| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 1 | #ifndef __NET_SCHED_RED_H | 
|  | 2 | #define __NET_SCHED_RED_H | 
|  | 3 |  | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 4 | #include <linux/types.h> | 
|  | 5 | #include <net/pkt_sched.h> | 
|  | 6 | #include <net/inet_ecn.h> | 
|  | 7 | #include <net/dsfield.h> | 
|  | 8 |  | 
|  | 9 | /*	Random Early Detection (RED) algorithm. | 
|  | 10 | ======================================= | 
|  | 11 |  | 
|  | 12 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
|  | 13 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
|  | 14 |  | 
|  | 15 | This file codes a "divisionless" version of RED algorithm | 
|  | 16 | as written down in Fig.17 of the paper. | 
|  | 17 |  | 
|  | 18 | Short description. | 
|  | 19 | ------------------ | 
|  | 20 |  | 
|  | 21 | When a new packet arrives we calculate the average queue length: | 
|  | 22 |  | 
|  | 23 | avg = (1-W)*avg + W*current_queue_len, | 
|  | 24 |  | 
|  | 25 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
|  | 26 | the inertia of the algorithm. To allow larger bursts, W should be | 
|  | 27 | decreased. | 
|  | 28 |  | 
|  | 29 | if (avg > th_max) -> packet marked (dropped). | 
|  | 30 | if (avg < th_min) -> packet passes. | 
|  | 31 | if (th_min < avg < th_max) we calculate probability: | 
|  | 32 |  | 
|  | 33 | Pb = max_P * (avg - th_min)/(th_max-th_min) | 
|  | 34 |  | 
|  | 35 | and mark (drop) packet with this probability. | 
|  | 36 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
|  | 37 | max_P should be small (not 1), usually 0.01..0.02 is good value. | 
|  | 38 |  | 
|  | 39 | max_P is chosen as a number, so that max_P/(th_max-th_min) | 
|  | 40 | is a negative power of two in order arithmetics to contain | 
|  | 41 | only shifts. | 
|  | 42 |  | 
|  | 43 |  | 
|  | 44 | Parameters, settable by user: | 
|  | 45 | ----------------------------- | 
|  | 46 |  | 
|  | 47 | qth_min		- bytes (should be < qth_max/2) | 
|  | 48 | qth_max		- bytes (should be at least 2*qth_min and less limit) | 
|  | 49 | Wlog	       	- bits (<32) log(1/W). | 
|  | 50 | Plog	       	- bits (<32) | 
|  | 51 |  | 
|  | 52 | Plog is related to max_P by formula: | 
|  | 53 |  | 
|  | 54 | max_P = (qth_max-qth_min)/2^Plog; | 
|  | 55 |  | 
|  | 56 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
|  | 57 | corresponds to max_P=0.02 | 
|  | 58 |  | 
|  | 59 | Scell_log | 
|  | 60 | Stab | 
|  | 61 |  | 
|  | 62 | Lookup table for log((1-W)^(t/t_ave). | 
|  | 63 |  | 
|  | 64 |  | 
|  | 65 | NOTES: | 
|  | 66 |  | 
|  | 67 | Upper bound on W. | 
|  | 68 | ----------------- | 
|  | 69 |  | 
|  | 70 | If you want to allow bursts of L packets of size S, | 
|  | 71 | you should choose W: | 
|  | 72 |  | 
|  | 73 | L + 1 - th_min/S < (1-(1-W)^L)/W | 
|  | 74 |  | 
|  | 75 | th_min/S = 32         th_min/S = 4 | 
|  | 76 |  | 
|  | 77 | log(W)	L | 
|  | 78 | -1	33 | 
|  | 79 | -2	35 | 
|  | 80 | -3	39 | 
|  | 81 | -4	46 | 
|  | 82 | -5	57 | 
|  | 83 | -6	75 | 
|  | 84 | -7	101 | 
|  | 85 | -8	135 | 
|  | 86 | -9	190 | 
|  | 87 | etc. | 
|  | 88 | */ | 
|  | 89 |  | 
|  | 90 | #define RED_STAB_SIZE	256 | 
|  | 91 | #define RED_STAB_MASK	(RED_STAB_SIZE - 1) | 
|  | 92 |  | 
|  | 93 | struct red_stats | 
|  | 94 | { | 
|  | 95 | u32		prob_drop;	/* Early probability drops */ | 
|  | 96 | u32		prob_mark;	/* Early probability marks */ | 
|  | 97 | u32		forced_drop;	/* Forced drops, qavg > max_thresh */ | 
|  | 98 | u32		forced_mark;	/* Forced marks, qavg > max_thresh */ | 
|  | 99 | u32		pdrop;          /* Drops due to queue limits */ | 
|  | 100 | u32		other;          /* Drops due to drop() calls */ | 
|  | 101 | u32		backlog; | 
|  | 102 | }; | 
|  | 103 |  | 
|  | 104 | struct red_parms | 
|  | 105 | { | 
|  | 106 | /* Parameters */ | 
|  | 107 | u32		qth_min;	/* Min avg length threshold: A scaled */ | 
|  | 108 | u32		qth_max;	/* Max avg length threshold: A scaled */ | 
|  | 109 | u32		Scell_max; | 
|  | 110 | u32		Rmask;		/* Cached random mask, see red_rmask */ | 
|  | 111 | u8		Scell_log; | 
|  | 112 | u8		Wlog;		/* log(W)		*/ | 
|  | 113 | u8		Plog;		/* random number bits	*/ | 
|  | 114 | u8		Stab[RED_STAB_SIZE]; | 
|  | 115 |  | 
|  | 116 | /* Variables */ | 
|  | 117 | int		qcount;		/* Number of packets since last random | 
|  | 118 | number generation */ | 
|  | 119 | u32		qR;		/* Cached random number */ | 
|  | 120 |  | 
|  | 121 | unsigned long	qavg;		/* Average queue length: A scaled */ | 
|  | 122 | psched_time_t	qidlestart;	/* Start of current idle period */ | 
|  | 123 | }; | 
|  | 124 |  | 
|  | 125 | static inline u32 red_rmask(u8 Plog) | 
|  | 126 | { | 
|  | 127 | return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | static inline void red_set_parms(struct red_parms *p, | 
|  | 131 | u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | 
|  | 132 | u8 Scell_log, u8 *stab) | 
|  | 133 | { | 
|  | 134 | /* Reset average queue length, the value is strictly bound | 
|  | 135 | * to the parameters below, reseting hurts a bit but leaving | 
|  | 136 | * it might result in an unreasonable qavg for a while. --TGR | 
|  | 137 | */ | 
|  | 138 | p->qavg		= 0; | 
|  | 139 |  | 
|  | 140 | p->qcount	= -1; | 
|  | 141 | p->qth_min	= qth_min << Wlog; | 
|  | 142 | p->qth_max	= qth_max << Wlog; | 
|  | 143 | p->Wlog		= Wlog; | 
|  | 144 | p->Plog		= Plog; | 
|  | 145 | p->Rmask	= red_rmask(Plog); | 
|  | 146 | p->Scell_log	= Scell_log; | 
|  | 147 | p->Scell_max	= (255 << Scell_log); | 
|  | 148 |  | 
|  | 149 | memcpy(p->Stab, stab, sizeof(p->Stab)); | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | static inline int red_is_idling(struct red_parms *p) | 
|  | 153 | { | 
|  | 154 | return !PSCHED_IS_PASTPERFECT(p->qidlestart); | 
|  | 155 | } | 
|  | 156 |  | 
|  | 157 | static inline void red_start_of_idle_period(struct red_parms *p) | 
|  | 158 | { | 
|  | 159 | PSCHED_GET_TIME(p->qidlestart); | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | static inline void red_end_of_idle_period(struct red_parms *p) | 
|  | 163 | { | 
|  | 164 | PSCHED_SET_PASTPERFECT(p->qidlestart); | 
|  | 165 | } | 
|  | 166 |  | 
|  | 167 | static inline void red_restart(struct red_parms *p) | 
|  | 168 | { | 
|  | 169 | red_end_of_idle_period(p); | 
|  | 170 | p->qavg = 0; | 
|  | 171 | p->qcount = -1; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) | 
|  | 175 | { | 
|  | 176 | psched_time_t now; | 
|  | 177 | long us_idle; | 
|  | 178 | int  shift; | 
|  | 179 |  | 
|  | 180 | PSCHED_GET_TIME(now); | 
|  | 181 | us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); | 
|  | 182 |  | 
|  | 183 | /* | 
|  | 184 | * The problem: ideally, average length queue recalcultion should | 
|  | 185 | * be done over constant clock intervals. This is too expensive, so | 
|  | 186 | * that the calculation is driven by outgoing packets. | 
|  | 187 | * When the queue is idle we have to model this clock by hand. | 
|  | 188 | * | 
|  | 189 | * SF+VJ proposed to "generate": | 
|  | 190 | * | 
|  | 191 | *	m = idletime / (average_pkt_size / bandwidth) | 
|  | 192 | * | 
|  | 193 | * dummy packets as a burst after idle time, i.e. | 
|  | 194 | * | 
|  | 195 | * 	p->qavg *= (1-W)^m | 
|  | 196 | * | 
|  | 197 | * This is an apparently overcomplicated solution (f.e. we have to | 
|  | 198 | * precompute a table to make this calculation in reasonable time) | 
|  | 199 | * I believe that a simpler model may be used here, | 
|  | 200 | * but it is field for experiments. | 
|  | 201 | */ | 
|  | 202 |  | 
|  | 203 | shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | 
|  | 204 |  | 
|  | 205 | if (shift) | 
|  | 206 | return p->qavg >> shift; | 
|  | 207 | else { | 
|  | 208 | /* Approximate initial part of exponent with linear function: | 
|  | 209 | * | 
|  | 210 | * 	(1-W)^m ~= 1-mW + ... | 
|  | 211 | * | 
|  | 212 | * Seems, it is the best solution to | 
|  | 213 | * problem of too coarse exponent tabulation. | 
|  | 214 | */ | 
| Ilpo Järvinen | c4c0ce5 | 2006-08-04 16:36:18 -0700 | [diff] [blame] | 215 | us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log; | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 216 |  | 
|  | 217 | if (us_idle < (p->qavg >> 1)) | 
|  | 218 | return p->qavg - us_idle; | 
|  | 219 | else | 
|  | 220 | return p->qavg >> 1; | 
|  | 221 | } | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, | 
|  | 225 | unsigned int backlog) | 
|  | 226 | { | 
|  | 227 | /* | 
|  | 228 | * NOTE: p->qavg is fixed point number with point at Wlog. | 
|  | 229 | * The formula below is equvalent to floating point | 
|  | 230 | * version: | 
|  | 231 | * | 
|  | 232 | * 	qavg = qavg*(1-W) + backlog*W; | 
|  | 233 | * | 
|  | 234 | * --ANK (980924) | 
|  | 235 | */ | 
|  | 236 | return p->qavg + (backlog - (p->qavg >> p->Wlog)); | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | static inline unsigned long red_calc_qavg(struct red_parms *p, | 
|  | 240 | unsigned int backlog) | 
|  | 241 | { | 
|  | 242 | if (!red_is_idling(p)) | 
|  | 243 | return red_calc_qavg_no_idle_time(p, backlog); | 
|  | 244 | else | 
|  | 245 | return red_calc_qavg_from_idle_time(p); | 
|  | 246 | } | 
|  | 247 |  | 
|  | 248 | static inline u32 red_random(struct red_parms *p) | 
|  | 249 | { | 
|  | 250 | return net_random() & p->Rmask; | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) | 
|  | 254 | { | 
|  | 255 | /* The formula used below causes questions. | 
|  | 256 |  | 
|  | 257 | OK. qR is random number in the interval 0..Rmask | 
|  | 258 | i.e. 0..(2^Plog). If we used floating point | 
|  | 259 | arithmetics, it would be: (2^Plog)*rnd_num, | 
|  | 260 | where rnd_num is less 1. | 
|  | 261 |  | 
|  | 262 | Taking into account, that qavg have fixed | 
|  | 263 | point at Wlog, and Plog is related to max_P by | 
|  | 264 | max_P = (qth_max-qth_min)/2^Plog; two lines | 
|  | 265 | below have the following floating point equivalent: | 
|  | 266 |  | 
|  | 267 | max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | 
|  | 268 |  | 
|  | 269 | Any questions? --ANK (980924) | 
|  | 270 | */ | 
|  | 271 | return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | enum { | 
|  | 275 | RED_BELOW_MIN_THRESH, | 
|  | 276 | RED_BETWEEN_TRESH, | 
|  | 277 | RED_ABOVE_MAX_TRESH, | 
|  | 278 | }; | 
|  | 279 |  | 
|  | 280 | static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) | 
|  | 281 | { | 
|  | 282 | if (qavg < p->qth_min) | 
|  | 283 | return RED_BELOW_MIN_THRESH; | 
|  | 284 | else if (qavg >= p->qth_max) | 
|  | 285 | return RED_ABOVE_MAX_TRESH; | 
|  | 286 | else | 
|  | 287 | return RED_BETWEEN_TRESH; | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | enum { | 
|  | 291 | RED_DONT_MARK, | 
|  | 292 | RED_PROB_MARK, | 
|  | 293 | RED_HARD_MARK, | 
|  | 294 | }; | 
|  | 295 |  | 
|  | 296 | static inline int red_action(struct red_parms *p, unsigned long qavg) | 
|  | 297 | { | 
|  | 298 | switch (red_cmp_thresh(p, qavg)) { | 
|  | 299 | case RED_BELOW_MIN_THRESH: | 
|  | 300 | p->qcount = -1; | 
|  | 301 | return RED_DONT_MARK; | 
|  | 302 |  | 
|  | 303 | case RED_BETWEEN_TRESH: | 
|  | 304 | if (++p->qcount) { | 
|  | 305 | if (red_mark_probability(p, qavg)) { | 
|  | 306 | p->qcount = 0; | 
|  | 307 | p->qR = red_random(p); | 
|  | 308 | return RED_PROB_MARK; | 
|  | 309 | } | 
|  | 310 | } else | 
|  | 311 | p->qR = red_random(p); | 
|  | 312 |  | 
|  | 313 | return RED_DONT_MARK; | 
|  | 314 |  | 
|  | 315 | case RED_ABOVE_MAX_TRESH: | 
|  | 316 | p->qcount = -1; | 
|  | 317 | return RED_HARD_MARK; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | BUG(); | 
|  | 321 | return RED_DONT_MARK; | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | #endif |