blob: f43c18d2d7e114fd01a8a13cca224caba73bd6c6 [file] [log] [blame]
Andi Kleen6a460792009-09-16 11:50:15 +02001/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
Andi Kleen1c80b992010-09-27 23:09:51 +020010 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
Andi Kleen6a460792009-09-16 11:50:15 +020011 * failure.
Andi Kleen1c80b992010-09-27 23:09:51 +020012 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
Andi Kleen6a460792009-09-16 11:50:15 +020015 *
16 * Handles page cache pages in various states. The tricky part
Andi Kleen1c80b992010-09-27 23:09:51 +020017 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
Andi Kleen6a460792009-09-16 11:50:15 +020030 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
Andi Kleen6a460792009-09-16 11:50:15 +020038#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
Wu Fengguang478c5ff2009-12-16 12:19:59 +010041#include <linux/kernel-page-flags.h>
Andi Kleen6a460792009-09-16 11:50:15 +020042#include <linux/sched.h>
Hugh Dickins01e00f82009-10-13 15:02:11 +010043#include <linux/ksm.h>
Andi Kleen6a460792009-09-16 11:50:15 +020044#include <linux/rmap.h>
Paul Gortmakerb9e15ba2011-05-26 16:00:52 -040045#include <linux/export.h>
Andi Kleen6a460792009-09-16 11:50:15 +020046#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
Andi Kleenfacb6012009-12-16 12:20:00 +010049#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090052#include <linux/slab.h>
Huang Yingbf998152010-05-31 14:28:19 +080053#include <linux/swapops.h>
Naoya Horiguchi7af446a2010-05-28 09:29:17 +090054#include <linux/hugetlb.h>
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -080055#include <linux/memory_hotplug.h>
Minchan Kim5db8a732011-06-15 15:08:48 -070056#include <linux/mm_inline.h>
Huang Yingea8f5fb2011-07-13 13:14:27 +080057#include <linux/kfifo.h>
Andi Kleen6a460792009-09-16 11:50:15 +020058#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
Andi Kleen27df5062009-12-21 19:56:42 +010066#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010068u32 hwpoison_filter_enable = 0;
Wu Fengguang7c116f22009-12-16 12:19:59 +010069u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
Wu Fengguang478c5ff2009-12-16 12:19:59 +010071u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
Haicheng Li1bfe5fe2009-12-16 12:19:59 +010073EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
Wu Fengguang7c116f22009-12-16 12:19:59 +010074EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
Wu Fengguang478c5ff2009-12-16 12:19:59 +010076EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
Wu Fengguang7c116f22009-12-16 12:19:59 +010078
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
Andi Kleen1c80b992010-09-27 23:09:51 +020089 * page_mapping() does not accept slab pages.
Wu Fengguang7c116f22009-12-16 12:19:59 +010090 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
Andi Kleen4fd466e2009-12-16 12:19:59 +0100121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
151
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
154
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
157
158 return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
Wu Fengguang7c116f22009-12-16 12:19:59 +0100164int hwpoison_filter(struct page *p)
165{
Haicheng Li1bfe5fe2009-12-16 12:19:59 +0100166 if (!hwpoison_filter_enable)
167 return 0;
168
Wu Fengguang7c116f22009-12-16 12:19:59 +0100169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
171
Wu Fengguang478c5ff2009-12-16 12:19:59 +0100172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
174
Andi Kleen4fd466e2009-12-16 12:19:59 +0100175 if (hwpoison_filter_task(p))
176 return -EINVAL;
177
Wu Fengguang7c116f22009-12-16 12:19:59 +0100178 return 0;
179}
Andi Kleen27df5062009-12-21 19:56:42 +0100180#else
181int hwpoison_filter(struct page *p)
182{
183 return 0;
184}
185#endif
186
Wu Fengguang7c116f22009-12-16 12:19:59 +0100187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
Andi Kleen6a460792009-09-16 11:50:15 +0200189/*
Tony Luck7329bbe2011-12-13 09:27:58 -0800190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
Andi Kleen6a460792009-09-16 11:50:15 +0200193 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800194static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200196{
197 struct siginfo si;
198 int ret;
199
200 printk(KERN_ERR
Tony Luck7329bbe2011-12-13 09:27:58 -0800201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
Andi Kleen6a460792009-09-16 11:50:15 +0200205 si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208#endif
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800209 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
Tony Luck7329bbe2011-12-13 09:27:58 -0800210
Tony Luckcf8c8ae2014-06-04 16:10:59 -0700211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
Tony Luck7329bbe2011-12-13 09:27:58 -0800212 si.si_code = BUS_MCEERR_AR;
Tony Luckcf8c8ae2014-06-04 16:10:59 -0700213 ret = force_sig_info(SIGBUS, &si, current);
Tony Luck7329bbe2011-12-13 09:27:58 -0800214 } else {
215 /*
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
220 */
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223 }
Andi Kleen6a460792009-09-16 11:50:15 +0200224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
228}
229
230/*
Andi Kleen588f9ce2009-12-16 12:19:57 +0100231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
233 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100234void shake_page(struct page *p, int access)
Andi Kleen588f9ce2009-12-16 12:19:57 +0100235{
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
243 }
Andi Kleenfacb6012009-12-16 12:20:00 +0100244
Andi Kleen588f9ce2009-12-16 12:19:57 +0100245 /*
Jin Dongmingaf241a02011-02-01 15:52:41 -0800246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
Andi Kleen588f9ce2009-12-16 12:19:57 +0100248 */
Andi Kleenfacb6012009-12-16 12:20:00 +0100249 if (access) {
250 int nr;
251 do {
Ying Hana09ed5e2011-05-24 17:12:26 -0700252 struct shrink_control shrink = {
253 .gfp_mask = GFP_KERNEL,
Ying Hana09ed5e2011-05-24 17:12:26 -0700254 };
255
Ying Han1495f232011-05-24 17:12:27 -0700256 nr = shrink_slab(&shrink, 1000, 1000);
Andi Kleen47f43e72010-09-28 07:37:55 +0200257 if (page_count(p) == 1)
Andi Kleenfacb6012009-12-16 12:20:00 +0100258 break;
259 } while (nr > 10);
260 }
Andi Kleen588f9ce2009-12-16 12:19:57 +0100261}
262EXPORT_SYMBOL_GPL(shake_page);
263
264/*
Andi Kleen6a460792009-09-16 11:50:15 +0200265 * Kill all processes that have a poisoned page mapped and then isolate
266 * the page.
267 *
268 * General strategy:
269 * Find all processes having the page mapped and kill them.
270 * But we keep a page reference around so that the page is not
271 * actually freed yet.
272 * Then stash the page away
273 *
274 * There's no convenient way to get back to mapped processes
275 * from the VMAs. So do a brute-force search over all
276 * running processes.
277 *
278 * Remember that machine checks are not common (or rather
279 * if they are common you have other problems), so this shouldn't
280 * be a performance issue.
281 *
282 * Also there are some races possible while we get from the
283 * error detection to actually handle it.
284 */
285
286struct to_kill {
287 struct list_head nd;
288 struct task_struct *tsk;
289 unsigned long addr;
Andi Kleen9033ae12010-09-27 23:36:05 +0200290 char addr_valid;
Andi Kleen6a460792009-09-16 11:50:15 +0200291};
292
293/*
294 * Failure handling: if we can't find or can't kill a process there's
295 * not much we can do. We just print a message and ignore otherwise.
296 */
297
298/*
299 * Schedule a process for later kill.
300 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301 * TBD would GFP_NOIO be enough?
302 */
303static void add_to_kill(struct task_struct *tsk, struct page *p,
304 struct vm_area_struct *vma,
305 struct list_head *to_kill,
306 struct to_kill **tkc)
307{
308 struct to_kill *tk;
309
310 if (*tkc) {
311 tk = *tkc;
312 *tkc = NULL;
313 } else {
314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 if (!tk) {
316 printk(KERN_ERR
317 "MCE: Out of memory while machine check handling\n");
318 return;
319 }
320 }
321 tk->addr = page_address_in_vma(p, vma);
322 tk->addr_valid = 1;
323
324 /*
325 * In theory we don't have to kill when the page was
326 * munmaped. But it could be also a mremap. Since that's
327 * likely very rare kill anyways just out of paranoia, but use
328 * a SIGKILL because the error is not contained anymore.
329 */
330 if (tk->addr == -EFAULT) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200331 pr_info("MCE: Unable to find user space address %lx in %s\n",
Andi Kleen6a460792009-09-16 11:50:15 +0200332 page_to_pfn(p), tsk->comm);
333 tk->addr_valid = 0;
334 }
335 get_task_struct(tsk);
336 tk->tsk = tsk;
337 list_add_tail(&tk->nd, to_kill);
338}
339
340/*
341 * Kill the processes that have been collected earlier.
342 *
343 * Only do anything when DOIT is set, otherwise just free the list
344 * (this is used for clean pages which do not need killing)
345 * Also when FAIL is set do a force kill because something went
346 * wrong earlier.
347 */
Tony Luck7b689c52012-07-11 10:20:47 -0700348static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800349 int fail, struct page *page, unsigned long pfn,
350 int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200351{
352 struct to_kill *tk, *next;
353
354 list_for_each_entry_safe (tk, next, to_kill, nd) {
Tony Luck7b689c52012-07-11 10:20:47 -0700355 if (forcekill) {
Andi Kleen6a460792009-09-16 11:50:15 +0200356 /*
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200357 * In case something went wrong with munmapping
Andi Kleen6a460792009-09-16 11:50:15 +0200358 * make sure the process doesn't catch the
359 * signal and then access the memory. Just kill it.
Andi Kleen6a460792009-09-16 11:50:15 +0200360 */
361 if (fail || tk->addr_valid == 0) {
362 printk(KERN_ERR
363 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364 pfn, tk->tsk->comm, tk->tsk->pid);
365 force_sig(SIGKILL, tk->tsk);
366 }
367
368 /*
369 * In theory the process could have mapped
370 * something else on the address in-between. We could
371 * check for that, but we need to tell the
372 * process anyways.
373 */
Tony Luck7329bbe2011-12-13 09:27:58 -0800374 else if (kill_proc(tk->tsk, tk->addr, trapno,
375 pfn, page, flags) < 0)
Andi Kleen6a460792009-09-16 11:50:15 +0200376 printk(KERN_ERR
377 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378 pfn, tk->tsk->comm, tk->tsk->pid);
379 }
380 put_task_struct(tk->tsk);
381 kfree(tk);
382 }
383}
384
385static int task_early_kill(struct task_struct *tsk)
386{
387 if (!tsk->mm)
388 return 0;
389 if (tsk->flags & PF_MCE_PROCESS)
390 return !!(tsk->flags & PF_MCE_EARLY);
391 return sysctl_memory_failure_early_kill;
392}
393
394/*
395 * Collect processes when the error hit an anonymous page.
396 */
397static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398 struct to_kill **tkc)
399{
400 struct vm_area_struct *vma;
401 struct task_struct *tsk;
402 struct anon_vma *av;
403
Andi Kleen6a460792009-09-16 11:50:15 +0200404 av = page_lock_anon_vma(page);
405 if (av == NULL) /* Not actually mapped anymore */
Peter Zijlstra9b679322011-06-27 16:18:09 -0700406 return;
407
408 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200409 for_each_process (tsk) {
Rik van Riel5beb4932010-03-05 13:42:07 -0800410 struct anon_vma_chain *vmac;
411
Andi Kleen6a460792009-09-16 11:50:15 +0200412 if (!task_early_kill(tsk))
413 continue;
Rik van Riel5beb4932010-03-05 13:42:07 -0800414 list_for_each_entry(vmac, &av->head, same_anon_vma) {
415 vma = vmac->vma;
Andi Kleen6a460792009-09-16 11:50:15 +0200416 if (!page_mapped_in_vma(page, vma))
417 continue;
418 if (vma->vm_mm == tsk->mm)
419 add_to_kill(tsk, page, vma, to_kill, tkc);
420 }
421 }
Andi Kleen6a460792009-09-16 11:50:15 +0200422 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700423 page_unlock_anon_vma(av);
Andi Kleen6a460792009-09-16 11:50:15 +0200424}
425
426/*
427 * Collect processes when the error hit a file mapped page.
428 */
429static void collect_procs_file(struct page *page, struct list_head *to_kill,
430 struct to_kill **tkc)
431{
432 struct vm_area_struct *vma;
433 struct task_struct *tsk;
434 struct prio_tree_iter iter;
435 struct address_space *mapping = page->mapping;
436
Peter Zijlstra3d48ae42011-05-24 17:12:06 -0700437 mutex_lock(&mapping->i_mmap_mutex);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700438 read_lock(&tasklist_lock);
Andi Kleen6a460792009-09-16 11:50:15 +0200439 for_each_process(tsk) {
440 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441
442 if (!task_early_kill(tsk))
443 continue;
444
445 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
446 pgoff) {
447 /*
448 * Send early kill signal to tasks where a vma covers
449 * the page but the corrupted page is not necessarily
450 * mapped it in its pte.
451 * Assume applications who requested early kill want
452 * to be informed of all such data corruptions.
453 */
454 if (vma->vm_mm == tsk->mm)
455 add_to_kill(tsk, page, vma, to_kill, tkc);
456 }
457 }
Andi Kleen6a460792009-09-16 11:50:15 +0200458 read_unlock(&tasklist_lock);
Peter Zijlstra9b679322011-06-27 16:18:09 -0700459 mutex_unlock(&mapping->i_mmap_mutex);
Andi Kleen6a460792009-09-16 11:50:15 +0200460}
461
462/*
463 * Collect the processes who have the corrupted page mapped to kill.
464 * This is done in two steps for locking reasons.
465 * First preallocate one tokill structure outside the spin locks,
466 * so that we can kill at least one process reasonably reliable.
467 */
468static void collect_procs(struct page *page, struct list_head *tokill)
469{
470 struct to_kill *tk;
471
472 if (!page->mapping)
473 return;
474
475 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 if (!tk)
477 return;
478 if (PageAnon(page))
479 collect_procs_anon(page, tokill, &tk);
480 else
481 collect_procs_file(page, tokill, &tk);
482 kfree(tk);
483}
484
485/*
486 * Error handlers for various types of pages.
487 */
488
489enum outcome {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100490 IGNORED, /* Error: cannot be handled */
491 FAILED, /* Error: handling failed */
Andi Kleen6a460792009-09-16 11:50:15 +0200492 DELAYED, /* Will be handled later */
Andi Kleen6a460792009-09-16 11:50:15 +0200493 RECOVERED, /* Successfully recovered */
494};
495
496static const char *action_name[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100497 [IGNORED] = "Ignored",
Andi Kleen6a460792009-09-16 11:50:15 +0200498 [FAILED] = "Failed",
499 [DELAYED] = "Delayed",
Andi Kleen6a460792009-09-16 11:50:15 +0200500 [RECOVERED] = "Recovered",
501};
502
503/*
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100504 * XXX: It is possible that a page is isolated from LRU cache,
505 * and then kept in swap cache or failed to remove from page cache.
506 * The page count will stop it from being freed by unpoison.
507 * Stress tests should be aware of this memory leak problem.
508 */
509static int delete_from_lru_cache(struct page *p)
510{
511 if (!isolate_lru_page(p)) {
512 /*
513 * Clear sensible page flags, so that the buddy system won't
514 * complain when the page is unpoison-and-freed.
515 */
516 ClearPageActive(p);
517 ClearPageUnevictable(p);
518 /*
519 * drop the page count elevated by isolate_lru_page()
520 */
521 page_cache_release(p);
522 return 0;
523 }
524 return -EIO;
525}
526
527/*
Andi Kleen6a460792009-09-16 11:50:15 +0200528 * Error hit kernel page.
529 * Do nothing, try to be lucky and not touch this instead. For a few cases we
530 * could be more sophisticated.
531 */
532static int me_kernel(struct page *p, unsigned long pfn)
533{
Andi Kleen6a460792009-09-16 11:50:15 +0200534 return IGNORED;
535}
536
537/*
538 * Page in unknown state. Do nothing.
539 */
540static int me_unknown(struct page *p, unsigned long pfn)
541{
542 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 return FAILED;
544}
545
546/*
Andi Kleen6a460792009-09-16 11:50:15 +0200547 * Clean (or cleaned) page cache page.
548 */
549static int me_pagecache_clean(struct page *p, unsigned long pfn)
550{
551 int err;
552 int ret = FAILED;
553 struct address_space *mapping;
554
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100555 delete_from_lru_cache(p);
556
Andi Kleen6a460792009-09-16 11:50:15 +0200557 /*
558 * For anonymous pages we're done the only reference left
559 * should be the one m_f() holds.
560 */
561 if (PageAnon(p))
562 return RECOVERED;
563
564 /*
565 * Now truncate the page in the page cache. This is really
566 * more like a "temporary hole punch"
567 * Don't do this for block devices when someone else
568 * has a reference, because it could be file system metadata
569 * and that's not safe to truncate.
570 */
571 mapping = page_mapping(p);
572 if (!mapping) {
573 /*
574 * Page has been teared down in the meanwhile
575 */
576 return FAILED;
577 }
578
579 /*
580 * Truncation is a bit tricky. Enable it per file system for now.
581 *
582 * Open: to take i_mutex or not for this? Right now we don't.
583 */
584 if (mapping->a_ops->error_remove_page) {
585 err = mapping->a_ops->error_remove_page(mapping, p);
586 if (err != 0) {
587 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 pfn, err);
589 } else if (page_has_private(p) &&
590 !try_to_release_page(p, GFP_NOIO)) {
Andi Kleenfb46e732010-09-27 23:31:30 +0200591 pr_info("MCE %#lx: failed to release buffers\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200592 } else {
593 ret = RECOVERED;
594 }
595 } else {
596 /*
597 * If the file system doesn't support it just invalidate
598 * This fails on dirty or anything with private pages
599 */
600 if (invalidate_inode_page(p))
601 ret = RECOVERED;
602 else
603 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 pfn);
605 }
606 return ret;
607}
608
609/*
610 * Dirty cache page page
611 * Issues: when the error hit a hole page the error is not properly
612 * propagated.
613 */
614static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615{
616 struct address_space *mapping = page_mapping(p);
617
618 SetPageError(p);
619 /* TBD: print more information about the file. */
620 if (mapping) {
621 /*
622 * IO error will be reported by write(), fsync(), etc.
623 * who check the mapping.
624 * This way the application knows that something went
625 * wrong with its dirty file data.
626 *
627 * There's one open issue:
628 *
629 * The EIO will be only reported on the next IO
630 * operation and then cleared through the IO map.
631 * Normally Linux has two mechanisms to pass IO error
632 * first through the AS_EIO flag in the address space
633 * and then through the PageError flag in the page.
634 * Since we drop pages on memory failure handling the
635 * only mechanism open to use is through AS_AIO.
636 *
637 * This has the disadvantage that it gets cleared on
638 * the first operation that returns an error, while
639 * the PageError bit is more sticky and only cleared
640 * when the page is reread or dropped. If an
641 * application assumes it will always get error on
642 * fsync, but does other operations on the fd before
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300643 * and the page is dropped between then the error
Andi Kleen6a460792009-09-16 11:50:15 +0200644 * will not be properly reported.
645 *
646 * This can already happen even without hwpoisoned
647 * pages: first on metadata IO errors (which only
648 * report through AS_EIO) or when the page is dropped
649 * at the wrong time.
650 *
651 * So right now we assume that the application DTRT on
652 * the first EIO, but we're not worse than other parts
653 * of the kernel.
654 */
655 mapping_set_error(mapping, EIO);
656 }
657
658 return me_pagecache_clean(p, pfn);
659}
660
661/*
662 * Clean and dirty swap cache.
663 *
664 * Dirty swap cache page is tricky to handle. The page could live both in page
665 * cache and swap cache(ie. page is freshly swapped in). So it could be
666 * referenced concurrently by 2 types of PTEs:
667 * normal PTEs and swap PTEs. We try to handle them consistently by calling
668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669 * and then
670 * - clear dirty bit to prevent IO
671 * - remove from LRU
672 * - but keep in the swap cache, so that when we return to it on
673 * a later page fault, we know the application is accessing
674 * corrupted data and shall be killed (we installed simple
675 * interception code in do_swap_page to catch it).
676 *
677 * Clean swap cache pages can be directly isolated. A later page fault will
678 * bring in the known good data from disk.
679 */
680static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681{
Andi Kleen6a460792009-09-16 11:50:15 +0200682 ClearPageDirty(p);
683 /* Trigger EIO in shmem: */
684 ClearPageUptodate(p);
685
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100686 if (!delete_from_lru_cache(p))
687 return DELAYED;
688 else
689 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200690}
691
692static int me_swapcache_clean(struct page *p, unsigned long pfn)
693{
Andi Kleen6a460792009-09-16 11:50:15 +0200694 delete_from_swap_cache(p);
Wu Fengguange43c3af2009-09-29 13:16:20 +0800695
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +0100696 if (!delete_from_lru_cache(p))
697 return RECOVERED;
698 else
699 return FAILED;
Andi Kleen6a460792009-09-16 11:50:15 +0200700}
701
702/*
703 * Huge pages. Needs work.
704 * Issues:
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706 * To narrow down kill region to one page, we need to break up pmd.
Andi Kleen6a460792009-09-16 11:50:15 +0200707 */
708static int me_huge_page(struct page *p, unsigned long pfn)
709{
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900710 int res = 0;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900711 struct page *hpage = compound_head(p);
712 /*
713 * We can safely recover from error on free or reserved (i.e.
714 * not in-use) hugepage by dequeuing it from freelist.
715 * To check whether a hugepage is in-use or not, we can't use
716 * page->lru because it can be used in other hugepage operations,
717 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 * So instead we use page_mapping() and PageAnon().
719 * We assume that this function is called with page lock held,
720 * so there is no race between isolation and mapping/unmapping.
721 */
722 if (!(page_mapping(hpage) || PageAnon(hpage))) {
Naoya Horiguchi6de2b1a2010-09-08 10:19:36 +0900723 res = dequeue_hwpoisoned_huge_page(hpage);
724 if (!res)
725 return RECOVERED;
Naoya Horiguchi93f70f92010-05-28 09:29:20 +0900726 }
727 return DELAYED;
Andi Kleen6a460792009-09-16 11:50:15 +0200728}
729
730/*
731 * Various page states we can handle.
732 *
733 * A page state is defined by its current page->flags bits.
734 * The table matches them in order and calls the right handler.
735 *
736 * This is quite tricky because we can access page at any time
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300737 * in its live cycle, so all accesses have to be extremely careful.
Andi Kleen6a460792009-09-16 11:50:15 +0200738 *
739 * This is not complete. More states could be added.
740 * For any missing state don't attempt recovery.
741 */
742
743#define dirty (1UL << PG_dirty)
744#define sc (1UL << PG_swapcache)
745#define unevict (1UL << PG_unevictable)
746#define mlock (1UL << PG_mlocked)
747#define writeback (1UL << PG_writeback)
748#define lru (1UL << PG_lru)
749#define swapbacked (1UL << PG_swapbacked)
750#define head (1UL << PG_head)
751#define tail (1UL << PG_tail)
752#define compound (1UL << PG_compound)
753#define slab (1UL << PG_slab)
Andi Kleen6a460792009-09-16 11:50:15 +0200754#define reserved (1UL << PG_reserved)
755
756static struct page_state {
757 unsigned long mask;
758 unsigned long res;
759 char *msg;
760 int (*action)(struct page *p, unsigned long pfn);
761} error_states[] = {
Wu Fengguangd95ea512009-12-16 12:19:58 +0100762 { reserved, reserved, "reserved kernel", me_kernel },
Wu Fengguang95d01fc2009-12-16 12:19:58 +0100763 /*
764 * free pages are specially detected outside this table:
765 * PG_buddy pages only make a small fraction of all free pages.
766 */
Andi Kleen6a460792009-09-16 11:50:15 +0200767
768 /*
769 * Could in theory check if slab page is free or if we can drop
770 * currently unused objects without touching them. But just
771 * treat it as standard kernel for now.
772 */
773 { slab, slab, "kernel slab", me_kernel },
774
775#ifdef CONFIG_PAGEFLAGS_EXTENDED
776 { head, head, "huge", me_huge_page },
777 { tail, tail, "huge", me_huge_page },
778#else
779 { compound, compound, "huge", me_huge_page },
780#endif
781
782 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
783 { sc|dirty, sc, "swapcache", me_swapcache_clean },
784
785 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
786 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
787
Andi Kleen6a460792009-09-16 11:50:15 +0200788 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
789 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200790
791 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
792 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
Andi Kleen6a460792009-09-16 11:50:15 +0200793
794 /*
795 * Catchall entry: must be at end.
796 */
797 { 0, 0, "unknown page state", me_unknown },
798};
799
Andi Kleen2326c462009-12-16 12:20:00 +0100800#undef dirty
801#undef sc
802#undef unevict
803#undef mlock
804#undef writeback
805#undef lru
806#undef swapbacked
807#undef head
808#undef tail
809#undef compound
810#undef slab
811#undef reserved
812
Andi Kleen6a460792009-09-16 11:50:15 +0200813static void action_result(unsigned long pfn, char *msg, int result)
814{
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100815 struct page *page = pfn_to_page(pfn);
Andi Kleen6a460792009-09-16 11:50:15 +0200816
817 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
818 pfn,
Wu Fengguanga7560fc2009-12-16 12:19:57 +0100819 PageDirty(page) ? "dirty " : "",
Andi Kleen6a460792009-09-16 11:50:15 +0200820 msg, action_name[result]);
821}
822
823static int page_action(struct page_state *ps, struct page *p,
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100824 unsigned long pfn)
Andi Kleen6a460792009-09-16 11:50:15 +0200825{
826 int result;
Wu Fengguang7456b042009-10-19 08:15:01 +0200827 int count;
Andi Kleen6a460792009-09-16 11:50:15 +0200828
829 result = ps->action(p, pfn);
830 action_result(pfn, ps->msg, result);
Wu Fengguang7456b042009-10-19 08:15:01 +0200831
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +0100832 count = page_count(p) - 1;
Wu Fengguang138ce282009-12-16 12:19:58 +0100833 if (ps->action == me_swapcache_dirty && result == DELAYED)
834 count--;
835 if (count != 0) {
Andi Kleen6a460792009-09-16 11:50:15 +0200836 printk(KERN_ERR
837 "MCE %#lx: %s page still referenced by %d users\n",
Wu Fengguang7456b042009-10-19 08:15:01 +0200838 pfn, ps->msg, count);
Wu Fengguang138ce282009-12-16 12:19:58 +0100839 result = FAILED;
840 }
Andi Kleen6a460792009-09-16 11:50:15 +0200841
842 /* Could do more checks here if page looks ok */
843 /*
844 * Could adjust zone counters here to correct for the missing page.
845 */
846
Wu Fengguang138ce282009-12-16 12:19:58 +0100847 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +0200848}
849
Andi Kleen6a460792009-09-16 11:50:15 +0200850/*
851 * Do all that is necessary to remove user space mappings. Unmap
852 * the pages and send SIGBUS to the processes if the data was dirty.
853 */
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100854static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
Tony Luck7329bbe2011-12-13 09:27:58 -0800855 int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +0200856{
857 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 struct address_space *mapping;
859 LIST_HEAD(tokill);
860 int ret;
Tony Luck7b689c52012-07-11 10:20:47 -0700861 int kill = 1, forcekill;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900862 struct page *hpage = compound_head(p);
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800863 struct page *ppage;
Andi Kleen6a460792009-09-16 11:50:15 +0200864
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100865 if (PageReserved(p) || PageSlab(p))
866 return SWAP_SUCCESS;
Andi Kleen6a460792009-09-16 11:50:15 +0200867
Andi Kleen6a460792009-09-16 11:50:15 +0200868 /*
869 * This check implies we don't kill processes if their pages
870 * are in the swap cache early. Those are always late kills.
871 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900872 if (!page_mapped(hpage))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100873 return SWAP_SUCCESS;
874
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900875 if (PageKsm(p))
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100876 return SWAP_FAIL;
Andi Kleen6a460792009-09-16 11:50:15 +0200877
878 if (PageSwapCache(p)) {
879 printk(KERN_ERR
880 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 ttu |= TTU_IGNORE_HWPOISON;
882 }
883
884 /*
885 * Propagate the dirty bit from PTEs to struct page first, because we
886 * need this to decide if we should kill or just drop the page.
Wu Fengguangdb0480b2009-12-16 12:19:58 +0100887 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 * be called inside page lock (it's recommended but not enforced).
Andi Kleen6a460792009-09-16 11:50:15 +0200889 */
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900890 mapping = page_mapping(hpage);
Tony Luck7b689c52012-07-11 10:20:47 -0700891 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +0900892 mapping_cap_writeback_dirty(mapping)) {
893 if (page_mkclean(hpage)) {
894 SetPageDirty(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +0200895 } else {
896 kill = 0;
897 ttu |= TTU_IGNORE_HWPOISON;
898 printk(KERN_INFO
899 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 pfn);
901 }
902 }
903
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800904 /*
905 * ppage: poisoned page
906 * if p is regular page(4k page)
907 * ppage == real poisoned page;
908 * else p is hugetlb or THP, ppage == head page.
909 */
910 ppage = hpage;
911
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800912 if (PageTransHuge(hpage)) {
913 /*
914 * Verify that this isn't a hugetlbfs head page, the check for
915 * PageAnon is just for avoid tripping a split_huge_page
916 * internal debug check, as split_huge_page refuses to deal with
917 * anything that isn't an anon page. PageAnon can't go away fro
918 * under us because we hold a refcount on the hpage, without a
919 * refcount on the hpage. split_huge_page can't be safely called
920 * in the first place, having a refcount on the tail isn't
921 * enough * to be safe.
922 */
923 if (!PageHuge(hpage) && PageAnon(hpage)) {
924 if (unlikely(split_huge_page(hpage))) {
925 /*
926 * FIXME: if splitting THP is failed, it is
927 * better to stop the following operation rather
928 * than causing panic by unmapping. System might
929 * survive if the page is freed later.
930 */
931 printk(KERN_INFO
932 "MCE %#lx: failed to split THP\n", pfn);
933
934 BUG_ON(!PageHWPoison(p));
935 return SWAP_FAIL;
936 }
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800937 /* THP is split, so ppage should be the real poisoned page. */
938 ppage = p;
Jin Dongmingefeda7a2011-02-01 15:52:39 -0800939 }
940 }
941
Andi Kleen6a460792009-09-16 11:50:15 +0200942 /*
943 * First collect all the processes that have the page
944 * mapped in dirty form. This has to be done before try_to_unmap,
945 * because ttu takes the rmap data structures down.
946 *
947 * Error handling: We ignore errors here because
948 * there's nothing that can be done.
949 */
950 if (kill)
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800951 collect_procs(ppage, &tokill);
Andi Kleen6a460792009-09-16 11:50:15 +0200952
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800953 if (hpage != ppage)
Jens Axboe7eaceac2011-03-10 08:52:07 +0100954 lock_page(ppage);
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800955
956 ret = try_to_unmap(ppage, ttu);
Andi Kleen6a460792009-09-16 11:50:15 +0200957 if (ret != SWAP_SUCCESS)
958 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
Jin Dongminga6d30dd2011-02-01 15:52:40 -0800959 pfn, page_mapcount(ppage));
960
961 if (hpage != ppage)
962 unlock_page(ppage);
Andi Kleen6a460792009-09-16 11:50:15 +0200963
964 /*
965 * Now that the dirty bit has been propagated to the
966 * struct page and all unmaps done we can decide if
967 * killing is needed or not. Only kill when the page
Tony Luck7b689c52012-07-11 10:20:47 -0700968 * was dirty or the process is not restartable,
969 * otherwise the tokill list is merely
Andi Kleen6a460792009-09-16 11:50:15 +0200970 * freed. When there was a problem unmapping earlier
971 * use a more force-full uncatchable kill to prevent
972 * any accesses to the poisoned memory.
973 */
Tony Luck7b689c52012-07-11 10:20:47 -0700974 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
975 kill_procs(&tokill, forcekill, trapno,
Tony Luck7329bbe2011-12-13 09:27:58 -0800976 ret != SWAP_SUCCESS, p, pfn, flags);
Wu Fengguang1668bfd2009-12-16 12:19:58 +0100977
978 return ret;
Andi Kleen6a460792009-09-16 11:50:15 +0200979}
980
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900981static void set_page_hwpoison_huge_page(struct page *hpage)
982{
983 int i;
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800984 int nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900985 for (i = 0; i < nr_pages; i++)
986 SetPageHWPoison(hpage + i);
987}
988
989static void clear_page_hwpoison_huge_page(struct page *hpage)
990{
991 int i;
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -0800992 int nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchi7013feb2010-05-28 09:29:18 +0900993 for (i = 0; i < nr_pages; i++)
994 ClearPageHWPoison(hpage + i);
995}
996
Tony Luckcd42f4a2011-12-15 10:48:12 -0800997/**
998 * memory_failure - Handle memory failure of a page.
999 * @pfn: Page Number of the corrupted page
1000 * @trapno: Trap number reported in the signal to user space.
1001 * @flags: fine tune action taken
1002 *
1003 * This function is called by the low level machine check code
1004 * of an architecture when it detects hardware memory corruption
1005 * of a page. It tries its best to recover, which includes
1006 * dropping pages, killing processes etc.
1007 *
1008 * The function is primarily of use for corruptions that
1009 * happen outside the current execution context (e.g. when
1010 * detected by a background scrubber)
1011 *
1012 * Must run in process context (e.g. a work queue) with interrupts
1013 * enabled and no spinlocks hold.
1014 */
1015int memory_failure(unsigned long pfn, int trapno, int flags)
Andi Kleen6a460792009-09-16 11:50:15 +02001016{
1017 struct page_state *ps;
1018 struct page *p;
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001019 struct page *hpage;
Andi Kleen6a460792009-09-16 11:50:15 +02001020 int res;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001021 unsigned int nr_pages;
Andi Kleen6a460792009-09-16 11:50:15 +02001022
1023 if (!sysctl_memory_failure_recovery)
1024 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1025
1026 if (!pfn_valid(pfn)) {
Wu Fengguanga7560fc2009-12-16 12:19:57 +01001027 printk(KERN_ERR
1028 "MCE %#lx: memory outside kernel control\n",
1029 pfn);
1030 return -ENXIO;
Andi Kleen6a460792009-09-16 11:50:15 +02001031 }
1032
1033 p = pfn_to_page(pfn);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001034 hpage = compound_head(p);
Andi Kleen6a460792009-09-16 11:50:15 +02001035 if (TestSetPageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001036 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001037 return 0;
1038 }
1039
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -08001040 nr_pages = 1 << compound_trans_order(hpage);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001041 atomic_long_add(nr_pages, &mce_bad_pages);
Andi Kleen6a460792009-09-16 11:50:15 +02001042
1043 /*
1044 * We need/can do nothing about count=0 pages.
1045 * 1) it's a free page, and therefore in safe hand:
1046 * prep_new_page() will be the gate keeper.
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001047 * 2) it's a free hugepage, which is also safe:
1048 * an affected hugepage will be dequeued from hugepage freelist,
1049 * so there's no concern about reusing it ever after.
1050 * 3) it's part of a non-compound high order page.
Andi Kleen6a460792009-09-16 11:50:15 +02001051 * Implies some kernel user: cannot stop them from
1052 * R/W the page; let's pray that the page has been
1053 * used and will be freed some time later.
1054 * In fact it's dangerous to directly bump up page count from 0,
1055 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1056 */
Andi Kleen82ba0112009-12-16 12:19:57 +01001057 if (!(flags & MF_COUNT_INCREASED) &&
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001058 !get_page_unless_zero(hpage)) {
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001059 if (is_free_buddy_page(p)) {
1060 action_result(pfn, "free buddy", DELAYED);
1061 return 0;
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001062 } else if (PageHuge(hpage)) {
1063 /*
Chen Yucongca604962014-05-22 11:54:15 -07001064 * Check "filter hit" and "race with other subpage."
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001065 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001066 lock_page(hpage);
Chen Yucongca604962014-05-22 11:54:15 -07001067 if (PageHWPoison(hpage)) {
1068 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1069 || (p != hpage && TestSetPageHWPoison(hpage))) {
1070 atomic_long_sub(nr_pages, &mce_bad_pages);
1071 unlock_page(hpage);
1072 return 0;
1073 }
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001074 }
1075 set_page_hwpoison_huge_page(hpage);
1076 res = dequeue_hwpoisoned_huge_page(hpage);
1077 action_result(pfn, "free huge",
1078 res ? IGNORED : DELAYED);
1079 unlock_page(hpage);
1080 return res;
Wu Fengguang8d22ba12009-12-16 12:19:58 +01001081 } else {
1082 action_result(pfn, "high order kernel", IGNORED);
1083 return -EBUSY;
1084 }
Andi Kleen6a460792009-09-16 11:50:15 +02001085 }
1086
1087 /*
Wu Fengguange43c3af2009-09-29 13:16:20 +08001088 * We ignore non-LRU pages for good reasons.
1089 * - PG_locked is only well defined for LRU pages and a few others
1090 * - to avoid races with __set_page_locked()
1091 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1092 * The check (unnecessarily) ignores LRU pages being isolated and
1093 * walked by the page reclaim code, however that's not a big loss.
1094 */
Dean Nelson385de352012-03-21 16:34:05 -07001095 if (!PageHuge(p) && !PageTransTail(p)) {
Jin Dongmingaf241a02011-02-01 15:52:41 -08001096 if (!PageLRU(p))
1097 shake_page(p, 0);
1098 if (!PageLRU(p)) {
1099 /*
1100 * shake_page could have turned it free.
1101 */
1102 if (is_free_buddy_page(p)) {
1103 action_result(pfn, "free buddy, 2nd try",
1104 DELAYED);
1105 return 0;
1106 }
1107 action_result(pfn, "non LRU", IGNORED);
1108 put_page(p);
1109 return -EBUSY;
Andi Kleen0474a602009-12-16 12:20:00 +01001110 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001111 }
Wu Fengguange43c3af2009-09-29 13:16:20 +08001112
1113 /*
Andi Kleen6a460792009-09-16 11:50:15 +02001114 * Lock the page and wait for writeback to finish.
1115 * It's very difficult to mess with pages currently under IO
1116 * and in many cases impossible, so we just avoid it here.
1117 */
Jens Axboe7eaceac2011-03-10 08:52:07 +01001118 lock_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001119
1120 /*
1121 * unpoison always clear PG_hwpoison inside page lock
1122 */
1123 if (!PageHWPoison(p)) {
Wu Fengguangd95ea512009-12-16 12:19:58 +01001124 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
Naoya Horiguchi0c193882014-05-22 11:54:21 -07001125 atomic_long_sub(nr_pages, &mce_bad_pages);
1126 put_page(hpage);
Wu Fengguang847ce402009-12-16 12:19:58 +01001127 res = 0;
1128 goto out;
1129 }
Wu Fengguang7c116f22009-12-16 12:19:59 +01001130 if (hwpoison_filter(p)) {
1131 if (TestClearPageHWPoison(p))
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001132 atomic_long_sub(nr_pages, &mce_bad_pages);
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001133 unlock_page(hpage);
1134 put_page(hpage);
Wu Fengguang7c116f22009-12-16 12:19:59 +01001135 return 0;
1136 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001137
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001138 /*
1139 * For error on the tail page, we should set PG_hwpoison
1140 * on the head page to show that the hugepage is hwpoisoned
1141 */
Jin Dongminga6d30dd2011-02-01 15:52:40 -08001142 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
Naoya Horiguchi7013feb2010-05-28 09:29:18 +09001143 action_result(pfn, "hugepage already hardware poisoned",
1144 IGNORED);
1145 unlock_page(hpage);
1146 put_page(hpage);
1147 return 0;
1148 }
1149 /*
1150 * Set PG_hwpoison on all pages in an error hugepage,
1151 * because containment is done in hugepage unit for now.
1152 * Since we have done TestSetPageHWPoison() for the head page with
1153 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1154 */
1155 if (PageHuge(p))
1156 set_page_hwpoison_huge_page(hpage);
1157
Andi Kleen6a460792009-09-16 11:50:15 +02001158 wait_on_page_writeback(p);
1159
1160 /*
1161 * Now take care of user space mappings.
Minchan Kime64a7822011-03-22 16:32:44 -07001162 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
Andi Kleen6a460792009-09-16 11:50:15 +02001163 */
Tony Luck7329bbe2011-12-13 09:27:58 -08001164 if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
Wu Fengguang1668bfd2009-12-16 12:19:58 +01001165 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1166 res = -EBUSY;
1167 goto out;
1168 }
Andi Kleen6a460792009-09-16 11:50:15 +02001169
1170 /*
1171 * Torn down by someone else?
1172 */
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001173 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
Andi Kleen6a460792009-09-16 11:50:15 +02001174 action_result(pfn, "already truncated LRU", IGNORED);
Wu Fengguangd95ea512009-12-16 12:19:58 +01001175 res = -EBUSY;
Andi Kleen6a460792009-09-16 11:50:15 +02001176 goto out;
1177 }
1178
1179 res = -EBUSY;
1180 for (ps = error_states;; ps++) {
Wu Fengguangdc2a1cb2009-12-16 12:19:58 +01001181 if ((p->flags & ps->mask) == ps->res) {
Wu Fengguangbd1ce5f2009-12-16 12:19:57 +01001182 res = page_action(ps, p, pfn);
Andi Kleen6a460792009-09-16 11:50:15 +02001183 break;
1184 }
1185 }
1186out:
Naoya Horiguchi7af446a2010-05-28 09:29:17 +09001187 unlock_page(hpage);
Andi Kleen6a460792009-09-16 11:50:15 +02001188 return res;
1189}
Tony Luckcd42f4a2011-12-15 10:48:12 -08001190EXPORT_SYMBOL_GPL(memory_failure);
Wu Fengguang847ce402009-12-16 12:19:58 +01001191
Huang Yingea8f5fb2011-07-13 13:14:27 +08001192#define MEMORY_FAILURE_FIFO_ORDER 4
1193#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1194
1195struct memory_failure_entry {
1196 unsigned long pfn;
1197 int trapno;
1198 int flags;
1199};
1200
1201struct memory_failure_cpu {
1202 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1203 MEMORY_FAILURE_FIFO_SIZE);
1204 spinlock_t lock;
1205 struct work_struct work;
1206};
1207
1208static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1209
1210/**
1211 * memory_failure_queue - Schedule handling memory failure of a page.
1212 * @pfn: Page Number of the corrupted page
1213 * @trapno: Trap number reported in the signal to user space.
1214 * @flags: Flags for memory failure handling
1215 *
1216 * This function is called by the low level hardware error handler
1217 * when it detects hardware memory corruption of a page. It schedules
1218 * the recovering of error page, including dropping pages, killing
1219 * processes etc.
1220 *
1221 * The function is primarily of use for corruptions that
1222 * happen outside the current execution context (e.g. when
1223 * detected by a background scrubber)
1224 *
1225 * Can run in IRQ context.
1226 */
1227void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1228{
1229 struct memory_failure_cpu *mf_cpu;
1230 unsigned long proc_flags;
1231 struct memory_failure_entry entry = {
1232 .pfn = pfn,
1233 .trapno = trapno,
1234 .flags = flags,
1235 };
1236
1237 mf_cpu = &get_cpu_var(memory_failure_cpu);
1238 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1239 if (kfifo_put(&mf_cpu->fifo, &entry))
1240 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1241 else
1242 pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1243 pfn);
1244 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1245 put_cpu_var(memory_failure_cpu);
1246}
1247EXPORT_SYMBOL_GPL(memory_failure_queue);
1248
1249static void memory_failure_work_func(struct work_struct *work)
1250{
1251 struct memory_failure_cpu *mf_cpu;
1252 struct memory_failure_entry entry = { 0, };
1253 unsigned long proc_flags;
1254 int gotten;
1255
1256 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1257 for (;;) {
1258 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1259 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1260 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1261 if (!gotten)
1262 break;
Tony Luckcd42f4a2011-12-15 10:48:12 -08001263 memory_failure(entry.pfn, entry.trapno, entry.flags);
Huang Yingea8f5fb2011-07-13 13:14:27 +08001264 }
1265}
1266
1267static int __init memory_failure_init(void)
1268{
1269 struct memory_failure_cpu *mf_cpu;
1270 int cpu;
1271
1272 for_each_possible_cpu(cpu) {
1273 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1274 spin_lock_init(&mf_cpu->lock);
1275 INIT_KFIFO(mf_cpu->fifo);
1276 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1277 }
1278
1279 return 0;
1280}
1281core_initcall(memory_failure_init);
1282
Wu Fengguang847ce402009-12-16 12:19:58 +01001283/**
1284 * unpoison_memory - Unpoison a previously poisoned page
1285 * @pfn: Page number of the to be unpoisoned page
1286 *
1287 * Software-unpoison a page that has been poisoned by
1288 * memory_failure() earlier.
1289 *
1290 * This is only done on the software-level, so it only works
1291 * for linux injected failures, not real hardware failures
1292 *
1293 * Returns 0 for success, otherwise -errno.
1294 */
1295int unpoison_memory(unsigned long pfn)
1296{
1297 struct page *page;
1298 struct page *p;
1299 int freeit = 0;
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001300 unsigned int nr_pages;
Wu Fengguang847ce402009-12-16 12:19:58 +01001301
1302 if (!pfn_valid(pfn))
1303 return -ENXIO;
1304
1305 p = pfn_to_page(pfn);
1306 page = compound_head(p);
1307
1308 if (!PageHWPoison(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001309 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001310 return 0;
1311 }
1312
Andrea Arcangeli37c2ac72011-01-13 15:47:16 -08001313 nr_pages = 1 << compound_trans_order(page);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001314
Wu Fengguang847ce402009-12-16 12:19:58 +01001315 if (!get_page_unless_zero(page)) {
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001316 /*
1317 * Since HWPoisoned hugepage should have non-zero refcount,
1318 * race between memory failure and unpoison seems to happen.
1319 * In such case unpoison fails and memory failure runs
1320 * to the end.
1321 */
1322 if (PageHuge(page)) {
Dean Nelsondd73e852011-10-31 17:09:04 -07001323 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
Naoya Horiguchi8c6c2ec2010-09-08 10:19:38 +09001324 return 0;
1325 }
Wu Fengguang847ce402009-12-16 12:19:58 +01001326 if (TestClearPageHWPoison(p))
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001327 atomic_long_sub(nr_pages, &mce_bad_pages);
Andi Kleenfb46e732010-09-27 23:31:30 +02001328 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
Wu Fengguang847ce402009-12-16 12:19:58 +01001329 return 0;
1330 }
1331
Jens Axboe7eaceac2011-03-10 08:52:07 +01001332 lock_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001333 /*
1334 * This test is racy because PG_hwpoison is set outside of page lock.
1335 * That's acceptable because that won't trigger kernel panic. Instead,
1336 * the PG_hwpoison page will be caught and isolated on the entrance to
1337 * the free buddy page pool.
1338 */
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001339 if (TestClearPageHWPoison(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001340 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
Naoya Horiguchic9fbdd52010-05-28 09:29:19 +09001341 atomic_long_sub(nr_pages, &mce_bad_pages);
Wu Fengguang847ce402009-12-16 12:19:58 +01001342 freeit = 1;
Naoya Horiguchi6a901812010-09-08 10:19:40 +09001343 if (PageHuge(page))
1344 clear_page_hwpoison_huge_page(page);
Wu Fengguang847ce402009-12-16 12:19:58 +01001345 }
1346 unlock_page(page);
1347
1348 put_page(page);
1349 if (freeit)
1350 put_page(page);
1351
1352 return 0;
1353}
1354EXPORT_SYMBOL(unpoison_memory);
Andi Kleenfacb6012009-12-16 12:20:00 +01001355
1356static struct page *new_page(struct page *p, unsigned long private, int **x)
1357{
Andi Kleen12686d12009-12-16 12:20:01 +01001358 int nid = page_to_nid(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001359 if (PageHuge(p))
1360 return alloc_huge_page_node(page_hstate(compound_head(p)),
1361 nid);
1362 else
1363 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
Andi Kleenfacb6012009-12-16 12:20:00 +01001364}
1365
1366/*
1367 * Safely get reference count of an arbitrary page.
1368 * Returns 0 for a free page, -EIO for a zero refcount page
1369 * that is not free, and 1 for any other page type.
1370 * For 1 the page is returned with increased page count, otherwise not.
1371 */
1372static int get_any_page(struct page *p, unsigned long pfn, int flags)
1373{
1374 int ret;
1375
1376 if (flags & MF_COUNT_INCREASED)
1377 return 1;
1378
1379 /*
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001380 * The lock_memory_hotplug prevents a race with memory hotplug.
Andi Kleenfacb6012009-12-16 12:20:00 +01001381 * This is a big hammer, a better would be nicer.
1382 */
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001383 lock_memory_hotplug();
Andi Kleenfacb6012009-12-16 12:20:00 +01001384
1385 /*
1386 * Isolate the page, so that it doesn't get reallocated if it
1387 * was free.
1388 */
1389 set_migratetype_isolate(p);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001390 /*
1391 * When the target page is a free hugepage, just remove it
1392 * from free hugepage list.
1393 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001394 if (!get_page_unless_zero(compound_head(p))) {
Naoya Horiguchid950b952010-09-08 10:19:39 +09001395 if (PageHuge(p)) {
Andi Kleen46e387b2010-10-22 17:40:48 +02001396 pr_info("get_any_page: %#lx free huge page\n", pfn);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001397 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1398 } else if (is_free_buddy_page(p)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001399 pr_info("get_any_page: %#lx free buddy page\n", pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001400 /* Set hwpoison bit while page is still isolated */
1401 SetPageHWPoison(p);
1402 ret = 0;
1403 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001404 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001405 pfn, p->flags);
1406 ret = -EIO;
1407 }
1408 } else {
1409 /* Not a free page */
1410 ret = 1;
1411 }
Michal Nazarewiczc80cd922012-04-03 15:06:15 +02001412 unset_migratetype_isolate(p, MIGRATE_MOVABLE);
KOSAKI Motohiro20d6c962010-12-02 14:31:19 -08001413 unlock_memory_hotplug();
Andi Kleenfacb6012009-12-16 12:20:00 +01001414 return ret;
1415}
1416
Naoya Horiguchid950b952010-09-08 10:19:39 +09001417static int soft_offline_huge_page(struct page *page, int flags)
1418{
1419 int ret;
1420 unsigned long pfn = page_to_pfn(page);
1421 struct page *hpage = compound_head(page);
1422 LIST_HEAD(pagelist);
1423
1424 ret = get_any_page(page, pfn, flags);
1425 if (ret < 0)
1426 return ret;
1427 if (ret == 0)
1428 goto done;
1429
1430 if (PageHWPoison(hpage)) {
1431 put_page(hpage);
Dean Nelsondd73e852011-10-31 17:09:04 -07001432 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001433 return -EBUSY;
1434 }
1435
1436 /* Keep page count to indicate a given hugepage is isolated. */
1437
1438 list_add(&hpage->lru, &pagelist);
Joonsoo Kimce6f0ff2012-07-30 14:39:04 -07001439 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
1440 MIGRATE_SYNC);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001441 if (ret) {
Minchan Kim48db54e2011-02-01 15:52:33 -08001442 struct page *page1, *page2;
1443 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1444 put_page(page1);
1445
Dean Nelsondd73e852011-10-31 17:09:04 -07001446 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1447 pfn, ret, page->flags);
Naoya Horiguchid950b952010-09-08 10:19:39 +09001448 if (ret > 0)
1449 ret = -EIO;
1450 return ret;
1451 }
1452done:
Jianguo Wu9a224042013-12-18 17:08:54 -08001453 /* overcommit hugetlb page will be freed to buddy */
1454 if (PageHuge(hpage)) {
1455 if (!PageHWPoison(hpage))
1456 atomic_long_add(1 << compound_trans_order(hpage),
1457 &mce_bad_pages);
1458 set_page_hwpoison_huge_page(hpage);
1459 dequeue_hwpoisoned_huge_page(hpage);
1460 } else {
1461 SetPageHWPoison(page);
1462 atomic_long_inc(&mce_bad_pages);
1463 }
1464
Naoya Horiguchid950b952010-09-08 10:19:39 +09001465 /* keep elevated page count for bad page */
1466 return ret;
1467}
1468
Andi Kleenfacb6012009-12-16 12:20:00 +01001469/**
1470 * soft_offline_page - Soft offline a page.
1471 * @page: page to offline
1472 * @flags: flags. Same as memory_failure().
1473 *
1474 * Returns 0 on success, otherwise negated errno.
1475 *
1476 * Soft offline a page, by migration or invalidation,
1477 * without killing anything. This is for the case when
1478 * a page is not corrupted yet (so it's still valid to access),
1479 * but has had a number of corrected errors and is better taken
1480 * out.
1481 *
1482 * The actual policy on when to do that is maintained by
1483 * user space.
1484 *
1485 * This should never impact any application or cause data loss,
1486 * however it might take some time.
1487 *
1488 * This is not a 100% solution for all memory, but tries to be
1489 * ``good enough'' for the majority of memory.
1490 */
1491int soft_offline_page(struct page *page, int flags)
1492{
1493 int ret;
1494 unsigned long pfn = page_to_pfn(page);
Naoya Horiguchi0b4d3722012-11-29 13:54:34 -08001495 struct page *hpage = compound_trans_head(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001496
Naoya Horiguchid950b952010-09-08 10:19:39 +09001497 if (PageHuge(page))
1498 return soft_offline_huge_page(page, flags);
Naoya Horiguchi0b4d3722012-11-29 13:54:34 -08001499 if (PageTransHuge(hpage)) {
1500 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1501 pr_info("soft offline: %#lx: failed to split THP\n",
1502 pfn);
1503 return -EBUSY;
1504 }
1505 }
Naoya Horiguchid950b952010-09-08 10:19:39 +09001506
Andi Kleenfacb6012009-12-16 12:20:00 +01001507 ret = get_any_page(page, pfn, flags);
1508 if (ret < 0)
1509 return ret;
1510 if (ret == 0)
1511 goto done;
1512
1513 /*
1514 * Page cache page we can handle?
1515 */
1516 if (!PageLRU(page)) {
1517 /*
1518 * Try to free it.
1519 */
1520 put_page(page);
1521 shake_page(page, 1);
1522
1523 /*
1524 * Did it turn free?
1525 */
1526 ret = get_any_page(page, pfn, 0);
1527 if (ret < 0)
1528 return ret;
1529 if (ret == 0)
1530 goto done;
1531 }
1532 if (!PageLRU(page)) {
Andi Kleenfb46e732010-09-27 23:31:30 +02001533 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001534 pfn, page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001535 return -EIO;
1536 }
1537
1538 lock_page(page);
1539 wait_on_page_writeback(page);
1540
1541 /*
1542 * Synchronized using the page lock with memory_failure()
1543 */
1544 if (PageHWPoison(page)) {
1545 unlock_page(page);
1546 put_page(page);
Andi Kleenfb46e732010-09-27 23:31:30 +02001547 pr_info("soft offline: %#lx page already poisoned\n", pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001548 return -EBUSY;
1549 }
1550
1551 /*
1552 * Try to invalidate first. This should work for
1553 * non dirty unmapped page cache pages.
1554 */
1555 ret = invalidate_inode_page(page);
1556 unlock_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001557 /*
Andi Kleenfacb6012009-12-16 12:20:00 +01001558 * RED-PEN would be better to keep it isolated here, but we
1559 * would need to fix isolation locking first.
1560 */
Andi Kleenfacb6012009-12-16 12:20:00 +01001561 if (ret == 1) {
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001562 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001563 ret = 0;
Andi Kleenfb46e732010-09-27 23:31:30 +02001564 pr_info("soft_offline: %#lx: invalidated\n", pfn);
Andi Kleenfacb6012009-12-16 12:20:00 +01001565 goto done;
1566 }
1567
1568 /*
1569 * Simple invalidation didn't work.
1570 * Try to migrate to a new page instead. migrate.c
1571 * handles a large number of cases for us.
1572 */
1573 ret = isolate_lru_page(page);
Konstantin Khlebnikovbd486282011-05-24 17:12:20 -07001574 /*
1575 * Drop page reference which is came from get_any_page()
1576 * successful isolate_lru_page() already took another one.
1577 */
1578 put_page(page);
Andi Kleenfacb6012009-12-16 12:20:00 +01001579 if (!ret) {
1580 LIST_HEAD(pagelist);
Minchan Kim5db8a732011-06-15 15:08:48 -07001581 inc_zone_page_state(page, NR_ISOLATED_ANON +
1582 page_is_file_cache(page));
Andi Kleenfacb6012009-12-16 12:20:00 +01001583 list_add(&page->lru, &pagelist);
Mel Gorman77f1fe62011-01-13 15:45:57 -08001584 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
Joonsoo Kimce6f0ff2012-07-30 14:39:04 -07001585 false, MIGRATE_SYNC);
Andi Kleenfacb6012009-12-16 12:20:00 +01001586 if (ret) {
Andrea Arcangeli57fc4a52011-02-01 15:52:32 -08001587 putback_lru_pages(&pagelist);
Andi Kleenfb46e732010-09-27 23:31:30 +02001588 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
Andi Kleenfacb6012009-12-16 12:20:00 +01001589 pfn, ret, page->flags);
1590 if (ret > 0)
1591 ret = -EIO;
1592 }
1593 } else {
Andi Kleenfb46e732010-09-27 23:31:30 +02001594 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
Dean Nelsondd73e852011-10-31 17:09:04 -07001595 pfn, ret, page_count(page), page->flags);
Andi Kleenfacb6012009-12-16 12:20:00 +01001596 }
1597 if (ret)
1598 return ret;
1599
1600done:
1601 atomic_long_add(1, &mce_bad_pages);
1602 SetPageHWPoison(page);
1603 /* keep elevated page count for bad page */
1604 return ret;
1605}