| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1 | /* | 
|  | 2 | * This file is part of UBIFS. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | 5 | * | 
|  | 6 | * This program is free software; you can redistribute it and/or modify it | 
|  | 7 | * under the terms of the GNU General Public License version 2 as published by | 
|  | 8 | * the Free Software Foundation. | 
|  | 9 | * | 
|  | 10 | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 12 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 13 | * more details. | 
|  | 14 | * | 
|  | 15 | * You should have received a copy of the GNU General Public License along with | 
|  | 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | 18 | * | 
|  | 19 | * Authors: Adrian Hunter | 
|  | 20 | *          Artem Bityutskiy (Битюцкий Артём) | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | /* | 
|  | 24 | * This file implements garbage collection. The procedure for garbage collection | 
|  | 25 | * is different depending on whether a LEB as an index LEB (contains index | 
|  | 26 | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which | 
|  | 27 | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete | 
|  | 28 | * nodes to the journal, at which point the garbage-collected LEB is free to be | 
|  | 29 | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes | 
|  | 30 | * dirty in the TNC, and after the next commit, the garbage-collected LEB is | 
|  | 31 | * to be reused. Garbage collection will cause the number of dirty index nodes | 
|  | 32 | * to grow, however sufficient space is reserved for the index to ensure the | 
|  | 33 | * commit will never run out of space. | 
| Artem Bityutskiy | 7078202 | 2009-01-19 19:57:27 +0200 | [diff] [blame] | 34 | * | 
|  | 35 | * Notes about dead watermark. At current UBIFS implementation we assume that | 
|  | 36 | * LEBs which have less than @c->dead_wm bytes of free + dirty space are full | 
|  | 37 | * and not worth garbage-collecting. The dead watermark is one min. I/O unit | 
|  | 38 | * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS | 
|  | 39 | * Garbage Collector has to synchronize the GC head's write buffer before | 
|  | 40 | * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can | 
|  | 41 | * actually reclaim even very small pieces of dirty space by garbage collecting | 
|  | 42 | * enough dirty LEBs, but we do not bother doing this at this implementation. | 
|  | 43 | * | 
|  | 44 | * Notes about dark watermark. The results of GC work depends on how big are | 
|  | 45 | * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, | 
|  | 46 | * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would | 
|  | 47 | * have to waste large pieces of free space at the end of LEB B, because nodes | 
|  | 48 | * from LEB A would not fit. And the worst situation is when all nodes are of | 
|  | 49 | * maximum size. So dark watermark is the amount of free + dirty space in LEB | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 50 | * which are guaranteed to be reclaimable. If LEB has less space, the GC might | 
| Artem Bityutskiy | 7078202 | 2009-01-19 19:57:27 +0200 | [diff] [blame] | 51 | * be unable to reclaim it. So, LEBs with free + dirty greater than dark | 
|  | 52 | * watermark are "good" LEBs from GC's point of few. The other LEBs are not so | 
|  | 53 | * good, and GC takes extra care when moving them. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 54 | */ | 
|  | 55 |  | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 56 | #include <linux/slab.h> | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 57 | #include <linux/pagemap.h> | 
| Dave Chinner | 2c76127 | 2010-01-12 17:39:16 +1100 | [diff] [blame] | 58 | #include <linux/list_sort.h> | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 59 | #include "ubifs.h" | 
|  | 60 |  | 
|  | 61 | /* | 
| Frederik Schwarzer | 025dfda | 2008-10-16 19:02:37 +0200 | [diff] [blame] | 62 | * GC may need to move more than one LEB to make progress. The below constants | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 63 | * define "soft" and "hard" limits on the number of LEBs the garbage collector | 
|  | 64 | * may move. | 
|  | 65 | */ | 
|  | 66 | #define SOFT_LEBS_LIMIT 4 | 
|  | 67 | #define HARD_LEBS_LIMIT 32 | 
|  | 68 |  | 
|  | 69 | /** | 
|  | 70 | * switch_gc_head - switch the garbage collection journal head. | 
|  | 71 | * @c: UBIFS file-system description object | 
|  | 72 | * @buf: buffer to write | 
|  | 73 | * @len: length of the buffer to write | 
|  | 74 | * @lnum: LEB number written is returned here | 
|  | 75 | * @offs: offset written is returned here | 
|  | 76 | * | 
|  | 77 | * This function switch the GC head to the next LEB which is reserved in | 
|  | 78 | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, | 
|  | 79 | * and other negative error code in case of failures. | 
|  | 80 | */ | 
|  | 81 | static int switch_gc_head(struct ubifs_info *c) | 
|  | 82 | { | 
|  | 83 | int err, gc_lnum = c->gc_lnum; | 
|  | 84 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  | 85 |  | 
|  | 86 | ubifs_assert(gc_lnum != -1); | 
|  | 87 | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", | 
|  | 88 | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, | 
|  | 89 | c->leb_size - wbuf->offs - wbuf->used); | 
|  | 90 |  | 
|  | 91 | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | 92 | if (err) | 
|  | 93 | return err; | 
|  | 94 |  | 
|  | 95 | /* | 
|  | 96 | * The GC write-buffer was synchronized, we may safely unmap | 
|  | 97 | * 'c->gc_lnum'. | 
|  | 98 | */ | 
|  | 99 | err = ubifs_leb_unmap(c, gc_lnum); | 
|  | 100 | if (err) | 
|  | 101 | return err; | 
|  | 102 |  | 
|  | 103 | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); | 
|  | 104 | if (err) | 
|  | 105 | return err; | 
|  | 106 |  | 
|  | 107 | c->gc_lnum = -1; | 
|  | 108 | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM); | 
|  | 109 | return err; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | /** | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 113 | * data_nodes_cmp - compare 2 data nodes. | 
|  | 114 | * @priv: UBIFS file-system description object | 
|  | 115 | * @a: first data node | 
|  | 116 | * @a: second data node | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 117 | * | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 118 | * This function compares data nodes @a and @b. Returns %1 if @a has greater | 
|  | 119 | * inode or block number, and %-1 otherwise. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 120 | */ | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 121 | int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | 122 | { | 
|  | 123 | ino_t inuma, inumb; | 
|  | 124 | struct ubifs_info *c = priv; | 
|  | 125 | struct ubifs_scan_node *sa, *sb; | 
|  | 126 |  | 
|  | 127 | cond_resched(); | 
|  | 128 | sa = list_entry(a, struct ubifs_scan_node, list); | 
|  | 129 | sb = list_entry(b, struct ubifs_scan_node, list); | 
|  | 130 | ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); | 
|  | 131 | ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); | 
|  | 132 |  | 
|  | 133 | inuma = key_inum(c, &sa->key); | 
|  | 134 | inumb = key_inum(c, &sb->key); | 
|  | 135 |  | 
|  | 136 | if (inuma == inumb) { | 
|  | 137 | unsigned int blka = key_block(c, &sa->key); | 
|  | 138 | unsigned int blkb = key_block(c, &sb->key); | 
|  | 139 |  | 
|  | 140 | if (blka <= blkb) | 
|  | 141 | return -1; | 
|  | 142 | } else if (inuma <= inumb) | 
|  | 143 | return -1; | 
|  | 144 |  | 
|  | 145 | return 1; | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * nondata_nodes_cmp - compare 2 non-data nodes. | 
|  | 150 | * @priv: UBIFS file-system description object | 
|  | 151 | * @a: first node | 
|  | 152 | * @a: second node | 
|  | 153 | * | 
|  | 154 | * This function compares nodes @a and @b. It makes sure that inode nodes go | 
|  | 155 | * first and sorted by length in descending order. Directory entry nodes go | 
|  | 156 | * after inode nodes and are sorted in ascending hash valuer order. | 
|  | 157 | */ | 
|  | 158 | int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | 159 | { | 
|  | 160 | int typea, typeb; | 
|  | 161 | ino_t inuma, inumb; | 
|  | 162 | struct ubifs_info *c = priv; | 
|  | 163 | struct ubifs_scan_node *sa, *sb; | 
|  | 164 |  | 
|  | 165 | cond_resched(); | 
|  | 166 | sa = list_entry(a, struct ubifs_scan_node, list); | 
|  | 167 | sb = list_entry(b, struct ubifs_scan_node, list); | 
|  | 168 | typea = key_type(c, &sa->key); | 
|  | 169 | typeb = key_type(c, &sb->key); | 
|  | 170 | ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY); | 
|  | 171 |  | 
|  | 172 | /* Inodes go before directory entries */ | 
|  | 173 | if (typea == UBIFS_INO_KEY) { | 
|  | 174 | if (typeb == UBIFS_INO_KEY) | 
|  | 175 | return sb->len - sa->len; | 
|  | 176 | return -1; | 
|  | 177 | } | 
|  | 178 | if (typeb == UBIFS_INO_KEY) | 
|  | 179 | return 1; | 
|  | 180 |  | 
|  | 181 | ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY); | 
|  | 182 | inuma = key_inum(c, &sa->key); | 
|  | 183 | inumb = key_inum(c, &sb->key); | 
|  | 184 |  | 
|  | 185 | if (inuma == inumb) { | 
|  | 186 | uint32_t hasha = key_hash(c, &sa->key); | 
|  | 187 | uint32_t hashb = key_hash(c, &sb->key); | 
|  | 188 |  | 
|  | 189 | if (hasha <= hashb) | 
|  | 190 | return -1; | 
|  | 191 | } else if (inuma <= inumb) | 
|  | 192 | return -1; | 
|  | 193 |  | 
|  | 194 | return 1; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | /** | 
|  | 198 | * sort_nodes - sort nodes for GC. | 
|  | 199 | * @c: UBIFS file-system description object | 
|  | 200 | * @sleb: describes nodes to sort and contains the result on exit | 
|  | 201 | * @nondata: contains non-data nodes on exit | 
|  | 202 | * @min: minimum node size is returned here | 
|  | 203 | * | 
|  | 204 | * This function sorts the list of inodes to garbage collect. First of all, it | 
|  | 205 | * kills obsolete nodes and separates data and non-data nodes to the | 
|  | 206 | * @sleb->nodes and @nondata lists correspondingly. | 
|  | 207 | * | 
|  | 208 | * Data nodes are then sorted in block number order - this is important for | 
|  | 209 | * bulk-read; data nodes with lower inode number go before data nodes with | 
|  | 210 | * higher inode number, and data nodes with lower block number go before data | 
|  | 211 | * nodes with higher block number; | 
|  | 212 | * | 
|  | 213 | * Non-data nodes are sorted as follows. | 
|  | 214 | *   o First go inode nodes - they are sorted in descending length order. | 
|  | 215 | *   o Then go directory entry nodes - they are sorted in hash order, which | 
|  | 216 | *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent | 
|  | 217 | *     inode number go before direntry nodes with higher parent inode number, | 
|  | 218 | *     and direntry nodes with lower name hash values go before direntry nodes | 
|  | 219 | *     with higher name hash values. | 
|  | 220 | * | 
|  | 221 | * This function returns zero in case of success and a negative error code in | 
|  | 222 | * case of failure. | 
|  | 223 | */ | 
|  | 224 | static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
|  | 225 | struct list_head *nondata, int *min) | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 226 | { | 
|  | 227 | struct ubifs_scan_node *snod, *tmp; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 228 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 229 | *min = INT_MAX; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 230 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 231 | /* Separate data nodes and non-data nodes */ | 
|  | 232 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | 
|  | 233 | int err; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 234 |  | 
|  | 235 | ubifs_assert(snod->type != UBIFS_IDX_NODE); | 
|  | 236 | ubifs_assert(snod->type != UBIFS_REF_NODE); | 
|  | 237 | ubifs_assert(snod->type != UBIFS_CS_NODE); | 
|  | 238 |  | 
|  | 239 | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, | 
|  | 240 | snod->offs, 0); | 
|  | 241 | if (err < 0) | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 242 | return err; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 243 |  | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 244 | if (!err) { | 
|  | 245 | /* The node is obsolete, remove it from the list */ | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 246 | list_del(&snod->list); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 247 | kfree(snod); | 
|  | 248 | continue; | 
|  | 249 | } | 
|  | 250 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 251 | if (snod->len < *min) | 
|  | 252 | *min = snod->len; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 253 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 254 | if (key_type(c, &snod->key) != UBIFS_DATA_KEY) | 
|  | 255 | list_move_tail(&snod->list, nondata); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 256 | } | 
|  | 257 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 258 | /* Sort data and non-data nodes */ | 
|  | 259 | list_sort(c, &sleb->nodes, &data_nodes_cmp); | 
|  | 260 | list_sort(c, nondata, &nondata_nodes_cmp); | 
|  | 261 | return 0; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | /** | 
|  | 265 | * move_node - move a node. | 
|  | 266 | * @c: UBIFS file-system description object | 
|  | 267 | * @sleb: describes the LEB to move nodes from | 
|  | 268 | * @snod: the mode to move | 
|  | 269 | * @wbuf: write-buffer to move node to | 
|  | 270 | * | 
|  | 271 | * This function moves node @snod to @wbuf, changes TNC correspondingly, and | 
|  | 272 | * destroys @snod. Returns zero in case of success and a negative error code in | 
|  | 273 | * case of failure. | 
|  | 274 | */ | 
|  | 275 | static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
|  | 276 | struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) | 
|  | 277 | { | 
|  | 278 | int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; | 
|  | 279 |  | 
|  | 280 | cond_resched(); | 
|  | 281 | err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); | 
|  | 282 | if (err) | 
|  | 283 | return err; | 
|  | 284 |  | 
|  | 285 | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, | 
|  | 286 | snod->offs, new_lnum, new_offs, | 
|  | 287 | snod->len); | 
|  | 288 | list_del(&snod->list); | 
|  | 289 | kfree(snod); | 
|  | 290 | return err; | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | /** | 
|  | 294 | * move_nodes - move nodes. | 
|  | 295 | * @c: UBIFS file-system description object | 
|  | 296 | * @sleb: describes the LEB to move nodes from | 
|  | 297 | * | 
|  | 298 | * This function moves valid nodes from data LEB described by @sleb to the GC | 
|  | 299 | * journal head. This function returns zero in case of success, %-EAGAIN if | 
|  | 300 | * commit is required, and other negative error codes in case of other | 
|  | 301 | * failures. | 
|  | 302 | */ | 
|  | 303 | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) | 
|  | 304 | { | 
|  | 305 | int err, min; | 
|  | 306 | LIST_HEAD(nondata); | 
|  | 307 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 308 |  | 
|  | 309 | if (wbuf->lnum == -1) { | 
|  | 310 | /* | 
|  | 311 | * The GC journal head is not set, because it is the first GC | 
|  | 312 | * invocation since mount. | 
|  | 313 | */ | 
|  | 314 | err = switch_gc_head(c); | 
|  | 315 | if (err) | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 316 | return err; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 317 | } | 
|  | 318 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 319 | err = sort_nodes(c, sleb, &nondata, &min); | 
|  | 320 | if (err) | 
|  | 321 | goto out; | 
|  | 322 |  | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 323 | /* Write nodes to their new location. Use the first-fit strategy */ | 
|  | 324 | while (1) { | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 325 | int avail; | 
|  | 326 | struct ubifs_scan_node *snod, *tmp; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 327 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 328 | /* Move data nodes */ | 
|  | 329 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | 
|  | 330 | avail = c->leb_size - wbuf->offs - wbuf->used; | 
|  | 331 | if  (snod->len > avail) | 
|  | 332 | /* | 
|  | 333 | * Do not skip data nodes in order to optimize | 
|  | 334 | * bulk-read. | 
|  | 335 | */ | 
|  | 336 | break; | 
|  | 337 |  | 
|  | 338 | err = move_node(c, sleb, snod, wbuf); | 
|  | 339 | if (err) | 
|  | 340 | goto out; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | /* Move non-data nodes */ | 
|  | 344 | list_for_each_entry_safe(snod, tmp, &nondata, list) { | 
|  | 345 | avail = c->leb_size - wbuf->offs - wbuf->used; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 346 | if (avail < min) | 
|  | 347 | break; | 
|  | 348 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 349 | if  (snod->len > avail) { | 
|  | 350 | /* | 
|  | 351 | * Keep going only if this is an inode with | 
|  | 352 | * some data. Otherwise stop and switch the GC | 
|  | 353 | * head. IOW, we assume that data-less inode | 
|  | 354 | * nodes and direntry nodes are roughly of the | 
|  | 355 | * same size. | 
|  | 356 | */ | 
|  | 357 | if (key_type(c, &snod->key) == UBIFS_DENT_KEY || | 
|  | 358 | snod->len == UBIFS_INO_NODE_SZ) | 
|  | 359 | break; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 360 | continue; | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 361 | } | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 362 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 363 | err = move_node(c, sleb, snod, wbuf); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 364 | if (err) | 
|  | 365 | goto out; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 366 | } | 
|  | 367 |  | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 368 | if (list_empty(&sleb->nodes) && list_empty(&nondata)) | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 369 | break; | 
|  | 370 |  | 
|  | 371 | /* | 
|  | 372 | * Waste the rest of the space in the LEB and switch to the | 
|  | 373 | * next LEB. | 
|  | 374 | */ | 
|  | 375 | err = switch_gc_head(c); | 
|  | 376 | if (err) | 
|  | 377 | goto out; | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | return 0; | 
|  | 381 |  | 
|  | 382 | out: | 
| Artem Bityutskiy | f10770f | 2009-03-08 15:13:00 +0200 | [diff] [blame] | 383 | list_splice_tail(&nondata, &sleb->nodes); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 384 | return err; | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | /** | 
|  | 388 | * gc_sync_wbufs - sync write-buffers for GC. | 
|  | 389 | * @c: UBIFS file-system description object | 
|  | 390 | * | 
|  | 391 | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may | 
|  | 392 | * be in a write-buffer instead. That is, a node could be written to a | 
|  | 393 | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is | 
|  | 394 | * erased before the write-buffer is sync'd and then there is an unclean | 
|  | 395 | * unmount, then an existing node is lost. To avoid this, we sync all | 
|  | 396 | * write-buffers. | 
|  | 397 | * | 
|  | 398 | * This function returns %0 on success or a negative error code on failure. | 
|  | 399 | */ | 
|  | 400 | static int gc_sync_wbufs(struct ubifs_info *c) | 
|  | 401 | { | 
|  | 402 | int err, i; | 
|  | 403 |  | 
|  | 404 | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | 405 | if (i == GCHD) | 
|  | 406 | continue; | 
|  | 407 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | 
|  | 408 | if (err) | 
|  | 409 | return err; | 
|  | 410 | } | 
|  | 411 | return 0; | 
|  | 412 | } | 
|  | 413 |  | 
|  | 414 | /** | 
|  | 415 | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. | 
|  | 416 | * @c: UBIFS file-system description object | 
|  | 417 | * @lp: describes the LEB to garbage collect | 
|  | 418 | * | 
|  | 419 | * This function garbage-collects an LEB and returns one of the @LEB_FREED, | 
|  | 420 | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is | 
|  | 421 | * required, and other negative error codes in case of failures. | 
|  | 422 | */ | 
|  | 423 | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) | 
|  | 424 | { | 
|  | 425 | struct ubifs_scan_leb *sleb; | 
|  | 426 | struct ubifs_scan_node *snod; | 
|  | 427 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  | 428 | int err = 0, lnum = lp->lnum; | 
|  | 429 |  | 
|  | 430 | ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || | 
|  | 431 | c->need_recovery); | 
|  | 432 | ubifs_assert(c->gc_lnum != lnum); | 
|  | 433 | ubifs_assert(wbuf->lnum != lnum); | 
|  | 434 |  | 
|  | 435 | /* | 
|  | 436 | * We scan the entire LEB even though we only really need to scan up to | 
|  | 437 | * (c->leb_size - lp->free). | 
|  | 438 | */ | 
| Artem Bityutskiy | 348709b | 2009-08-25 15:00:55 +0300 | [diff] [blame] | 439 | sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 440 | if (IS_ERR(sleb)) | 
|  | 441 | return PTR_ERR(sleb); | 
|  | 442 |  | 
|  | 443 | ubifs_assert(!list_empty(&sleb->nodes)); | 
|  | 444 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); | 
|  | 445 |  | 
|  | 446 | if (snod->type == UBIFS_IDX_NODE) { | 
|  | 447 | struct ubifs_gced_idx_leb *idx_gc; | 
|  | 448 |  | 
|  | 449 | dbg_gc("indexing LEB %d (free %d, dirty %d)", | 
|  | 450 | lnum, lp->free, lp->dirty); | 
|  | 451 | list_for_each_entry(snod, &sleb->nodes, list) { | 
|  | 452 | struct ubifs_idx_node *idx = snod->node; | 
|  | 453 | int level = le16_to_cpu(idx->level); | 
|  | 454 |  | 
|  | 455 | ubifs_assert(snod->type == UBIFS_IDX_NODE); | 
|  | 456 | key_read(c, ubifs_idx_key(c, idx), &snod->key); | 
|  | 457 | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, | 
|  | 458 | snod->offs); | 
|  | 459 | if (err) | 
|  | 460 | goto out; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | 
|  | 464 | if (!idx_gc) { | 
|  | 465 | err = -ENOMEM; | 
|  | 466 | goto out; | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | idx_gc->lnum = lnum; | 
|  | 470 | idx_gc->unmap = 0; | 
|  | 471 | list_add(&idx_gc->list, &c->idx_gc); | 
|  | 472 |  | 
|  | 473 | /* | 
|  | 474 | * Don't release the LEB until after the next commit, because | 
| Adrian Hunter | 227c75c | 2009-01-29 11:53:51 +0200 | [diff] [blame] | 475 | * it may contain data which is needed for recovery. So | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 476 | * although we freed this LEB, it will become usable only after | 
|  | 477 | * the commit. | 
|  | 478 | */ | 
|  | 479 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, | 
|  | 480 | LPROPS_INDEX, 1); | 
|  | 481 | if (err) | 
|  | 482 | goto out; | 
|  | 483 | err = LEB_FREED_IDX; | 
|  | 484 | } else { | 
|  | 485 | dbg_gc("data LEB %d (free %d, dirty %d)", | 
|  | 486 | lnum, lp->free, lp->dirty); | 
|  | 487 |  | 
|  | 488 | err = move_nodes(c, sleb); | 
|  | 489 | if (err) | 
| Adrian Hunter | 6dcfac4 | 2008-09-12 12:27:47 +0300 | [diff] [blame] | 490 | goto out_inc_seq; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 491 |  | 
|  | 492 | err = gc_sync_wbufs(c); | 
|  | 493 | if (err) | 
| Adrian Hunter | 6dcfac4 | 2008-09-12 12:27:47 +0300 | [diff] [blame] | 494 | goto out_inc_seq; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 495 |  | 
|  | 496 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); | 
|  | 497 | if (err) | 
| Adrian Hunter | 6dcfac4 | 2008-09-12 12:27:47 +0300 | [diff] [blame] | 498 | goto out_inc_seq; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 499 |  | 
| Adrian Hunter | 601c0bc | 2008-08-22 14:23:35 +0300 | [diff] [blame] | 500 | /* Allow for races with TNC */ | 
|  | 501 | c->gced_lnum = lnum; | 
|  | 502 | smp_wmb(); | 
|  | 503 | c->gc_seq += 1; | 
|  | 504 | smp_wmb(); | 
|  | 505 |  | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 506 | if (c->gc_lnum == -1) { | 
|  | 507 | c->gc_lnum = lnum; | 
|  | 508 | err = LEB_RETAINED; | 
|  | 509 | } else { | 
|  | 510 | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | 511 | if (err) | 
|  | 512 | goto out; | 
|  | 513 |  | 
|  | 514 | err = ubifs_leb_unmap(c, lnum); | 
|  | 515 | if (err) | 
|  | 516 | goto out; | 
|  | 517 |  | 
|  | 518 | err = LEB_FREED; | 
|  | 519 | } | 
|  | 520 | } | 
|  | 521 |  | 
|  | 522 | out: | 
|  | 523 | ubifs_scan_destroy(sleb); | 
|  | 524 | return err; | 
| Adrian Hunter | 6dcfac4 | 2008-09-12 12:27:47 +0300 | [diff] [blame] | 525 |  | 
|  | 526 | out_inc_seq: | 
|  | 527 | /* We may have moved at least some nodes so allow for races with TNC */ | 
|  | 528 | c->gced_lnum = lnum; | 
|  | 529 | smp_wmb(); | 
|  | 530 | c->gc_seq += 1; | 
|  | 531 | smp_wmb(); | 
|  | 532 | goto out; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 533 | } | 
|  | 534 |  | 
|  | 535 | /** | 
|  | 536 | * ubifs_garbage_collect - UBIFS garbage collector. | 
|  | 537 | * @c: UBIFS file-system description object | 
|  | 538 | * @anyway: do GC even if there are free LEBs | 
|  | 539 | * | 
|  | 540 | * This function does out-of-place garbage collection. The return codes are: | 
|  | 541 | *   o positive LEB number if the LEB has been freed and may be used; | 
|  | 542 | *   o %-EAGAIN if the caller has to run commit; | 
|  | 543 | *   o %-ENOSPC if GC failed to make any progress; | 
|  | 544 | *   o other negative error codes in case of other errors. | 
|  | 545 | * | 
|  | 546 | * Garbage collector writes data to the journal when GC'ing data LEBs, and just | 
|  | 547 | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point | 
|  | 548 | * commit may be required. But commit cannot be run from inside GC, because the | 
|  | 549 | * caller might be holding the commit lock, so %-EAGAIN is returned instead; | 
|  | 550 | * And this error code means that the caller has to run commit, and re-run GC | 
|  | 551 | * if there is still no free space. | 
|  | 552 | * | 
|  | 553 | * There are many reasons why this function may return %-EAGAIN: | 
|  | 554 | * o the log is full and there is no space to write an LEB reference for | 
|  | 555 | *   @c->gc_lnum; | 
|  | 556 | * o the journal is too large and exceeds size limitations; | 
|  | 557 | * o GC moved indexing LEBs, but they can be used only after the commit; | 
|  | 558 | * o the shrinker fails to find clean znodes to free and requests the commit; | 
|  | 559 | * o etc. | 
|  | 560 | * | 
|  | 561 | * Note, if the file-system is close to be full, this function may return | 
|  | 562 | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of | 
|  | 563 | * the function. E.g., this happens if the limits on the journal size are too | 
|  | 564 | * tough and GC writes too much to the journal before an LEB is freed. This | 
|  | 565 | * might also mean that the journal is too large, and the TNC becomes to big, | 
|  | 566 | * so that the shrinker is constantly called, finds not clean znodes to free, | 
|  | 567 | * and requests commit. Well, this may also happen if the journal is all right, | 
|  | 568 | * but another kernel process consumes too much memory. Anyway, infinite | 
|  | 569 | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. | 
|  | 570 | */ | 
|  | 571 | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) | 
|  | 572 | { | 
|  | 573 | int i, err, ret, min_space = c->dead_wm; | 
|  | 574 | struct ubifs_lprops lp; | 
|  | 575 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  | 576 |  | 
|  | 577 | ubifs_assert_cmt_locked(c); | 
|  | 578 |  | 
|  | 579 | if (ubifs_gc_should_commit(c)) | 
|  | 580 | return -EAGAIN; | 
|  | 581 |  | 
|  | 582 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | 583 |  | 
|  | 584 | if (c->ro_media) { | 
|  | 585 | ret = -EROFS; | 
|  | 586 | goto out_unlock; | 
|  | 587 | } | 
|  | 588 |  | 
|  | 589 | /* We expect the write-buffer to be empty on entry */ | 
|  | 590 | ubifs_assert(!wbuf->used); | 
|  | 591 |  | 
|  | 592 | for (i = 0; ; i++) { | 
|  | 593 | int space_before = c->leb_size - wbuf->offs - wbuf->used; | 
|  | 594 | int space_after; | 
|  | 595 |  | 
|  | 596 | cond_resched(); | 
|  | 597 |  | 
|  | 598 | /* Give the commit an opportunity to run */ | 
|  | 599 | if (ubifs_gc_should_commit(c)) { | 
|  | 600 | ret = -EAGAIN; | 
|  | 601 | break; | 
|  | 602 | } | 
|  | 603 |  | 
|  | 604 | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { | 
|  | 605 | /* | 
|  | 606 | * We've done enough iterations. Indexing LEBs were | 
|  | 607 | * moved and will be available after the commit. | 
|  | 608 | */ | 
|  | 609 | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); | 
|  | 610 | ubifs_commit_required(c); | 
|  | 611 | ret = -EAGAIN; | 
|  | 612 | break; | 
|  | 613 | } | 
|  | 614 |  | 
|  | 615 | if (i > HARD_LEBS_LIMIT) { | 
|  | 616 | /* | 
|  | 617 | * We've moved too many LEBs and have not made | 
|  | 618 | * progress, give up. | 
|  | 619 | */ | 
|  | 620 | dbg_gc("hard limit, -ENOSPC"); | 
|  | 621 | ret = -ENOSPC; | 
|  | 622 | break; | 
|  | 623 | } | 
|  | 624 |  | 
|  | 625 | /* | 
|  | 626 | * Empty and freeable LEBs can turn up while we waited for | 
|  | 627 | * the wbuf lock, or while we have been running GC. In that | 
|  | 628 | * case, we should just return one of those instead of | 
|  | 629 | * continuing to GC dirty LEBs. Hence we request | 
|  | 630 | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. | 
|  | 631 | */ | 
|  | 632 | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); | 
|  | 633 | if (ret) { | 
|  | 634 | if (ret == -ENOSPC) | 
|  | 635 | dbg_gc("no more dirty LEBs"); | 
|  | 636 | break; | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | dbg_gc("found LEB %d: free %d, dirty %d, sum %d " | 
|  | 640 | "(min. space %d)", lp.lnum, lp.free, lp.dirty, | 
|  | 641 | lp.free + lp.dirty, min_space); | 
|  | 642 |  | 
|  | 643 | if (lp.free + lp.dirty == c->leb_size) { | 
|  | 644 | /* An empty LEB was returned */ | 
|  | 645 | dbg_gc("LEB %d is free, return it", lp.lnum); | 
|  | 646 | /* | 
|  | 647 | * ubifs_find_dirty_leb() doesn't return freeable index | 
|  | 648 | * LEBs. | 
|  | 649 | */ | 
|  | 650 | ubifs_assert(!(lp.flags & LPROPS_INDEX)); | 
|  | 651 | if (lp.free != c->leb_size) { | 
|  | 652 | /* | 
|  | 653 | * Write buffers must be sync'd before | 
|  | 654 | * unmapping freeable LEBs, because one of them | 
|  | 655 | * may contain data which obsoletes something | 
|  | 656 | * in 'lp.pnum'. | 
|  | 657 | */ | 
|  | 658 | ret = gc_sync_wbufs(c); | 
|  | 659 | if (ret) | 
|  | 660 | goto out; | 
|  | 661 | ret = ubifs_change_one_lp(c, lp.lnum, | 
|  | 662 | c->leb_size, 0, 0, 0, | 
|  | 663 | 0); | 
|  | 664 | if (ret) | 
|  | 665 | goto out; | 
|  | 666 | } | 
|  | 667 | ret = ubifs_leb_unmap(c, lp.lnum); | 
|  | 668 | if (ret) | 
|  | 669 | goto out; | 
|  | 670 | ret = lp.lnum; | 
|  | 671 | break; | 
|  | 672 | } | 
|  | 673 |  | 
|  | 674 | space_before = c->leb_size - wbuf->offs - wbuf->used; | 
|  | 675 | if (wbuf->lnum == -1) | 
|  | 676 | space_before = 0; | 
|  | 677 |  | 
|  | 678 | ret = ubifs_garbage_collect_leb(c, &lp); | 
|  | 679 | if (ret < 0) { | 
|  | 680 | if (ret == -EAGAIN || ret == -ENOSPC) { | 
|  | 681 | /* | 
|  | 682 | * These codes are not errors, so we have to | 
|  | 683 | * return the LEB to lprops. But if the | 
|  | 684 | * 'ubifs_return_leb()' function fails, its | 
|  | 685 | * failure code is propagated to the caller | 
|  | 686 | * instead of the original '-EAGAIN' or | 
|  | 687 | * '-ENOSPC'. | 
|  | 688 | */ | 
|  | 689 | err = ubifs_return_leb(c, lp.lnum); | 
|  | 690 | if (err) | 
|  | 691 | ret = err; | 
|  | 692 | break; | 
|  | 693 | } | 
|  | 694 | goto out; | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | if (ret == LEB_FREED) { | 
|  | 698 | /* An LEB has been freed and is ready for use */ | 
|  | 699 | dbg_gc("LEB %d freed, return", lp.lnum); | 
|  | 700 | ret = lp.lnum; | 
|  | 701 | break; | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | if (ret == LEB_FREED_IDX) { | 
|  | 705 | /* | 
|  | 706 | * This was an indexing LEB and it cannot be | 
|  | 707 | * immediately used. And instead of requesting the | 
|  | 708 | * commit straight away, we try to garbage collect some | 
|  | 709 | * more. | 
|  | 710 | */ | 
|  | 711 | dbg_gc("indexing LEB %d freed, continue", lp.lnum); | 
|  | 712 | continue; | 
|  | 713 | } | 
|  | 714 |  | 
|  | 715 | ubifs_assert(ret == LEB_RETAINED); | 
|  | 716 | space_after = c->leb_size - wbuf->offs - wbuf->used; | 
|  | 717 | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, | 
|  | 718 | space_after - space_before); | 
|  | 719 |  | 
|  | 720 | if (space_after > space_before) { | 
|  | 721 | /* GC makes progress, keep working */ | 
|  | 722 | min_space >>= 1; | 
|  | 723 | if (min_space < c->dead_wm) | 
|  | 724 | min_space = c->dead_wm; | 
|  | 725 | continue; | 
|  | 726 | } | 
|  | 727 |  | 
|  | 728 | dbg_gc("did not make progress"); | 
|  | 729 |  | 
|  | 730 | /* | 
|  | 731 | * GC moved an LEB bud have not done any progress. This means | 
|  | 732 | * that the previous GC head LEB contained too few free space | 
|  | 733 | * and the LEB which was GC'ed contained only large nodes which | 
|  | 734 | * did not fit that space. | 
|  | 735 | * | 
|  | 736 | * We can do 2 things: | 
|  | 737 | * 1. pick another LEB in a hope it'll contain a small node | 
|  | 738 | *    which will fit the space we have at the end of current GC | 
|  | 739 | *    head LEB, but there is no guarantee, so we try this out | 
|  | 740 | *    unless we have already been working for too long; | 
|  | 741 | * 2. request an LEB with more dirty space, which will force | 
|  | 742 | *    'ubifs_find_dirty_leb()' to start scanning the lprops | 
|  | 743 | *    table, instead of just picking one from the heap | 
|  | 744 | *    (previously it already picked the dirtiest LEB). | 
|  | 745 | */ | 
|  | 746 | if (i < SOFT_LEBS_LIMIT) { | 
|  | 747 | dbg_gc("try again"); | 
|  | 748 | continue; | 
|  | 749 | } | 
|  | 750 |  | 
|  | 751 | min_space <<= 1; | 
|  | 752 | if (min_space > c->dark_wm) | 
|  | 753 | min_space = c->dark_wm; | 
|  | 754 | dbg_gc("set min. space to %d", min_space); | 
|  | 755 | } | 
|  | 756 |  | 
|  | 757 | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { | 
|  | 758 | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); | 
|  | 759 | ubifs_commit_required(c); | 
|  | 760 | ret = -EAGAIN; | 
|  | 761 | } | 
|  | 762 |  | 
|  | 763 | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | 764 | if (!err) | 
|  | 765 | err = ubifs_leb_unmap(c, c->gc_lnum); | 
|  | 766 | if (err) { | 
|  | 767 | ret = err; | 
|  | 768 | goto out; | 
|  | 769 | } | 
|  | 770 | out_unlock: | 
|  | 771 | mutex_unlock(&wbuf->io_mutex); | 
|  | 772 | return ret; | 
|  | 773 |  | 
|  | 774 | out: | 
|  | 775 | ubifs_assert(ret < 0); | 
|  | 776 | ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); | 
|  | 777 | ubifs_ro_mode(c, ret); | 
|  | 778 | ubifs_wbuf_sync_nolock(wbuf); | 
|  | 779 | mutex_unlock(&wbuf->io_mutex); | 
|  | 780 | ubifs_return_leb(c, lp.lnum); | 
|  | 781 | return ret; | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 | /** | 
|  | 785 | * ubifs_gc_start_commit - garbage collection at start of commit. | 
|  | 786 | * @c: UBIFS file-system description object | 
|  | 787 | * | 
|  | 788 | * If a LEB has only dirty and free space, then we may safely unmap it and make | 
|  | 789 | * it free.  Note, we cannot do this with indexing LEBs because dirty space may | 
|  | 790 | * correspond index nodes that are required for recovery.  In that case, the | 
|  | 791 | * LEB cannot be unmapped until after the next commit. | 
|  | 792 | * | 
|  | 793 | * This function returns %0 upon success and a negative error code upon failure. | 
|  | 794 | */ | 
|  | 795 | int ubifs_gc_start_commit(struct ubifs_info *c) | 
|  | 796 | { | 
|  | 797 | struct ubifs_gced_idx_leb *idx_gc; | 
|  | 798 | const struct ubifs_lprops *lp; | 
|  | 799 | int err = 0, flags; | 
|  | 800 |  | 
|  | 801 | ubifs_get_lprops(c); | 
|  | 802 |  | 
|  | 803 | /* | 
|  | 804 | * Unmap (non-index) freeable LEBs. Note that recovery requires that all | 
|  | 805 | * wbufs are sync'd before this, which is done in 'do_commit()'. | 
|  | 806 | */ | 
|  | 807 | while (1) { | 
|  | 808 | lp = ubifs_fast_find_freeable(c); | 
| Hirofumi Nakagawa | 8d47aef | 2008-08-21 17:16:40 +0300 | [diff] [blame] | 809 | if (IS_ERR(lp)) { | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 810 | err = PTR_ERR(lp); | 
|  | 811 | goto out; | 
|  | 812 | } | 
|  | 813 | if (!lp) | 
|  | 814 | break; | 
|  | 815 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | 816 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | 817 | err = ubifs_leb_unmap(c, lp->lnum); | 
|  | 818 | if (err) | 
|  | 819 | goto out; | 
|  | 820 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); | 
| Hirofumi Nakagawa | 8d47aef | 2008-08-21 17:16:40 +0300 | [diff] [blame] | 821 | if (IS_ERR(lp)) { | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 822 | err = PTR_ERR(lp); | 
|  | 823 | goto out; | 
|  | 824 | } | 
|  | 825 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | 826 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ | 
|  | 830 | list_for_each_entry(idx_gc, &c->idx_gc, list) | 
|  | 831 | idx_gc->unmap = 1; | 
|  | 832 |  | 
|  | 833 | /* Record index freeable LEBs for unmapping after commit */ | 
|  | 834 | while (1) { | 
|  | 835 | lp = ubifs_fast_find_frdi_idx(c); | 
| Hirofumi Nakagawa | 8d47aef | 2008-08-21 17:16:40 +0300 | [diff] [blame] | 836 | if (IS_ERR(lp)) { | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 837 | err = PTR_ERR(lp); | 
|  | 838 | goto out; | 
|  | 839 | } | 
|  | 840 | if (!lp) | 
|  | 841 | break; | 
|  | 842 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | 
|  | 843 | if (!idx_gc) { | 
|  | 844 | err = -ENOMEM; | 
|  | 845 | goto out; | 
|  | 846 | } | 
|  | 847 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | 848 | ubifs_assert(lp->flags & LPROPS_INDEX); | 
|  | 849 | /* Don't release the LEB until after the next commit */ | 
|  | 850 | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; | 
|  | 851 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); | 
| Hirofumi Nakagawa | 8d47aef | 2008-08-21 17:16:40 +0300 | [diff] [blame] | 852 | if (IS_ERR(lp)) { | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 853 | err = PTR_ERR(lp); | 
|  | 854 | kfree(idx_gc); | 
|  | 855 | goto out; | 
|  | 856 | } | 
|  | 857 | ubifs_assert(lp->flags & LPROPS_TAKEN); | 
|  | 858 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | 859 | idx_gc->lnum = lp->lnum; | 
|  | 860 | idx_gc->unmap = 1; | 
|  | 861 | list_add(&idx_gc->list, &c->idx_gc); | 
|  | 862 | } | 
|  | 863 | out: | 
|  | 864 | ubifs_release_lprops(c); | 
|  | 865 | return err; | 
|  | 866 | } | 
|  | 867 |  | 
|  | 868 | /** | 
|  | 869 | * ubifs_gc_end_commit - garbage collection at end of commit. | 
|  | 870 | * @c: UBIFS file-system description object | 
|  | 871 | * | 
|  | 872 | * This function completes out-of-place garbage collection of index LEBs. | 
|  | 873 | */ | 
|  | 874 | int ubifs_gc_end_commit(struct ubifs_info *c) | 
|  | 875 | { | 
|  | 876 | struct ubifs_gced_idx_leb *idx_gc, *tmp; | 
|  | 877 | struct ubifs_wbuf *wbuf; | 
|  | 878 | int err = 0; | 
|  | 879 |  | 
|  | 880 | wbuf = &c->jheads[GCHD].wbuf; | 
|  | 881 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | 882 | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) | 
|  | 883 | if (idx_gc->unmap) { | 
|  | 884 | dbg_gc("LEB %d", idx_gc->lnum); | 
|  | 885 | err = ubifs_leb_unmap(c, idx_gc->lnum); | 
|  | 886 | if (err) | 
|  | 887 | goto out; | 
|  | 888 | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, | 
|  | 889 | LPROPS_NC, 0, LPROPS_TAKEN, -1); | 
|  | 890 | if (err) | 
|  | 891 | goto out; | 
|  | 892 | list_del(&idx_gc->list); | 
|  | 893 | kfree(idx_gc); | 
|  | 894 | } | 
|  | 895 | out: | 
|  | 896 | mutex_unlock(&wbuf->io_mutex); | 
|  | 897 | return err; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | /** | 
|  | 901 | * ubifs_destroy_idx_gc - destroy idx_gc list. | 
|  | 902 | * @c: UBIFS file-system description object | 
|  | 903 | * | 
| Adrian Hunter | b466f17 | 2009-01-29 12:59:33 +0200 | [diff] [blame] | 904 | * This function destroys the @c->idx_gc list. It is called when unmounting | 
|  | 905 | * so locks are not needed. Returns zero in case of success and a negative | 
|  | 906 | * error code in case of failure. | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 907 | */ | 
| Adrian Hunter | b466f17 | 2009-01-29 12:59:33 +0200 | [diff] [blame] | 908 | void ubifs_destroy_idx_gc(struct ubifs_info *c) | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 909 | { | 
|  | 910 | while (!list_empty(&c->idx_gc)) { | 
|  | 911 | struct ubifs_gced_idx_leb *idx_gc; | 
|  | 912 |  | 
|  | 913 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, | 
|  | 914 | list); | 
| Adrian Hunter | b466f17 | 2009-01-29 12:59:33 +0200 | [diff] [blame] | 915 | c->idx_gc_cnt -= 1; | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 916 | list_del(&idx_gc->list); | 
|  | 917 | kfree(idx_gc); | 
|  | 918 | } | 
| Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 919 | } | 
|  | 920 |  | 
|  | 921 | /** | 
|  | 922 | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. | 
|  | 923 | * @c: UBIFS file-system description object | 
|  | 924 | * | 
|  | 925 | * Called during start commit so locks are not needed. | 
|  | 926 | */ | 
|  | 927 | int ubifs_get_idx_gc_leb(struct ubifs_info *c) | 
|  | 928 | { | 
|  | 929 | struct ubifs_gced_idx_leb *idx_gc; | 
|  | 930 | int lnum; | 
|  | 931 |  | 
|  | 932 | if (list_empty(&c->idx_gc)) | 
|  | 933 | return -ENOSPC; | 
|  | 934 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); | 
|  | 935 | lnum = idx_gc->lnum; | 
|  | 936 | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ | 
|  | 937 | list_del(&idx_gc->list); | 
|  | 938 | kfree(idx_gc); | 
|  | 939 | return lnum; | 
|  | 940 | } |