set the <structfield>info_flags</structfield> field to specify | 
|  | 4403 | the capabilities of the device. | 
|  | 4404 | Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is | 
|  | 4405 | at least one output port, | 
|  | 4406 | <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at | 
|  | 4407 | least one input port, | 
|  | 4408 | and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device | 
|  | 4409 | can handle output and input at the same time. | 
|  | 4410 | </para> | 
|  | 4411 |  | 
|  | 4412 | <para> | 
|  | 4413 | After the rawmidi device is created, you need to set the | 
|  | 4414 | operators (callbacks) for each substream.  There are helper | 
|  | 4415 | functions to set the operators for all substream of a device: | 
|  | 4416 | <informalexample> | 
|  | 4417 | <programlisting> | 
|  | 4418 | <![CDATA[ | 
|  | 4419 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); | 
|  | 4420 | snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); | 
|  | 4421 | ]]> | 
|  | 4422 | </programlisting> | 
|  | 4423 | </informalexample> | 
|  | 4424 | </para> | 
|  | 4425 |  | 
|  | 4426 | <para> | 
|  | 4427 | The operators are usually defined like this: | 
|  | 4428 | <informalexample> | 
|  | 4429 | <programlisting> | 
|  | 4430 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4431 | static struct snd_rawmidi_ops snd_mymidi_output_ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4432 | .open =    snd_mymidi_output_open, | 
|  | 4433 | .close =   snd_mymidi_output_close, | 
|  | 4434 | .trigger = snd_mymidi_output_trigger, | 
|  | 4435 | }; | 
|  | 4436 | ]]> | 
|  | 4437 | </programlisting> | 
|  | 4438 | </informalexample> | 
|  | 4439 | These callbacks are explained in the <link | 
|  | 4440 | linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link> | 
|  | 4441 | section. | 
|  | 4442 | </para> | 
|  | 4443 |  | 
|  | 4444 | <para> | 
|  | 4445 | If there is more than one substream, you should give each one a | 
|  | 4446 | unique name: | 
|  | 4447 | <informalexample> | 
|  | 4448 | <programlisting> | 
|  | 4449 | <![CDATA[ | 
|  | 4450 | struct list_head *list; | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4451 | struct snd_rawmidi_substream *substream; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4452 | list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4453 | substream = list_entry(list, struct snd_rawmidi_substream, list); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4454 | sprintf(substream->name, "My MIDI Port %d", substream->number + 1); | 
|  | 4455 | } | 
|  | 4456 | /* same for SNDRV_RAWMIDI_STREAM_INPUT */ | 
|  | 4457 | ]]> | 
|  | 4458 | </programlisting> | 
|  | 4459 | </informalexample> | 
|  | 4460 | </para> | 
|  | 4461 | </section> | 
|  | 4462 |  | 
|  | 4463 | <section id="rawmidi-interface-callbacks"> | 
|  | 4464 | <title>Callbacks</title> | 
|  | 4465 |  | 
|  | 4466 | <para> | 
|  | 4467 | In all callbacks, the private data that you've set for the | 
|  | 4468 | rawmidi device can be accessed as | 
|  | 4469 | substream->rmidi->private_data. | 
|  | 4470 | <!-- <code> isn't available before DocBook 4.3 --> | 
|  | 4471 | </para> | 
|  | 4472 |  | 
|  | 4473 | <para> | 
|  | 4474 | If there is more than one port, your callbacks can determine the | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4475 | port index from the struct snd_rawmidi_substream data passed to each | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4476 | callback: | 
|  | 4477 | <informalexample> | 
|  | 4478 | <programlisting> | 
|  | 4479 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4480 | struct snd_rawmidi_substream *substream; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4481 | int index = substream->number; | 
|  | 4482 | ]]> | 
|  | 4483 | </programlisting> | 
|  | 4484 | </informalexample> | 
|  | 4485 | </para> | 
|  | 4486 |  | 
|  | 4487 | <section id="rawmidi-interface-op-open"> | 
|  | 4488 | <title><function>open</function> callback</title> | 
|  | 4489 |  | 
|  | 4490 | <informalexample> | 
|  | 4491 | <programlisting> | 
|  | 4492 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4493 | static int snd_xxx_open(struct snd_rawmidi_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4494 | ]]> | 
|  | 4495 | </programlisting> | 
|  | 4496 | </informalexample> | 
|  | 4497 |  | 
|  | 4498 | <para> | 
|  | 4499 | This is called when a substream is opened. | 
|  | 4500 | You can initialize the hardware here, but you should not yet | 
|  | 4501 | start transmitting/receiving data. | 
|  | 4502 | </para> | 
|  | 4503 | </section> | 
|  | 4504 |  | 
|  | 4505 | <section id="rawmidi-interface-op-close"> | 
|  | 4506 | <title><function>close</function> callback</title> | 
|  | 4507 |  | 
|  | 4508 | <informalexample> | 
|  | 4509 | <programlisting> | 
|  | 4510 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4511 | static int snd_xxx_close(struct snd_rawmidi_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4512 | ]]> | 
|  | 4513 | </programlisting> | 
|  | 4514 | </informalexample> | 
|  | 4515 |  | 
|  | 4516 | <para> | 
|  | 4517 | Guess what. | 
|  | 4518 | </para> | 
|  | 4519 |  | 
|  | 4520 | <para> | 
|  | 4521 | The <function>open</function> and <function>close</function> | 
|  | 4522 | callbacks of a rawmidi device are serialized with a mutex, | 
|  | 4523 | and can sleep. | 
|  | 4524 | </para> | 
|  | 4525 | </section> | 
|  | 4526 |  | 
|  | 4527 | <section id="rawmidi-interface-op-trigger-out"> | 
|  | 4528 | <title><function>trigger</function> callback for output | 
|  | 4529 | substreams</title> | 
|  | 4530 |  | 
|  | 4531 | <informalexample> | 
|  | 4532 | <programlisting> | 
|  | 4533 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4534 | static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4535 | ]]> | 
|  | 4536 | </programlisting> | 
|  | 4537 | </informalexample> | 
|  | 4538 |  | 
|  | 4539 | <para> | 
|  | 4540 | This is called with a nonzero <parameter>up</parameter> | 
|  | 4541 | parameter when there is some data in the substream buffer that | 
|  | 4542 | must be transmitted. | 
|  | 4543 | </para> | 
|  | 4544 |  | 
|  | 4545 | <para> | 
|  | 4546 | To read data from the buffer, call | 
|  | 4547 | <function>snd_rawmidi_transmit_peek</function>.  It will | 
|  | 4548 | return the number of bytes that have been read; this will be | 
|  | 4549 | less than the number of bytes requested when there is no more | 
|  | 4550 | data in the buffer. | 
|  | 4551 | After the data has been transmitted successfully, call | 
|  | 4552 | <function>snd_rawmidi_transmit_ack</function> to remove the | 
|  | 4553 | data from the substream buffer: | 
|  | 4554 | <informalexample> | 
|  | 4555 | <programlisting> | 
|  | 4556 | <![CDATA[ | 
|  | 4557 | unsigned char data; | 
|  | 4558 | while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4559 | if (snd_mychip_try_to_transmit(data)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4560 | snd_rawmidi_transmit_ack(substream, 1); | 
|  | 4561 | else | 
|  | 4562 | break; /* hardware FIFO full */ | 
|  | 4563 | } | 
|  | 4564 | ]]> | 
|  | 4565 | </programlisting> | 
|  | 4566 | </informalexample> | 
|  | 4567 | </para> | 
|  | 4568 |  | 
|  | 4569 | <para> | 
|  | 4570 | If you know beforehand that the hardware will accept data, you | 
|  | 4571 | can use the <function>snd_rawmidi_transmit</function> function | 
|  | 4572 | which reads some data and removes it from the buffer at once: | 
|  | 4573 | <informalexample> | 
|  | 4574 | <programlisting> | 
|  | 4575 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4576 | while (snd_mychip_transmit_possible()) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4577 | unsigned char data; | 
|  | 4578 | if (snd_rawmidi_transmit(substream, &data, 1) != 1) | 
|  | 4579 | break; /* no more data */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4580 | snd_mychip_transmit(data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4581 | } | 
|  | 4582 | ]]> | 
|  | 4583 | </programlisting> | 
|  | 4584 | </informalexample> | 
|  | 4585 | </para> | 
|  | 4586 |  | 
|  | 4587 | <para> | 
|  | 4588 | If you know beforehand how many bytes you can accept, you can | 
|  | 4589 | use a buffer size greater than one with the | 
|  | 4590 | <function>snd_rawmidi_transmit*</function> functions. | 
|  | 4591 | </para> | 
|  | 4592 |  | 
|  | 4593 | <para> | 
|  | 4594 | The <function>trigger</function> callback must not sleep.  If | 
|  | 4595 | the hardware FIFO is full before the substream buffer has been | 
|  | 4596 | emptied, you have to continue transmitting data later, either | 
|  | 4597 | in an interrupt handler, or with a timer if the hardware | 
|  | 4598 | doesn't have a MIDI transmit interrupt. | 
|  | 4599 | </para> | 
|  | 4600 |  | 
|  | 4601 | <para> | 
|  | 4602 | The <function>trigger</function> callback is called with a | 
|  | 4603 | zero <parameter>up</parameter> parameter when the transmission | 
|  | 4604 | of data should be aborted. | 
|  | 4605 | </para> | 
|  | 4606 | </section> | 
|  | 4607 |  | 
|  | 4608 | <section id="rawmidi-interface-op-trigger-in"> | 
|  | 4609 | <title><function>trigger</function> callback for input | 
|  | 4610 | substreams</title> | 
|  | 4611 |  | 
|  | 4612 | <informalexample> | 
|  | 4613 | <programlisting> | 
|  | 4614 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4615 | static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4616 | ]]> | 
|  | 4617 | </programlisting> | 
|  | 4618 | </informalexample> | 
|  | 4619 |  | 
|  | 4620 | <para> | 
|  | 4621 | This is called with a nonzero <parameter>up</parameter> | 
|  | 4622 | parameter to enable receiving data, or with a zero | 
|  | 4623 | <parameter>up</parameter> parameter do disable receiving data. | 
|  | 4624 | </para> | 
|  | 4625 |  | 
|  | 4626 | <para> | 
|  | 4627 | The <function>trigger</function> callback must not sleep; the | 
|  | 4628 | actual reading of data from the device is usually done in an | 
|  | 4629 | interrupt handler. | 
|  | 4630 | </para> | 
|  | 4631 |  | 
|  | 4632 | <para> | 
|  | 4633 | When data reception is enabled, your interrupt handler should | 
|  | 4634 | call <function>snd_rawmidi_receive</function> for all received | 
|  | 4635 | data: | 
|  | 4636 | <informalexample> | 
|  | 4637 | <programlisting> | 
|  | 4638 | <![CDATA[ | 
|  | 4639 | void snd_mychip_midi_interrupt(...) | 
|  | 4640 | { | 
|  | 4641 | while (mychip_midi_available()) { | 
|  | 4642 | unsigned char data; | 
|  | 4643 | data = mychip_midi_read(); | 
|  | 4644 | snd_rawmidi_receive(substream, &data, 1); | 
|  | 4645 | } | 
|  | 4646 | } | 
|  | 4647 | ]]> | 
|  | 4648 | </programlisting> | 
|  | 4649 | </informalexample> | 
|  | 4650 | </para> | 
|  | 4651 | </section> | 
|  | 4652 |  | 
|  | 4653 | <section id="rawmidi-interface-op-drain"> | 
|  | 4654 | <title><function>drain</function> callback</title> | 
|  | 4655 |  | 
|  | 4656 | <informalexample> | 
|  | 4657 | <programlisting> | 
|  | 4658 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4659 | static void snd_xxx_drain(struct snd_rawmidi_substream *substream); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4660 | ]]> | 
|  | 4661 | </programlisting> | 
|  | 4662 | </informalexample> | 
|  | 4663 |  | 
|  | 4664 | <para> | 
|  | 4665 | This is only used with output substreams.  This function should wait | 
|  | 4666 | until all data read from the substream buffer has been transmitted. | 
|  | 4667 | This ensures that the device can be closed and the driver unloaded | 
|  | 4668 | without losing data. | 
|  | 4669 | </para> | 
|  | 4670 |  | 
|  | 4671 | <para> | 
|  | 4672 | This callback is optional.  If you do not set | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4673 | <structfield>drain</structfield> in the struct snd_rawmidi_ops | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4674 | structure, ALSA will simply wait for 50 milliseconds | 
|  | 4675 | instead. | 
|  | 4676 | </para> | 
|  | 4677 | </section> | 
|  | 4678 | </section> | 
|  | 4679 |  | 
|  | 4680 | </chapter> | 
|  | 4681 |  | 
|  | 4682 |  | 
|  | 4683 | <!-- ****************************************************** --> | 
|  | 4684 | <!-- Miscellaneous Devices  --> | 
|  | 4685 | <!-- ****************************************************** --> | 
|  | 4686 | <chapter id="misc-devices"> | 
|  | 4687 | <title>Miscellaneous Devices</title> | 
|  | 4688 |  | 
|  | 4689 | <section id="misc-devices-opl3"> | 
|  | 4690 | <title>FM OPL3</title> | 
|  | 4691 | <para> | 
|  | 4692 | The FM OPL3 is still used on many chips (mainly for backward | 
|  | 4693 | compatibility). ALSA has a nice OPL3 FM control layer, too. The | 
|  | 4694 | OPL3 API is defined in | 
|  | 4695 | <filename><sound/opl3.h></filename>. | 
|  | 4696 | </para> | 
|  | 4697 |  | 
|  | 4698 | <para> | 
|  | 4699 | FM registers can be directly accessed through direct-FM API, | 
|  | 4700 | defined in <filename><sound/asound_fm.h></filename>. In | 
|  | 4701 | ALSA native mode, FM registers are accessed through | 
|  | 4702 | Hardware-Dependant Device direct-FM extension API, whereas in | 
|  | 4703 | OSS compatible mode, FM registers can be accessed with OSS | 
|  | 4704 | direct-FM compatible API on <filename>/dev/dmfmX</filename> device. | 
|  | 4705 | </para> | 
|  | 4706 |  | 
|  | 4707 | <para> | 
|  | 4708 | For creating the OPL3 component, you have two functions to | 
|  | 4709 | call. The first one is a constructor for <type>opl3_t</type> | 
|  | 4710 | instance. | 
|  | 4711 |  | 
|  | 4712 | <informalexample> | 
|  | 4713 | <programlisting> | 
|  | 4714 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4715 | struct snd_opl3 *opl3; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4716 | snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, | 
|  | 4717 | integrated, &opl3); | 
|  | 4718 | ]]> | 
|  | 4719 | </programlisting> | 
|  | 4720 | </informalexample> | 
|  | 4721 | </para> | 
|  | 4722 |  | 
|  | 4723 | <para> | 
|  | 4724 | The first argument is the card pointer, the second one is the | 
|  | 4725 | left port address, and the third is the right port address. In | 
|  | 4726 | most cases, the right port is placed at the left port + 2. | 
|  | 4727 | </para> | 
|  | 4728 |  | 
|  | 4729 | <para> | 
|  | 4730 | The fourth argument is the hardware type. | 
|  | 4731 | </para> | 
|  | 4732 |  | 
|  | 4733 | <para> | 
|  | 4734 | When the left and right ports have been already allocated by | 
|  | 4735 | the card driver, pass non-zero to the fifth argument | 
|  | 4736 | (<parameter>integrated</parameter>). Otherwise, opl3 module will | 
|  | 4737 | allocate the specified ports by itself. | 
|  | 4738 | </para> | 
|  | 4739 |  | 
|  | 4740 | <para> | 
|  | 4741 | When the accessing to the hardware requires special method | 
|  | 4742 | instead of the standard I/O access, you can create opl3 instance | 
|  | 4743 | separately with <function>snd_opl3_new()</function>. | 
|  | 4744 |  | 
|  | 4745 | <informalexample> | 
|  | 4746 | <programlisting> | 
|  | 4747 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4748 | struct snd_opl3 *opl3; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4749 | snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); | 
|  | 4750 | ]]> | 
|  | 4751 | </programlisting> | 
|  | 4752 | </informalexample> | 
|  | 4753 | </para> | 
|  | 4754 |  | 
|  | 4755 | <para> | 
|  | 4756 | Then set <structfield>command</structfield>, | 
|  | 4757 | <structfield>private_data</structfield> and | 
|  | 4758 | <structfield>private_free</structfield> for the private | 
|  | 4759 | access function, the private data and the destructor. | 
|  | 4760 | The l_port and r_port are not necessarily set.  Only the | 
|  | 4761 | command must be set properly.  You can retrieve the data | 
|  | 4762 | from opl3->private_data field. | 
|  | 4763 | </para> | 
|  | 4764 |  | 
|  | 4765 | <para> | 
|  | 4766 | After creating the opl3 instance via <function>snd_opl3_new()</function>, | 
|  | 4767 | call <function>snd_opl3_init()</function> to initialize the chip to the | 
|  | 4768 | proper state.  Note that <function>snd_opl3_create()</function> always | 
|  | 4769 | calls it internally. | 
|  | 4770 | </para> | 
|  | 4771 |  | 
|  | 4772 | <para> | 
|  | 4773 | If the opl3 instance is created successfully, then create a | 
|  | 4774 | hwdep device for this opl3. | 
|  | 4775 |  | 
|  | 4776 | <informalexample> | 
|  | 4777 | <programlisting> | 
|  | 4778 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4779 | struct snd_hwdep *opl3hwdep; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4780 | snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); | 
|  | 4781 | ]]> | 
|  | 4782 | </programlisting> | 
|  | 4783 | </informalexample> | 
|  | 4784 | </para> | 
|  | 4785 |  | 
|  | 4786 | <para> | 
|  | 4787 | The first argument is the <type>opl3_t</type> instance you | 
|  | 4788 | created, and the second is the index number, usually 0. | 
|  | 4789 | </para> | 
|  | 4790 |  | 
|  | 4791 | <para> | 
|  | 4792 | The third argument is the index-offset for the sequencer | 
|  | 4793 | client assigned to the OPL3 port. When there is an MPU401-UART, | 
|  | 4794 | give 1 for here (UART always takes 0). | 
|  | 4795 | </para> | 
|  | 4796 | </section> | 
|  | 4797 |  | 
|  | 4798 | <section id="misc-devices-hardware-dependent"> | 
|  | 4799 | <title>Hardware-Dependent Devices</title> | 
|  | 4800 | <para> | 
|  | 4801 | Some chips need the access from the user-space for special | 
|  | 4802 | controls or for loading the micro code. In such a case, you can | 
|  | 4803 | create a hwdep (hardware-dependent) device. The hwdep API is | 
|  | 4804 | defined in <filename><sound/hwdep.h></filename>. You can | 
|  | 4805 | find examples in opl3 driver or | 
|  | 4806 | <filename>isa/sb/sb16_csp.c</filename>. | 
|  | 4807 | </para> | 
|  | 4808 |  | 
|  | 4809 | <para> | 
|  | 4810 | Creation of the <type>hwdep</type> instance is done via | 
|  | 4811 | <function>snd_hwdep_new()</function>. | 
|  | 4812 |  | 
|  | 4813 | <informalexample> | 
|  | 4814 | <programlisting> | 
|  | 4815 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4816 | struct snd_hwdep *hw; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4817 | snd_hwdep_new(card, "My HWDEP", 0, &hw); | 
|  | 4818 | ]]> | 
|  | 4819 | </programlisting> | 
|  | 4820 | </informalexample> | 
|  | 4821 |  | 
|  | 4822 | where the third argument is the index number. | 
|  | 4823 | </para> | 
|  | 4824 |  | 
|  | 4825 | <para> | 
|  | 4826 | You can then pass any pointer value to the | 
|  | 4827 | <parameter>private_data</parameter>. | 
|  | 4828 | If you assign a private data, you should define the | 
|  | 4829 | destructor, too. The destructor function is set to | 
|  | 4830 | <structfield>private_free</structfield> field. | 
|  | 4831 |  | 
|  | 4832 | <informalexample> | 
|  | 4833 | <programlisting> | 
|  | 4834 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4835 | struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4836 | hw->private_data = p; | 
|  | 4837 | hw->private_free = mydata_free; | 
|  | 4838 | ]]> | 
|  | 4839 | </programlisting> | 
|  | 4840 | </informalexample> | 
|  | 4841 |  | 
|  | 4842 | and the implementation of destructor would be: | 
|  | 4843 |  | 
|  | 4844 | <informalexample> | 
|  | 4845 | <programlisting> | 
|  | 4846 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4847 | static void mydata_free(struct snd_hwdep *hw) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4848 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 4849 | struct mydata *p = hw->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4850 | kfree(p); | 
|  | 4851 | } | 
|  | 4852 | ]]> | 
|  | 4853 | </programlisting> | 
|  | 4854 | </informalexample> | 
|  | 4855 | </para> | 
|  | 4856 |  | 
|  | 4857 | <para> | 
|  | 4858 | The arbitrary file operations can be defined for this | 
|  | 4859 | instance. The file operators are defined in | 
|  | 4860 | <parameter>ops</parameter> table. For example, assume that | 
|  | 4861 | this chip needs an ioctl. | 
|  | 4862 |  | 
|  | 4863 | <informalexample> | 
|  | 4864 | <programlisting> | 
|  | 4865 | <![CDATA[ | 
|  | 4866 | hw->ops.open = mydata_open; | 
|  | 4867 | hw->ops.ioctl = mydata_ioctl; | 
|  | 4868 | hw->ops.release = mydata_release; | 
|  | 4869 | ]]> | 
|  | 4870 | </programlisting> | 
|  | 4871 | </informalexample> | 
|  | 4872 |  | 
|  | 4873 | And implement the callback functions as you like. | 
|  | 4874 | </para> | 
|  | 4875 | </section> | 
|  | 4876 |  | 
|  | 4877 | <section id="misc-devices-IEC958"> | 
|  | 4878 | <title>IEC958 (S/PDIF)</title> | 
|  | 4879 | <para> | 
|  | 4880 | Usually the controls for IEC958 devices are implemented via | 
|  | 4881 | control interface. There is a macro to compose a name string for | 
|  | 4882 | IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function> | 
|  | 4883 | defined in <filename><include/asound.h></filename>. | 
|  | 4884 | </para> | 
|  | 4885 |  | 
|  | 4886 | <para> | 
|  | 4887 | There are some standard controls for IEC958 status bits. These | 
|  | 4888 | controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>, | 
|  | 4889 | and the size of element is fixed as 4 bytes array | 
|  | 4890 | (value.iec958.status[x]). For <structfield>info</structfield> | 
|  | 4891 | callback, you don't specify | 
|  | 4892 | the value field for this type (the count field must be set, | 
|  | 4893 | though). | 
|  | 4894 | </para> | 
|  | 4895 |  | 
|  | 4896 | <para> | 
|  | 4897 | <quote>IEC958 Playback Con Mask</quote> is used to return the | 
|  | 4898 | bit-mask for the IEC958 status bits of consumer mode. Similarly, | 
|  | 4899 | <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for | 
|  | 4900 | professional mode. They are read-only controls, and are defined | 
|  | 4901 | as MIXER controls (iface = | 
|  | 4902 | <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>). | 
|  | 4903 | </para> | 
|  | 4904 |  | 
|  | 4905 | <para> | 
|  | 4906 | Meanwhile, <quote>IEC958 Playback Default</quote> control is | 
|  | 4907 | defined for getting and setting the current default IEC958 | 
|  | 4908 | bits. Note that this one is usually defined as a PCM control | 
|  | 4909 | (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>), | 
|  | 4910 | although in some places it's defined as a MIXER control. | 
|  | 4911 | </para> | 
|  | 4912 |  | 
|  | 4913 | <para> | 
|  | 4914 | In addition, you can define the control switches to | 
|  | 4915 | enable/disable or to set the raw bit mode. The implementation | 
|  | 4916 | will depend on the chip, but the control should be named as | 
|  | 4917 | <quote>IEC958 xxx</quote>, preferably using | 
|  | 4918 | <function>SNDRV_CTL_NAME_IEC958()</function> macro. | 
|  | 4919 | </para> | 
|  | 4920 |  | 
|  | 4921 | <para> | 
|  | 4922 | You can find several cases, for example, | 
|  | 4923 | <filename>pci/emu10k1</filename>, | 
|  | 4924 | <filename>pci/ice1712</filename>, or | 
|  | 4925 | <filename>pci/cmipci.c</filename>. | 
|  | 4926 | </para> | 
|  | 4927 | </section> | 
|  | 4928 |  | 
|  | 4929 | </chapter> | 
|  | 4930 |  | 
|  | 4931 |  | 
|  | 4932 | <!-- ****************************************************** --> | 
|  | 4933 | <!-- Buffer and Memory Management  --> | 
|  | 4934 | <!-- ****************************************************** --> | 
|  | 4935 | <chapter id="buffer-and-memory"> | 
|  | 4936 | <title>Buffer and Memory Management</title> | 
|  | 4937 |  | 
|  | 4938 | <section id="buffer-and-memory-buffer-types"> | 
|  | 4939 | <title>Buffer Types</title> | 
|  | 4940 | <para> | 
|  | 4941 | ALSA provides several different buffer allocation functions | 
|  | 4942 | depending on the bus and the architecture. All these have a | 
|  | 4943 | consistent API. The allocation of physically-contiguous pages is | 
|  | 4944 | done via | 
|  | 4945 | <function>snd_malloc_xxx_pages()</function> function, where xxx | 
|  | 4946 | is the bus type. | 
|  | 4947 | </para> | 
|  | 4948 |  | 
|  | 4949 | <para> | 
|  | 4950 | The allocation of pages with fallback is | 
|  | 4951 | <function>snd_malloc_xxx_pages_fallback()</function>. This | 
|  | 4952 | function tries to allocate the specified pages but if the pages | 
|  | 4953 | are not available, it tries to reduce the page sizes until the | 
|  | 4954 | enough space is found. | 
|  | 4955 | </para> | 
|  | 4956 |  | 
|  | 4957 | <para> | 
|  | 4958 | For releasing the space, call | 
|  | 4959 | <function>snd_free_xxx_pages()</function> function. | 
|  | 4960 | </para> | 
|  | 4961 |  | 
|  | 4962 | <para> | 
|  | 4963 | Usually, ALSA drivers try to allocate and reserve | 
|  | 4964 | a large contiguous physical space | 
|  | 4965 | at the time the module is loaded for the later use. | 
|  | 4966 | This is called <quote>pre-allocation</quote>. | 
|  | 4967 | As already written, you can call the following function at the | 
|  | 4968 | construction of pcm instance (in the case of PCI bus). | 
|  | 4969 |  | 
|  | 4970 | <informalexample> | 
|  | 4971 | <programlisting> | 
|  | 4972 | <![CDATA[ | 
|  | 4973 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | 
|  | 4974 | snd_dma_pci_data(pci), size, max); | 
|  | 4975 | ]]> | 
|  | 4976 | </programlisting> | 
|  | 4977 | </informalexample> | 
|  | 4978 |  | 
|  | 4979 | where <parameter>size</parameter> is the byte size to be | 
|  | 4980 | pre-allocated and the <parameter>max</parameter> is the maximal | 
|  | 4981 | size to be changed via <filename>prealloc</filename> proc file. | 
|  | 4982 | The allocator will try to get as large area as possible | 
|  | 4983 | within the given size. | 
|  | 4984 | </para> | 
|  | 4985 |  | 
|  | 4986 | <para> | 
|  | 4987 | The second argument (type) and the third argument (device pointer) | 
|  | 4988 | are dependent on the bus. | 
|  | 4989 | In the case of ISA bus, pass <function>snd_dma_isa_data()</function> | 
|  | 4990 | as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type. | 
|  | 4991 | For the continuous buffer unrelated to the bus can be pre-allocated | 
|  | 4992 | with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the | 
|  | 4993 | <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer, | 
|  | 4994 | whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to | 
|  | 4995 | use.  For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and | 
|  | 4996 | <function>snd_dma_sbus_data(sbus_dev)</function> are used instead. | 
|  | 4997 | For the PCI scatter-gather buffers, use | 
|  | 4998 | <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with | 
|  | 4999 | <function>snd_dma_pci_data(pci)</function> | 
|  | 5000 | (see the section | 
|  | 5001 | <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers | 
|  | 5002 | </citetitle></link>). | 
|  | 5003 | </para> | 
|  | 5004 |  | 
|  | 5005 | <para> | 
|  | 5006 | Once when the buffer is pre-allocated, you can use the | 
|  | 5007 | allocator in the <structfield>hw_params</structfield> callback | 
|  | 5008 |  | 
|  | 5009 | <informalexample> | 
|  | 5010 | <programlisting> | 
|  | 5011 | <![CDATA[ | 
|  | 5012 | snd_pcm_lib_malloc_pages(substream, size); | 
|  | 5013 | ]]> | 
|  | 5014 | </programlisting> | 
|  | 5015 | </informalexample> | 
|  | 5016 |  | 
|  | 5017 | Note that you have to pre-allocate to use this function. | 
|  | 5018 | </para> | 
|  | 5019 | </section> | 
|  | 5020 |  | 
|  | 5021 | <section id="buffer-and-memory-external-hardware"> | 
|  | 5022 | <title>External Hardware Buffers</title> | 
|  | 5023 | <para> | 
|  | 5024 | Some chips have their own hardware buffers and the DMA | 
|  | 5025 | transfer from the host memory is not available. In such a case, | 
|  | 5026 | you need to either 1) copy/set the audio data directly to the | 
|  | 5027 | external hardware buffer, or 2) make an intermediate buffer and | 
|  | 5028 | copy/set the data from it to the external hardware buffer in | 
|  | 5029 | interrupts (or in tasklets, preferably). | 
|  | 5030 | </para> | 
|  | 5031 |  | 
|  | 5032 | <para> | 
|  | 5033 | The first case works fine if the external hardware buffer is enough | 
|  | 5034 | large.  This method doesn't need any extra buffers and thus is | 
|  | 5035 | more effective. You need to define the | 
|  | 5036 | <structfield>copy</structfield> and | 
|  | 5037 | <structfield>silence</structfield> callbacks for | 
|  | 5038 | the data transfer. However, there is a drawback: it cannot | 
|  | 5039 | be mmapped. The examples are GUS's GF1 PCM or emu8000's | 
|  | 5040 | wavetable PCM. | 
|  | 5041 | </para> | 
|  | 5042 |  | 
|  | 5043 | <para> | 
|  | 5044 | The second case allows the mmap of the buffer, although you have | 
|  | 5045 | to handle an interrupt or a tasklet for transferring the data | 
|  | 5046 | from the intermediate buffer to the hardware buffer. You can find an | 
|  | 5047 | example in vxpocket driver. | 
|  | 5048 | </para> | 
|  | 5049 |  | 
|  | 5050 | <para> | 
|  | 5051 | Another case is that the chip uses a PCI memory-map | 
|  | 5052 | region for the buffer instead of the host memory. In this case, | 
|  | 5053 | mmap is available only on certain architectures like intel. In | 
|  | 5054 | non-mmap mode, the data cannot be transferred as the normal | 
|  | 5055 | way. Thus you need to define <structfield>copy</structfield> and | 
|  | 5056 | <structfield>silence</structfield> callbacks as well | 
|  | 5057 | as in the cases above. The examples are found in | 
|  | 5058 | <filename>rme32.c</filename> and <filename>rme96.c</filename>. | 
|  | 5059 | </para> | 
|  | 5060 |  | 
|  | 5061 | <para> | 
|  | 5062 | The implementation of <structfield>copy</structfield> and | 
|  | 5063 | <structfield>silence</structfield> callbacks depends upon | 
|  | 5064 | whether the hardware supports interleaved or non-interleaved | 
|  | 5065 | samples. The <structfield>copy</structfield> callback is | 
|  | 5066 | defined like below, a bit | 
|  | 5067 | differently depending whether the direction is playback or | 
|  | 5068 | capture: | 
|  | 5069 |  | 
|  | 5070 | <informalexample> | 
|  | 5071 | <programlisting> | 
|  | 5072 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5073 | static int playback_copy(struct snd_pcm_substream *substream, int channel, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5074 | snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5075 | static int capture_copy(struct snd_pcm_substream *substream, int channel, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5076 | snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); | 
|  | 5077 | ]]> | 
|  | 5078 | </programlisting> | 
|  | 5079 | </informalexample> | 
|  | 5080 | </para> | 
|  | 5081 |  | 
|  | 5082 | <para> | 
|  | 5083 | In the case of interleaved samples, the second argument | 
|  | 5084 | (<parameter>channel</parameter>) is not used. The third argument | 
|  | 5085 | (<parameter>pos</parameter>) points the | 
|  | 5086 | current position offset in frames. | 
|  | 5087 | </para> | 
|  | 5088 |  | 
|  | 5089 | <para> | 
|  | 5090 | The meaning of the fourth argument is different between | 
|  | 5091 | playback and capture. For playback, it holds the source data | 
|  | 5092 | pointer, and for capture, it's the destination data pointer. | 
|  | 5093 | </para> | 
|  | 5094 |  | 
|  | 5095 | <para> | 
|  | 5096 | The last argument is the number of frames to be copied. | 
|  | 5097 | </para> | 
|  | 5098 |  | 
|  | 5099 | <para> | 
|  | 5100 | What you have to do in this callback is again different | 
|  | 5101 | between playback and capture directions. In the case of | 
|  | 5102 | playback, you do: copy the given amount of data | 
|  | 5103 | (<parameter>count</parameter>) at the specified pointer | 
|  | 5104 | (<parameter>src</parameter>) to the specified offset | 
|  | 5105 | (<parameter>pos</parameter>) on the hardware buffer. When | 
|  | 5106 | coded like memcpy-like way, the copy would be like: | 
|  | 5107 |  | 
|  | 5108 | <informalexample> | 
|  | 5109 | <programlisting> | 
|  | 5110 | <![CDATA[ | 
|  | 5111 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, | 
|  | 5112 | frames_to_bytes(runtime, count)); | 
|  | 5113 | ]]> | 
|  | 5114 | </programlisting> | 
|  | 5115 | </informalexample> | 
|  | 5116 | </para> | 
|  | 5117 |  | 
|  | 5118 | <para> | 
|  | 5119 | For the capture direction, you do: copy the given amount of | 
|  | 5120 | data (<parameter>count</parameter>) at the specified offset | 
|  | 5121 | (<parameter>pos</parameter>) on the hardware buffer to the | 
|  | 5122 | specified pointer (<parameter>dst</parameter>). | 
|  | 5123 |  | 
|  | 5124 | <informalexample> | 
|  | 5125 | <programlisting> | 
|  | 5126 | <![CDATA[ | 
|  | 5127 | my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), | 
|  | 5128 | frames_to_bytes(runtime, count)); | 
|  | 5129 | ]]> | 
|  | 5130 | </programlisting> | 
|  | 5131 | </informalexample> | 
|  | 5132 |  | 
|  | 5133 | Note that both of the position and the data amount are given | 
|  | 5134 | in frames. | 
|  | 5135 | </para> | 
|  | 5136 |  | 
|  | 5137 | <para> | 
|  | 5138 | In the case of non-interleaved samples, the implementation | 
|  | 5139 | will be a bit more complicated. | 
|  | 5140 | </para> | 
|  | 5141 |  | 
|  | 5142 | <para> | 
|  | 5143 | You need to check the channel argument, and if it's -1, copy | 
|  | 5144 | the whole channels. Otherwise, you have to copy only the | 
|  | 5145 | specified channel. Please check | 
|  | 5146 | <filename>isa/gus/gus_pcm.c</filename> as an example. | 
|  | 5147 | </para> | 
|  | 5148 |  | 
|  | 5149 | <para> | 
|  | 5150 | The <structfield>silence</structfield> callback is also | 
|  | 5151 | implemented in a similar way. | 
|  | 5152 |  | 
|  | 5153 | <informalexample> | 
|  | 5154 | <programlisting> | 
|  | 5155 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5156 | static int silence(struct snd_pcm_substream *substream, int channel, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5157 | snd_pcm_uframes_t pos, snd_pcm_uframes_t count); | 
|  | 5158 | ]]> | 
|  | 5159 | </programlisting> | 
|  | 5160 | </informalexample> | 
|  | 5161 | </para> | 
|  | 5162 |  | 
|  | 5163 | <para> | 
|  | 5164 | The meanings of arguments are identical with the | 
|  | 5165 | <structfield>copy</structfield> | 
|  | 5166 | callback, although there is no <parameter>src/dst</parameter> | 
|  | 5167 | argument. In the case of interleaved samples, the channel | 
|  | 5168 | argument has no meaning, as well as on | 
|  | 5169 | <structfield>copy</structfield> callback. | 
|  | 5170 | </para> | 
|  | 5171 |  | 
|  | 5172 | <para> | 
|  | 5173 | The role of <structfield>silence</structfield> callback is to | 
|  | 5174 | set the given amount | 
|  | 5175 | (<parameter>count</parameter>) of silence data at the | 
|  | 5176 | specified offset (<parameter>pos</parameter>) on the hardware | 
|  | 5177 | buffer. Suppose that the data format is signed (that is, the | 
|  | 5178 | silent-data is 0), and the implementation using a memset-like | 
|  | 5179 | function would be like: | 
|  | 5180 |  | 
|  | 5181 | <informalexample> | 
|  | 5182 | <programlisting> | 
|  | 5183 | <![CDATA[ | 
|  | 5184 | my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, | 
|  | 5185 | frames_to_bytes(runtime, count)); | 
|  | 5186 | ]]> | 
|  | 5187 | </programlisting> | 
|  | 5188 | </informalexample> | 
|  | 5189 | </para> | 
|  | 5190 |  | 
|  | 5191 | <para> | 
|  | 5192 | In the case of non-interleaved samples, again, the | 
|  | 5193 | implementation becomes a bit more complicated. See, for example, | 
|  | 5194 | <filename>isa/gus/gus_pcm.c</filename>. | 
|  | 5195 | </para> | 
|  | 5196 | </section> | 
|  | 5197 |  | 
|  | 5198 | <section id="buffer-and-memory-non-contiguous"> | 
|  | 5199 | <title>Non-Contiguous Buffers</title> | 
|  | 5200 | <para> | 
|  | 5201 | If your hardware supports the page table like emu10k1 or the | 
|  | 5202 | buffer descriptors like via82xx, you can use the scatter-gather | 
|  | 5203 | (SG) DMA. ALSA provides an interface for handling SG-buffers. | 
|  | 5204 | The API is provided in <filename><sound/pcm.h></filename>. | 
|  | 5205 | </para> | 
|  | 5206 |  | 
|  | 5207 | <para> | 
|  | 5208 | For creating the SG-buffer handler, call | 
|  | 5209 | <function>snd_pcm_lib_preallocate_pages()</function> or | 
|  | 5210 | <function>snd_pcm_lib_preallocate_pages_for_all()</function> | 
|  | 5211 | with <constant>SNDRV_DMA_TYPE_DEV_SG</constant> | 
|  | 5212 | in the PCM constructor like other PCI pre-allocator. | 
|  | 5213 | You need to pass the <function>snd_dma_pci_data(pci)</function>, | 
|  | 5214 | where pci is the struct <structname>pci_dev</structname> pointer | 
|  | 5215 | of the chip as well. | 
| Giuliano Pochini | 44275f1 | 2006-01-27 12:02:05 +0100 | [diff] [blame] | 5216 | The <type>struct snd_sg_buf</type> instance is created as | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5217 | substream->dma_private. You can cast | 
|  | 5218 | the pointer like: | 
|  | 5219 |  | 
|  | 5220 | <informalexample> | 
|  | 5221 | <programlisting> | 
|  | 5222 | <![CDATA[ | 
| Giuliano Pochini | 44275f1 | 2006-01-27 12:02:05 +0100 | [diff] [blame] | 5223 | struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5224 | ]]> | 
|  | 5225 | </programlisting> | 
|  | 5226 | </informalexample> | 
|  | 5227 | </para> | 
|  | 5228 |  | 
|  | 5229 | <para> | 
|  | 5230 | Then call <function>snd_pcm_lib_malloc_pages()</function> | 
|  | 5231 | in <structfield>hw_params</structfield> callback | 
|  | 5232 | as well as in the case of normal PCI buffer. | 
|  | 5233 | The SG-buffer handler will allocate the non-contiguous kernel | 
|  | 5234 | pages of the given size and map them onto the virtually contiguous | 
|  | 5235 | memory.  The virtual pointer is addressed in runtime->dma_area. | 
|  | 5236 | The physical address (runtime->dma_addr) is set to zero, | 
|  | 5237 | because the buffer is physically non-contigous. | 
|  | 5238 | The physical address table is set up in sgbuf->table. | 
|  | 5239 | You can get the physical address at a certain offset via | 
|  | 5240 | <function>snd_pcm_sgbuf_get_addr()</function>. | 
|  | 5241 | </para> | 
|  | 5242 |  | 
|  | 5243 | <para> | 
|  | 5244 | When a SG-handler is used, you need to set | 
|  | 5245 | <function>snd_pcm_sgbuf_ops_page</function> as | 
|  | 5246 | the <structfield>page</structfield> callback. | 
|  | 5247 | (See <link linkend="pcm-interface-operators-page-callback"> | 
|  | 5248 | <citetitle>page callback section</citetitle></link>.) | 
|  | 5249 | </para> | 
|  | 5250 |  | 
|  | 5251 | <para> | 
|  | 5252 | For releasing the data, call | 
|  | 5253 | <function>snd_pcm_lib_free_pages()</function> in the | 
|  | 5254 | <structfield>hw_free</structfield> callback as usual. | 
|  | 5255 | </para> | 
|  | 5256 | </section> | 
|  | 5257 |  | 
|  | 5258 | <section id="buffer-and-memory-vmalloced"> | 
|  | 5259 | <title>Vmalloc'ed Buffers</title> | 
|  | 5260 | <para> | 
|  | 5261 | It's possible to use a buffer allocated via | 
|  | 5262 | <function>vmalloc</function>, for example, for an intermediate | 
|  | 5263 | buffer. Since the allocated pages are not contiguous, you need | 
|  | 5264 | to set the <structfield>page</structfield> callback to obtain | 
|  | 5265 | the physical address at every offset. | 
|  | 5266 | </para> | 
|  | 5267 |  | 
|  | 5268 | <para> | 
|  | 5269 | The implementation of <structfield>page</structfield> callback | 
|  | 5270 | would be like this: | 
|  | 5271 |  | 
|  | 5272 | <informalexample> | 
|  | 5273 | <programlisting> | 
|  | 5274 | <![CDATA[ | 
|  | 5275 | #include <linux/vmalloc.h> | 
|  | 5276 |  | 
|  | 5277 | /* get the physical page pointer on the given offset */ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5278 | static struct page *mychip_page(struct snd_pcm_substream *substream, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5279 | unsigned long offset) | 
|  | 5280 | { | 
|  | 5281 | void *pageptr = substream->runtime->dma_area + offset; | 
|  | 5282 | return vmalloc_to_page(pageptr); | 
|  | 5283 | } | 
|  | 5284 | ]]> | 
|  | 5285 | </programlisting> | 
|  | 5286 | </informalexample> | 
|  | 5287 | </para> | 
|  | 5288 | </section> | 
|  | 5289 |  | 
|  | 5290 | </chapter> | 
|  | 5291 |  | 
|  | 5292 |  | 
|  | 5293 | <!-- ****************************************************** --> | 
|  | 5294 | <!-- Proc Interface  --> | 
|  | 5295 | <!-- ****************************************************** --> | 
|  | 5296 | <chapter id="proc-interface"> | 
|  | 5297 | <title>Proc Interface</title> | 
|  | 5298 | <para> | 
|  | 5299 | ALSA provides an easy interface for procfs. The proc files are | 
|  | 5300 | very useful for debugging. I recommend you set up proc files if | 
|  | 5301 | you write a driver and want to get a running status or register | 
|  | 5302 | dumps. The API is found in | 
|  | 5303 | <filename><sound/info.h></filename>. | 
|  | 5304 | </para> | 
|  | 5305 |  | 
|  | 5306 | <para> | 
|  | 5307 | For creating a proc file, call | 
|  | 5308 | <function>snd_card_proc_new()</function>. | 
|  | 5309 |  | 
|  | 5310 | <informalexample> | 
|  | 5311 | <programlisting> | 
|  | 5312 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5313 | struct snd_info_entry *entry; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5314 | int err = snd_card_proc_new(card, "my-file", &entry); | 
|  | 5315 | ]]> | 
|  | 5316 | </programlisting> | 
|  | 5317 | </informalexample> | 
|  | 5318 |  | 
|  | 5319 | where the second argument specifies the proc-file name to be | 
|  | 5320 | created. The above example will create a file | 
|  | 5321 | <filename>my-file</filename> under the card directory, | 
|  | 5322 | e.g. <filename>/proc/asound/card0/my-file</filename>. | 
|  | 5323 | </para> | 
|  | 5324 |  | 
|  | 5325 | <para> | 
|  | 5326 | Like other components, the proc entry created via | 
|  | 5327 | <function>snd_card_proc_new()</function> will be registered and | 
|  | 5328 | released automatically in the card registration and release | 
|  | 5329 | functions. | 
|  | 5330 | </para> | 
|  | 5331 |  | 
|  | 5332 | <para> | 
|  | 5333 | When the creation is successful, the function stores a new | 
|  | 5334 | instance at the pointer given in the third argument. | 
|  | 5335 | It is initialized as a text proc file for read only.  For using | 
|  | 5336 | this proc file as a read-only text file as it is, set the read | 
|  | 5337 | callback with a private data via | 
|  | 5338 | <function>snd_info_set_text_ops()</function>. | 
|  | 5339 |  | 
|  | 5340 | <informalexample> | 
|  | 5341 | <programlisting> | 
|  | 5342 | <![CDATA[ | 
| Takashi Iwai | bf85020 | 2006-04-28 15:13:41 +0200 | [diff] [blame] | 5343 | snd_info_set_text_ops(entry, chip, my_proc_read); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5344 | ]]> | 
|  | 5345 | </programlisting> | 
|  | 5346 | </informalexample> | 
|  | 5347 |  | 
|  | 5348 | where the second argument (<parameter>chip</parameter>) is the | 
|  | 5349 | private data to be used in the callbacks. The third parameter | 
|  | 5350 | specifies the read buffer size and the fourth | 
|  | 5351 | (<parameter>my_proc_read</parameter>) is the callback function, which | 
|  | 5352 | is defined like | 
|  | 5353 |  | 
|  | 5354 | <informalexample> | 
|  | 5355 | <programlisting> | 
|  | 5356 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5357 | static void my_proc_read(struct snd_info_entry *entry, | 
|  | 5358 | struct snd_info_buffer *buffer); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5359 | ]]> | 
|  | 5360 | </programlisting> | 
|  | 5361 | </informalexample> | 
|  | 5362 |  | 
|  | 5363 | </para> | 
|  | 5364 |  | 
|  | 5365 | <para> | 
|  | 5366 | In the read callback, use <function>snd_iprintf()</function> for | 
|  | 5367 | output strings, which works just like normal | 
|  | 5368 | <function>printf()</function>.  For example, | 
|  | 5369 |  | 
|  | 5370 | <informalexample> | 
|  | 5371 | <programlisting> | 
|  | 5372 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5373 | static void my_proc_read(struct snd_info_entry *entry, | 
|  | 5374 | struct snd_info_buffer *buffer) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5375 | { | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5376 | struct my_chip *chip = entry->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5377 |  | 
|  | 5378 | snd_iprintf(buffer, "This is my chip!\n"); | 
|  | 5379 | snd_iprintf(buffer, "Port = %ld\n", chip->port); | 
|  | 5380 | } | 
|  | 5381 | ]]> | 
|  | 5382 | </programlisting> | 
|  | 5383 | </informalexample> | 
|  | 5384 | </para> | 
|  | 5385 |  | 
|  | 5386 | <para> | 
|  | 5387 | The file permission can be changed afterwards.  As default, it's | 
|  | 5388 | set as read only for all users.  If you want to add the write | 
|  | 5389 | permission to the user (root as default), set like below: | 
|  | 5390 |  | 
|  | 5391 | <informalexample> | 
|  | 5392 | <programlisting> | 
|  | 5393 | <![CDATA[ | 
|  | 5394 | entry->mode = S_IFREG | S_IRUGO | S_IWUSR; | 
|  | 5395 | ]]> | 
|  | 5396 | </programlisting> | 
|  | 5397 | </informalexample> | 
|  | 5398 |  | 
|  | 5399 | and set the write buffer size and the callback | 
|  | 5400 |  | 
|  | 5401 | <informalexample> | 
|  | 5402 | <programlisting> | 
|  | 5403 | <![CDATA[ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5404 | entry->c.text.write = my_proc_write; | 
|  | 5405 | ]]> | 
|  | 5406 | </programlisting> | 
|  | 5407 | </informalexample> | 
|  | 5408 | </para> | 
|  | 5409 |  | 
|  | 5410 | <para> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5411 | For the write callback, you can use | 
|  | 5412 | <function>snd_info_get_line()</function> to get a text line, and | 
|  | 5413 | <function>snd_info_get_str()</function> to retrieve a string from | 
|  | 5414 | the line. Some examples are found in | 
|  | 5415 | <filename>core/oss/mixer_oss.c</filename>, core/oss/and | 
|  | 5416 | <filename>pcm_oss.c</filename>. | 
|  | 5417 | </para> | 
|  | 5418 |  | 
|  | 5419 | <para> | 
|  | 5420 | For a raw-data proc-file, set the attributes like the following: | 
|  | 5421 |  | 
|  | 5422 | <informalexample> | 
|  | 5423 | <programlisting> | 
|  | 5424 | <![CDATA[ | 
|  | 5425 | static struct snd_info_entry_ops my_file_io_ops = { | 
|  | 5426 | .read = my_file_io_read, | 
|  | 5427 | }; | 
|  | 5428 |  | 
|  | 5429 | entry->content = SNDRV_INFO_CONTENT_DATA; | 
|  | 5430 | entry->private_data = chip; | 
|  | 5431 | entry->c.ops = &my_file_io_ops; | 
|  | 5432 | entry->size = 4096; | 
|  | 5433 | entry->mode = S_IFREG | S_IRUGO; | 
|  | 5434 | ]]> | 
|  | 5435 | </programlisting> | 
|  | 5436 | </informalexample> | 
|  | 5437 | </para> | 
|  | 5438 |  | 
|  | 5439 | <para> | 
|  | 5440 | The callback is much more complicated than the text-file | 
|  | 5441 | version. You need to use a low-level i/o functions such as | 
|  | 5442 | <function>copy_from/to_user()</function> to transfer the | 
|  | 5443 | data. | 
|  | 5444 |  | 
|  | 5445 | <informalexample> | 
|  | 5446 | <programlisting> | 
|  | 5447 | <![CDATA[ | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5448 | static long my_file_io_read(struct snd_info_entry *entry, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5449 | void *file_private_data, | 
|  | 5450 | struct file *file, | 
|  | 5451 | char *buf, | 
|  | 5452 | unsigned long count, | 
|  | 5453 | unsigned long pos) | 
|  | 5454 | { | 
|  | 5455 | long size = count; | 
|  | 5456 | if (pos + size > local_max_size) | 
|  | 5457 | size = local_max_size - pos; | 
|  | 5458 | if (copy_to_user(buf, local_data + pos, size)) | 
|  | 5459 | return -EFAULT; | 
|  | 5460 | return size; | 
|  | 5461 | } | 
|  | 5462 | ]]> | 
|  | 5463 | </programlisting> | 
|  | 5464 | </informalexample> | 
|  | 5465 | </para> | 
|  | 5466 |  | 
|  | 5467 | </chapter> | 
|  | 5468 |  | 
|  | 5469 |  | 
|  | 5470 | <!-- ****************************************************** --> | 
|  | 5471 | <!-- Power Management  --> | 
|  | 5472 | <!-- ****************************************************** --> | 
|  | 5473 | <chapter id="power-management"> | 
|  | 5474 | <title>Power Management</title> | 
|  | 5475 | <para> | 
| Paolo Ornati | 670e9f3 | 2006-10-03 22:57:56 +0200 | [diff] [blame] | 5476 | If the chip is supposed to work with suspend/resume | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5477 | functions, you need to add the power-management codes to the | 
|  | 5478 | driver. The additional codes for the power-management should be | 
|  | 5479 | <function>ifdef</function>'ed with | 
|  | 5480 | <constant>CONFIG_PM</constant>. | 
|  | 5481 | </para> | 
|  | 5482 |  | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5483 | <para> | 
|  | 5484 | If the driver supports the suspend/resume | 
|  | 5485 | <emphasis>fully</emphasis>, that is, the device can be | 
|  | 5486 | properly resumed to the status at the suspend is called, | 
|  | 5487 | you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag | 
|  | 5488 | to pcm info field.  Usually, this is possible when the | 
|  | 5489 | registers of ths chip can be safely saved and restored to the | 
|  | 5490 | RAM.  If this is set, the trigger callback is called with | 
|  | 5491 | <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume | 
|  | 5492 | callback is finished. | 
|  | 5493 | </para> | 
|  | 5494 |  | 
|  | 5495 | <para> | 
|  | 5496 | Even if the driver doesn't support PM fully but only the | 
|  | 5497 | partial suspend/resume is possible, it's still worthy to | 
|  | 5498 | implement suspend/resume callbacks.  In such a case, applications | 
|  | 5499 | would reset the status by calling | 
|  | 5500 | <function>snd_pcm_prepare()</function> and restart the stream | 
|  | 5501 | appropriately.  Hence, you can define suspend/resume callbacks | 
|  | 5502 | below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant> | 
|  | 5503 | info flag to the PCM. | 
|  | 5504 | </para> | 
|  | 5505 |  | 
|  | 5506 | <para> | 
|  | 5507 | Note that the trigger with SUSPEND can be always called when | 
|  | 5508 | <function>snd_pcm_suspend_all</function> is called, | 
|  | 5509 | regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag. | 
|  | 5510 | The <constant>RESUME</constant> flag affects only the behavior | 
|  | 5511 | of <function>snd_pcm_resume()</function>. | 
|  | 5512 | (Thus, in theory, | 
|  | 5513 | <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed | 
|  | 5514 | to be handled in the trigger callback when no | 
|  | 5515 | <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But, | 
|  | 5516 | it's better to keep it for compatibility reason.) | 
|  | 5517 | </para> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5518 | <para> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5519 | In the earlier version of ALSA drivers, a common | 
|  | 5520 | power-management layer was provided, but it has been removed. | 
|  | 5521 | The driver needs to define the suspend/resume hooks according to | 
|  | 5522 | the bus the device is assigned.  In the case of PCI driver, the | 
|  | 5523 | callbacks look like below: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5524 |  | 
|  | 5525 | <informalexample> | 
|  | 5526 | <programlisting> | 
|  | 5527 | <![CDATA[ | 
|  | 5528 | #ifdef CONFIG_PM | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5529 | static int snd_my_suspend(struct pci_dev *pci, pm_message_t state) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5530 | { | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 5531 | .... /* do things for suspend */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5532 | return 0; | 
|  | 5533 | } | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5534 | static int snd_my_resume(struct pci_dev *pci) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5535 | { | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 5536 | .... /* do things for suspend */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5537 | return 0; | 
|  | 5538 | } | 
|  | 5539 | #endif | 
|  | 5540 | ]]> | 
|  | 5541 | </programlisting> | 
|  | 5542 | </informalexample> | 
|  | 5543 | </para> | 
|  | 5544 |  | 
|  | 5545 | <para> | 
|  | 5546 | The scheme of the real suspend job is as following. | 
|  | 5547 |  | 
|  | 5548 | <orderedlist> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5549 | <listitem><para>Retrieve the card and the chip data.</para></listitem> | 
|  | 5550 | <listitem><para>Call <function>snd_power_change_state()</function> with | 
|  | 5551 | <constant>SNDRV_CTL_POWER_D3hot</constant> to change the | 
|  | 5552 | power status.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5553 | <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5554 | <listitem><para>If AC97 codecs are used, call | 
| Takashi Iwai | a730633 | 2006-05-04 11:58:43 +0200 | [diff] [blame] | 5555 | <function>snd_ac97_suspend()</function> for each codec.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5556 | <listitem><para>Save the register values if necessary.</para></listitem> | 
|  | 5557 | <listitem><para>Stop the hardware if necessary.</para></listitem> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5558 | <listitem><para>Disable the PCI device by calling | 
|  | 5559 | <function>pci_disable_device()</function>.  Then, call | 
|  | 5560 | <function>pci_save_state()</function> at last.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5561 | </orderedlist> | 
|  | 5562 | </para> | 
|  | 5563 |  | 
|  | 5564 | <para> | 
|  | 5565 | A typical code would be like: | 
|  | 5566 |  | 
|  | 5567 | <informalexample> | 
|  | 5568 | <programlisting> | 
|  | 5569 | <![CDATA[ | 
| Alexey Dobriyan | 32357988 | 2006-01-15 02:12:54 +0100 | [diff] [blame] | 5570 | static int mychip_suspend(struct pci_dev *pci, pm_message_t state) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5571 | { | 
|  | 5572 | /* (1) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5573 | struct snd_card *card = pci_get_drvdata(pci); | 
|  | 5574 | struct mychip *chip = card->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5575 | /* (2) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5576 | snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5577 | /* (3) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5578 | snd_pcm_suspend_all(chip->pcm); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5579 | /* (4) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5580 | snd_ac97_suspend(chip->ac97); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5581 | /* (5) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5582 | snd_mychip_save_registers(chip); | 
|  | 5583 | /* (6) */ | 
|  | 5584 | snd_mychip_stop_hardware(chip); | 
|  | 5585 | /* (7) */ | 
|  | 5586 | pci_disable_device(pci); | 
|  | 5587 | pci_save_state(pci); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5588 | return 0; | 
|  | 5589 | } | 
|  | 5590 | ]]> | 
|  | 5591 | </programlisting> | 
|  | 5592 | </informalexample> | 
|  | 5593 | </para> | 
|  | 5594 |  | 
|  | 5595 | <para> | 
|  | 5596 | The scheme of the real resume job is as following. | 
|  | 5597 |  | 
|  | 5598 | <orderedlist> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5599 | <listitem><para>Retrieve the card and the chip data.</para></listitem> | 
|  | 5600 | <listitem><para>Set up PCI.  First, call <function>pci_restore_state()</function>. | 
|  | 5601 | Then enable the pci device again by calling <function>pci_enable_device()</function>. | 
|  | 5602 | Call <function>pci_set_master()</function> if necessary, too.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5603 | <listitem><para>Re-initialize the chip.</para></listitem> | 
|  | 5604 | <listitem><para>Restore the saved registers if necessary.</para></listitem> | 
|  | 5605 | <listitem><para>Resume the mixer, e.g. calling | 
|  | 5606 | <function>snd_ac97_resume()</function>.</para></listitem> | 
|  | 5607 | <listitem><para>Restart the hardware (if any).</para></listitem> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5608 | <listitem><para>Call <function>snd_power_change_state()</function> with | 
|  | 5609 | <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5610 | </orderedlist> | 
|  | 5611 | </para> | 
|  | 5612 |  | 
|  | 5613 | <para> | 
|  | 5614 | A typical code would be like: | 
|  | 5615 |  | 
|  | 5616 | <informalexample> | 
|  | 5617 | <programlisting> | 
|  | 5618 | <![CDATA[ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5619 | static int mychip_resume(struct pci_dev *pci) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5620 | { | 
|  | 5621 | /* (1) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5622 | struct snd_card *card = pci_get_drvdata(pci); | 
|  | 5623 | struct mychip *chip = card->private_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5624 | /* (2) */ | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5625 | pci_restore_state(pci); | 
|  | 5626 | pci_enable_device(pci); | 
|  | 5627 | pci_set_master(pci); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5628 | /* (3) */ | 
|  | 5629 | snd_mychip_reinit_chip(chip); | 
|  | 5630 | /* (4) */ | 
|  | 5631 | snd_mychip_restore_registers(chip); | 
|  | 5632 | /* (5) */ | 
|  | 5633 | snd_ac97_resume(chip->ac97); | 
|  | 5634 | /* (6) */ | 
|  | 5635 | snd_mychip_restart_chip(chip); | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5636 | /* (7) */ | 
|  | 5637 | snd_power_change_state(card, SNDRV_CTL_POWER_D0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5638 | return 0; | 
|  | 5639 | } | 
|  | 5640 | ]]> | 
|  | 5641 | </programlisting> | 
|  | 5642 | </informalexample> | 
|  | 5643 | </para> | 
|  | 5644 |  | 
|  | 5645 | <para> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5646 | As shown in the above, it's better to save registers after | 
|  | 5647 | suspending the PCM operations via | 
|  | 5648 | <function>snd_pcm_suspend_all()</function> or | 
|  | 5649 | <function>snd_pcm_suspend()</function>.  It means that the PCM | 
|  | 5650 | streams are already stoppped when the register snapshot is | 
|  | 5651 | taken.  But, remind that you don't have to restart the PCM | 
|  | 5652 | stream in the resume callback. It'll be restarted via | 
|  | 5653 | trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant> | 
|  | 5654 | when necessary. | 
|  | 5655 | </para> | 
|  | 5656 |  | 
|  | 5657 | <para> | 
|  | 5658 | OK, we have all callbacks now. Let's set them up. In the | 
|  | 5659 | initialization of the card, make sure that you can get the chip | 
|  | 5660 | data from the card instance, typically via | 
|  | 5661 | <structfield>private_data</structfield> field, in case you | 
|  | 5662 | created the chip data individually. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5663 |  | 
|  | 5664 | <informalexample> | 
|  | 5665 | <programlisting> | 
|  | 5666 | <![CDATA[ | 
|  | 5667 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | 
|  | 5668 | const struct pci_device_id *pci_id) | 
|  | 5669 | { | 
|  | 5670 | .... | 
| Takashi Iwai | 446ab5f | 2005-11-17 15:12:54 +0100 | [diff] [blame] | 5671 | struct snd_card *card; | 
|  | 5672 | struct mychip *chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5673 | .... | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5674 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL); | 
|  | 5675 | .... | 
|  | 5676 | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | 
|  | 5677 | .... | 
|  | 5678 | card->private_data = chip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5679 | .... | 
|  | 5680 | } | 
|  | 5681 | ]]> | 
|  | 5682 | </programlisting> | 
|  | 5683 | </informalexample> | 
|  | 5684 |  | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5685 | When you created the chip data with | 
|  | 5686 | <function>snd_card_new()</function>, it's anyway accessible | 
|  | 5687 | via <structfield>private_data</structfield> field. | 
|  | 5688 |  | 
|  | 5689 | <informalexample> | 
|  | 5690 | <programlisting> | 
|  | 5691 | <![CDATA[ | 
|  | 5692 | static int __devinit snd_mychip_probe(struct pci_dev *pci, | 
|  | 5693 | const struct pci_device_id *pci_id) | 
|  | 5694 | { | 
|  | 5695 | .... | 
|  | 5696 | struct snd_card *card; | 
|  | 5697 | struct mychip *chip; | 
|  | 5698 | .... | 
|  | 5699 | card = snd_card_new(index[dev], id[dev], THIS_MODULE, | 
|  | 5700 | sizeof(struct mychip)); | 
|  | 5701 | .... | 
|  | 5702 | chip = card->private_data; | 
|  | 5703 | .... | 
|  | 5704 | } | 
|  | 5705 | ]]> | 
|  | 5706 | </programlisting> | 
|  | 5707 | </informalexample> | 
|  | 5708 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5709 | </para> | 
|  | 5710 |  | 
|  | 5711 | <para> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5712 | If you need a space for saving the registers, allocate the | 
|  | 5713 | buffer for it here, too, since it would be fatal | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5714 | if you cannot allocate a memory in the suspend phase. | 
|  | 5715 | The allocated buffer should be released in the corresponding | 
|  | 5716 | destructor. | 
|  | 5717 | </para> | 
|  | 5718 |  | 
|  | 5719 | <para> | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5720 | And next, set suspend/resume callbacks to the pci_driver. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5721 |  | 
|  | 5722 | <informalexample> | 
|  | 5723 | <programlisting> | 
|  | 5724 | <![CDATA[ | 
|  | 5725 | static struct pci_driver driver = { | 
|  | 5726 | .name = "My Chip", | 
|  | 5727 | .id_table = snd_my_ids, | 
|  | 5728 | .probe = snd_my_probe, | 
|  | 5729 | .remove = __devexit_p(snd_my_remove), | 
| Takashi Iwai | 5fe76e4 | 2005-11-17 17:26:09 +0100 | [diff] [blame] | 5730 | #ifdef CONFIG_PM | 
|  | 5731 | .suspend = snd_my_suspend, | 
|  | 5732 | .resume = snd_my_resume, | 
|  | 5733 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5734 | }; | 
|  | 5735 | ]]> | 
|  | 5736 | </programlisting> | 
|  | 5737 | </informalexample> | 
|  | 5738 | </para> | 
|  | 5739 |  | 
|  | 5740 | </chapter> | 
|  | 5741 |  | 
|  | 5742 |  | 
|  | 5743 | <!-- ****************************************************** --> | 
|  | 5744 | <!-- Module Parameters  --> | 
|  | 5745 | <!-- ****************************************************** --> | 
|  | 5746 | <chapter id="module-parameters"> | 
|  | 5747 | <title>Module Parameters</title> | 
|  | 5748 | <para> | 
|  | 5749 | There are standard module options for ALSA. At least, each | 
|  | 5750 | module should have <parameter>index</parameter>, | 
|  | 5751 | <parameter>id</parameter> and <parameter>enable</parameter> | 
|  | 5752 | options. | 
|  | 5753 | </para> | 
|  | 5754 |  | 
|  | 5755 | <para> | 
|  | 5756 | If the module supports multiple cards (usually up to | 
|  | 5757 | 8 = <constant>SNDRV_CARDS</constant> cards), they should be | 
|  | 5758 | arrays.  The default initial values are defined already as | 
|  | 5759 | constants for ease of programming: | 
|  | 5760 |  | 
|  | 5761 | <informalexample> | 
|  | 5762 | <programlisting> | 
|  | 5763 | <![CDATA[ | 
|  | 5764 | static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; | 
|  | 5765 | static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; | 
|  | 5766 | static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; | 
|  | 5767 | ]]> | 
|  | 5768 | </programlisting> | 
|  | 5769 | </informalexample> | 
|  | 5770 | </para> | 
|  | 5771 |  | 
|  | 5772 | <para> | 
|  | 5773 | If the module supports only a single card, they could be single | 
|  | 5774 | variables, instead.  <parameter>enable</parameter> option is not | 
|  | 5775 | always necessary in this case, but it wouldn't be so bad to have a | 
|  | 5776 | dummy option for compatibility. | 
|  | 5777 | </para> | 
|  | 5778 |  | 
|  | 5779 | <para> | 
|  | 5780 | The module parameters must be declared with the standard | 
|  | 5781 | <function>module_param()()</function>, | 
|  | 5782 | <function>module_param_array()()</function> and | 
|  | 5783 | <function>MODULE_PARM_DESC()</function> macros. | 
|  | 5784 | </para> | 
|  | 5785 |  | 
|  | 5786 | <para> | 
|  | 5787 | The typical coding would be like below: | 
|  | 5788 |  | 
|  | 5789 | <informalexample> | 
|  | 5790 | <programlisting> | 
|  | 5791 | <![CDATA[ | 
|  | 5792 | #define CARD_NAME "My Chip" | 
|  | 5793 |  | 
|  | 5794 | module_param_array(index, int, NULL, 0444); | 
|  | 5795 | MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); | 
|  | 5796 | module_param_array(id, charp, NULL, 0444); | 
|  | 5797 | MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); | 
|  | 5798 | module_param_array(enable, bool, NULL, 0444); | 
|  | 5799 | MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); | 
|  | 5800 | ]]> | 
|  | 5801 | </programlisting> | 
|  | 5802 | </informalexample> | 
|  | 5803 | </para> | 
|  | 5804 |  | 
|  | 5805 | <para> | 
|  | 5806 | Also, don't forget to define the module description, classes, | 
|  | 5807 | license and devices. Especially, the recent modprobe requires to | 
|  | 5808 | define the module license as GPL, etc., otherwise the system is | 
|  | 5809 | shown as <quote>tainted</quote>. | 
|  | 5810 |  | 
|  | 5811 | <informalexample> | 
|  | 5812 | <programlisting> | 
|  | 5813 | <![CDATA[ | 
|  | 5814 | MODULE_DESCRIPTION("My Chip"); | 
|  | 5815 | MODULE_LICENSE("GPL"); | 
|  | 5816 | MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); | 
|  | 5817 | ]]> | 
|  | 5818 | </programlisting> | 
|  | 5819 | </informalexample> | 
|  | 5820 | </para> | 
|  | 5821 |  | 
|  | 5822 | </chapter> | 
|  | 5823 |  | 
|  | 5824 |  | 
|  | 5825 | <!-- ****************************************************** --> | 
|  | 5826 | <!-- How To Put Your Driver  --> | 
|  | 5827 | <!-- ****************************************************** --> | 
|  | 5828 | <chapter id="how-to-put-your-driver"> | 
|  | 5829 | <title>How To Put Your Driver Into ALSA Tree</title> | 
|  | 5830 | <section> | 
|  | 5831 | <title>General</title> | 
|  | 5832 | <para> | 
|  | 5833 | So far, you've learned how to write the driver codes. | 
|  | 5834 | And you might have a question now: how to put my own | 
|  | 5835 | driver into the ALSA driver tree? | 
|  | 5836 | Here (finally :) the standard procedure is described briefly. | 
|  | 5837 | </para> | 
|  | 5838 |  | 
|  | 5839 | <para> | 
|  | 5840 | Suppose that you'll create a new PCI driver for the card | 
|  | 5841 | <quote>xyz</quote>.  The card module name would be | 
|  | 5842 | snd-xyz.  The new driver is usually put into alsa-driver | 
|  | 5843 | tree, <filename>alsa-driver/pci</filename> directory in | 
|  | 5844 | the case of PCI cards. | 
|  | 5845 | Then the driver is evaluated, audited and tested | 
|  | 5846 | by developers and users.  After a certain time, the driver | 
|  | 5847 | will go to alsa-kernel tree (to the corresponding directory, | 
|  | 5848 | such as <filename>alsa-kernel/pci</filename>) and eventually | 
|  | 5849 | integrated into Linux 2.6 tree (the directory would be | 
|  | 5850 | <filename>linux/sound/pci</filename>). | 
|  | 5851 | </para> | 
|  | 5852 |  | 
|  | 5853 | <para> | 
|  | 5854 | In the following sections, the driver code is supposed | 
|  | 5855 | to be put into alsa-driver tree.  The two cases are assumed: | 
|  | 5856 | a driver consisting of a single source file and one consisting | 
|  | 5857 | of several source files. | 
|  | 5858 | </para> | 
|  | 5859 | </section> | 
|  | 5860 |  | 
|  | 5861 | <section> | 
|  | 5862 | <title>Driver with A Single Source File</title> | 
|  | 5863 | <para> | 
|  | 5864 | <orderedlist> | 
|  | 5865 | <listitem> | 
|  | 5866 | <para> | 
|  | 5867 | Modify alsa-driver/pci/Makefile | 
|  | 5868 | </para> | 
|  | 5869 |  | 
|  | 5870 | <para> | 
|  | 5871 | Suppose you have a file xyz.c.  Add the following | 
|  | 5872 | two lines | 
|  | 5873 | <informalexample> | 
|  | 5874 | <programlisting> | 
|  | 5875 | <![CDATA[ | 
|  | 5876 | snd-xyz-objs := xyz.o | 
|  | 5877 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | 
|  | 5878 | ]]> | 
|  | 5879 | </programlisting> | 
|  | 5880 | </informalexample> | 
|  | 5881 | </para> | 
|  | 5882 | </listitem> | 
|  | 5883 |  | 
|  | 5884 | <listitem> | 
|  | 5885 | <para> | 
|  | 5886 | Create the Kconfig entry | 
|  | 5887 | </para> | 
|  | 5888 |  | 
|  | 5889 | <para> | 
|  | 5890 | Add the new entry of Kconfig for your xyz driver. | 
|  | 5891 | <informalexample> | 
|  | 5892 | <programlisting> | 
|  | 5893 | <![CDATA[ | 
|  | 5894 | config SND_XYZ | 
|  | 5895 | tristate "Foobar XYZ" | 
|  | 5896 | depends on SND | 
|  | 5897 | select SND_PCM | 
|  | 5898 | help | 
|  | 5899 | Say Y here to include support for Foobar XYZ soundcard. | 
|  | 5900 |  | 
|  | 5901 | To compile this driver as a module, choose M here: the module | 
|  | 5902 | will be called snd-xyz. | 
|  | 5903 | ]]> | 
|  | 5904 | </programlisting> | 
|  | 5905 | </informalexample> | 
|  | 5906 |  | 
|  | 5907 | the line, select SND_PCM, specifies that the driver xyz supports | 
|  | 5908 | PCM.  In addition to SND_PCM, the following components are | 
|  | 5909 | supported for select command: | 
|  | 5910 | SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART, | 
|  | 5911 | SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC. | 
|  | 5912 | Add the select command for each supported component. | 
|  | 5913 | </para> | 
|  | 5914 |  | 
|  | 5915 | <para> | 
|  | 5916 | Note that some selections imply the lowlevel selections. | 
|  | 5917 | For example, PCM includes TIMER, MPU401_UART includes RAWMIDI, | 
|  | 5918 | AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP. | 
|  | 5919 | You don't need to give the lowlevel selections again. | 
|  | 5920 | </para> | 
|  | 5921 |  | 
|  | 5922 | <para> | 
|  | 5923 | For the details of Kconfig script, refer to the kbuild | 
|  | 5924 | documentation. | 
|  | 5925 | </para> | 
|  | 5926 |  | 
|  | 5927 | </listitem> | 
|  | 5928 |  | 
|  | 5929 | <listitem> | 
|  | 5930 | <para> | 
|  | 5931 | Run cvscompile script to re-generate the configure script and | 
|  | 5932 | build the whole stuff again. | 
|  | 5933 | </para> | 
|  | 5934 | </listitem> | 
|  | 5935 | </orderedlist> | 
|  | 5936 | </para> | 
|  | 5937 | </section> | 
|  | 5938 |  | 
|  | 5939 | <section> | 
|  | 5940 | <title>Drivers with Several Source Files</title> | 
|  | 5941 | <para> | 
|  | 5942 | Suppose that the driver snd-xyz have several source files. | 
|  | 5943 | They are located in the new subdirectory, | 
|  | 5944 | pci/xyz. | 
|  | 5945 |  | 
|  | 5946 | <orderedlist> | 
|  | 5947 | <listitem> | 
|  | 5948 | <para> | 
|  | 5949 | Add a new directory (<filename>xyz</filename>) in | 
|  | 5950 | <filename>alsa-driver/pci/Makefile</filename> like below | 
|  | 5951 |  | 
|  | 5952 | <informalexample> | 
|  | 5953 | <programlisting> | 
|  | 5954 | <![CDATA[ | 
|  | 5955 | obj-$(CONFIG_SND) += xyz/ | 
|  | 5956 | ]]> | 
|  | 5957 | </programlisting> | 
|  | 5958 | </informalexample> | 
|  | 5959 | </para> | 
|  | 5960 | </listitem> | 
|  | 5961 |  | 
|  | 5962 | <listitem> | 
|  | 5963 | <para> | 
|  | 5964 | Under the directory <filename>xyz</filename>, create a Makefile | 
|  | 5965 |  | 
|  | 5966 | <example> | 
|  | 5967 | <title>Sample Makefile for a driver xyz</title> | 
|  | 5968 | <programlisting> | 
|  | 5969 | <![CDATA[ | 
|  | 5970 | ifndef SND_TOPDIR | 
|  | 5971 | SND_TOPDIR=../.. | 
|  | 5972 | endif | 
|  | 5973 |  | 
|  | 5974 | include $(SND_TOPDIR)/toplevel.config | 
|  | 5975 | include $(SND_TOPDIR)/Makefile.conf | 
|  | 5976 |  | 
|  | 5977 | snd-xyz-objs := xyz.o abc.o def.o | 
|  | 5978 |  | 
|  | 5979 | obj-$(CONFIG_SND_XYZ) += snd-xyz.o | 
|  | 5980 |  | 
|  | 5981 | include $(SND_TOPDIR)/Rules.make | 
|  | 5982 | ]]> | 
|  | 5983 | </programlisting> | 
|  | 5984 | </example> | 
|  | 5985 | </para> | 
|  | 5986 | </listitem> | 
|  | 5987 |  | 
|  | 5988 | <listitem> | 
|  | 5989 | <para> | 
|  | 5990 | Create the Kconfig entry | 
|  | 5991 | </para> | 
|  | 5992 |  | 
|  | 5993 | <para> | 
|  | 5994 | This procedure is as same as in the last section. | 
|  | 5995 | </para> | 
|  | 5996 | </listitem> | 
|  | 5997 |  | 
|  | 5998 | <listitem> | 
|  | 5999 | <para> | 
|  | 6000 | Run cvscompile script to re-generate the configure script and | 
|  | 6001 | build the whole stuff again. | 
|  | 6002 | </para> | 
|  | 6003 | </listitem> | 
|  | 6004 | </orderedlist> | 
|  | 6005 | </para> | 
|  | 6006 | </section> | 
|  | 6007 |  | 
|  | 6008 | </chapter> | 
|  | 6009 |  | 
|  | 6010 | <!-- ****************************************************** --> | 
|  | 6011 | <!-- Useful Functions  --> | 
|  | 6012 | <!-- ****************************************************** --> | 
|  | 6013 | <chapter id="useful-functions"> | 
|  | 6014 | <title>Useful Functions</title> | 
|  | 6015 |  | 
|  | 6016 | <section id="useful-functions-snd-printk"> | 
|  | 6017 | <title><function>snd_printk()</function> and friends</title> | 
|  | 6018 | <para> | 
|  | 6019 | ALSA provides a verbose version of | 
|  | 6020 | <function>printk()</function> function. If a kernel config | 
|  | 6021 | <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this | 
|  | 6022 | function prints the given message together with the file name | 
|  | 6023 | and the line of the caller. The <constant>KERN_XXX</constant> | 
|  | 6024 | prefix is processed as | 
|  | 6025 | well as the original <function>printk()</function> does, so it's | 
|  | 6026 | recommended to add this prefix, e.g. | 
|  | 6027 |  | 
|  | 6028 | <informalexample> | 
|  | 6029 | <programlisting> | 
|  | 6030 | <![CDATA[ | 
|  | 6031 | snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n"); | 
|  | 6032 | ]]> | 
|  | 6033 | </programlisting> | 
|  | 6034 | </informalexample> | 
|  | 6035 | </para> | 
|  | 6036 |  | 
|  | 6037 | <para> | 
|  | 6038 | There are also <function>printk()</function>'s for | 
|  | 6039 | debugging. <function>snd_printd()</function> can be used for | 
|  | 6040 | general debugging purposes. If | 
|  | 6041 | <constant>CONFIG_SND_DEBUG</constant> is set, this function is | 
|  | 6042 | compiled, and works just like | 
|  | 6043 | <function>snd_printk()</function>. If the ALSA is compiled | 
|  | 6044 | without the debugging flag, it's ignored. | 
|  | 6045 | </para> | 
|  | 6046 |  | 
|  | 6047 | <para> | 
|  | 6048 | <function>snd_printdd()</function> is compiled in only when | 
|  | 6049 | <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note | 
|  | 6050 | that <constant>DEBUG_DETECT</constant> is not set as default | 
|  | 6051 | even if you configure the alsa-driver with | 
|  | 6052 | <option>--with-debug=full</option> option. You need to give | 
|  | 6053 | explicitly <option>--with-debug=detect</option> option instead. | 
|  | 6054 | </para> | 
|  | 6055 | </section> | 
|  | 6056 |  | 
|  | 6057 | <section id="useful-functions-snd-assert"> | 
|  | 6058 | <title><function>snd_assert()</function></title> | 
|  | 6059 | <para> | 
|  | 6060 | <function>snd_assert()</function> macro is similar with the | 
|  | 6061 | normal <function>assert()</function> macro. For example, | 
|  | 6062 |  | 
|  | 6063 | <informalexample> | 
|  | 6064 | <programlisting> | 
|  | 6065 | <![CDATA[ | 
|  | 6066 | snd_assert(pointer != NULL, return -EINVAL); | 
|  | 6067 | ]]> | 
|  | 6068 | </programlisting> | 
|  | 6069 | </informalexample> | 
|  | 6070 | </para> | 
|  | 6071 |  | 
|  | 6072 | <para> | 
|  | 6073 | The first argument is the expression to evaluate, and the | 
|  | 6074 | second argument is the action if it fails. When | 
|  | 6075 | <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an | 
| Takashi Iwai | 7c22f1a | 2005-10-10 11:46:31 +0200 | [diff] [blame] | 6076 | error message such as <computeroutput>BUG? (xxx)</computeroutput> | 
|  | 6077 | together with stack trace. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6078 | </para> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6079 | <para> | 
| Takashi Iwai | 7c22f1a | 2005-10-10 11:46:31 +0200 | [diff] [blame] | 6080 | When no debug flag is set, this macro is ignored. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6081 | </para> | 
|  | 6082 | </section> | 
|  | 6083 |  | 
|  | 6084 | <section id="useful-functions-snd-bug"> | 
|  | 6085 | <title><function>snd_BUG()</function></title> | 
|  | 6086 | <para> | 
| Takashi Iwai | 7c22f1a | 2005-10-10 11:46:31 +0200 | [diff] [blame] | 6087 | It shows <computeroutput>BUG?</computeroutput> message and | 
|  | 6088 | stack trace as well as <function>snd_assert</function> at the point. | 
|  | 6089 | It's useful to show that a fatal error happens there. | 
|  | 6090 | </para> | 
|  | 6091 | <para> | 
|  | 6092 | When no debug flag is set, this macro is ignored. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6093 | </para> | 
|  | 6094 | </section> | 
|  | 6095 | </chapter> | 
|  | 6096 |  | 
|  | 6097 |  | 
|  | 6098 | <!-- ****************************************************** --> | 
|  | 6099 | <!-- Acknowledgments  --> | 
|  | 6100 | <!-- ****************************************************** --> | 
| Nicolas Kaiser | 5bda9fa | 2007-01-22 14:54:33 +0100 | [diff] [blame] | 6101 | <chapter id="acknowledgments"> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6102 | <title>Acknowledgments</title> | 
|  | 6103 | <para> | 
|  | 6104 | I would like to thank Phil Kerr for his help for improvement and | 
|  | 6105 | corrections of this document. | 
|  | 6106 | </para> | 
|  | 6107 | <para> | 
|  | 6108 | Kevin Conder reformatted the original plain-text to the | 
|  | 6109 | DocBook format. | 
|  | 6110 | </para> | 
|  | 6111 | <para> | 
|  | 6112 | Giuliano Pochini corrected typos and contributed the example codes | 
|  | 6113 | in the hardware constraints section. | 
|  | 6114 | </para> | 
|  | 6115 | </chapter> | 
|  | 6116 |  | 
|  | 6117 |  | 
|  | 6118 | </book> |