blob: d7053eb4ffcfd93623d58aabda82d30cf9118dee [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <linux/errno.h>
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/param.h>
35#include <linux/string.h>
36#include <linux/mm.h>
37#include <linux/delay.h>
38#include <linux/ioport.h>
39#include <linux/irq.h>
40#include <linux/interrupt.h>
41#include <linux/init.h>
42#include <linux/bcd.h>
43#include <linux/profile.h>
44
45#include <asm/uaccess.h>
46#include <asm/io.h>
47#include <asm/hwrpb.h>
48#include <asm/8253pit.h>
49
50#include <linux/mc146818rtc.h>
51#include <linux/time.h>
52#include <linux/timex.h>
53
54#include "proto.h"
55#include "irq_impl.h"
56
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int set_rtc_mmss(unsigned long);
58
59DEFINE_SPINLOCK(rtc_lock);
Al Virocff52da2006-10-11 17:40:22 +010060EXPORT_SYMBOL(rtc_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
62#define TICK_SIZE (tick_nsec / 1000)
63
64/*
65 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
66 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
67 * for large CPU clock rates.
68 */
69#define FIX_SHIFT 48
70
71/* lump static variables together for more efficient access: */
72static struct {
73 /* cycle counter last time it got invoked */
74 __u32 last_time;
75 /* ticks/cycle * 2^48 */
76 unsigned long scaled_ticks_per_cycle;
77 /* last time the CMOS clock got updated */
78 time_t last_rtc_update;
79 /* partial unused tick */
80 unsigned long partial_tick;
81} state;
82
83unsigned long est_cycle_freq;
84
85
86static inline __u32 rpcc(void)
87{
88 __u32 result;
89 asm volatile ("rpcc %0" : "=r"(result));
90 return result;
91}
92
93/*
94 * Scheduler clock - returns current time in nanosec units.
95 *
96 * Copied from ARM code for expediency... ;-}
97 */
98unsigned long long sched_clock(void)
99{
100 return (unsigned long long)jiffies * (1000000000 / HZ);
101}
102
103
104/*
105 * timer_interrupt() needs to keep up the real-time clock,
106 * as well as call the "do_timer()" routine every clocktick
107 */
Al Viro8774cb82006-10-07 14:17:31 +0100108irqreturn_t timer_interrupt(int irq, void *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109{
110 unsigned long delta;
111 __u32 now;
112 long nticks;
113
114#ifndef CONFIG_SMP
115 /* Not SMP, do kernel PC profiling here. */
Al Viro8774cb82006-10-07 14:17:31 +0100116 profile_tick(CPU_PROFILING);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117#endif
118
119 write_seqlock(&xtime_lock);
120
121 /*
122 * Calculate how many ticks have passed since the last update,
123 * including any previous partial leftover. Save any resulting
124 * fraction for the next pass.
125 */
126 now = rpcc();
127 delta = now - state.last_time;
128 state.last_time = now;
129 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
130 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
131 nticks = delta >> FIX_SHIFT;
132
133 while (nticks > 0) {
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700134 do_timer(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135#ifndef CONFIG_SMP
Al Viro8774cb82006-10-07 14:17:31 +0100136 update_process_times(user_mode(get_irq_regs()));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137#endif
138 nticks--;
139 }
140
141 /*
142 * If we have an externally synchronized Linux clock, then update
143 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
144 * called as close as possible to 500 ms before the new second starts.
145 */
john stultzb149ee22005-09-06 15:17:46 -0700146 if (ntp_synced()
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147 && xtime.tv_sec > state.last_rtc_update + 660
148 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
149 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
150 int tmp = set_rtc_mmss(xtime.tv_sec);
151 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
152 }
153
154 write_sequnlock(&xtime_lock);
155 return IRQ_HANDLED;
156}
157
158void
159common_init_rtc(void)
160{
161 unsigned char x;
162
163 /* Reset periodic interrupt frequency. */
164 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
165 /* Test includes known working values on various platforms
166 where 0x26 is wrong; we refuse to change those. */
167 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
168 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
169 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
170 }
171
172 /* Turn on periodic interrupts. */
173 x = CMOS_READ(RTC_CONTROL);
174 if (!(x & RTC_PIE)) {
175 printk("Turning on RTC interrupts.\n");
176 x |= RTC_PIE;
177 x &= ~(RTC_AIE | RTC_UIE);
178 CMOS_WRITE(x, RTC_CONTROL);
179 }
180 (void) CMOS_READ(RTC_INTR_FLAGS);
181
182 outb(0x36, 0x43); /* pit counter 0: system timer */
183 outb(0x00, 0x40);
184 outb(0x00, 0x40);
185
186 outb(0xb6, 0x43); /* pit counter 2: speaker */
187 outb(0x31, 0x42);
188 outb(0x13, 0x42);
189
190 init_rtc_irq();
191}
192
193
194/* Validate a computed cycle counter result against the known bounds for
195 the given processor core. There's too much brokenness in the way of
196 timing hardware for any one method to work everywhere. :-(
197
198 Return 0 if the result cannot be trusted, otherwise return the argument. */
199
200static unsigned long __init
201validate_cc_value(unsigned long cc)
202{
203 static struct bounds {
204 unsigned int min, max;
205 } cpu_hz[] __initdata = {
206 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
207 [EV4_CPU] = { 100000000, 300000000 },
208 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
209 [EV45_CPU] = { 200000000, 300000000 },
210 [EV5_CPU] = { 250000000, 433000000 },
211 [EV56_CPU] = { 333000000, 667000000 },
212 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
213 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
214 [EV6_CPU] = { 466000000, 600000000 },
215 [EV67_CPU] = { 600000000, 750000000 },
216 [EV68AL_CPU] = { 750000000, 940000000 },
217 [EV68CB_CPU] = { 1000000000, 1333333333 },
218 /* None of the following are shipping as of 2001-11-01. */
219 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
220 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
221 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
222 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
223 };
224
225 /* Allow for some drift in the crystal. 10MHz is more than enough. */
226 const unsigned int deviation = 10000000;
227
228 struct percpu_struct *cpu;
229 unsigned int index;
230
231 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
232 index = cpu->type & 0xffffffff;
233
234 /* If index out of bounds, no way to validate. */
Tobias Klauser25c87162006-07-30 03:03:23 -0700235 if (index >= ARRAY_SIZE(cpu_hz))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236 return cc;
237
238 /* If index contains no data, no way to validate. */
239 if (cpu_hz[index].max == 0)
240 return cc;
241
242 if (cc < cpu_hz[index].min - deviation
243 || cc > cpu_hz[index].max + deviation)
244 return 0;
245
246 return cc;
247}
248
249
250/*
251 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
252 * arch/i386/time.c.
253 */
254
255#define CALIBRATE_LATCH 0xffff
256#define TIMEOUT_COUNT 0x100000
257
258static unsigned long __init
259calibrate_cc_with_pit(void)
260{
261 int cc, count = 0;
262
263 /* Set the Gate high, disable speaker */
264 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
265
266 /*
267 * Now let's take care of CTC channel 2
268 *
269 * Set the Gate high, program CTC channel 2 for mode 0,
270 * (interrupt on terminal count mode), binary count,
271 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
272 */
273 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
274 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
275 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
276
277 cc = rpcc();
278 do {
279 count++;
280 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
281 cc = rpcc() - cc;
282
283 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
284 if (count <= 1 || count == TIMEOUT_COUNT)
285 return 0;
286
287 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
288}
289
290/* The Linux interpretation of the CMOS clock register contents:
291 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
292 RTC registers show the second which has precisely just started.
293 Let's hope other operating systems interpret the RTC the same way. */
294
295static unsigned long __init
296rpcc_after_update_in_progress(void)
297{
298 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
299 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
300
301 return rpcc();
302}
303
304void __init
305time_init(void)
306{
307 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
308 unsigned long cycle_freq, tolerance;
309 long diff;
310
311 /* Calibrate CPU clock -- attempt #1. */
312 if (!est_cycle_freq)
313 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
314
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800315 cc1 = rpcc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316
317 /* Calibrate CPU clock -- attempt #2. */
318 if (!est_cycle_freq) {
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800319 cc1 = rpcc_after_update_in_progress();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700320 cc2 = rpcc_after_update_in_progress();
321 est_cycle_freq = validate_cc_value(cc2 - cc1);
322 cc1 = cc2;
323 }
324
325 cycle_freq = hwrpb->cycle_freq;
326 if (est_cycle_freq) {
327 /* If the given value is within 250 PPM of what we calculated,
328 accept it. Otherwise, use what we found. */
329 tolerance = cycle_freq / 4000;
330 diff = cycle_freq - est_cycle_freq;
331 if (diff < 0)
332 diff = -diff;
333 if ((unsigned long)diff > tolerance) {
334 cycle_freq = est_cycle_freq;
335 printk("HWRPB cycle frequency bogus. "
336 "Estimated %lu Hz\n", cycle_freq);
337 } else {
338 est_cycle_freq = 0;
339 }
340 } else if (! validate_cc_value (cycle_freq)) {
341 printk("HWRPB cycle frequency bogus, "
342 "and unable to estimate a proper value!\n");
343 }
344
345 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
346 to settle, as the Update-In-Progress bit going low isn't good
347 enough on some hardware. 2ms is our guess; we haven't found
348 bogomips yet, but this is close on a 500Mhz box. */
349 __delay(1000000);
350
351 sec = CMOS_READ(RTC_SECONDS);
352 min = CMOS_READ(RTC_MINUTES);
353 hour = CMOS_READ(RTC_HOURS);
354 day = CMOS_READ(RTC_DAY_OF_MONTH);
355 mon = CMOS_READ(RTC_MONTH);
356 year = CMOS_READ(RTC_YEAR);
357
358 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
359 BCD_TO_BIN(sec);
360 BCD_TO_BIN(min);
361 BCD_TO_BIN(hour);
362 BCD_TO_BIN(day);
363 BCD_TO_BIN(mon);
364 BCD_TO_BIN(year);
365 }
366
367 /* PC-like is standard; used for year >= 70 */
368 epoch = 1900;
369 if (year < 20)
370 epoch = 2000;
371 else if (year >= 20 && year < 48)
372 /* NT epoch */
373 epoch = 1980;
374 else if (year >= 48 && year < 70)
375 /* Digital UNIX epoch */
376 epoch = 1952;
377
378 printk(KERN_INFO "Using epoch = %d\n", epoch);
379
380 if ((year += epoch) < 1970)
381 year += 100;
382
383 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
384 xtime.tv_nsec = 0;
385
386 wall_to_monotonic.tv_sec -= xtime.tv_sec;
387 wall_to_monotonic.tv_nsec = 0;
388
389 if (HZ > (1<<16)) {
390 extern void __you_loose (void);
391 __you_loose();
392 }
393
394 state.last_time = cc1;
395 state.scaled_ticks_per_cycle
396 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
397 state.last_rtc_update = 0;
398 state.partial_tick = 0L;
399
400 /* Startup the timer source. */
401 alpha_mv.init_rtc();
402}
403
404/*
405 * Use the cycle counter to estimate an displacement from the last time
406 * tick. Unfortunately the Alpha designers made only the low 32-bits of
407 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
408 * part. So we can't do the "find absolute time in terms of cycles" thing
409 * that the other ports do.
410 */
411void
412do_gettimeofday(struct timeval *tv)
413{
414 unsigned long flags;
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700415 unsigned long sec, usec, seq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 unsigned long delta_cycles, delta_usec, partial_tick;
417
418 do {
419 seq = read_seqbegin_irqsave(&xtime_lock, flags);
420
421 delta_cycles = rpcc() - state.last_time;
422 sec = xtime.tv_sec;
423 usec = (xtime.tv_nsec / 1000);
424 partial_tick = state.partial_tick;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425
426 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
427
428#ifdef CONFIG_SMP
429 /* Until and unless we figure out how to get cpu cycle counters
430 in sync and keep them there, we can't use the rpcc tricks. */
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700431 delta_usec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432#else
433 /*
434 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
435 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
436 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
437 *
438 * which, given a 600MHz cycle and a 1024Hz tick, has a
439 * dynamic range of about 1.7e17, which is less than the
440 * 1.8e19 in an unsigned long, so we are safe from overflow.
441 *
442 * Round, but with .5 up always, since .5 to even is harder
443 * with no clear gain.
444 */
445
446 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700447 + partial_tick) * 15625;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
449#endif
450
451 usec += delta_usec;
452 if (usec >= 1000000) {
453 sec += 1;
454 usec -= 1000000;
455 }
456
457 tv->tv_sec = sec;
458 tv->tv_usec = usec;
459}
460
461EXPORT_SYMBOL(do_gettimeofday);
462
463int
464do_settimeofday(struct timespec *tv)
465{
466 time_t wtm_sec, sec = tv->tv_sec;
467 long wtm_nsec, nsec = tv->tv_nsec;
468 unsigned long delta_nsec;
469
470 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
471 return -EINVAL;
472
473 write_seqlock_irq(&xtime_lock);
474
475 /* The offset that is added into time in do_gettimeofday above
476 must be subtracted out here to keep a coherent view of the
477 time. Without this, a full-tick error is possible. */
478
479#ifdef CONFIG_SMP
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700480 delta_nsec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#else
482 delta_nsec = rpcc() - state.last_time;
483 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700484 + state.partial_tick) * 15625;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
486 delta_nsec *= 1000;
487#endif
488
489 nsec -= delta_nsec;
490
491 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
492 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
493
494 set_normalized_timespec(&xtime, sec, nsec);
495 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
496
john stultzb149ee22005-09-06 15:17:46 -0700497 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498
499 write_sequnlock_irq(&xtime_lock);
500 clock_was_set();
501 return 0;
502}
503
504EXPORT_SYMBOL(do_settimeofday);
505
506
507/*
508 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
509 * called 500 ms after the second nowtime has started, because when
510 * nowtime is written into the registers of the CMOS clock, it will
511 * jump to the next second precisely 500 ms later. Check the Motorola
512 * MC146818A or Dallas DS12887 data sheet for details.
513 *
514 * BUG: This routine does not handle hour overflow properly; it just
515 * sets the minutes. Usually you won't notice until after reboot!
516 */
517
518
519static int
520set_rtc_mmss(unsigned long nowtime)
521{
522 int retval = 0;
523 int real_seconds, real_minutes, cmos_minutes;
524 unsigned char save_control, save_freq_select;
525
526 /* irq are locally disabled here */
527 spin_lock(&rtc_lock);
528 /* Tell the clock it's being set */
529 save_control = CMOS_READ(RTC_CONTROL);
530 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
531
532 /* Stop and reset prescaler */
533 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
534 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
535
536 cmos_minutes = CMOS_READ(RTC_MINUTES);
537 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
538 BCD_TO_BIN(cmos_minutes);
539
540 /*
541 * since we're only adjusting minutes and seconds,
542 * don't interfere with hour overflow. This avoids
543 * messing with unknown time zones but requires your
544 * RTC not to be off by more than 15 minutes
545 */
546 real_seconds = nowtime % 60;
547 real_minutes = nowtime / 60;
548 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
549 /* correct for half hour time zone */
550 real_minutes += 30;
551 }
552 real_minutes %= 60;
553
554 if (abs(real_minutes - cmos_minutes) < 30) {
555 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
556 BIN_TO_BCD(real_seconds);
557 BIN_TO_BCD(real_minutes);
558 }
559 CMOS_WRITE(real_seconds,RTC_SECONDS);
560 CMOS_WRITE(real_minutes,RTC_MINUTES);
561 } else {
562 printk(KERN_WARNING
563 "set_rtc_mmss: can't update from %d to %d\n",
564 cmos_minutes, real_minutes);
565 retval = -1;
566 }
567
568 /* The following flags have to be released exactly in this order,
569 * otherwise the DS12887 (popular MC146818A clone with integrated
570 * battery and quartz) will not reset the oscillator and will not
571 * update precisely 500 ms later. You won't find this mentioned in
572 * the Dallas Semiconductor data sheets, but who believes data
573 * sheets anyway ... -- Markus Kuhn
574 */
575 CMOS_WRITE(save_control, RTC_CONTROL);
576 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
577 spin_unlock(&rtc_lock);
578
579 return retval;
580}