| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1 | /* | 
 | 2 |  * This file is part of UBIFS. | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2006-2008 Nokia Corporation | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or modify it | 
 | 7 |  * under the terms of the GNU General Public License version 2 as published by | 
 | 8 |  * the Free Software Foundation. | 
 | 9 |  * | 
 | 10 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 | 11 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | 12 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 | 13 |  * more details. | 
 | 14 |  * | 
 | 15 |  * You should have received a copy of the GNU General Public License along with | 
 | 16 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 | 17 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
 | 18 |  * | 
 | 19 |  * Authors: Adrian Hunter | 
 | 20 |  *          Artem Bityutskiy (Битюцкий Артём) | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | /* | 
 | 24 |  * This file implements functions needed to recover from unclean un-mounts. | 
 | 25 |  * When UBIFS is mounted, it checks a flag on the master node to determine if | 
| André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 26 |  * an un-mount was completed successfully. If not, the process of mounting | 
| Artem Bityutskiy | 6fb4374 | 2010-05-23 15:20:21 +0300 | [diff] [blame] | 27 |  * incorporates additional checking and fixing of on-flash data structures. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 28 |  * UBIFS always cleans away all remnants of an unclean un-mount, so that | 
 | 29 |  * errors do not accumulate. However UBIFS defers recovery if it is mounted | 
 | 30 |  * read-only, and the flash is not modified in that case. | 
 | 31 |  */ | 
 | 32 |  | 
 | 33 | #include <linux/crc32.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 34 | #include <linux/slab.h> | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 35 | #include "ubifs.h" | 
 | 36 |  | 
 | 37 | /** | 
 | 38 |  * is_empty - determine whether a buffer is empty (contains all 0xff). | 
 | 39 |  * @buf: buffer to clean | 
 | 40 |  * @len: length of buffer | 
 | 41 |  * | 
 | 42 |  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise | 
 | 43 |  * %0 is returned. | 
 | 44 |  */ | 
 | 45 | static int is_empty(void *buf, int len) | 
 | 46 | { | 
 | 47 | 	uint8_t *p = buf; | 
 | 48 | 	int i; | 
 | 49 |  | 
 | 50 | 	for (i = 0; i < len; i++) | 
 | 51 | 		if (*p++ != 0xff) | 
 | 52 | 			return 0; | 
 | 53 | 	return 1; | 
 | 54 | } | 
 | 55 |  | 
 | 56 | /** | 
| Artem Bityutskiy | 0611254 | 2009-06-29 19:27:14 +0300 | [diff] [blame] | 57 |  * first_non_ff - find offset of the first non-0xff byte. | 
 | 58 |  * @buf: buffer to search in | 
 | 59 |  * @len: length of buffer | 
 | 60 |  * | 
 | 61 |  * This function returns offset of the first non-0xff byte in @buf or %-1 if | 
 | 62 |  * the buffer contains only 0xff bytes. | 
 | 63 |  */ | 
 | 64 | static int first_non_ff(void *buf, int len) | 
 | 65 | { | 
 | 66 | 	uint8_t *p = buf; | 
 | 67 | 	int i; | 
 | 68 |  | 
 | 69 | 	for (i = 0; i < len; i++) | 
 | 70 | 		if (*p++ != 0xff) | 
 | 71 | 			return i; | 
 | 72 | 	return -1; | 
 | 73 | } | 
 | 74 |  | 
 | 75 | /** | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 76 |  * get_master_node - get the last valid master node allowing for corruption. | 
 | 77 |  * @c: UBIFS file-system description object | 
 | 78 |  * @lnum: LEB number | 
 | 79 |  * @pbuf: buffer containing the LEB read, is returned here | 
 | 80 |  * @mst: master node, if found, is returned here | 
 | 81 |  * @cor: corruption, if found, is returned here | 
 | 82 |  * | 
 | 83 |  * This function allocates a buffer, reads the LEB into it, and finds and | 
 | 84 |  * returns the last valid master node allowing for one area of corruption. | 
 | 85 |  * The corrupt area, if there is one, must be consistent with the assumption | 
 | 86 |  * that it is the result of an unclean unmount while the master node was being | 
 | 87 |  * written. Under those circumstances, it is valid to use the previously written | 
 | 88 |  * master node. | 
 | 89 |  * | 
 | 90 |  * This function returns %0 on success and a negative error code on failure. | 
 | 91 |  */ | 
 | 92 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, | 
 | 93 | 			   struct ubifs_mst_node **mst, void **cor) | 
 | 94 | { | 
 | 95 | 	const int sz = c->mst_node_alsz; | 
 | 96 | 	int err, offs, len; | 
 | 97 | 	void *sbuf, *buf; | 
 | 98 |  | 
 | 99 | 	sbuf = vmalloc(c->leb_size); | 
 | 100 | 	if (!sbuf) | 
 | 101 | 		return -ENOMEM; | 
 | 102 |  | 
 | 103 | 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); | 
 | 104 | 	if (err && err != -EBADMSG) | 
 | 105 | 		goto out_free; | 
 | 106 |  | 
 | 107 | 	/* Find the first position that is definitely not a node */ | 
 | 108 | 	offs = 0; | 
 | 109 | 	buf = sbuf; | 
 | 110 | 	len = c->leb_size; | 
 | 111 | 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { | 
 | 112 | 		struct ubifs_ch *ch = buf; | 
 | 113 |  | 
 | 114 | 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | 
 | 115 | 			break; | 
 | 116 | 		offs += sz; | 
 | 117 | 		buf  += sz; | 
 | 118 | 		len  -= sz; | 
 | 119 | 	} | 
 | 120 | 	/* See if there was a valid master node before that */ | 
 | 121 | 	if (offs) { | 
 | 122 | 		int ret; | 
 | 123 |  | 
 | 124 | 		offs -= sz; | 
 | 125 | 		buf  -= sz; | 
 | 126 | 		len  += sz; | 
 | 127 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 128 | 		if (ret != SCANNED_A_NODE && offs) { | 
 | 129 | 			/* Could have been corruption so check one place back */ | 
 | 130 | 			offs -= sz; | 
 | 131 | 			buf  -= sz; | 
 | 132 | 			len  += sz; | 
 | 133 | 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | 
 | 134 | 			if (ret != SCANNED_A_NODE) | 
 | 135 | 				/* | 
 | 136 | 				 * We accept only one area of corruption because | 
 | 137 | 				 * we are assuming that it was caused while | 
 | 138 | 				 * trying to write a master node. | 
 | 139 | 				 */ | 
 | 140 | 				goto out_err; | 
 | 141 | 		} | 
 | 142 | 		if (ret == SCANNED_A_NODE) { | 
 | 143 | 			struct ubifs_ch *ch = buf; | 
 | 144 |  | 
 | 145 | 			if (ch->node_type != UBIFS_MST_NODE) | 
 | 146 | 				goto out_err; | 
 | 147 | 			dbg_rcvry("found a master node at %d:%d", lnum, offs); | 
 | 148 | 			*mst = buf; | 
 | 149 | 			offs += sz; | 
 | 150 | 			buf  += sz; | 
 | 151 | 			len  -= sz; | 
 | 152 | 		} | 
 | 153 | 	} | 
 | 154 | 	/* Check for corruption */ | 
 | 155 | 	if (offs < c->leb_size) { | 
 | 156 | 		if (!is_empty(buf, min_t(int, len, sz))) { | 
 | 157 | 			*cor = buf; | 
 | 158 | 			dbg_rcvry("found corruption at %d:%d", lnum, offs); | 
 | 159 | 		} | 
 | 160 | 		offs += sz; | 
 | 161 | 		buf  += sz; | 
 | 162 | 		len  -= sz; | 
 | 163 | 	} | 
 | 164 | 	/* Check remaining empty space */ | 
 | 165 | 	if (offs < c->leb_size) | 
 | 166 | 		if (!is_empty(buf, len)) | 
 | 167 | 			goto out_err; | 
 | 168 | 	*pbuf = sbuf; | 
 | 169 | 	return 0; | 
 | 170 |  | 
 | 171 | out_err: | 
 | 172 | 	err = -EINVAL; | 
 | 173 | out_free: | 
 | 174 | 	vfree(sbuf); | 
 | 175 | 	*mst = NULL; | 
 | 176 | 	*cor = NULL; | 
 | 177 | 	return err; | 
 | 178 | } | 
 | 179 |  | 
 | 180 | /** | 
 | 181 |  * write_rcvrd_mst_node - write recovered master node. | 
 | 182 |  * @c: UBIFS file-system description object | 
 | 183 |  * @mst: master node | 
 | 184 |  * | 
 | 185 |  * This function returns %0 on success and a negative error code on failure. | 
 | 186 |  */ | 
 | 187 | static int write_rcvrd_mst_node(struct ubifs_info *c, | 
 | 188 | 				struct ubifs_mst_node *mst) | 
 | 189 | { | 
 | 190 | 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; | 
| Harvey Harrison | 0ecb952 | 2008-10-24 10:52:57 -0700 | [diff] [blame] | 191 | 	__le32 save_flags; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 192 |  | 
 | 193 | 	dbg_rcvry("recovery"); | 
 | 194 |  | 
 | 195 | 	save_flags = mst->flags; | 
| Harvey Harrison | 0ecb952 | 2008-10-24 10:52:57 -0700 | [diff] [blame] | 196 | 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 197 |  | 
 | 198 | 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); | 
 | 199 | 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); | 
 | 200 | 	if (err) | 
 | 201 | 		goto out; | 
 | 202 | 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); | 
 | 203 | 	if (err) | 
 | 204 | 		goto out; | 
 | 205 | out: | 
 | 206 | 	mst->flags = save_flags; | 
 | 207 | 	return err; | 
 | 208 | } | 
 | 209 |  | 
 | 210 | /** | 
 | 211 |  * ubifs_recover_master_node - recover the master node. | 
 | 212 |  * @c: UBIFS file-system description object | 
 | 213 |  * | 
 | 214 |  * This function recovers the master node from corruption that may occur due to | 
 | 215 |  * an unclean unmount. | 
 | 216 |  * | 
 | 217 |  * This function returns %0 on success and a negative error code on failure. | 
 | 218 |  */ | 
 | 219 | int ubifs_recover_master_node(struct ubifs_info *c) | 
 | 220 | { | 
 | 221 | 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; | 
 | 222 | 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; | 
 | 223 | 	const int sz = c->mst_node_alsz; | 
 | 224 | 	int err, offs1, offs2; | 
 | 225 |  | 
 | 226 | 	dbg_rcvry("recovery"); | 
 | 227 |  | 
 | 228 | 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); | 
 | 229 | 	if (err) | 
 | 230 | 		goto out_free; | 
 | 231 |  | 
 | 232 | 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); | 
 | 233 | 	if (err) | 
 | 234 | 		goto out_free; | 
 | 235 |  | 
 | 236 | 	if (mst1) { | 
 | 237 | 		offs1 = (void *)mst1 - buf1; | 
 | 238 | 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && | 
 | 239 | 		    (offs1 == 0 && !cor1)) { | 
 | 240 | 			/* | 
 | 241 | 			 * mst1 was written by recovery at offset 0 with no | 
 | 242 | 			 * corruption. | 
 | 243 | 			 */ | 
 | 244 | 			dbg_rcvry("recovery recovery"); | 
 | 245 | 			mst = mst1; | 
 | 246 | 		} else if (mst2) { | 
 | 247 | 			offs2 = (void *)mst2 - buf2; | 
 | 248 | 			if (offs1 == offs2) { | 
 | 249 | 				/* Same offset, so must be the same */ | 
 | 250 | 				if (memcmp((void *)mst1 + UBIFS_CH_SZ, | 
 | 251 | 					   (void *)mst2 + UBIFS_CH_SZ, | 
 | 252 | 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) | 
 | 253 | 					goto out_err; | 
 | 254 | 				mst = mst1; | 
 | 255 | 			} else if (offs2 + sz == offs1) { | 
 | 256 | 				/* 1st LEB was written, 2nd was not */ | 
 | 257 | 				if (cor1) | 
 | 258 | 					goto out_err; | 
 | 259 | 				mst = mst1; | 
 | 260 | 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) { | 
 | 261 | 				/* 1st LEB was unmapped and written, 2nd not */ | 
 | 262 | 				if (cor1) | 
 | 263 | 					goto out_err; | 
 | 264 | 				mst = mst1; | 
 | 265 | 			} else | 
 | 266 | 				goto out_err; | 
 | 267 | 		} else { | 
 | 268 | 			/* | 
 | 269 | 			 * 2nd LEB was unmapped and about to be written, so | 
 | 270 | 			 * there must be only one master node in the first LEB | 
 | 271 | 			 * and no corruption. | 
 | 272 | 			 */ | 
 | 273 | 			if (offs1 != 0 || cor1) | 
 | 274 | 				goto out_err; | 
 | 275 | 			mst = mst1; | 
 | 276 | 		} | 
 | 277 | 	} else { | 
 | 278 | 		if (!mst2) | 
 | 279 | 			goto out_err; | 
 | 280 | 		/* | 
 | 281 | 		 * 1st LEB was unmapped and about to be written, so there must | 
 | 282 | 		 * be no room left in 2nd LEB. | 
 | 283 | 		 */ | 
 | 284 | 		offs2 = (void *)mst2 - buf2; | 
 | 285 | 		if (offs2 + sz + sz <= c->leb_size) | 
 | 286 | 			goto out_err; | 
 | 287 | 		mst = mst2; | 
 | 288 | 	} | 
 | 289 |  | 
| Artem Bityutskiy | 348709b | 2009-08-25 15:00:55 +0300 | [diff] [blame] | 290 | 	ubifs_msg("recovered master node from LEB %d", | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 291 | 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); | 
 | 292 |  | 
 | 293 | 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); | 
 | 294 |  | 
 | 295 | 	if ((c->vfs_sb->s_flags & MS_RDONLY)) { | 
 | 296 | 		/* Read-only mode. Keep a copy for switching to rw mode */ | 
 | 297 | 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); | 
 | 298 | 		if (!c->rcvrd_mst_node) { | 
 | 299 | 			err = -ENOMEM; | 
 | 300 | 			goto out_free; | 
 | 301 | 		} | 
 | 302 | 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); | 
 | 303 | 	} else { | 
 | 304 | 		/* Write the recovered master node */ | 
 | 305 | 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; | 
 | 306 | 		err = write_rcvrd_mst_node(c, c->mst_node); | 
 | 307 | 		if (err) | 
 | 308 | 			goto out_free; | 
 | 309 | 	} | 
 | 310 |  | 
 | 311 | 	vfree(buf2); | 
 | 312 | 	vfree(buf1); | 
 | 313 |  | 
 | 314 | 	return 0; | 
 | 315 |  | 
 | 316 | out_err: | 
 | 317 | 	err = -EINVAL; | 
 | 318 | out_free: | 
 | 319 | 	ubifs_err("failed to recover master node"); | 
 | 320 | 	if (mst1) { | 
 | 321 | 		dbg_err("dumping first master node"); | 
 | 322 | 		dbg_dump_node(c, mst1); | 
 | 323 | 	} | 
 | 324 | 	if (mst2) { | 
 | 325 | 		dbg_err("dumping second master node"); | 
 | 326 | 		dbg_dump_node(c, mst2); | 
 | 327 | 	} | 
 | 328 | 	vfree(buf2); | 
 | 329 | 	vfree(buf1); | 
 | 330 | 	return err; | 
 | 331 | } | 
 | 332 |  | 
 | 333 | /** | 
 | 334 |  * ubifs_write_rcvrd_mst_node - write the recovered master node. | 
 | 335 |  * @c: UBIFS file-system description object | 
 | 336 |  * | 
 | 337 |  * This function writes the master node that was recovered during mounting in | 
 | 338 |  * read-only mode and must now be written because we are remounting rw. | 
 | 339 |  * | 
 | 340 |  * This function returns %0 on success and a negative error code on failure. | 
 | 341 |  */ | 
 | 342 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) | 
 | 343 | { | 
 | 344 | 	int err; | 
 | 345 |  | 
 | 346 | 	if (!c->rcvrd_mst_node) | 
 | 347 | 		return 0; | 
 | 348 | 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 349 | 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | 
 | 350 | 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); | 
 | 351 | 	if (err) | 
 | 352 | 		return err; | 
 | 353 | 	kfree(c->rcvrd_mst_node); | 
 | 354 | 	c->rcvrd_mst_node = NULL; | 
 | 355 | 	return 0; | 
 | 356 | } | 
 | 357 |  | 
 | 358 | /** | 
 | 359 |  * is_last_write - determine if an offset was in the last write to a LEB. | 
 | 360 |  * @c: UBIFS file-system description object | 
 | 361 |  * @buf: buffer to check | 
 | 362 |  * @offs: offset to check | 
 | 363 |  * | 
 | 364 |  * This function returns %1 if @offs was in the last write to the LEB whose data | 
 | 365 |  * is in @buf, otherwise %0 is returned.  The determination is made by checking | 
| Artem Bityutskiy | 428ff9d | 2009-05-25 16:59:28 +0300 | [diff] [blame] | 366 |  * for subsequent empty space starting from the next @c->min_io_size boundary. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 367 |  */ | 
 | 368 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) | 
 | 369 | { | 
| Artem Bityutskiy | 428ff9d | 2009-05-25 16:59:28 +0300 | [diff] [blame] | 370 | 	int empty_offs, check_len; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 371 | 	uint8_t *p; | 
 | 372 |  | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 373 | 	/* | 
| Artem Bityutskiy | 428ff9d | 2009-05-25 16:59:28 +0300 | [diff] [blame] | 374 | 	 * Round up to the next @c->min_io_size boundary i.e. @offs is in the | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 375 | 	 * last wbuf written. After that should be empty space. | 
 | 376 | 	 */ | 
 | 377 | 	empty_offs = ALIGN(offs + 1, c->min_io_size); | 
 | 378 | 	check_len = c->leb_size - empty_offs; | 
 | 379 | 	p = buf + empty_offs - offs; | 
| Artem Bityutskiy | 431102f | 2009-06-29 18:58:34 +0300 | [diff] [blame] | 380 | 	return is_empty(p, check_len); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 381 | } | 
 | 382 |  | 
 | 383 | /** | 
 | 384 |  * clean_buf - clean the data from an LEB sitting in a buffer. | 
 | 385 |  * @c: UBIFS file-system description object | 
 | 386 |  * @buf: buffer to clean | 
 | 387 |  * @lnum: LEB number to clean | 
 | 388 |  * @offs: offset from which to clean | 
 | 389 |  * @len: length of buffer | 
 | 390 |  * | 
 | 391 |  * This function pads up to the next min_io_size boundary (if there is one) and | 
 | 392 |  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next | 
| Artem Bityutskiy | 428ff9d | 2009-05-25 16:59:28 +0300 | [diff] [blame] | 393 |  * @c->min_io_size boundary. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 394 |  */ | 
 | 395 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, | 
 | 396 | 		      int *offs, int *len) | 
 | 397 | { | 
 | 398 | 	int empty_offs, pad_len; | 
 | 399 |  | 
 | 400 | 	lnum = lnum; | 
 | 401 | 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); | 
 | 402 |  | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 403 | 	ubifs_assert(!(*offs & 7)); | 
 | 404 | 	empty_offs = ALIGN(*offs, c->min_io_size); | 
 | 405 | 	pad_len = empty_offs - *offs; | 
 | 406 | 	ubifs_pad(c, *buf, pad_len); | 
 | 407 | 	*offs += pad_len; | 
 | 408 | 	*buf += pad_len; | 
 | 409 | 	*len -= pad_len; | 
 | 410 | 	memset(*buf, 0xff, c->leb_size - empty_offs); | 
 | 411 | } | 
 | 412 |  | 
 | 413 | /** | 
 | 414 |  * no_more_nodes - determine if there are no more nodes in a buffer. | 
 | 415 |  * @c: UBIFS file-system description object | 
 | 416 |  * @buf: buffer to check | 
 | 417 |  * @len: length of buffer | 
 | 418 |  * @lnum: LEB number of the LEB from which @buf was read | 
 | 419 |  * @offs: offset from which @buf was read | 
 | 420 |  * | 
| Adrian Hunter | de09757 | 2009-03-20 11:09:04 +0100 | [diff] [blame] | 421 |  * This function ensures that the corrupted node at @offs is the last thing | 
 | 422 |  * written to a LEB. This function returns %1 if more data is not found and | 
 | 423 |  * %0 if more data is found. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 424 |  */ | 
 | 425 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, | 
 | 426 | 			int lnum, int offs) | 
 | 427 | { | 
| Adrian Hunter | de09757 | 2009-03-20 11:09:04 +0100 | [diff] [blame] | 428 | 	struct ubifs_ch *ch = buf; | 
 | 429 | 	int skip, dlen = le32_to_cpu(ch->len); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 430 |  | 
| Adrian Hunter | de09757 | 2009-03-20 11:09:04 +0100 | [diff] [blame] | 431 | 	/* Check for empty space after the corrupt node's common header */ | 
 | 432 | 	skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; | 
 | 433 | 	if (is_empty(buf + skip, len - skip)) | 
 | 434 | 		return 1; | 
 | 435 | 	/* | 
 | 436 | 	 * The area after the common header size is not empty, so the common | 
 | 437 | 	 * header must be intact. Check it. | 
 | 438 | 	 */ | 
 | 439 | 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { | 
 | 440 | 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); | 
 | 441 | 		return 0; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 442 | 	} | 
| Adrian Hunter | de09757 | 2009-03-20 11:09:04 +0100 | [diff] [blame] | 443 | 	/* Now we know the corrupt node's length we can skip over it */ | 
 | 444 | 	skip = ALIGN(offs + dlen, c->min_io_size) - offs; | 
 | 445 | 	/* After which there should be empty space */ | 
 | 446 | 	if (is_empty(buf + skip, len - skip)) | 
 | 447 | 		return 1; | 
 | 448 | 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); | 
 | 449 | 	return 0; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 450 | } | 
 | 451 |  | 
 | 452 | /** | 
 | 453 |  * fix_unclean_leb - fix an unclean LEB. | 
 | 454 |  * @c: UBIFS file-system description object | 
 | 455 |  * @sleb: scanned LEB information | 
 | 456 |  * @start: offset where scan started | 
 | 457 |  */ | 
 | 458 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
 | 459 | 			   int start) | 
 | 460 | { | 
 | 461 | 	int lnum = sleb->lnum, endpt = start; | 
 | 462 |  | 
 | 463 | 	/* Get the end offset of the last node we are keeping */ | 
 | 464 | 	if (!list_empty(&sleb->nodes)) { | 
 | 465 | 		struct ubifs_scan_node *snod; | 
 | 466 |  | 
 | 467 | 		snod = list_entry(sleb->nodes.prev, | 
 | 468 | 				  struct ubifs_scan_node, list); | 
 | 469 | 		endpt = snod->offs + snod->len; | 
 | 470 | 	} | 
 | 471 |  | 
 | 472 | 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { | 
 | 473 | 		/* Add to recovery list */ | 
 | 474 | 		struct ubifs_unclean_leb *ucleb; | 
 | 475 |  | 
 | 476 | 		dbg_rcvry("need to fix LEB %d start %d endpt %d", | 
 | 477 | 			  lnum, start, sleb->endpt); | 
 | 478 | 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); | 
 | 479 | 		if (!ucleb) | 
 | 480 | 			return -ENOMEM; | 
 | 481 | 		ucleb->lnum = lnum; | 
 | 482 | 		ucleb->endpt = endpt; | 
 | 483 | 		list_add_tail(&ucleb->list, &c->unclean_leb_list); | 
 | 484 | 	} else { | 
 | 485 | 		/* Write the fixed LEB back to flash */ | 
 | 486 | 		int err; | 
 | 487 |  | 
 | 488 | 		dbg_rcvry("fixing LEB %d start %d endpt %d", | 
 | 489 | 			  lnum, start, sleb->endpt); | 
 | 490 | 		if (endpt == 0) { | 
 | 491 | 			err = ubifs_leb_unmap(c, lnum); | 
 | 492 | 			if (err) | 
 | 493 | 				return err; | 
 | 494 | 		} else { | 
 | 495 | 			int len = ALIGN(endpt, c->min_io_size); | 
 | 496 |  | 
 | 497 | 			if (start) { | 
 | 498 | 				err = ubi_read(c->ubi, lnum, sleb->buf, 0, | 
 | 499 | 					       start); | 
 | 500 | 				if (err) | 
 | 501 | 					return err; | 
 | 502 | 			} | 
 | 503 | 			/* Pad to min_io_size */ | 
 | 504 | 			if (len > endpt) { | 
 | 505 | 				int pad_len = len - ALIGN(endpt, 8); | 
 | 506 |  | 
 | 507 | 				if (pad_len > 0) { | 
 | 508 | 					void *buf = sleb->buf + len - pad_len; | 
 | 509 |  | 
 | 510 | 					ubifs_pad(c, buf, pad_len); | 
 | 511 | 				} | 
 | 512 | 			} | 
 | 513 | 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, | 
 | 514 | 					     UBI_UNKNOWN); | 
 | 515 | 			if (err) | 
 | 516 | 				return err; | 
 | 517 | 		} | 
 | 518 | 	} | 
 | 519 | 	return 0; | 
 | 520 | } | 
 | 521 |  | 
 | 522 | /** | 
 | 523 |  * drop_incomplete_group - drop nodes from an incomplete group. | 
 | 524 |  * @sleb: scanned LEB information | 
 | 525 |  * @offs: offset of dropped nodes is returned here | 
 | 526 |  * | 
 | 527 |  * This function returns %1 if nodes are dropped and %0 otherwise. | 
 | 528 |  */ | 
 | 529 | static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) | 
 | 530 | { | 
 | 531 | 	int dropped = 0; | 
 | 532 |  | 
 | 533 | 	while (!list_empty(&sleb->nodes)) { | 
 | 534 | 		struct ubifs_scan_node *snod; | 
 | 535 | 		struct ubifs_ch *ch; | 
 | 536 |  | 
 | 537 | 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | 
 | 538 | 				  list); | 
 | 539 | 		ch = snod->node; | 
 | 540 | 		if (ch->group_type != UBIFS_IN_NODE_GROUP) | 
 | 541 | 			return dropped; | 
 | 542 | 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); | 
 | 543 | 		*offs = snod->offs; | 
 | 544 | 		list_del(&snod->list); | 
 | 545 | 		kfree(snod); | 
 | 546 | 		sleb->nodes_cnt -= 1; | 
 | 547 | 		dropped = 1; | 
 | 548 | 	} | 
 | 549 | 	return dropped; | 
 | 550 | } | 
 | 551 |  | 
 | 552 | /** | 
 | 553 |  * ubifs_recover_leb - scan and recover a LEB. | 
 | 554 |  * @c: UBIFS file-system description object | 
 | 555 |  * @lnum: LEB number | 
 | 556 |  * @offs: offset | 
 | 557 |  * @sbuf: LEB-sized buffer to use | 
 | 558 |  * @grouped: nodes may be grouped for recovery | 
 | 559 |  * | 
 | 560 |  * This function does a scan of a LEB, but caters for errors that might have | 
 | 561 |  * been caused by the unclean unmount from which we are attempting to recover. | 
| Artem Bityutskiy | ed43f2f | 2009-06-29 17:59:23 +0300 | [diff] [blame] | 562 |  * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is | 
 | 563 |  * found, and a negative error code in case of failure. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 564 |  */ | 
 | 565 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, | 
 | 566 | 					 int offs, void *sbuf, int grouped) | 
 | 567 | { | 
 | 568 | 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; | 
 | 569 | 	int empty_chkd = 0, start = offs; | 
 | 570 | 	struct ubifs_scan_leb *sleb; | 
 | 571 | 	void *buf = sbuf + offs; | 
 | 572 |  | 
 | 573 | 	dbg_rcvry("%d:%d", lnum, offs); | 
 | 574 |  | 
 | 575 | 	sleb = ubifs_start_scan(c, lnum, offs, sbuf); | 
 | 576 | 	if (IS_ERR(sleb)) | 
 | 577 | 		return sleb; | 
 | 578 |  | 
 | 579 | 	if (sleb->ecc) | 
 | 580 | 		need_clean = 1; | 
 | 581 |  | 
 | 582 | 	while (len >= 8) { | 
 | 583 | 		int ret; | 
 | 584 |  | 
 | 585 | 		dbg_scan("look at LEB %d:%d (%d bytes left)", | 
 | 586 | 			 lnum, offs, len); | 
 | 587 |  | 
 | 588 | 		cond_resched(); | 
 | 589 |  | 
 | 590 | 		/* | 
 | 591 | 		 * Scan quietly until there is an error from which we cannot | 
 | 592 | 		 * recover | 
 | 593 | 		 */ | 
 | 594 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); | 
 | 595 |  | 
 | 596 | 		if (ret == SCANNED_A_NODE) { | 
 | 597 | 			/* A valid node, and not a padding node */ | 
 | 598 | 			struct ubifs_ch *ch = buf; | 
 | 599 | 			int node_len; | 
 | 600 |  | 
 | 601 | 			err = ubifs_add_snod(c, sleb, buf, offs); | 
 | 602 | 			if (err) | 
 | 603 | 				goto error; | 
 | 604 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 605 | 			offs += node_len; | 
 | 606 | 			buf += node_len; | 
 | 607 | 			len -= node_len; | 
 | 608 | 			continue; | 
 | 609 | 		} | 
 | 610 |  | 
 | 611 | 		if (ret > 0) { | 
 | 612 | 			/* Padding bytes or a valid padding node */ | 
 | 613 | 			offs += ret; | 
 | 614 | 			buf += ret; | 
 | 615 | 			len -= ret; | 
 | 616 | 			continue; | 
 | 617 | 		} | 
 | 618 |  | 
 | 619 | 		if (ret == SCANNED_EMPTY_SPACE) { | 
 | 620 | 			if (!is_empty(buf, len)) { | 
 | 621 | 				if (!is_last_write(c, buf, offs)) | 
 | 622 | 					break; | 
 | 623 | 				clean_buf(c, &buf, lnum, &offs, &len); | 
 | 624 | 				need_clean = 1; | 
 | 625 | 			} | 
 | 626 | 			empty_chkd = 1; | 
 | 627 | 			break; | 
 | 628 | 		} | 
 | 629 |  | 
 | 630 | 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) | 
 | 631 | 			if (is_last_write(c, buf, offs)) { | 
 | 632 | 				clean_buf(c, &buf, lnum, &offs, &len); | 
 | 633 | 				need_clean = 1; | 
 | 634 | 				empty_chkd = 1; | 
 | 635 | 				break; | 
 | 636 | 			} | 
 | 637 |  | 
 | 638 | 		if (ret == SCANNED_A_CORRUPT_NODE) | 
 | 639 | 			if (no_more_nodes(c, buf, len, lnum, offs)) { | 
 | 640 | 				clean_buf(c, &buf, lnum, &offs, &len); | 
 | 641 | 				need_clean = 1; | 
 | 642 | 				empty_chkd = 1; | 
 | 643 | 				break; | 
 | 644 | 			} | 
 | 645 |  | 
 | 646 | 		if (quiet) { | 
 | 647 | 			/* Redo the last scan but noisily */ | 
 | 648 | 			quiet = 0; | 
 | 649 | 			continue; | 
 | 650 | 		} | 
 | 651 |  | 
 | 652 | 		switch (ret) { | 
 | 653 | 		case SCANNED_GARBAGE: | 
 | 654 | 			dbg_err("garbage"); | 
 | 655 | 			goto corrupted; | 
 | 656 | 		case SCANNED_A_CORRUPT_NODE: | 
 | 657 | 		case SCANNED_A_BAD_PAD_NODE: | 
 | 658 | 			dbg_err("bad node"); | 
 | 659 | 			goto corrupted; | 
 | 660 | 		default: | 
 | 661 | 			dbg_err("unknown"); | 
| Artem Bityutskiy | ed43f2f | 2009-06-29 17:59:23 +0300 | [diff] [blame] | 662 | 			err = -EINVAL; | 
 | 663 | 			goto error; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 664 | 		} | 
 | 665 | 	} | 
 | 666 |  | 
 | 667 | 	if (!empty_chkd && !is_empty(buf, len)) { | 
 | 668 | 		if (is_last_write(c, buf, offs)) { | 
 | 669 | 			clean_buf(c, &buf, lnum, &offs, &len); | 
 | 670 | 			need_clean = 1; | 
 | 671 | 		} else { | 
| Artem Bityutskiy | 0611254 | 2009-06-29 19:27:14 +0300 | [diff] [blame] | 672 | 			int corruption = first_non_ff(buf, len); | 
 | 673 |  | 
 | 674 | 			ubifs_err("corrupt empty space LEB %d:%d, corruption " | 
 | 675 | 				  "starts at %d", lnum, offs, corruption); | 
 | 676 | 			/* Make sure we dump interesting non-0xFF data */ | 
 | 677 | 			offs = corruption; | 
 | 678 | 			buf += corruption; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 679 | 			goto corrupted; | 
 | 680 | 		} | 
 | 681 | 	} | 
 | 682 |  | 
 | 683 | 	/* Drop nodes from incomplete group */ | 
 | 684 | 	if (grouped && drop_incomplete_group(sleb, &offs)) { | 
 | 685 | 		buf = sbuf + offs; | 
 | 686 | 		len = c->leb_size - offs; | 
 | 687 | 		clean_buf(c, &buf, lnum, &offs, &len); | 
 | 688 | 		need_clean = 1; | 
 | 689 | 	} | 
 | 690 |  | 
 | 691 | 	if (offs % c->min_io_size) { | 
 | 692 | 		clean_buf(c, &buf, lnum, &offs, &len); | 
 | 693 | 		need_clean = 1; | 
 | 694 | 	} | 
 | 695 |  | 
 | 696 | 	ubifs_end_scan(c, sleb, lnum, offs); | 
 | 697 |  | 
 | 698 | 	if (need_clean) { | 
 | 699 | 		err = fix_unclean_leb(c, sleb, start); | 
 | 700 | 		if (err) | 
 | 701 | 			goto error; | 
 | 702 | 	} | 
 | 703 |  | 
 | 704 | 	return sleb; | 
 | 705 |  | 
 | 706 | corrupted: | 
 | 707 | 	ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 708 | 	err = -EUCLEAN; | 
 | 709 | error: | 
 | 710 | 	ubifs_err("LEB %d scanning failed", lnum); | 
 | 711 | 	ubifs_scan_destroy(sleb); | 
 | 712 | 	return ERR_PTR(err); | 
 | 713 | } | 
 | 714 |  | 
 | 715 | /** | 
 | 716 |  * get_cs_sqnum - get commit start sequence number. | 
 | 717 |  * @c: UBIFS file-system description object | 
 | 718 |  * @lnum: LEB number of commit start node | 
 | 719 |  * @offs: offset of commit start node | 
 | 720 |  * @cs_sqnum: commit start sequence number is returned here | 
 | 721 |  * | 
 | 722 |  * This function returns %0 on success and a negative error code on failure. | 
 | 723 |  */ | 
 | 724 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, | 
 | 725 | 			unsigned long long *cs_sqnum) | 
 | 726 | { | 
 | 727 | 	struct ubifs_cs_node *cs_node = NULL; | 
 | 728 | 	int err, ret; | 
 | 729 |  | 
 | 730 | 	dbg_rcvry("at %d:%d", lnum, offs); | 
 | 731 | 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); | 
 | 732 | 	if (!cs_node) | 
 | 733 | 		return -ENOMEM; | 
 | 734 | 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ) | 
 | 735 | 		goto out_err; | 
 | 736 | 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); | 
 | 737 | 	if (err && err != -EBADMSG) | 
 | 738 | 		goto out_free; | 
 | 739 | 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); | 
 | 740 | 	if (ret != SCANNED_A_NODE) { | 
 | 741 | 		dbg_err("Not a valid node"); | 
 | 742 | 		goto out_err; | 
 | 743 | 	} | 
 | 744 | 	if (cs_node->ch.node_type != UBIFS_CS_NODE) { | 
 | 745 | 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); | 
 | 746 | 		goto out_err; | 
 | 747 | 	} | 
 | 748 | 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { | 
 | 749 | 		dbg_err("CS node cmt_no %llu != current cmt_no %llu", | 
 | 750 | 			(unsigned long long)le64_to_cpu(cs_node->cmt_no), | 
 | 751 | 			c->cmt_no); | 
 | 752 | 		goto out_err; | 
 | 753 | 	} | 
 | 754 | 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); | 
 | 755 | 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum); | 
 | 756 | 	kfree(cs_node); | 
 | 757 | 	return 0; | 
 | 758 |  | 
 | 759 | out_err: | 
 | 760 | 	err = -EINVAL; | 
 | 761 | out_free: | 
 | 762 | 	ubifs_err("failed to get CS sqnum"); | 
 | 763 | 	kfree(cs_node); | 
 | 764 | 	return err; | 
 | 765 | } | 
 | 766 |  | 
 | 767 | /** | 
 | 768 |  * ubifs_recover_log_leb - scan and recover a log LEB. | 
 | 769 |  * @c: UBIFS file-system description object | 
 | 770 |  * @lnum: LEB number | 
 | 771 |  * @offs: offset | 
 | 772 |  * @sbuf: LEB-sized buffer to use | 
 | 773 |  * | 
 | 774 |  * This function does a scan of a LEB, but caters for errors that might have | 
 | 775 |  * been caused by the unclean unmount from which we are attempting to recover. | 
 | 776 |  * | 
 | 777 |  * This function returns %0 on success and a negative error code on failure. | 
 | 778 |  */ | 
 | 779 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, | 
 | 780 | 					     int offs, void *sbuf) | 
 | 781 | { | 
 | 782 | 	struct ubifs_scan_leb *sleb; | 
 | 783 | 	int next_lnum; | 
 | 784 |  | 
 | 785 | 	dbg_rcvry("LEB %d", lnum); | 
 | 786 | 	next_lnum = lnum + 1; | 
 | 787 | 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) | 
 | 788 | 		next_lnum = UBIFS_LOG_LNUM; | 
 | 789 | 	if (next_lnum != c->ltail_lnum) { | 
 | 790 | 		/* | 
 | 791 | 		 * We can only recover at the end of the log, so check that the | 
 | 792 | 		 * next log LEB is empty or out of date. | 
 | 793 | 		 */ | 
| Artem Bityutskiy | 348709b | 2009-08-25 15:00:55 +0300 | [diff] [blame] | 794 | 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 795 | 		if (IS_ERR(sleb)) | 
 | 796 | 			return sleb; | 
 | 797 | 		if (sleb->nodes_cnt) { | 
 | 798 | 			struct ubifs_scan_node *snod; | 
 | 799 | 			unsigned long long cs_sqnum = c->cs_sqnum; | 
 | 800 |  | 
 | 801 | 			snod = list_entry(sleb->nodes.next, | 
 | 802 | 					  struct ubifs_scan_node, list); | 
 | 803 | 			if (cs_sqnum == 0) { | 
 | 804 | 				int err; | 
 | 805 |  | 
 | 806 | 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); | 
 | 807 | 				if (err) { | 
 | 808 | 					ubifs_scan_destroy(sleb); | 
 | 809 | 					return ERR_PTR(err); | 
 | 810 | 				} | 
 | 811 | 			} | 
 | 812 | 			if (snod->sqnum > cs_sqnum) { | 
 | 813 | 				ubifs_err("unrecoverable log corruption " | 
 | 814 | 					  "in LEB %d", lnum); | 
 | 815 | 				ubifs_scan_destroy(sleb); | 
 | 816 | 				return ERR_PTR(-EUCLEAN); | 
 | 817 | 			} | 
 | 818 | 		} | 
 | 819 | 		ubifs_scan_destroy(sleb); | 
 | 820 | 	} | 
 | 821 | 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0); | 
 | 822 | } | 
 | 823 |  | 
 | 824 | /** | 
 | 825 |  * recover_head - recover a head. | 
 | 826 |  * @c: UBIFS file-system description object | 
 | 827 |  * @lnum: LEB number of head to recover | 
 | 828 |  * @offs: offset of head to recover | 
 | 829 |  * @sbuf: LEB-sized buffer to use | 
 | 830 |  * | 
 | 831 |  * This function ensures that there is no data on the flash at a head location. | 
 | 832 |  * | 
 | 833 |  * This function returns %0 on success and a negative error code on failure. | 
 | 834 |  */ | 
 | 835 | static int recover_head(const struct ubifs_info *c, int lnum, int offs, | 
 | 836 | 			void *sbuf) | 
 | 837 | { | 
| Artem Bityutskiy | 431102f | 2009-06-29 18:58:34 +0300 | [diff] [blame] | 838 | 	int len, err; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 839 |  | 
 | 840 | 	if (c->min_io_size > 1) | 
 | 841 | 		len = c->min_io_size; | 
 | 842 | 	else | 
 | 843 | 		len = 512; | 
 | 844 | 	if (offs + len > c->leb_size) | 
 | 845 | 		len = c->leb_size - offs; | 
 | 846 |  | 
 | 847 | 	if (!len) | 
 | 848 | 		return 0; | 
 | 849 |  | 
 | 850 | 	/* Read at the head location and check it is empty flash */ | 
 | 851 | 	err = ubi_read(c->ubi, lnum, sbuf, offs, len); | 
| Artem Bityutskiy | 431102f | 2009-06-29 18:58:34 +0300 | [diff] [blame] | 852 | 	if (err || !is_empty(sbuf, len)) { | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 853 | 		dbg_rcvry("cleaning head at %d:%d", lnum, offs); | 
 | 854 | 		if (offs == 0) | 
 | 855 | 			return ubifs_leb_unmap(c, lnum); | 
 | 856 | 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs); | 
 | 857 | 		if (err) | 
 | 858 | 			return err; | 
 | 859 | 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); | 
 | 860 | 	} | 
 | 861 |  | 
 | 862 | 	return 0; | 
 | 863 | } | 
 | 864 |  | 
 | 865 | /** | 
 | 866 |  * ubifs_recover_inl_heads - recover index and LPT heads. | 
 | 867 |  * @c: UBIFS file-system description object | 
 | 868 |  * @sbuf: LEB-sized buffer to use | 
 | 869 |  * | 
 | 870 |  * This function ensures that there is no data on the flash at the index and | 
 | 871 |  * LPT head locations. | 
 | 872 |  * | 
 | 873 |  * This deals with the recovery of a half-completed journal commit. UBIFS is | 
 | 874 |  * careful never to overwrite the last version of the index or the LPT. Because | 
 | 875 |  * the index and LPT are wandering trees, data from a half-completed commit will | 
 | 876 |  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are | 
 | 877 |  * assumed to be empty and will be unmapped anyway before use, or in the index | 
 | 878 |  * and LPT heads. | 
 | 879 |  * | 
 | 880 |  * This function returns %0 on success and a negative error code on failure. | 
 | 881 |  */ | 
 | 882 | int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) | 
 | 883 | { | 
 | 884 | 	int err; | 
 | 885 |  | 
 | 886 | 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); | 
 | 887 |  | 
 | 888 | 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); | 
 | 889 | 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); | 
 | 890 | 	if (err) | 
 | 891 | 		return err; | 
 | 892 |  | 
 | 893 | 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); | 
 | 894 | 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); | 
 | 895 | 	if (err) | 
 | 896 | 		return err; | 
 | 897 |  | 
 | 898 | 	return 0; | 
 | 899 | } | 
 | 900 |  | 
 | 901 | /** | 
 | 902 |  *  clean_an_unclean_leb - read and write a LEB to remove corruption. | 
 | 903 |  * @c: UBIFS file-system description object | 
 | 904 |  * @ucleb: unclean LEB information | 
 | 905 |  * @sbuf: LEB-sized buffer to use | 
 | 906 |  * | 
 | 907 |  * This function reads a LEB up to a point pre-determined by the mount recovery, | 
 | 908 |  * checks the nodes, and writes the result back to the flash, thereby cleaning | 
 | 909 |  * off any following corruption, or non-fatal ECC errors. | 
 | 910 |  * | 
 | 911 |  * This function returns %0 on success and a negative error code on failure. | 
 | 912 |  */ | 
 | 913 | static int clean_an_unclean_leb(const struct ubifs_info *c, | 
 | 914 | 				struct ubifs_unclean_leb *ucleb, void *sbuf) | 
 | 915 | { | 
 | 916 | 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; | 
 | 917 | 	void *buf = sbuf; | 
 | 918 |  | 
 | 919 | 	dbg_rcvry("LEB %d len %d", lnum, len); | 
 | 920 |  | 
 | 921 | 	if (len == 0) { | 
 | 922 | 		/* Nothing to read, just unmap it */ | 
 | 923 | 		err = ubifs_leb_unmap(c, lnum); | 
 | 924 | 		if (err) | 
 | 925 | 			return err; | 
 | 926 | 		return 0; | 
 | 927 | 	} | 
 | 928 |  | 
 | 929 | 	err = ubi_read(c->ubi, lnum, buf, offs, len); | 
 | 930 | 	if (err && err != -EBADMSG) | 
 | 931 | 		return err; | 
 | 932 |  | 
 | 933 | 	while (len >= 8) { | 
 | 934 | 		int ret; | 
 | 935 |  | 
 | 936 | 		cond_resched(); | 
 | 937 |  | 
 | 938 | 		/* Scan quietly until there is an error */ | 
 | 939 | 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); | 
 | 940 |  | 
 | 941 | 		if (ret == SCANNED_A_NODE) { | 
 | 942 | 			/* A valid node, and not a padding node */ | 
 | 943 | 			struct ubifs_ch *ch = buf; | 
 | 944 | 			int node_len; | 
 | 945 |  | 
 | 946 | 			node_len = ALIGN(le32_to_cpu(ch->len), 8); | 
 | 947 | 			offs += node_len; | 
 | 948 | 			buf += node_len; | 
 | 949 | 			len -= node_len; | 
 | 950 | 			continue; | 
 | 951 | 		} | 
 | 952 |  | 
 | 953 | 		if (ret > 0) { | 
 | 954 | 			/* Padding bytes or a valid padding node */ | 
 | 955 | 			offs += ret; | 
 | 956 | 			buf += ret; | 
 | 957 | 			len -= ret; | 
 | 958 | 			continue; | 
 | 959 | 		} | 
 | 960 |  | 
 | 961 | 		if (ret == SCANNED_EMPTY_SPACE) { | 
 | 962 | 			ubifs_err("unexpected empty space at %d:%d", | 
 | 963 | 				  lnum, offs); | 
 | 964 | 			return -EUCLEAN; | 
 | 965 | 		} | 
 | 966 |  | 
 | 967 | 		if (quiet) { | 
 | 968 | 			/* Redo the last scan but noisily */ | 
 | 969 | 			quiet = 0; | 
 | 970 | 			continue; | 
 | 971 | 		} | 
 | 972 |  | 
 | 973 | 		ubifs_scanned_corruption(c, lnum, offs, buf); | 
 | 974 | 		return -EUCLEAN; | 
 | 975 | 	} | 
 | 976 |  | 
 | 977 | 	/* Pad to min_io_size */ | 
 | 978 | 	len = ALIGN(ucleb->endpt, c->min_io_size); | 
 | 979 | 	if (len > ucleb->endpt) { | 
 | 980 | 		int pad_len = len - ALIGN(ucleb->endpt, 8); | 
 | 981 |  | 
 | 982 | 		if (pad_len > 0) { | 
 | 983 | 			buf = c->sbuf + len - pad_len; | 
 | 984 | 			ubifs_pad(c, buf, pad_len); | 
 | 985 | 		} | 
 | 986 | 	} | 
 | 987 |  | 
 | 988 | 	/* Write back the LEB atomically */ | 
 | 989 | 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); | 
 | 990 | 	if (err) | 
 | 991 | 		return err; | 
 | 992 |  | 
 | 993 | 	dbg_rcvry("cleaned LEB %d", lnum); | 
 | 994 |  | 
 | 995 | 	return 0; | 
 | 996 | } | 
 | 997 |  | 
 | 998 | /** | 
 | 999 |  * ubifs_clean_lebs - clean LEBs recovered during read-only mount. | 
 | 1000 |  * @c: UBIFS file-system description object | 
 | 1001 |  * @sbuf: LEB-sized buffer to use | 
 | 1002 |  * | 
 | 1003 |  * This function cleans a LEB identified during recovery that needs to be | 
 | 1004 |  * written but was not because UBIFS was mounted read-only. This happens when | 
 | 1005 |  * remounting to read-write mode. | 
 | 1006 |  * | 
 | 1007 |  * This function returns %0 on success and a negative error code on failure. | 
 | 1008 |  */ | 
 | 1009 | int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) | 
 | 1010 | { | 
 | 1011 | 	dbg_rcvry("recovery"); | 
 | 1012 | 	while (!list_empty(&c->unclean_leb_list)) { | 
 | 1013 | 		struct ubifs_unclean_leb *ucleb; | 
 | 1014 | 		int err; | 
 | 1015 |  | 
 | 1016 | 		ucleb = list_entry(c->unclean_leb_list.next, | 
 | 1017 | 				   struct ubifs_unclean_leb, list); | 
 | 1018 | 		err = clean_an_unclean_leb(c, ucleb, sbuf); | 
 | 1019 | 		if (err) | 
 | 1020 | 			return err; | 
 | 1021 | 		list_del(&ucleb->list); | 
 | 1022 | 		kfree(ucleb); | 
 | 1023 | 	} | 
 | 1024 | 	return 0; | 
 | 1025 | } | 
 | 1026 |  | 
 | 1027 | /** | 
 | 1028 |  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. | 
 | 1029 |  * @c: UBIFS file-system description object | 
 | 1030 |  * | 
 | 1031 |  * Out-of-place garbage collection requires always one empty LEB with which to | 
 | 1032 |  * start garbage collection. The LEB number is recorded in c->gc_lnum and is | 
 | 1033 |  * written to the master node on unmounting. In the case of an unclean unmount | 
 | 1034 |  * the value of gc_lnum recorded in the master node is out of date and cannot | 
 | 1035 |  * be used. Instead, recovery must allocate an empty LEB for this purpose. | 
 | 1036 |  * However, there may not be enough empty space, in which case it must be | 
 | 1037 |  * possible to GC the dirtiest LEB into the GC head LEB. | 
 | 1038 |  * | 
 | 1039 |  * This function also runs the commit which causes the TNC updates from | 
 | 1040 |  * size-recovery and orphans to be written to the flash. That is important to | 
 | 1041 |  * ensure correct replay order for subsequent mounts. | 
 | 1042 |  * | 
 | 1043 |  * This function returns %0 on success and a negative error code on failure. | 
 | 1044 |  */ | 
 | 1045 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) | 
 | 1046 | { | 
 | 1047 | 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
 | 1048 | 	struct ubifs_lprops lp; | 
 | 1049 | 	int lnum, err; | 
 | 1050 |  | 
 | 1051 | 	c->gc_lnum = -1; | 
 | 1052 | 	if (wbuf->lnum == -1) { | 
 | 1053 | 		dbg_rcvry("no GC head LEB"); | 
 | 1054 | 		goto find_free; | 
 | 1055 | 	} | 
 | 1056 | 	/* | 
 | 1057 | 	 * See whether the used space in the dirtiest LEB fits in the GC head | 
 | 1058 | 	 * LEB. | 
 | 1059 | 	 */ | 
 | 1060 | 	if (wbuf->offs == c->leb_size) { | 
 | 1061 | 		dbg_rcvry("no room in GC head LEB"); | 
 | 1062 | 		goto find_free; | 
 | 1063 | 	} | 
 | 1064 | 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); | 
 | 1065 | 	if (err) { | 
| Artem Bityutskiy | 6fb4374 | 2010-05-23 15:20:21 +0300 | [diff] [blame] | 1066 | 		/* | 
 | 1067 | 		 * There are no dirty or empty LEBs subject to here being | 
 | 1068 | 		 * enough for the index. Try to use | 
 | 1069 | 		 * 'ubifs_find_free_leb_for_idx()', which will return any empty | 
 | 1070 | 		 * LEBs (ignoring index requirements). If the index then | 
 | 1071 | 		 * doesn't have enough LEBs the recovery commit will fail - | 
 | 1072 | 		 * which is the  same result anyway i.e. recovery fails. So | 
 | 1073 | 		 * there is no problem ignoring index  requirements and just | 
 | 1074 | 		 * grabbing a free LEB since we have already established there | 
 | 1075 | 		 * is not a dirty LEB we could have used instead. | 
 | 1076 | 		 */ | 
 | 1077 | 		if (err == -ENOSPC) { | 
 | 1078 | 			dbg_rcvry("could not find a dirty LEB"); | 
 | 1079 | 			goto find_free; | 
 | 1080 | 		} | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1081 | 		return err; | 
 | 1082 | 	} | 
 | 1083 | 	ubifs_assert(!(lp.flags & LPROPS_INDEX)); | 
 | 1084 | 	lnum = lp.lnum; | 
 | 1085 | 	if (lp.free + lp.dirty == c->leb_size) { | 
 | 1086 | 		/* An empty LEB was returned */ | 
 | 1087 | 		if (lp.free != c->leb_size) { | 
 | 1088 | 			err = ubifs_change_one_lp(c, lnum, c->leb_size, | 
 | 1089 | 						  0, 0, 0, 0); | 
 | 1090 | 			if (err) | 
 | 1091 | 				return err; | 
 | 1092 | 		} | 
 | 1093 | 		err = ubifs_leb_unmap(c, lnum); | 
 | 1094 | 		if (err) | 
 | 1095 | 			return err; | 
 | 1096 | 		c->gc_lnum = lnum; | 
 | 1097 | 		dbg_rcvry("allocated LEB %d for GC", lnum); | 
 | 1098 | 		/* Run the commit */ | 
 | 1099 | 		dbg_rcvry("committing"); | 
 | 1100 | 		return ubifs_run_commit(c); | 
 | 1101 | 	} | 
 | 1102 | 	/* | 
 | 1103 | 	 * There was no empty LEB so the used space in the dirtiest LEB must fit | 
 | 1104 | 	 * in the GC head LEB. | 
 | 1105 | 	 */ | 
 | 1106 | 	if (lp.free + lp.dirty < wbuf->offs) { | 
 | 1107 | 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", | 
 | 1108 | 			  lnum, wbuf->lnum, wbuf->offs); | 
 | 1109 | 		err = ubifs_return_leb(c, lnum); | 
 | 1110 | 		if (err) | 
 | 1111 | 			return err; | 
 | 1112 | 		goto find_free; | 
 | 1113 | 	} | 
 | 1114 | 	/* | 
 | 1115 | 	 * We run the commit before garbage collection otherwise subsequent | 
 | 1116 | 	 * mounts will see the GC and orphan deletion in a different order. | 
 | 1117 | 	 */ | 
 | 1118 | 	dbg_rcvry("committing"); | 
 | 1119 | 	err = ubifs_run_commit(c); | 
 | 1120 | 	if (err) | 
 | 1121 | 		return err; | 
 | 1122 | 	/* | 
 | 1123 | 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC | 
 | 1124 | 	 * - use locking to keep 'ubifs_assert()' happy. | 
 | 1125 | 	 */ | 
 | 1126 | 	dbg_rcvry("GC'ing LEB %d", lnum); | 
 | 1127 | 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
 | 1128 | 	err = ubifs_garbage_collect_leb(c, &lp); | 
 | 1129 | 	if (err >= 0) { | 
 | 1130 | 		int err2 = ubifs_wbuf_sync_nolock(wbuf); | 
 | 1131 |  | 
 | 1132 | 		if (err2) | 
 | 1133 | 			err = err2; | 
 | 1134 | 	} | 
 | 1135 | 	mutex_unlock(&wbuf->io_mutex); | 
 | 1136 | 	if (err < 0) { | 
 | 1137 | 		dbg_err("GC failed, error %d", err); | 
 | 1138 | 		if (err == -EAGAIN) | 
 | 1139 | 			err = -EINVAL; | 
 | 1140 | 		return err; | 
 | 1141 | 	} | 
 | 1142 | 	if (err != LEB_RETAINED) { | 
 | 1143 | 		dbg_err("GC returned %d", err); | 
 | 1144 | 		return -EINVAL; | 
 | 1145 | 	} | 
 | 1146 | 	err = ubifs_leb_unmap(c, c->gc_lnum); | 
 | 1147 | 	if (err) | 
 | 1148 | 		return err; | 
 | 1149 | 	dbg_rcvry("allocated LEB %d for GC", lnum); | 
 | 1150 | 	return 0; | 
 | 1151 |  | 
 | 1152 | find_free: | 
 | 1153 | 	/* | 
 | 1154 | 	 * There is no GC head LEB or the free space in the GC head LEB is too | 
| Artem Bityutskiy | 6fb4374 | 2010-05-23 15:20:21 +0300 | [diff] [blame] | 1155 | 	 * small, or there are not dirty LEBs. Allocate gc_lnum by calling | 
 | 1156 | 	 * 'ubifs_find_free_leb_for_idx()' so GC is not run. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1157 | 	 */ | 
 | 1158 | 	lnum = ubifs_find_free_leb_for_idx(c); | 
 | 1159 | 	if (lnum < 0) { | 
 | 1160 | 		dbg_err("could not find an empty LEB"); | 
 | 1161 | 		return lnum; | 
 | 1162 | 	} | 
 | 1163 | 	/* And reset the index flag */ | 
 | 1164 | 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, | 
 | 1165 | 				  LPROPS_INDEX, 0); | 
 | 1166 | 	if (err) | 
 | 1167 | 		return err; | 
 | 1168 | 	c->gc_lnum = lnum; | 
 | 1169 | 	dbg_rcvry("allocated LEB %d for GC", lnum); | 
 | 1170 | 	/* Run the commit */ | 
 | 1171 | 	dbg_rcvry("committing"); | 
 | 1172 | 	return ubifs_run_commit(c); | 
 | 1173 | } | 
 | 1174 |  | 
 | 1175 | /** | 
 | 1176 |  * struct size_entry - inode size information for recovery. | 
 | 1177 |  * @rb: link in the RB-tree of sizes | 
 | 1178 |  * @inum: inode number | 
 | 1179 |  * @i_size: size on inode | 
 | 1180 |  * @d_size: maximum size based on data nodes | 
 | 1181 |  * @exists: indicates whether the inode exists | 
 | 1182 |  * @inode: inode if pinned in memory awaiting rw mode to fix it | 
 | 1183 |  */ | 
 | 1184 | struct size_entry { | 
 | 1185 | 	struct rb_node rb; | 
 | 1186 | 	ino_t inum; | 
 | 1187 | 	loff_t i_size; | 
 | 1188 | 	loff_t d_size; | 
 | 1189 | 	int exists; | 
 | 1190 | 	struct inode *inode; | 
 | 1191 | }; | 
 | 1192 |  | 
 | 1193 | /** | 
 | 1194 |  * add_ino - add an entry to the size tree. | 
 | 1195 |  * @c: UBIFS file-system description object | 
 | 1196 |  * @inum: inode number | 
 | 1197 |  * @i_size: size on inode | 
 | 1198 |  * @d_size: maximum size based on data nodes | 
 | 1199 |  * @exists: indicates whether the inode exists | 
 | 1200 |  */ | 
 | 1201 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, | 
 | 1202 | 		   loff_t d_size, int exists) | 
 | 1203 | { | 
 | 1204 | 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; | 
 | 1205 | 	struct size_entry *e; | 
 | 1206 |  | 
 | 1207 | 	while (*p) { | 
 | 1208 | 		parent = *p; | 
 | 1209 | 		e = rb_entry(parent, struct size_entry, rb); | 
 | 1210 | 		if (inum < e->inum) | 
 | 1211 | 			p = &(*p)->rb_left; | 
 | 1212 | 		else | 
 | 1213 | 			p = &(*p)->rb_right; | 
 | 1214 | 	} | 
 | 1215 |  | 
 | 1216 | 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); | 
 | 1217 | 	if (!e) | 
 | 1218 | 		return -ENOMEM; | 
 | 1219 |  | 
 | 1220 | 	e->inum = inum; | 
 | 1221 | 	e->i_size = i_size; | 
 | 1222 | 	e->d_size = d_size; | 
 | 1223 | 	e->exists = exists; | 
 | 1224 |  | 
 | 1225 | 	rb_link_node(&e->rb, parent, p); | 
 | 1226 | 	rb_insert_color(&e->rb, &c->size_tree); | 
 | 1227 |  | 
 | 1228 | 	return 0; | 
 | 1229 | } | 
 | 1230 |  | 
 | 1231 | /** | 
 | 1232 |  * find_ino - find an entry on the size tree. | 
 | 1233 |  * @c: UBIFS file-system description object | 
 | 1234 |  * @inum: inode number | 
 | 1235 |  */ | 
 | 1236 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) | 
 | 1237 | { | 
 | 1238 | 	struct rb_node *p = c->size_tree.rb_node; | 
 | 1239 | 	struct size_entry *e; | 
 | 1240 |  | 
 | 1241 | 	while (p) { | 
 | 1242 | 		e = rb_entry(p, struct size_entry, rb); | 
 | 1243 | 		if (inum < e->inum) | 
 | 1244 | 			p = p->rb_left; | 
 | 1245 | 		else if (inum > e->inum) | 
 | 1246 | 			p = p->rb_right; | 
 | 1247 | 		else | 
 | 1248 | 			return e; | 
 | 1249 | 	} | 
 | 1250 | 	return NULL; | 
 | 1251 | } | 
 | 1252 |  | 
 | 1253 | /** | 
 | 1254 |  * remove_ino - remove an entry from the size tree. | 
 | 1255 |  * @c: UBIFS file-system description object | 
 | 1256 |  * @inum: inode number | 
 | 1257 |  */ | 
 | 1258 | static void remove_ino(struct ubifs_info *c, ino_t inum) | 
 | 1259 | { | 
 | 1260 | 	struct size_entry *e = find_ino(c, inum); | 
 | 1261 |  | 
 | 1262 | 	if (!e) | 
 | 1263 | 		return; | 
 | 1264 | 	rb_erase(&e->rb, &c->size_tree); | 
 | 1265 | 	kfree(e); | 
 | 1266 | } | 
 | 1267 |  | 
 | 1268 | /** | 
 | 1269 |  * ubifs_destroy_size_tree - free resources related to the size tree. | 
 | 1270 |  * @c: UBIFS file-system description object | 
 | 1271 |  */ | 
 | 1272 | void ubifs_destroy_size_tree(struct ubifs_info *c) | 
 | 1273 | { | 
 | 1274 | 	struct rb_node *this = c->size_tree.rb_node; | 
 | 1275 | 	struct size_entry *e; | 
 | 1276 |  | 
 | 1277 | 	while (this) { | 
 | 1278 | 		if (this->rb_left) { | 
 | 1279 | 			this = this->rb_left; | 
 | 1280 | 			continue; | 
 | 1281 | 		} else if (this->rb_right) { | 
 | 1282 | 			this = this->rb_right; | 
 | 1283 | 			continue; | 
 | 1284 | 		} | 
 | 1285 | 		e = rb_entry(this, struct size_entry, rb); | 
 | 1286 | 		if (e->inode) | 
 | 1287 | 			iput(e->inode); | 
 | 1288 | 		this = rb_parent(this); | 
 | 1289 | 		if (this) { | 
 | 1290 | 			if (this->rb_left == &e->rb) | 
 | 1291 | 				this->rb_left = NULL; | 
 | 1292 | 			else | 
 | 1293 | 				this->rb_right = NULL; | 
 | 1294 | 		} | 
 | 1295 | 		kfree(e); | 
 | 1296 | 	} | 
 | 1297 | 	c->size_tree = RB_ROOT; | 
 | 1298 | } | 
 | 1299 |  | 
 | 1300 | /** | 
 | 1301 |  * ubifs_recover_size_accum - accumulate inode sizes for recovery. | 
 | 1302 |  * @c: UBIFS file-system description object | 
 | 1303 |  * @key: node key | 
 | 1304 |  * @deletion: node is for a deletion | 
 | 1305 |  * @new_size: inode size | 
 | 1306 |  * | 
 | 1307 |  * This function has two purposes: | 
 | 1308 |  *     1) to ensure there are no data nodes that fall outside the inode size | 
 | 1309 |  *     2) to ensure there are no data nodes for inodes that do not exist | 
 | 1310 |  * To accomplish those purposes, a rb-tree is constructed containing an entry | 
 | 1311 |  * for each inode number in the journal that has not been deleted, and recording | 
 | 1312 |  * the size from the inode node, the maximum size of any data node (also altered | 
 | 1313 |  * by truncations) and a flag indicating a inode number for which no inode node | 
 | 1314 |  * was present in the journal. | 
 | 1315 |  * | 
 | 1316 |  * Note that there is still the possibility that there are data nodes that have | 
 | 1317 |  * been committed that are beyond the inode size, however the only way to find | 
 | 1318 |  * them would be to scan the entire index. Alternatively, some provision could | 
 | 1319 |  * be made to record the size of inodes at the start of commit, which would seem | 
 | 1320 |  * very cumbersome for a scenario that is quite unlikely and the only negative | 
 | 1321 |  * consequence of which is wasted space. | 
 | 1322 |  * | 
 | 1323 |  * This functions returns %0 on success and a negative error code on failure. | 
 | 1324 |  */ | 
 | 1325 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, | 
 | 1326 | 			     int deletion, loff_t new_size) | 
 | 1327 | { | 
 | 1328 | 	ino_t inum = key_inum(c, key); | 
 | 1329 | 	struct size_entry *e; | 
 | 1330 | 	int err; | 
 | 1331 |  | 
 | 1332 | 	switch (key_type(c, key)) { | 
 | 1333 | 	case UBIFS_INO_KEY: | 
 | 1334 | 		if (deletion) | 
 | 1335 | 			remove_ino(c, inum); | 
 | 1336 | 		else { | 
 | 1337 | 			e = find_ino(c, inum); | 
 | 1338 | 			if (e) { | 
 | 1339 | 				e->i_size = new_size; | 
 | 1340 | 				e->exists = 1; | 
 | 1341 | 			} else { | 
 | 1342 | 				err = add_ino(c, inum, new_size, 0, 1); | 
 | 1343 | 				if (err) | 
 | 1344 | 					return err; | 
 | 1345 | 			} | 
 | 1346 | 		} | 
 | 1347 | 		break; | 
 | 1348 | 	case UBIFS_DATA_KEY: | 
 | 1349 | 		e = find_ino(c, inum); | 
 | 1350 | 		if (e) { | 
 | 1351 | 			if (new_size > e->d_size) | 
 | 1352 | 				e->d_size = new_size; | 
 | 1353 | 		} else { | 
 | 1354 | 			err = add_ino(c, inum, 0, new_size, 0); | 
 | 1355 | 			if (err) | 
 | 1356 | 				return err; | 
 | 1357 | 		} | 
 | 1358 | 		break; | 
 | 1359 | 	case UBIFS_TRUN_KEY: | 
 | 1360 | 		e = find_ino(c, inum); | 
 | 1361 | 		if (e) | 
 | 1362 | 			e->d_size = new_size; | 
 | 1363 | 		break; | 
 | 1364 | 	} | 
 | 1365 | 	return 0; | 
 | 1366 | } | 
 | 1367 |  | 
 | 1368 | /** | 
 | 1369 |  * fix_size_in_place - fix inode size in place on flash. | 
 | 1370 |  * @c: UBIFS file-system description object | 
 | 1371 |  * @e: inode size information for recovery | 
 | 1372 |  */ | 
 | 1373 | static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) | 
 | 1374 | { | 
 | 1375 | 	struct ubifs_ino_node *ino = c->sbuf; | 
 | 1376 | 	unsigned char *p; | 
 | 1377 | 	union ubifs_key key; | 
 | 1378 | 	int err, lnum, offs, len; | 
 | 1379 | 	loff_t i_size; | 
 | 1380 | 	uint32_t crc; | 
 | 1381 |  | 
 | 1382 | 	/* Locate the inode node LEB number and offset */ | 
 | 1383 | 	ino_key_init(c, &key, e->inum); | 
 | 1384 | 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); | 
 | 1385 | 	if (err) | 
 | 1386 | 		goto out; | 
 | 1387 | 	/* | 
 | 1388 | 	 * If the size recorded on the inode node is greater than the size that | 
 | 1389 | 	 * was calculated from nodes in the journal then don't change the inode. | 
 | 1390 | 	 */ | 
 | 1391 | 	i_size = le64_to_cpu(ino->size); | 
 | 1392 | 	if (i_size >= e->d_size) | 
 | 1393 | 		return 0; | 
 | 1394 | 	/* Read the LEB */ | 
 | 1395 | 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); | 
 | 1396 | 	if (err) | 
 | 1397 | 		goto out; | 
 | 1398 | 	/* Change the size field and recalculate the CRC */ | 
 | 1399 | 	ino = c->sbuf + offs; | 
 | 1400 | 	ino->size = cpu_to_le64(e->d_size); | 
 | 1401 | 	len = le32_to_cpu(ino->ch.len); | 
 | 1402 | 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); | 
 | 1403 | 	ino->ch.crc = cpu_to_le32(crc); | 
 | 1404 | 	/* Work out where data in the LEB ends and free space begins */ | 
 | 1405 | 	p = c->sbuf; | 
 | 1406 | 	len = c->leb_size - 1; | 
 | 1407 | 	while (p[len] == 0xff) | 
 | 1408 | 		len -= 1; | 
 | 1409 | 	len = ALIGN(len + 1, c->min_io_size); | 
 | 1410 | 	/* Atomically write the fixed LEB back again */ | 
 | 1411 | 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); | 
 | 1412 | 	if (err) | 
 | 1413 | 		goto out; | 
| Artem Bityutskiy | e84461a | 2008-10-29 12:08:43 +0200 | [diff] [blame] | 1414 | 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", | 
 | 1415 | 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1416 | 	return 0; | 
 | 1417 |  | 
 | 1418 | out: | 
 | 1419 | 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", | 
| Artem Bityutskiy | e84461a | 2008-10-29 12:08:43 +0200 | [diff] [blame] | 1420 | 		   (unsigned long)e->inum, e->i_size, e->d_size, err); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1421 | 	return err; | 
 | 1422 | } | 
 | 1423 |  | 
 | 1424 | /** | 
 | 1425 |  * ubifs_recover_size - recover inode size. | 
 | 1426 |  * @c: UBIFS file-system description object | 
 | 1427 |  * | 
 | 1428 |  * This function attempts to fix inode size discrepancies identified by the | 
 | 1429 |  * 'ubifs_recover_size_accum()' function. | 
 | 1430 |  * | 
 | 1431 |  * This functions returns %0 on success and a negative error code on failure. | 
 | 1432 |  */ | 
 | 1433 | int ubifs_recover_size(struct ubifs_info *c) | 
 | 1434 | { | 
 | 1435 | 	struct rb_node *this = rb_first(&c->size_tree); | 
 | 1436 |  | 
 | 1437 | 	while (this) { | 
 | 1438 | 		struct size_entry *e; | 
 | 1439 | 		int err; | 
 | 1440 |  | 
 | 1441 | 		e = rb_entry(this, struct size_entry, rb); | 
 | 1442 | 		if (!e->exists) { | 
 | 1443 | 			union ubifs_key key; | 
 | 1444 |  | 
 | 1445 | 			ino_key_init(c, &key, e->inum); | 
 | 1446 | 			err = ubifs_tnc_lookup(c, &key, c->sbuf); | 
 | 1447 | 			if (err && err != -ENOENT) | 
 | 1448 | 				return err; | 
 | 1449 | 			if (err == -ENOENT) { | 
 | 1450 | 				/* Remove data nodes that have no inode */ | 
| Artem Bityutskiy | e84461a | 2008-10-29 12:08:43 +0200 | [diff] [blame] | 1451 | 				dbg_rcvry("removing ino %lu", | 
 | 1452 | 					  (unsigned long)e->inum); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1453 | 				err = ubifs_tnc_remove_ino(c, e->inum); | 
 | 1454 | 				if (err) | 
 | 1455 | 					return err; | 
 | 1456 | 			} else { | 
 | 1457 | 				struct ubifs_ino_node *ino = c->sbuf; | 
 | 1458 |  | 
 | 1459 | 				e->exists = 1; | 
 | 1460 | 				e->i_size = le64_to_cpu(ino->size); | 
 | 1461 | 			} | 
 | 1462 | 		} | 
 | 1463 | 		if (e->exists && e->i_size < e->d_size) { | 
 | 1464 | 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { | 
 | 1465 | 				/* Fix the inode size and pin it in memory */ | 
 | 1466 | 				struct inode *inode; | 
 | 1467 |  | 
 | 1468 | 				inode = ubifs_iget(c->vfs_sb, e->inum); | 
 | 1469 | 				if (IS_ERR(inode)) | 
 | 1470 | 					return PTR_ERR(inode); | 
 | 1471 | 				if (inode->i_size < e->d_size) { | 
 | 1472 | 					dbg_rcvry("ino %lu size %lld -> %lld", | 
| Artem Bityutskiy | e84461a | 2008-10-29 12:08:43 +0200 | [diff] [blame] | 1473 | 						  (unsigned long)e->inum, | 
 | 1474 | 						  e->d_size, inode->i_size); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1475 | 					inode->i_size = e->d_size; | 
 | 1476 | 					ubifs_inode(inode)->ui_size = e->d_size; | 
 | 1477 | 					e->inode = inode; | 
 | 1478 | 					this = rb_next(this); | 
 | 1479 | 					continue; | 
 | 1480 | 				} | 
 | 1481 | 				iput(inode); | 
 | 1482 | 			} else { | 
 | 1483 | 				/* Fix the size in place */ | 
 | 1484 | 				err = fix_size_in_place(c, e); | 
 | 1485 | 				if (err) | 
 | 1486 | 					return err; | 
 | 1487 | 				if (e->inode) | 
 | 1488 | 					iput(e->inode); | 
 | 1489 | 			} | 
 | 1490 | 		} | 
 | 1491 | 		this = rb_next(this); | 
 | 1492 | 		rb_erase(&e->rb, &c->size_tree); | 
 | 1493 | 		kfree(e); | 
 | 1494 | 	} | 
 | 1495 | 	return 0; | 
 | 1496 | } |