blob: 9b8ed6b53926a4b3b2453c1beb8091ecbb4869ef [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
Peter Zijlstra391e43d2011-11-15 17:14:39 +01007#include "cpupri.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +02008
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020039 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020040
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
Mike Galbraith0f342b92012-08-07 05:00:13 +020083extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +020084
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
Steve Muckle8f77c282013-03-11 16:33:42 -0700107 bool notify_on_migrate;
108
Peter Zijlstra029632f2011-10-25 10:00:11 +0200109#ifdef CONFIG_FAIR_GROUP_SCHED
110 /* schedulable entities of this group on each cpu */
111 struct sched_entity **se;
112 /* runqueue "owned" by this group on each cpu */
113 struct cfs_rq **cfs_rq;
114 unsigned long shares;
115
116 atomic_t load_weight;
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
206 unsigned long nr_running, h_nr_running;
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
227#ifdef CONFIG_FAIR_GROUP_SCHED
228 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
229
230 /*
231 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
232 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
233 * (like users, containers etc.)
234 *
235 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
236 * list is used during load balance.
237 */
238 int on_list;
239 struct list_head leaf_cfs_rq_list;
240 struct task_group *tg; /* group that "owns" this runqueue */
241
242#ifdef CONFIG_SMP
243 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200244 * h_load = weight * f(tg)
245 *
246 * Where f(tg) is the recursive weight fraction assigned to
247 * this group.
248 */
249 unsigned long h_load;
250
251 /*
252 * Maintaining per-cpu shares distribution for group scheduling
253 *
254 * load_stamp is the last time we updated the load average
255 * load_last is the last time we updated the load average and saw load
256 * load_unacc_exec_time is currently unaccounted execution time
257 */
258 u64 load_avg;
259 u64 load_period;
260 u64 load_stamp, load_last, load_unacc_exec_time;
261
262 unsigned long load_contribution;
263#endif /* CONFIG_SMP */
264#ifdef CONFIG_CFS_BANDWIDTH
265 int runtime_enabled;
266 u64 runtime_expires;
267 s64 runtime_remaining;
268
269 u64 throttled_timestamp;
270 int throttled, throttle_count;
271 struct list_head throttled_list;
272#endif /* CONFIG_CFS_BANDWIDTH */
273#endif /* CONFIG_FAIR_GROUP_SCHED */
274};
275
276static inline int rt_bandwidth_enabled(void)
277{
278 return sysctl_sched_rt_runtime >= 0;
279}
280
281/* Real-Time classes' related field in a runqueue: */
282struct rt_rq {
283 struct rt_prio_array active;
284 unsigned long rt_nr_running;
285#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
286 struct {
287 int curr; /* highest queued rt task prio */
288#ifdef CONFIG_SMP
289 int next; /* next highest */
290#endif
291 } highest_prio;
292#endif
293#ifdef CONFIG_SMP
294 unsigned long rt_nr_migratory;
295 unsigned long rt_nr_total;
296 int overloaded;
297 struct plist_head pushable_tasks;
298#endif
299 int rt_throttled;
300 u64 rt_time;
301 u64 rt_runtime;
302 /* Nests inside the rq lock: */
303 raw_spinlock_t rt_runtime_lock;
304
305#ifdef CONFIG_RT_GROUP_SCHED
306 unsigned long rt_nr_boosted;
307
308 struct rq *rq;
309 struct list_head leaf_rt_rq_list;
310 struct task_group *tg;
311#endif
312};
313
314#ifdef CONFIG_SMP
315
316/*
317 * We add the notion of a root-domain which will be used to define per-domain
318 * variables. Each exclusive cpuset essentially defines an island domain by
319 * fully partitioning the member cpus from any other cpuset. Whenever a new
320 * exclusive cpuset is created, we also create and attach a new root-domain
321 * object.
322 *
323 */
324struct root_domain {
325 atomic_t refcount;
326 atomic_t rto_count;
327 struct rcu_head rcu;
328 cpumask_var_t span;
329 cpumask_var_t online;
330
331 /*
332 * The "RT overload" flag: it gets set if a CPU has more than
333 * one runnable RT task.
334 */
335 cpumask_var_t rto_mask;
336 struct cpupri cpupri;
337};
338
339extern struct root_domain def_root_domain;
340
341#endif /* CONFIG_SMP */
342
343/*
344 * This is the main, per-CPU runqueue data structure.
345 *
346 * Locking rule: those places that want to lock multiple runqueues
347 * (such as the load balancing or the thread migration code), lock
348 * acquire operations must be ordered by ascending &runqueue.
349 */
350struct rq {
351 /* runqueue lock: */
352 raw_spinlock_t lock;
353
354 /*
355 * nr_running and cpu_load should be in the same cacheline because
356 * remote CPUs use both these fields when doing load calculation.
357 */
358 unsigned long nr_running;
359 #define CPU_LOAD_IDX_MAX 5
360 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
361 unsigned long last_load_update_tick;
362#ifdef CONFIG_NO_HZ
363 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800364 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200365#endif
366 int skip_clock_update;
367
368 /* capture load from *all* tasks on this cpu: */
369 struct load_weight load;
370 unsigned long nr_load_updates;
371 u64 nr_switches;
372
373 struct cfs_rq cfs;
374 struct rt_rq rt;
375
376#ifdef CONFIG_FAIR_GROUP_SCHED
377 /* list of leaf cfs_rq on this cpu: */
378 struct list_head leaf_cfs_rq_list;
379#endif
380#ifdef CONFIG_RT_GROUP_SCHED
381 struct list_head leaf_rt_rq_list;
382#endif
383
384 /*
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
389 */
390 unsigned long nr_uninterruptible;
391
392 struct task_struct *curr, *idle, *stop;
393 unsigned long next_balance;
394 struct mm_struct *prev_mm;
395
396 u64 clock;
397 u64 clock_task;
398
399 atomic_t nr_iowait;
400
401#ifdef CONFIG_SMP
402 struct root_domain *rd;
403 struct sched_domain *sd;
404
405 unsigned long cpu_power;
406
407 unsigned char idle_balance;
408 /* For active balancing */
409 int post_schedule;
410 int active_balance;
411 int push_cpu;
412 struct cpu_stop_work active_balance_work;
413 /* cpu of this runqueue: */
414 int cpu;
415 int online;
416
Peter Zijlstra367456c2012-02-20 21:49:09 +0100417 struct list_head cfs_tasks;
418
Peter Zijlstra029632f2011-10-25 10:00:11 +0200419 u64 rt_avg;
420 u64 age_stamp;
421 u64 idle_stamp;
422 u64 avg_idle;
423#endif
424
425#ifdef CONFIG_IRQ_TIME_ACCOUNTING
426 u64 prev_irq_time;
427#endif
428#ifdef CONFIG_PARAVIRT
429 u64 prev_steal_time;
430#endif
431#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
432 u64 prev_steal_time_rq;
433#endif
434
435 /* calc_load related fields */
436 unsigned long calc_load_update;
437 long calc_load_active;
438
439#ifdef CONFIG_SCHED_HRTICK
440#ifdef CONFIG_SMP
441 int hrtick_csd_pending;
442 struct call_single_data hrtick_csd;
443#endif
444 struct hrtimer hrtick_timer;
445#endif
446
447#ifdef CONFIG_SCHEDSTATS
448 /* latency stats */
449 struct sched_info rq_sched_info;
450 unsigned long long rq_cpu_time;
451 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
452
453 /* sys_sched_yield() stats */
454 unsigned int yld_count;
455
456 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200457 unsigned int sched_count;
458 unsigned int sched_goidle;
459
460 /* try_to_wake_up() stats */
461 unsigned int ttwu_count;
462 unsigned int ttwu_local;
463#endif
464
465#ifdef CONFIG_SMP
466 struct llist_head wake_list;
467#endif
468};
469
470static inline int cpu_of(struct rq *rq)
471{
472#ifdef CONFIG_SMP
473 return rq->cpu;
474#else
475 return 0;
476#endif
477}
478
479DECLARE_PER_CPU(struct rq, runqueues);
480
Peter Zijlstra518cd622011-12-07 15:07:31 +0100481#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
482#define this_rq() (&__get_cpu_var(runqueues))
483#define task_rq(p) cpu_rq(task_cpu(p))
484#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
485#define raw_rq() (&__raw_get_cpu_var(runqueues))
486
487#ifdef CONFIG_SMP
488
Peter Zijlstra029632f2011-10-25 10:00:11 +0200489#define rcu_dereference_check_sched_domain(p) \
490 rcu_dereference_check((p), \
491 lockdep_is_held(&sched_domains_mutex))
492
493/*
494 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
495 * See detach_destroy_domains: synchronize_sched for details.
496 *
497 * The domain tree of any CPU may only be accessed from within
498 * preempt-disabled sections.
499 */
500#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100501 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
502 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200503
Suresh Siddha77e81362011-11-17 11:08:23 -0800504#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
505
Peter Zijlstra518cd622011-12-07 15:07:31 +0100506/**
507 * highest_flag_domain - Return highest sched_domain containing flag.
508 * @cpu: The cpu whose highest level of sched domain is to
509 * be returned.
510 * @flag: The flag to check for the highest sched_domain
511 * for the given cpu.
512 *
513 * Returns the highest sched_domain of a cpu which contains the given flag.
514 */
515static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
516{
517 struct sched_domain *sd, *hsd = NULL;
518
519 for_each_domain(cpu, sd) {
520 if (!(sd->flags & flag))
521 break;
522 hsd = sd;
523 }
524
525 return hsd;
526}
527
528DECLARE_PER_CPU(struct sched_domain *, sd_llc);
529DECLARE_PER_CPU(int, sd_llc_id);
530
531#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100533#include "stats.h"
534#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200535
536#ifdef CONFIG_CGROUP_SCHED
537
538/*
539 * Return the group to which this tasks belongs.
540 *
Peter Zijlstrae194fab2012-06-22 13:36:05 +0200541 * We cannot use task_subsys_state() and friends because the cgroup
542 * subsystem changes that value before the cgroup_subsys::attach() method
543 * is called, therefore we cannot pin it and might observe the wrong value.
544 *
545 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
546 * core changes this before calling sched_move_task().
547 *
548 * Instead we use a 'copy' which is updated from sched_move_task() while
549 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200550 */
551static inline struct task_group *task_group(struct task_struct *p)
552{
Peter Zijlstrae194fab2012-06-22 13:36:05 +0200553 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200554}
555
Steve Muckle8f77c282013-03-11 16:33:42 -0700556static inline bool task_notify_on_migrate(struct task_struct *p)
557{
558 return task_group(p)->notify_on_migrate;
559}
560
Peter Zijlstra029632f2011-10-25 10:00:11 +0200561/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
562static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
563{
564#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
565 struct task_group *tg = task_group(p);
566#endif
567
568#ifdef CONFIG_FAIR_GROUP_SCHED
569 p->se.cfs_rq = tg->cfs_rq[cpu];
570 p->se.parent = tg->se[cpu];
571#endif
572
573#ifdef CONFIG_RT_GROUP_SCHED
574 p->rt.rt_rq = tg->rt_rq[cpu];
575 p->rt.parent = tg->rt_se[cpu];
576#endif
577}
578
579#else /* CONFIG_CGROUP_SCHED */
580
581static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
582static inline struct task_group *task_group(struct task_struct *p)
583{
584 return NULL;
585}
Steve Muckle8f77c282013-03-11 16:33:42 -0700586static inline bool task_notify_on_migrate(struct task_struct *p)
587{
588 return false;
589}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200590#endif /* CONFIG_CGROUP_SCHED */
591
592static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
593{
594 set_task_rq(p, cpu);
595#ifdef CONFIG_SMP
596 /*
597 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
598 * successfuly executed on another CPU. We must ensure that updates of
599 * per-task data have been completed by this moment.
600 */
601 smp_wmb();
602 task_thread_info(p)->cpu = cpu;
603#endif
604}
605
606/*
607 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
608 */
609#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100610# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200611# define const_debug __read_mostly
612#else
613# define const_debug const
614#endif
615
616extern const_debug unsigned int sysctl_sched_features;
617
618#define SCHED_FEAT(name, enabled) \
619 __SCHED_FEAT_##name ,
620
621enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100622#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200623 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200624};
625
626#undef SCHED_FEAT
627
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200628#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100629static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200630{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100631 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200632}
633
Ingo Molnarc5905af2012-02-24 08:31:31 +0100634static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200635{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100636 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200637}
638
639#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100640static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200641{ \
642 return static_branch__##enabled(key); \
643}
644
645#include "features.h"
646
647#undef SCHED_FEAT
648
Ingo Molnarc5905af2012-02-24 08:31:31 +0100649extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200650#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
651#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200652#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200653#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200654
655static inline u64 global_rt_period(void)
656{
657 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
658}
659
660static inline u64 global_rt_runtime(void)
661{
662 if (sysctl_sched_rt_runtime < 0)
663 return RUNTIME_INF;
664
665 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
666}
667
668
669
670static inline int task_current(struct rq *rq, struct task_struct *p)
671{
672 return rq->curr == p;
673}
674
675static inline int task_running(struct rq *rq, struct task_struct *p)
676{
677#ifdef CONFIG_SMP
678 return p->on_cpu;
679#else
680 return task_current(rq, p);
681#endif
682}
683
684
685#ifndef prepare_arch_switch
686# define prepare_arch_switch(next) do { } while (0)
687#endif
688#ifndef finish_arch_switch
689# define finish_arch_switch(prev) do { } while (0)
690#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000691#ifndef finish_arch_post_lock_switch
692# define finish_arch_post_lock_switch() do { } while (0)
693#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200694
695#ifndef __ARCH_WANT_UNLOCKED_CTXSW
696static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
697{
698#ifdef CONFIG_SMP
699 /*
700 * We can optimise this out completely for !SMP, because the
701 * SMP rebalancing from interrupt is the only thing that cares
702 * here.
703 */
704 next->on_cpu = 1;
705#endif
706}
707
708static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
709{
710#ifdef CONFIG_SMP
711 /*
712 * After ->on_cpu is cleared, the task can be moved to a different CPU.
713 * We must ensure this doesn't happen until the switch is completely
714 * finished.
715 */
716 smp_wmb();
717 prev->on_cpu = 0;
718#endif
719#ifdef CONFIG_DEBUG_SPINLOCK
720 /* this is a valid case when another task releases the spinlock */
721 rq->lock.owner = current;
722#endif
723 /*
724 * If we are tracking spinlock dependencies then we have to
725 * fix up the runqueue lock - which gets 'carried over' from
726 * prev into current:
727 */
728 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
729
730 raw_spin_unlock_irq(&rq->lock);
731}
732
733#else /* __ARCH_WANT_UNLOCKED_CTXSW */
734static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
735{
736#ifdef CONFIG_SMP
737 /*
738 * We can optimise this out completely for !SMP, because the
739 * SMP rebalancing from interrupt is the only thing that cares
740 * here.
741 */
742 next->on_cpu = 1;
743#endif
744#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
745 raw_spin_unlock_irq(&rq->lock);
746#else
747 raw_spin_unlock(&rq->lock);
748#endif
749}
750
751static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
752{
753#ifdef CONFIG_SMP
754 /*
755 * After ->on_cpu is cleared, the task can be moved to a different CPU.
756 * We must ensure this doesn't happen until the switch is completely
757 * finished.
758 */
759 smp_wmb();
760 prev->on_cpu = 0;
761#endif
762#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
763 local_irq_enable();
764#endif
765}
766#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
767
768
769static inline void update_load_add(struct load_weight *lw, unsigned long inc)
770{
771 lw->weight += inc;
772 lw->inv_weight = 0;
773}
774
775static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
776{
777 lw->weight -= dec;
778 lw->inv_weight = 0;
779}
780
781static inline void update_load_set(struct load_weight *lw, unsigned long w)
782{
783 lw->weight = w;
784 lw->inv_weight = 0;
785}
786
787/*
788 * To aid in avoiding the subversion of "niceness" due to uneven distribution
789 * of tasks with abnormal "nice" values across CPUs the contribution that
790 * each task makes to its run queue's load is weighted according to its
791 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
792 * scaled version of the new time slice allocation that they receive on time
793 * slice expiry etc.
794 */
795
796#define WEIGHT_IDLEPRIO 3
797#define WMULT_IDLEPRIO 1431655765
798
799/*
800 * Nice levels are multiplicative, with a gentle 10% change for every
801 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
802 * nice 1, it will get ~10% less CPU time than another CPU-bound task
803 * that remained on nice 0.
804 *
805 * The "10% effect" is relative and cumulative: from _any_ nice level,
806 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
807 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
808 * If a task goes up by ~10% and another task goes down by ~10% then
809 * the relative distance between them is ~25%.)
810 */
811static const int prio_to_weight[40] = {
812 /* -20 */ 88761, 71755, 56483, 46273, 36291,
813 /* -15 */ 29154, 23254, 18705, 14949, 11916,
814 /* -10 */ 9548, 7620, 6100, 4904, 3906,
815 /* -5 */ 3121, 2501, 1991, 1586, 1277,
816 /* 0 */ 1024, 820, 655, 526, 423,
817 /* 5 */ 335, 272, 215, 172, 137,
818 /* 10 */ 110, 87, 70, 56, 45,
819 /* 15 */ 36, 29, 23, 18, 15,
820};
821
822/*
823 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
824 *
825 * In cases where the weight does not change often, we can use the
826 * precalculated inverse to speed up arithmetics by turning divisions
827 * into multiplications:
828 */
829static const u32 prio_to_wmult[40] = {
830 /* -20 */ 48388, 59856, 76040, 92818, 118348,
831 /* -15 */ 147320, 184698, 229616, 287308, 360437,
832 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
833 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
834 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
835 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
836 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
837 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
838};
839
840/* Time spent by the tasks of the cpu accounting group executing in ... */
841enum cpuacct_stat_index {
842 CPUACCT_STAT_USER, /* ... user mode */
843 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
844
845 CPUACCT_STAT_NSTATS,
846};
847
848
849#define sched_class_highest (&stop_sched_class)
850#define for_each_class(class) \
851 for (class = sched_class_highest; class; class = class->next)
852
853extern const struct sched_class stop_sched_class;
854extern const struct sched_class rt_sched_class;
855extern const struct sched_class fair_sched_class;
856extern const struct sched_class idle_sched_class;
857
858
859#ifdef CONFIG_SMP
860
861extern void trigger_load_balance(struct rq *rq, int cpu);
862extern void idle_balance(int this_cpu, struct rq *this_rq);
863
864#else /* CONFIG_SMP */
865
866static inline void idle_balance(int cpu, struct rq *rq)
867{
868}
869
870#endif
871
Matt Wagantall3be9a222013-12-05 20:01:32 -0800872#ifdef CONFIG_SYSRQ_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200873extern void sysrq_sched_debug_show(void);
Matt Wagantall3be9a222013-12-05 20:01:32 -0800874#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200875extern void sched_init_granularity(void);
876extern void update_max_interval(void);
877extern void update_group_power(struct sched_domain *sd, int cpu);
878extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
879extern void init_sched_rt_class(void);
880extern void init_sched_fair_class(void);
881
882extern void resched_task(struct task_struct *p);
883extern void resched_cpu(int cpu);
884
885extern struct rt_bandwidth def_rt_bandwidth;
886extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
887
888extern void update_cpu_load(struct rq *this_rq);
889
890#ifdef CONFIG_CGROUP_CPUACCT
Glauber Costa54c707e2011-11-28 14:45:19 -0200891#include <linux/cgroup.h>
892/* track cpu usage of a group of tasks and its child groups */
893struct cpuacct {
894 struct cgroup_subsys_state css;
895 /* cpuusage holds pointer to a u64-type object on every cpu */
896 u64 __percpu *cpuusage;
897 struct kernel_cpustat __percpu *cpustat;
898};
899
900/* return cpu accounting group corresponding to this container */
901static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
902{
903 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
904 struct cpuacct, css);
905}
906
907/* return cpu accounting group to which this task belongs */
908static inline struct cpuacct *task_ca(struct task_struct *tsk)
909{
910 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
911 struct cpuacct, css);
912}
913
914static inline struct cpuacct *parent_ca(struct cpuacct *ca)
915{
916 if (!ca || !ca->css.cgroup->parent)
917 return NULL;
918 return cgroup_ca(ca->css.cgroup->parent);
919}
920
Peter Zijlstra029632f2011-10-25 10:00:11 +0200921extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200922#else
923static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200924#endif
925
926static inline void inc_nr_running(struct rq *rq)
927{
Jeff Ohlsteinfe9a0d02012-06-19 15:59:46 -0700928 sched_update_nr_prod(cpu_of(rq), rq->nr_running, true);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200929 rq->nr_running++;
930}
931
932static inline void dec_nr_running(struct rq *rq)
933{
Jeff Ohlsteinfe9a0d02012-06-19 15:59:46 -0700934 sched_update_nr_prod(cpu_of(rq), rq->nr_running, false);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200935 rq->nr_running--;
936}
937
938extern void update_rq_clock(struct rq *rq);
939
940extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
941extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
942
943extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
944
945extern const_debug unsigned int sysctl_sched_time_avg;
946extern const_debug unsigned int sysctl_sched_nr_migrate;
947extern const_debug unsigned int sysctl_sched_migration_cost;
948
949static inline u64 sched_avg_period(void)
950{
951 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
952}
953
Peter Zijlstra029632f2011-10-25 10:00:11 +0200954#ifdef CONFIG_SCHED_HRTICK
955
956/*
957 * Use hrtick when:
958 * - enabled by features
959 * - hrtimer is actually high res
960 */
961static inline int hrtick_enabled(struct rq *rq)
962{
963 if (!sched_feat(HRTICK))
964 return 0;
965 if (!cpu_active(cpu_of(rq)))
966 return 0;
967 return hrtimer_is_hres_active(&rq->hrtick_timer);
968}
969
970void hrtick_start(struct rq *rq, u64 delay);
971
Mike Galbraithb39e66e2011-11-22 15:20:07 +0100972#else
973
974static inline int hrtick_enabled(struct rq *rq)
975{
976 return 0;
977}
978
Peter Zijlstra029632f2011-10-25 10:00:11 +0200979#endif /* CONFIG_SCHED_HRTICK */
980
981#ifdef CONFIG_SMP
982extern void sched_avg_update(struct rq *rq);
983static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
984{
985 rq->rt_avg += rt_delta;
986 sched_avg_update(rq);
987}
988#else
989static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
990static inline void sched_avg_update(struct rq *rq) { }
991#endif
992
993extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
994
995#ifdef CONFIG_SMP
996#ifdef CONFIG_PREEMPT
997
998static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
999
1000/*
1001 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1002 * way at the expense of forcing extra atomic operations in all
1003 * invocations. This assures that the double_lock is acquired using the
1004 * same underlying policy as the spinlock_t on this architecture, which
1005 * reduces latency compared to the unfair variant below. However, it
1006 * also adds more overhead and therefore may reduce throughput.
1007 */
1008static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1009 __releases(this_rq->lock)
1010 __acquires(busiest->lock)
1011 __acquires(this_rq->lock)
1012{
1013 raw_spin_unlock(&this_rq->lock);
1014 double_rq_lock(this_rq, busiest);
1015
1016 return 1;
1017}
1018
1019#else
1020/*
1021 * Unfair double_lock_balance: Optimizes throughput at the expense of
1022 * latency by eliminating extra atomic operations when the locks are
1023 * already in proper order on entry. This favors lower cpu-ids and will
1024 * grant the double lock to lower cpus over higher ids under contention,
1025 * regardless of entry order into the function.
1026 */
1027static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1028 __releases(this_rq->lock)
1029 __acquires(busiest->lock)
1030 __acquires(this_rq->lock)
1031{
1032 int ret = 0;
1033
1034 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1035 if (busiest < this_rq) {
1036 raw_spin_unlock(&this_rq->lock);
1037 raw_spin_lock(&busiest->lock);
1038 raw_spin_lock_nested(&this_rq->lock,
1039 SINGLE_DEPTH_NESTING);
1040 ret = 1;
1041 } else
1042 raw_spin_lock_nested(&busiest->lock,
1043 SINGLE_DEPTH_NESTING);
1044 }
1045 return ret;
1046}
1047
1048#endif /* CONFIG_PREEMPT */
1049
1050/*
1051 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1052 */
1053static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1054{
1055 if (unlikely(!irqs_disabled())) {
1056 /* printk() doesn't work good under rq->lock */
1057 raw_spin_unlock(&this_rq->lock);
1058 BUG_ON(1);
1059 }
1060
1061 return _double_lock_balance(this_rq, busiest);
1062}
1063
1064static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1065 __releases(busiest->lock)
1066{
1067 raw_spin_unlock(&busiest->lock);
1068 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1069}
1070
1071/*
1072 * double_rq_lock - safely lock two runqueues
1073 *
1074 * Note this does not disable interrupts like task_rq_lock,
1075 * you need to do so manually before calling.
1076 */
1077static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1078 __acquires(rq1->lock)
1079 __acquires(rq2->lock)
1080{
1081 BUG_ON(!irqs_disabled());
1082 if (rq1 == rq2) {
1083 raw_spin_lock(&rq1->lock);
1084 __acquire(rq2->lock); /* Fake it out ;) */
1085 } else {
1086 if (rq1 < rq2) {
1087 raw_spin_lock(&rq1->lock);
1088 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1089 } else {
1090 raw_spin_lock(&rq2->lock);
1091 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1092 }
1093 }
1094}
1095
1096/*
1097 * double_rq_unlock - safely unlock two runqueues
1098 *
1099 * Note this does not restore interrupts like task_rq_unlock,
1100 * you need to do so manually after calling.
1101 */
1102static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1103 __releases(rq1->lock)
1104 __releases(rq2->lock)
1105{
1106 raw_spin_unlock(&rq1->lock);
1107 if (rq1 != rq2)
1108 raw_spin_unlock(&rq2->lock);
1109 else
1110 __release(rq2->lock);
1111}
1112
1113#else /* CONFIG_SMP */
1114
1115/*
1116 * double_rq_lock - safely lock two runqueues
1117 *
1118 * Note this does not disable interrupts like task_rq_lock,
1119 * you need to do so manually before calling.
1120 */
1121static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1122 __acquires(rq1->lock)
1123 __acquires(rq2->lock)
1124{
1125 BUG_ON(!irqs_disabled());
1126 BUG_ON(rq1 != rq2);
1127 raw_spin_lock(&rq1->lock);
1128 __acquire(rq2->lock); /* Fake it out ;) */
1129}
1130
1131/*
1132 * double_rq_unlock - safely unlock two runqueues
1133 *
1134 * Note this does not restore interrupts like task_rq_unlock,
1135 * you need to do so manually after calling.
1136 */
1137static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1138 __releases(rq1->lock)
1139 __releases(rq2->lock)
1140{
1141 BUG_ON(rq1 != rq2);
1142 raw_spin_unlock(&rq1->lock);
1143 __release(rq2->lock);
1144}
1145
1146#endif
1147
1148extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1149extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1150extern void print_cfs_stats(struct seq_file *m, int cpu);
1151extern void print_rt_stats(struct seq_file *m, int cpu);
1152
1153extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1154extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001155
1156extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001157
1158#ifdef CONFIG_NO_HZ
1159enum rq_nohz_flag_bits {
1160 NOHZ_TICK_STOPPED,
1161 NOHZ_BALANCE_KICK,
Suresh Siddha69e1e812011-12-01 17:07:33 -08001162 NOHZ_IDLE,
Suresh Siddha1c792db2011-12-01 17:07:32 -08001163};
1164
1165#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1166#endif