blob: 2c3fc3cb3b6bdced5bf553b223719f8b370a6c26 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
Clemens Ladischd1761d12007-09-10 08:05:19 +020021 <date>September 10, 2007</date>
22 <edition>0.3.7</edition>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +020033 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
Takashi Iwai01d25d42005-04-11 16:58:24 +0200374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100406 struct mychip {
407 struct snd_card *card;
Takashi Iwai95a5b082007-07-26 16:50:09 +0200408 /* rest of implementation will be in the section
409 * "PCI Resource Managements"
410 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 };
412
413 /* chip-specific destructor
414 * (see "PCI Resource Managements")
415 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100416 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417 {
Takashi Iwai95a5b082007-07-26 16:50:09 +0200418 .... /* will be implemented later... */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 }
420
421 /* component-destructor
422 * (see "Management of Cards and Components")
423 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100424 static int snd_mychip_dev_free(struct snd_device *device)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100426 return snd_mychip_free(device->device_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700427 }
428
429 /* chip-specific constructor
430 * (see "Management of Cards and Components")
431 */
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100432 static int __devinit snd_mychip_create(struct snd_card *card,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 struct pci_dev *pci,
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100434 struct mychip **rchip)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100436 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100438 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439 .dev_free = snd_mychip_dev_free,
440 };
441
442 *rchip = NULL;
443
Takashi Iwai95a5b082007-07-26 16:50:09 +0200444 /* check PCI availability here
445 * (see "PCI Resource Managements")
446 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 ....
448
449 /* allocate a chip-specific data with zero filled */
Takashi Iwai561b2202005-09-09 14:22:34 +0200450 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 if (chip == NULL)
452 return -ENOMEM;
453
454 chip->card = card;
455
Takashi Iwai95a5b082007-07-26 16:50:09 +0200456 /* rest of initialization here; will be implemented
457 * later, see "PCI Resource Managements"
458 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 ....
460
Takashi Iwai95a5b082007-07-26 16:50:09 +0200461 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
462 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463 snd_mychip_free(chip);
464 return err;
465 }
466
467 snd_card_set_dev(card, &pci->dev);
468
469 *rchip = chip;
470 return 0;
471 }
472
473 /* constructor -- see "Constructor" sub-section */
474 static int __devinit snd_mychip_probe(struct pci_dev *pci,
475 const struct pci_device_id *pci_id)
476 {
477 static int dev;
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100478 struct snd_card *card;
479 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700480 int err;
481
482 /* (1) */
483 if (dev >= SNDRV_CARDS)
484 return -ENODEV;
485 if (!enable[dev]) {
486 dev++;
487 return -ENOENT;
488 }
489
490 /* (2) */
491 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
492 if (card == NULL)
493 return -ENOMEM;
494
495 /* (3) */
Takashi Iwai95a5b082007-07-26 16:50:09 +0200496 err = snd_mychip_create(card, pci, &chip);
497 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 snd_card_free(card);
499 return err;
500 }
501
502 /* (4) */
503 strcpy(card->driver, "My Chip");
504 strcpy(card->shortname, "My Own Chip 123");
505 sprintf(card->longname, "%s at 0x%lx irq %i",
506 card->shortname, chip->ioport, chip->irq);
507
508 /* (5) */
Takashi Iwai95a5b082007-07-26 16:50:09 +0200509 .... /* implemented later */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510
511 /* (6) */
Takashi Iwai95a5b082007-07-26 16:50:09 +0200512 err = snd_card_register(card);
513 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 snd_card_free(card);
515 return err;
516 }
517
518 /* (7) */
519 pci_set_drvdata(pci, card);
520 dev++;
521 return 0;
522 }
523
524 /* destructor -- see "Destructor" sub-section */
525 static void __devexit snd_mychip_remove(struct pci_dev *pci)
526 {
527 snd_card_free(pci_get_drvdata(pci));
528 pci_set_drvdata(pci, NULL);
529 }
530]]>
531 </programlisting>
532 </example>
533 </para>
534 </section>
535
536 <section id="basic-flow-constructor">
537 <title>Constructor</title>
538 <para>
539 The real constructor of PCI drivers is probe callback. The
540 probe callback and other component-constructors which are called
541 from probe callback should be defined with
542 <parameter>__devinit</parameter> prefix. You
543 cannot use <parameter>__init</parameter> prefix for them,
544 because any PCI device could be a hotplug device.
545 </para>
546
547 <para>
548 In the probe callback, the following scheme is often used.
549 </para>
550
551 <section id="basic-flow-constructor-device-index">
552 <title>1) Check and increment the device index.</title>
553 <para>
554 <informalexample>
555 <programlisting>
556<![CDATA[
557 static int dev;
558 ....
559 if (dev >= SNDRV_CARDS)
560 return -ENODEV;
561 if (!enable[dev]) {
562 dev++;
563 return -ENOENT;
564 }
565]]>
566 </programlisting>
567 </informalexample>
568
569 where enable[dev] is the module option.
570 </para>
571
572 <para>
573 At each time probe callback is called, check the
574 availability of the device. If not available, simply increment
575 the device index and returns. dev will be incremented also
576 later (<link
577 linkend="basic-flow-constructor-set-pci"><citetitle>step
578 7</citetitle></link>).
579 </para>
580 </section>
581
582 <section id="basic-flow-constructor-create-card">
583 <title>2) Create a card instance</title>
584 <para>
585 <informalexample>
586 <programlisting>
587<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100588 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700589 ....
590 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
591]]>
592 </programlisting>
593 </informalexample>
594 </para>
595
596 <para>
597 The detail will be explained in the section
598 <link linkend="card-management-card-instance"><citetitle>
599 Management of Cards and Components</citetitle></link>.
600 </para>
601 </section>
602
603 <section id="basic-flow-constructor-create-main">
604 <title>3) Create a main component</title>
605 <para>
606 In this part, the PCI resources are allocated.
607
608 <informalexample>
609 <programlisting>
610<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100611 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612 ....
Takashi Iwai95a5b082007-07-26 16:50:09 +0200613 err = snd_mychip_create(card, pci, &chip);
614 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615 snd_card_free(card);
616 return err;
617 }
618]]>
619 </programlisting>
620 </informalexample>
621
622 The detail will be explained in the section <link
623 linkend="pci-resource"><citetitle>PCI Resource
624 Managements</citetitle></link>.
625 </para>
626 </section>
627
628 <section id="basic-flow-constructor-main-component">
629 <title>4) Set the driver ID and name strings.</title>
630 <para>
631 <informalexample>
632 <programlisting>
633<![CDATA[
634 strcpy(card->driver, "My Chip");
635 strcpy(card->shortname, "My Own Chip 123");
636 sprintf(card->longname, "%s at 0x%lx irq %i",
637 card->shortname, chip->ioport, chip->irq);
638]]>
639 </programlisting>
640 </informalexample>
641
642 The driver field holds the minimal ID string of the
643 chip. This is referred by alsa-lib's configurator, so keep it
644 simple but unique.
645 Even the same driver can have different driver IDs to
646 distinguish the functionality of each chip type.
647 </para>
648
649 <para>
650 The shortname field is a string shown as more verbose
651 name. The longname field contains the information which is
652 shown in <filename>/proc/asound/cards</filename>.
653 </para>
654 </section>
655
656 <section id="basic-flow-constructor-create-other">
657 <title>5) Create other components, such as mixer, MIDI, etc.</title>
658 <para>
659 Here you define the basic components such as
660 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
661 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
662 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
663 and other interfaces.
664 Also, if you want a <link linkend="proc-interface"><citetitle>proc
665 file</citetitle></link>, define it here, too.
666 </para>
667 </section>
668
669 <section id="basic-flow-constructor-register-card">
670 <title>6) Register the card instance.</title>
671 <para>
672 <informalexample>
673 <programlisting>
674<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +0200675 err = snd_card_register(card);
676 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700677 snd_card_free(card);
678 return err;
679 }
680]]>
681 </programlisting>
682 </informalexample>
683 </para>
684
685 <para>
686 Will be explained in the section <link
687 linkend="card-management-registration"><citetitle>Management
688 of Cards and Components</citetitle></link>, too.
689 </para>
690 </section>
691
692 <section id="basic-flow-constructor-set-pci">
693 <title>7) Set the PCI driver data and return zero.</title>
694 <para>
695 <informalexample>
696 <programlisting>
697<![CDATA[
698 pci_set_drvdata(pci, card);
699 dev++;
700 return 0;
701]]>
702 </programlisting>
703 </informalexample>
704
705 In the above, the card record is stored. This pointer is
706 referred in the remove callback and power-management
707 callbacks, too.
708 </para>
709 </section>
710 </section>
711
712 <section id="basic-flow-destructor">
713 <title>Destructor</title>
714 <para>
715 The destructor, remove callback, simply releases the card
716 instance. Then the ALSA middle layer will release all the
717 attached components automatically.
718 </para>
719
720 <para>
721 It would be typically like the following:
722
723 <informalexample>
724 <programlisting>
725<![CDATA[
726 static void __devexit snd_mychip_remove(struct pci_dev *pci)
727 {
728 snd_card_free(pci_get_drvdata(pci));
729 pci_set_drvdata(pci, NULL);
730 }
731]]>
732 </programlisting>
733 </informalexample>
734
735 The above code assumes that the card pointer is set to the PCI
736 driver data.
737 </para>
738 </section>
739
740 <section id="basic-flow-header-files">
741 <title>Header Files</title>
742 <para>
743 For the above example, at least the following include files
744 are necessary.
745
746 <informalexample>
747 <programlisting>
748<![CDATA[
749 #include <sound/driver.h>
750 #include <linux/init.h>
751 #include <linux/pci.h>
752 #include <linux/slab.h>
753 #include <sound/core.h>
754 #include <sound/initval.h>
755]]>
756 </programlisting>
757 </informalexample>
758
759 where the last one is necessary only when module options are
760 defined in the source file. If the codes are split to several
761 files, the file without module options don't need them.
762 </para>
763
764 <para>
765 In addition to them, you'll need
766 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
767 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
768 access. If you use <function>mdelay()</function> or
769 <function>udelay()</function> functions, you'll need to include
770 <filename>&lt;linux/delay.h&gt;</filename>, too.
771 </para>
772
773 <para>
774 The ALSA interfaces like PCM or control API are defined in other
775 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
776 They have to be included after
777 <filename>&lt;sound/core.h&gt;</filename>.
778 </para>
779
780 </section>
781 </chapter>
782
783
784<!-- ****************************************************** -->
785<!-- Management of Cards and Components -->
786<!-- ****************************************************** -->
787 <chapter id="card-management">
788 <title>Management of Cards and Components</title>
789
790 <section id="card-management-card-instance">
791 <title>Card Instance</title>
792 <para>
793 For each soundcard, a <quote>card</quote> record must be allocated.
794 </para>
795
796 <para>
797 A card record is the headquarters of the soundcard. It manages
798 the list of whole devices (components) on the soundcard, such as
799 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
800 record holds the ID and the name strings of the card, manages
801 the root of proc files, and controls the power-management states
802 and hotplug disconnections. The component list on the card
803 record is used to manage the proper releases of resources at
804 destruction.
805 </para>
806
807 <para>
808 As mentioned above, to create a card instance, call
809 <function>snd_card_new()</function>.
810
811 <informalexample>
812 <programlisting>
813<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100814 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 card = snd_card_new(index, id, module, extra_size);
816]]>
817 </programlisting>
818 </informalexample>
819 </para>
820
821 <para>
822 The function takes four arguments, the card-index number, the
823 id string, the module pointer (usually
824 <constant>THIS_MODULE</constant>),
825 and the size of extra-data space. The last argument is used to
826 allocate card-&gt;private_data for the
827 chip-specific data. Note that this data
828 <emphasis>is</emphasis> allocated by
829 <function>snd_card_new()</function>.
830 </para>
831 </section>
832
833 <section id="card-management-component">
834 <title>Components</title>
835 <para>
836 After the card is created, you can attach the components
837 (devices) to the card instance. On ALSA driver, a component is
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100838 represented as a struct <structname>snd_device</structname> object.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839 A component can be a PCM instance, a control interface, a raw
840 MIDI interface, etc. Each of such instances has one component
841 entry.
842 </para>
843
844 <para>
845 A component can be created via
846 <function>snd_device_new()</function> function.
847
848 <informalexample>
849 <programlisting>
850<![CDATA[
851 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
852]]>
853 </programlisting>
854 </informalexample>
855 </para>
856
857 <para>
858 This takes the card pointer, the device-level
859 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
860 callback pointers (<parameter>&amp;ops</parameter>). The
861 device-level defines the type of components and the order of
862 registration and de-registration. For most of components, the
863 device-level is already defined. For a user-defined component,
864 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
865 </para>
866
867 <para>
868 This function itself doesn't allocate the data space. The data
869 must be allocated manually beforehand, and its pointer is passed
870 as the argument. This pointer is used as the identifier
871 (<parameter>chip</parameter> in the above example) for the
872 instance.
873 </para>
874
875 <para>
876 Each ALSA pre-defined component such as ac97 or pcm calls
877 <function>snd_device_new()</function> inside its
878 constructor. The destructor for each component is defined in the
879 callback pointers. Hence, you don't need to take care of
880 calling a destructor for such a component.
881 </para>
882
883 <para>
884 If you would like to create your own component, you need to
885 set the destructor function to dev_free callback in
886 <parameter>ops</parameter>, so that it can be released
887 automatically via <function>snd_card_free()</function>. The
888 example will be shown later as an implementation of a
889 chip-specific data.
890 </para>
891 </section>
892
893 <section id="card-management-chip-specific">
894 <title>Chip-Specific Data</title>
895 <para>
896 The chip-specific information, e.g. the i/o port address, its
897 resource pointer, or the irq number, is stored in the
898 chip-specific record.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899
900 <informalexample>
901 <programlisting>
902<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100903 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904 ....
905 };
906]]>
907 </programlisting>
908 </informalexample>
909 </para>
910
911 <para>
912 In general, there are two ways to allocate the chip record.
913 </para>
914
915 <section id="card-management-chip-specific-snd-card-new">
916 <title>1. Allocating via <function>snd_card_new()</function>.</title>
917 <para>
918 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
919
920 <informalexample>
921 <programlisting>
922<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100923 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924]]>
925 </programlisting>
926 </informalexample>
927
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100928 whether struct <structname>mychip</structname> is the type of the chip record.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 </para>
930
931 <para>
932 In return, the allocated record can be accessed as
933
934 <informalexample>
935 <programlisting>
936<![CDATA[
Takashi Iwai437a5a42006-11-21 12:14:23 +0100937 struct mychip *chip = card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938]]>
939 </programlisting>
940 </informalexample>
941
942 With this method, you don't have to allocate twice.
943 The record is released together with the card instance.
944 </para>
945 </section>
946
947 <section id="card-management-chip-specific-allocate-extra">
948 <title>2. Allocating an extra device.</title>
949
950 <para>
951 After allocating a card instance via
952 <function>snd_card_new()</function> (with
953 <constant>NULL</constant> on the 4th arg), call
Takashi Iwai561b2202005-09-09 14:22:34 +0200954 <function>kzalloc()</function>.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955
956 <informalexample>
957 <programlisting>
958<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100959 struct snd_card *card;
960 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
962 .....
Takashi Iwai561b2202005-09-09 14:22:34 +0200963 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964]]>
965 </programlisting>
966 </informalexample>
967 </para>
968
969 <para>
970 The chip record should have the field to hold the card
971 pointer at least,
972
973 <informalexample>
974 <programlisting>
975<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +0100976 struct mychip {
977 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978 ....
979 };
980]]>
981 </programlisting>
982 </informalexample>
983 </para>
984
985 <para>
986 Then, set the card pointer in the returned chip instance.
987
988 <informalexample>
989 <programlisting>
990<![CDATA[
991 chip->card = card;
992]]>
993 </programlisting>
994 </informalexample>
995 </para>
996
997 <para>
998 Next, initialize the fields, and register this chip
999 record as a low-level device with a specified
1000 <parameter>ops</parameter>,
1001
1002 <informalexample>
1003 <programlisting>
1004<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001005 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006 .dev_free = snd_mychip_dev_free,
1007 };
1008 ....
1009 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1010]]>
1011 </programlisting>
1012 </informalexample>
1013
1014 <function>snd_mychip_dev_free()</function> is the
1015 device-destructor function, which will call the real
1016 destructor.
1017 </para>
1018
1019 <para>
1020 <informalexample>
1021 <programlisting>
1022<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001023 static int snd_mychip_dev_free(struct snd_device *device)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001025 return snd_mychip_free(device->device_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026 }
1027]]>
1028 </programlisting>
1029 </informalexample>
1030
1031 where <function>snd_mychip_free()</function> is the real destructor.
1032 </para>
1033 </section>
1034 </section>
1035
1036 <section id="card-management-registration">
1037 <title>Registration and Release</title>
1038 <para>
1039 After all components are assigned, register the card instance
1040 by calling <function>snd_card_register()</function>. The access
1041 to the device files are enabled at this point. That is, before
1042 <function>snd_card_register()</function> is called, the
1043 components are safely inaccessible from external side. If this
1044 call fails, exit the probe function after releasing the card via
1045 <function>snd_card_free()</function>.
1046 </para>
1047
1048 <para>
1049 For releasing the card instance, you can call simply
1050 <function>snd_card_free()</function>. As already mentioned, all
1051 components are released automatically by this call.
1052 </para>
1053
1054 <para>
1055 As further notes, the destructors (both
1056 <function>snd_mychip_dev_free</function> and
1057 <function>snd_mychip_free</function>) cannot be defined with
1058 <parameter>__devexit</parameter> prefix, because they may be
1059 called from the constructor, too, at the false path.
1060 </para>
1061
1062 <para>
1063 For a device which allows hotplugging, you can use
Takashi Iwai2b29b132006-06-23 14:38:26 +02001064 <function>snd_card_free_when_closed</function>. This one will
1065 postpone the destruction until all devices are closed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066 </para>
1067
1068 </section>
1069
1070 </chapter>
1071
1072
1073<!-- ****************************************************** -->
1074<!-- PCI Resource Managements -->
1075<!-- ****************************************************** -->
1076 <chapter id="pci-resource">
1077 <title>PCI Resource Managements</title>
1078
1079 <section id="pci-resource-example">
1080 <title>Full Code Example</title>
1081 <para>
1082 In this section, we'll finish the chip-specific constructor,
1083 destructor and PCI entries. The example code is shown first,
1084 below.
1085
1086 <example>
1087 <title>PCI Resource Managements Example</title>
1088 <programlisting>
1089<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001090 struct mychip {
1091 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092 struct pci_dev *pci;
1093
1094 unsigned long port;
1095 int irq;
1096 };
1097
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001098 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099 {
1100 /* disable hardware here if any */
Takashi Iwai95a5b082007-07-26 16:50:09 +02001101 .... /* (not implemented in this document) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102
1103 /* release the irq */
1104 if (chip->irq >= 0)
Takashi Iwai437a5a42006-11-21 12:14:23 +01001105 free_irq(chip->irq, chip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 /* release the i/o ports & memory */
1107 pci_release_regions(chip->pci);
1108 /* disable the PCI entry */
1109 pci_disable_device(chip->pci);
1110 /* release the data */
1111 kfree(chip);
1112 return 0;
1113 }
1114
1115 /* chip-specific constructor */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001116 static int __devinit snd_mychip_create(struct snd_card *card,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 struct pci_dev *pci,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001118 struct mychip **rchip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001120 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001122 static struct snd_device_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 .dev_free = snd_mychip_dev_free,
1124 };
1125
1126 *rchip = NULL;
1127
1128 /* initialize the PCI entry */
Takashi Iwai95a5b082007-07-26 16:50:09 +02001129 err = pci_enable_device(pci);
1130 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131 return err;
1132 /* check PCI availability (28bit DMA) */
Tobias Klauser56b146d2006-04-10 22:54:21 -07001133 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1134 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 printk(KERN_ERR "error to set 28bit mask DMA\n");
1136 pci_disable_device(pci);
1137 return -ENXIO;
1138 }
1139
Takashi Iwai561b2202005-09-09 14:22:34 +02001140 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001141 if (chip == NULL) {
1142 pci_disable_device(pci);
1143 return -ENOMEM;
1144 }
1145
1146 /* initialize the stuff */
1147 chip->card = card;
1148 chip->pci = pci;
1149 chip->irq = -1;
1150
1151 /* (1) PCI resource allocation */
Takashi Iwai95a5b082007-07-26 16:50:09 +02001152 err = pci_request_regions(pci, "My Chip");
1153 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 kfree(chip);
1155 pci_disable_device(pci);
1156 return err;
1157 }
1158 chip->port = pci_resource_start(pci, 0);
1159 if (request_irq(pci->irq, snd_mychip_interrupt,
Takashi Iwai437a5a42006-11-21 12:14:23 +01001160 IRQF_SHARED, "My Chip", chip)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001161 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1162 snd_mychip_free(chip);
1163 return -EBUSY;
1164 }
1165 chip->irq = pci->irq;
1166
1167 /* (2) initialization of the chip hardware */
Takashi Iwai95a5b082007-07-26 16:50:09 +02001168 .... /* (not implemented in this document) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169
Takashi Iwai95a5b082007-07-26 16:50:09 +02001170 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1171 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 snd_mychip_free(chip);
1173 return err;
1174 }
1175
1176 snd_card_set_dev(card, &pci->dev);
1177
1178 *rchip = chip;
1179 return 0;
1180 }
1181
1182 /* PCI IDs */
Takashi Iwaif40b6892006-07-05 16:51:05 +02001183 static struct pci_device_id snd_mychip_ids[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1185 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1186 ....
1187 { 0, }
1188 };
1189 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1190
1191 /* pci_driver definition */
1192 static struct pci_driver driver = {
1193 .name = "My Own Chip",
1194 .id_table = snd_mychip_ids,
1195 .probe = snd_mychip_probe,
1196 .remove = __devexit_p(snd_mychip_remove),
1197 };
1198
1199 /* initialization of the module */
1200 static int __init alsa_card_mychip_init(void)
1201 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001202 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203 }
1204
1205 /* clean up the module */
1206 static void __exit alsa_card_mychip_exit(void)
1207 {
1208 pci_unregister_driver(&driver);
1209 }
1210
1211 module_init(alsa_card_mychip_init)
1212 module_exit(alsa_card_mychip_exit)
1213
1214 EXPORT_NO_SYMBOLS; /* for old kernels only */
1215]]>
1216 </programlisting>
1217 </example>
1218 </para>
1219 </section>
1220
1221 <section id="pci-resource-some-haftas">
1222 <title>Some Hafta's</title>
1223 <para>
1224 The allocation of PCI resources is done in the
1225 <function>probe()</function> function, and usually an extra
1226 <function>xxx_create()</function> function is written for this
Tobias Klauser56b146d2006-04-10 22:54:21 -07001227 purpose.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228 </para>
1229
1230 <para>
1231 In the case of PCI devices, you have to call at first
1232 <function>pci_enable_device()</function> function before
1233 allocating resources. Also, you need to set the proper PCI DMA
1234 mask to limit the accessed i/o range. In some cases, you might
1235 need to call <function>pci_set_master()</function> function,
Tobias Klauser56b146d2006-04-10 22:54:21 -07001236 too.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001237 </para>
1238
1239 <para>
1240 Suppose the 28bit mask, and the code to be added would be like:
1241
1242 <informalexample>
1243 <programlisting>
1244<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +02001245 err = pci_enable_device(pci);
1246 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 return err;
Tobias Klauser56b146d2006-04-10 22:54:21 -07001248 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1249 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 printk(KERN_ERR "error to set 28bit mask DMA\n");
1251 pci_disable_device(pci);
1252 return -ENXIO;
1253 }
1254
1255]]>
1256 </programlisting>
1257 </informalexample>
1258 </para>
1259 </section>
1260
1261 <section id="pci-resource-resource-allocation">
1262 <title>Resource Allocation</title>
1263 <para>
1264 The allocation of I/O ports and irqs are done via standard kernel
1265 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1266 that. And these resources must be released in the destructor
1267 function (see below). Also, on ALSA 0.9.x, you don't need to
Tobias Klauser56b146d2006-04-10 22:54:21 -07001268 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001269 </para>
1270
1271 <para>
1272 Now assume that this PCI device has an I/O port with 8 bytes
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001273 and an interrupt. Then struct <structname>mychip</structname> will have the
Tobias Klauser56b146d2006-04-10 22:54:21 -07001274 following fields:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275
1276 <informalexample>
1277 <programlisting>
1278<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001279 struct mychip {
1280 struct snd_card *card;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281
1282 unsigned long port;
1283 int irq;
1284 };
1285]]>
1286 </programlisting>
1287 </informalexample>
1288 </para>
1289
1290 <para>
1291 For an i/o port (and also a memory region), you need to have
1292 the resource pointer for the standard resource management. For
1293 an irq, you have to keep only the irq number (integer). But you
1294 need to initialize this number as -1 before actual allocation,
1295 since irq 0 is valid. The port address and its resource pointer
1296 can be initialized as null by
Takashi Iwai561b2202005-09-09 14:22:34 +02001297 <function>kzalloc()</function> automatically, so you
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 don't have to take care of resetting them.
1299 </para>
1300
1301 <para>
1302 The allocation of an i/o port is done like this:
1303
1304 <informalexample>
1305 <programlisting>
1306<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +02001307 err = pci_request_regions(pci, "My Chip");
1308 if (err < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309 kfree(chip);
1310 pci_disable_device(pci);
1311 return err;
1312 }
1313 chip->port = pci_resource_start(pci, 0);
1314]]>
1315 </programlisting>
1316 </informalexample>
1317 </para>
1318
1319 <para>
1320 <!-- obsolete -->
1321 It will reserve the i/o port region of 8 bytes of the given
1322 PCI device. The returned value, chip-&gt;res_port, is allocated
1323 via <function>kmalloc()</function> by
1324 <function>request_region()</function>. The pointer must be
1325 released via <function>kfree()</function>, but there is some
1326 problem regarding this. This issue will be explained more below.
1327 </para>
1328
1329 <para>
1330 The allocation of an interrupt source is done like this:
1331
1332 <informalexample>
1333 <programlisting>
1334<![CDATA[
1335 if (request_irq(pci->irq, snd_mychip_interrupt,
Takashi Iwaia1101332007-08-07 16:16:07 +02001336 IRQF_SHARED, "My Chip", chip)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1338 snd_mychip_free(chip);
1339 return -EBUSY;
1340 }
1341 chip->irq = pci->irq;
1342]]>
1343 </programlisting>
1344 </informalexample>
1345
1346 where <function>snd_mychip_interrupt()</function> is the
1347 interrupt handler defined <link
1348 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1349 Note that chip-&gt;irq should be defined
1350 only when <function>request_irq()</function> succeeded.
1351 </para>
1352
1353 <para>
1354 On the PCI bus, the interrupts can be shared. Thus,
Thomas Gleixner6ce6c7f2006-07-01 19:29:47 -07001355 <constant>IRQF_SHARED</constant> is given as the interrupt flag of
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 <function>request_irq()</function>.
1357 </para>
1358
1359 <para>
1360 The last argument of <function>request_irq()</function> is the
1361 data pointer passed to the interrupt handler. Usually, the
1362 chip-specific record is used for that, but you can use what you
1363 like, too.
1364 </para>
1365
1366 <para>
1367 I won't define the detail of the interrupt handler at this
1368 point, but at least its appearance can be explained now. The
1369 interrupt handler looks usually like the following:
1370
1371 <informalexample>
1372 <programlisting>
1373<![CDATA[
Takashi Iwaiad4d1de2007-01-16 17:46:35 +01001374 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001376 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377 ....
1378 return IRQ_HANDLED;
1379 }
1380]]>
1381 </programlisting>
1382 </informalexample>
1383 </para>
1384
1385 <para>
1386 Now let's write the corresponding destructor for the resources
1387 above. The role of destructor is simple: disable the hardware
1388 (if already activated) and release the resources. So far, we
1389 have no hardware part, so the disabling is not written here.
1390 </para>
1391
1392 <para>
1393 For releasing the resources, <quote>check-and-release</quote>
1394 method is a safer way. For the interrupt, do like this:
1395
1396 <informalexample>
1397 <programlisting>
1398<![CDATA[
1399 if (chip->irq >= 0)
Takashi Iwai437a5a42006-11-21 12:14:23 +01001400 free_irq(chip->irq, chip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401]]>
1402 </programlisting>
1403 </informalexample>
1404
1405 Since the irq number can start from 0, you should initialize
1406 chip-&gt;irq with a negative value (e.g. -1), so that you can
1407 check the validity of the irq number as above.
1408 </para>
1409
1410 <para>
1411 When you requested I/O ports or memory regions via
1412 <function>pci_request_region()</function> or
1413 <function>pci_request_regions()</function> like this example,
1414 release the resource(s) using the corresponding function,
1415 <function>pci_release_region()</function> or
1416 <function>pci_release_regions()</function>.
1417
1418 <informalexample>
1419 <programlisting>
1420<![CDATA[
1421 pci_release_regions(chip->pci);
1422]]>
1423 </programlisting>
1424 </informalexample>
1425 </para>
1426
1427 <para>
1428 When you requested manually via <function>request_region()</function>
1429 or <function>request_mem_region</function>, you can release it via
1430 <function>release_resource()</function>. Suppose that you keep
1431 the resource pointer returned from <function>request_region()</function>
1432 in chip-&gt;res_port, the release procedure looks like below:
1433
1434 <informalexample>
1435 <programlisting>
1436<![CDATA[
Takashi Iwaib1d57762005-10-10 11:56:31 +02001437 release_and_free_resource(chip->res_port);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438]]>
1439 </programlisting>
1440 </informalexample>
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 </para>
1442
1443 <para>
1444 Don't forget to call <function>pci_disable_device()</function>
1445 before all finished.
1446 </para>
1447
1448 <para>
1449 And finally, release the chip-specific record.
1450
1451 <informalexample>
1452 <programlisting>
1453<![CDATA[
1454 kfree(chip);
1455]]>
1456 </programlisting>
1457 </informalexample>
1458 </para>
1459
1460 <para>
1461 Again, remember that you cannot
1462 set <parameter>__devexit</parameter> prefix for this destructor.
1463 </para>
1464
1465 <para>
1466 We didn't implement the hardware-disabling part in the above.
1467 If you need to do this, please note that the destructor may be
1468 called even before the initialization of the chip is completed.
1469 It would be better to have a flag to skip the hardware-disabling
1470 if the hardware was not initialized yet.
1471 </para>
1472
1473 <para>
1474 When the chip-data is assigned to the card using
1475 <function>snd_device_new()</function> with
1476 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1477 called at the last. That is, it is assured that all other
1478 components like PCMs and controls have been already released.
1479 You don't have to call stopping PCMs, etc. explicitly, but just
1480 stop the hardware in the low-level.
1481 </para>
1482
1483 <para>
1484 The management of a memory-mapped region is almost as same as
1485 the management of an i/o port. You'll need three fields like
1486 the following:
1487
1488 <informalexample>
1489 <programlisting>
1490<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001491 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 ....
1493 unsigned long iobase_phys;
1494 void __iomem *iobase_virt;
1495 };
1496]]>
1497 </programlisting>
1498 </informalexample>
1499
1500 and the allocation would be like below:
1501
1502 <informalexample>
1503 <programlisting>
1504<![CDATA[
1505 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1506 kfree(chip);
1507 return err;
1508 }
1509 chip->iobase_phys = pci_resource_start(pci, 0);
1510 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1511 pci_resource_len(pci, 0));
1512]]>
1513 </programlisting>
1514 </informalexample>
1515
1516 and the corresponding destructor would be:
1517
1518 <informalexample>
1519 <programlisting>
1520<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001521 static int snd_mychip_free(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 {
1523 ....
1524 if (chip->iobase_virt)
1525 iounmap(chip->iobase_virt);
1526 ....
1527 pci_release_regions(chip->pci);
1528 ....
1529 }
1530]]>
1531 </programlisting>
1532 </informalexample>
1533 </para>
1534
1535 </section>
1536
1537 <section id="pci-resource-device-struct">
1538 <title>Registration of Device Struct</title>
1539 <para>
1540 At some point, typically after calling <function>snd_device_new()</function>,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001541 you need to register the struct <structname>device</structname> of the chip
Linus Torvalds1da177e2005-04-16 15:20:36 -07001542 you're handling for udev and co. ALSA provides a macro for compatibility with
1543 older kernels. Simply call like the following:
1544 <informalexample>
1545 <programlisting>
1546<![CDATA[
1547 snd_card_set_dev(card, &pci->dev);
1548]]>
1549 </programlisting>
1550 </informalexample>
1551 so that it stores the PCI's device pointer to the card. This will be
1552 referred by ALSA core functions later when the devices are registered.
1553 </para>
1554 <para>
1555 In the case of non-PCI, pass the proper device struct pointer of the BUS
1556 instead. (In the case of legacy ISA without PnP, you don't have to do
1557 anything.)
1558 </para>
1559 </section>
1560
1561 <section id="pci-resource-entries">
1562 <title>PCI Entries</title>
1563 <para>
1564 So far, so good. Let's finish the rest of missing PCI
1565 stuffs. At first, we need a
1566 <structname>pci_device_id</structname> table for this
1567 chipset. It's a table of PCI vendor/device ID number, and some
1568 masks.
1569 </para>
1570
1571 <para>
1572 For example,
1573
1574 <informalexample>
1575 <programlisting>
1576<![CDATA[
Takashi Iwaif40b6892006-07-05 16:51:05 +02001577 static struct pci_device_id snd_mychip_ids[] = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1579 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1580 ....
1581 { 0, }
1582 };
1583 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1584]]>
1585 </programlisting>
1586 </informalexample>
1587 </para>
1588
1589 <para>
1590 The first and second fields of
1591 <structname>pci_device_id</structname> struct are the vendor and
1592 device IDs. If you have nothing special to filter the matching
1593 devices, you can use the rest of fields like above. The last
1594 field of <structname>pci_device_id</structname> struct is a
1595 private data for this entry. You can specify any value here, for
1596 example, to tell the type of different operations per each
1597 device IDs. Such an example is found in intel8x0 driver.
1598 </para>
1599
1600 <para>
1601 The last entry of this list is the terminator. You must
1602 specify this all-zero entry.
1603 </para>
1604
1605 <para>
1606 Then, prepare the <structname>pci_driver</structname> record:
1607
1608 <informalexample>
1609 <programlisting>
1610<![CDATA[
1611 static struct pci_driver driver = {
1612 .name = "My Own Chip",
1613 .id_table = snd_mychip_ids,
1614 .probe = snd_mychip_probe,
1615 .remove = __devexit_p(snd_mychip_remove),
1616 };
1617]]>
1618 </programlisting>
1619 </informalexample>
1620 </para>
1621
1622 <para>
1623 The <structfield>probe</structfield> and
1624 <structfield>remove</structfield> functions are what we already
1625 defined in
1626 the previous sections. The <structfield>remove</structfield> should
1627 be defined with
1628 <function>__devexit_p()</function> macro, so that it's not
1629 defined for built-in (and non-hot-pluggable) case. The
1630 <structfield>name</structfield>
1631 field is the name string of this device. Note that you must not
1632 use a slash <quote>/</quote> in this string.
1633 </para>
1634
1635 <para>
1636 And at last, the module entries:
1637
1638 <informalexample>
1639 <programlisting>
1640<![CDATA[
1641 static int __init alsa_card_mychip_init(void)
1642 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001643 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644 }
1645
1646 static void __exit alsa_card_mychip_exit(void)
1647 {
1648 pci_unregister_driver(&driver);
1649 }
1650
1651 module_init(alsa_card_mychip_init)
1652 module_exit(alsa_card_mychip_exit)
1653]]>
1654 </programlisting>
1655 </informalexample>
1656 </para>
1657
1658 <para>
1659 Note that these module entries are tagged with
1660 <parameter>__init</parameter> and
1661 <parameter>__exit</parameter> prefixes, not
1662 <parameter>__devinit</parameter> nor
1663 <parameter>__devexit</parameter>.
1664 </para>
1665
1666 <para>
1667 Oh, one thing was forgotten. If you have no exported symbols,
1668 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1669 it's not necessary, though).
1670
1671 <informalexample>
1672 <programlisting>
1673<![CDATA[
1674 EXPORT_NO_SYMBOLS;
1675]]>
1676 </programlisting>
1677 </informalexample>
1678
1679 That's all!
1680 </para>
1681 </section>
1682 </chapter>
1683
1684
1685<!-- ****************************************************** -->
1686<!-- PCM Interface -->
1687<!-- ****************************************************** -->
1688 <chapter id="pcm-interface">
1689 <title>PCM Interface</title>
1690
1691 <section id="pcm-interface-general">
1692 <title>General</title>
1693 <para>
1694 The PCM middle layer of ALSA is quite powerful and it is only
1695 necessary for each driver to implement the low-level functions
1696 to access its hardware.
1697 </para>
1698
1699 <para>
1700 For accessing to the PCM layer, you need to include
1701 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1702 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1703 if you access to some functions related with hw_param.
1704 </para>
1705
1706 <para>
1707 Each card device can have up to four pcm instances. A pcm
1708 instance corresponds to a pcm device file. The limitation of
1709 number of instances comes only from the available bit size of
1710 the linux's device number. Once when 64bit device number is
1711 used, we'll have more available pcm instances.
1712 </para>
1713
1714 <para>
1715 A pcm instance consists of pcm playback and capture streams,
1716 and each pcm stream consists of one or more pcm substreams. Some
1717 soundcard supports the multiple-playback function. For example,
1718 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1719 each open, a free substream is (usually) automatically chosen
1720 and opened. Meanwhile, when only one substream exists and it was
1721 already opened, the succeeding open will result in the blocking
1722 or the error with <constant>EAGAIN</constant> according to the
1723 file open mode. But you don't have to know the detail in your
1724 driver. The PCM middle layer will take all such jobs.
1725 </para>
1726 </section>
1727
1728 <section id="pcm-interface-example">
1729 <title>Full Code Example</title>
1730 <para>
1731 The example code below does not include any hardware access
1732 routines but shows only the skeleton, how to build up the PCM
1733 interfaces.
1734
1735 <example>
1736 <title>PCM Example Code</title>
1737 <programlisting>
1738<![CDATA[
1739 #include <sound/pcm.h>
1740 ....
1741
1742 /* hardware definition */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001743 static struct snd_pcm_hardware snd_mychip_playback_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 .info = (SNDRV_PCM_INFO_MMAP |
1745 SNDRV_PCM_INFO_INTERLEAVED |
1746 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1747 SNDRV_PCM_INFO_MMAP_VALID),
1748 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1749 .rates = SNDRV_PCM_RATE_8000_48000,
1750 .rate_min = 8000,
1751 .rate_max = 48000,
1752 .channels_min = 2,
1753 .channels_max = 2,
1754 .buffer_bytes_max = 32768,
1755 .period_bytes_min = 4096,
1756 .period_bytes_max = 32768,
1757 .periods_min = 1,
1758 .periods_max = 1024,
1759 };
1760
1761 /* hardware definition */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001762 static struct snd_pcm_hardware snd_mychip_capture_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001763 .info = (SNDRV_PCM_INFO_MMAP |
1764 SNDRV_PCM_INFO_INTERLEAVED |
1765 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1766 SNDRV_PCM_INFO_MMAP_VALID),
1767 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1768 .rates = SNDRV_PCM_RATE_8000_48000,
1769 .rate_min = 8000,
1770 .rate_max = 48000,
1771 .channels_min = 2,
1772 .channels_max = 2,
1773 .buffer_bytes_max = 32768,
1774 .period_bytes_min = 4096,
1775 .period_bytes_max = 32768,
1776 .periods_min = 1,
1777 .periods_max = 1024,
1778 };
1779
1780 /* open callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001781 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001783 struct mychip *chip = snd_pcm_substream_chip(substream);
1784 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785
1786 runtime->hw = snd_mychip_playback_hw;
Takashi Iwai95a5b082007-07-26 16:50:09 +02001787 /* more hardware-initialization will be done here */
1788 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789 return 0;
1790 }
1791
1792 /* close callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001793 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001795 struct mychip *chip = snd_pcm_substream_chip(substream);
Takashi Iwai95a5b082007-07-26 16:50:09 +02001796 /* the hardware-specific codes will be here */
1797 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001798 return 0;
1799
1800 }
1801
1802 /* open callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001803 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001805 struct mychip *chip = snd_pcm_substream_chip(substream);
1806 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807
1808 runtime->hw = snd_mychip_capture_hw;
Takashi Iwai95a5b082007-07-26 16:50:09 +02001809 /* more hardware-initialization will be done here */
1810 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 return 0;
1812 }
1813
1814 /* close callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001815 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001817 struct mychip *chip = snd_pcm_substream_chip(substream);
Takashi Iwai95a5b082007-07-26 16:50:09 +02001818 /* the hardware-specific codes will be here */
1819 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820 return 0;
1821
1822 }
1823
1824 /* hw_params callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001825 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1826 struct snd_pcm_hw_params *hw_params)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 {
1828 return snd_pcm_lib_malloc_pages(substream,
1829 params_buffer_bytes(hw_params));
1830 }
1831
1832 /* hw_free callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001833 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834 {
1835 return snd_pcm_lib_free_pages(substream);
1836 }
1837
1838 /* prepare callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001839 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001841 struct mychip *chip = snd_pcm_substream_chip(substream);
1842 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843
1844 /* set up the hardware with the current configuration
1845 * for example...
1846 */
1847 mychip_set_sample_format(chip, runtime->format);
1848 mychip_set_sample_rate(chip, runtime->rate);
1849 mychip_set_channels(chip, runtime->channels);
Takashi Iwai0b7bed42006-03-02 15:35:55 +01001850 mychip_set_dma_setup(chip, runtime->dma_addr,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 chip->buffer_size,
1852 chip->period_size);
1853 return 0;
1854 }
1855
1856 /* trigger callback */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001857 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858 int cmd)
1859 {
1860 switch (cmd) {
1861 case SNDRV_PCM_TRIGGER_START:
Takashi Iwai95a5b082007-07-26 16:50:09 +02001862 /* do something to start the PCM engine */
1863 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 break;
1865 case SNDRV_PCM_TRIGGER_STOP:
Takashi Iwai95a5b082007-07-26 16:50:09 +02001866 /* do something to stop the PCM engine */
1867 ....
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868 break;
1869 default:
1870 return -EINVAL;
1871 }
1872 }
1873
1874 /* pointer callback */
1875 static snd_pcm_uframes_t
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001876 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001878 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 unsigned int current_ptr;
1880
1881 /* get the current hardware pointer */
1882 current_ptr = mychip_get_hw_pointer(chip);
1883 return current_ptr;
1884 }
1885
1886 /* operators */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001887 static struct snd_pcm_ops snd_mychip_playback_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 .open = snd_mychip_playback_open,
1889 .close = snd_mychip_playback_close,
1890 .ioctl = snd_pcm_lib_ioctl,
1891 .hw_params = snd_mychip_pcm_hw_params,
1892 .hw_free = snd_mychip_pcm_hw_free,
1893 .prepare = snd_mychip_pcm_prepare,
1894 .trigger = snd_mychip_pcm_trigger,
1895 .pointer = snd_mychip_pcm_pointer,
1896 };
1897
1898 /* operators */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001899 static struct snd_pcm_ops snd_mychip_capture_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 .open = snd_mychip_capture_open,
1901 .close = snd_mychip_capture_close,
1902 .ioctl = snd_pcm_lib_ioctl,
1903 .hw_params = snd_mychip_pcm_hw_params,
1904 .hw_free = snd_mychip_pcm_hw_free,
1905 .prepare = snd_mychip_pcm_prepare,
1906 .trigger = snd_mychip_pcm_trigger,
1907 .pointer = snd_mychip_pcm_pointer,
1908 };
1909
1910 /*
1911 * definitions of capture are omitted here...
1912 */
1913
1914 /* create a pcm device */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001915 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001917 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 int err;
1919
Takashi Iwai95a5b082007-07-26 16:50:09 +02001920 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1921 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 return err;
1923 pcm->private_data = chip;
1924 strcpy(pcm->name, "My Chip");
1925 chip->pcm = pcm;
1926 /* set operators */
1927 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1928 &snd_mychip_playback_ops);
1929 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1930 &snd_mychip_capture_ops);
1931 /* pre-allocation of buffers */
1932 /* NOTE: this may fail */
1933 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1934 snd_dma_pci_data(chip->pci),
1935 64*1024, 64*1024);
1936 return 0;
1937 }
1938]]>
1939 </programlisting>
1940 </example>
1941 </para>
1942 </section>
1943
1944 <section id="pcm-interface-constructor">
1945 <title>Constructor</title>
1946 <para>
1947 A pcm instance is allocated by <function>snd_pcm_new()</function>
1948 function. It would be better to create a constructor for pcm,
1949 namely,
1950
1951 <informalexample>
1952 <programlisting>
1953<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001954 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001956 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957 int err;
1958
Takashi Iwai95a5b082007-07-26 16:50:09 +02001959 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1960 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961 return err;
1962 pcm->private_data = chip;
1963 strcpy(pcm->name, "My Chip");
1964 chip->pcm = pcm;
1965 ....
1966 return 0;
1967 }
1968]]>
1969 </programlisting>
1970 </informalexample>
1971 </para>
1972
1973 <para>
1974 The <function>snd_pcm_new()</function> function takes the four
1975 arguments. The first argument is the card pointer to which this
1976 pcm is assigned, and the second is the ID string.
1977 </para>
1978
1979 <para>
1980 The third argument (<parameter>index</parameter>, 0 in the
1981 above) is the index of this new pcm. It begins from zero. When
1982 you will create more than one pcm instances, specify the
1983 different numbers in this argument. For example,
1984 <parameter>index</parameter> = 1 for the second PCM device.
1985 </para>
1986
1987 <para>
1988 The fourth and fifth arguments are the number of substreams
1989 for playback and capture, respectively. Here both 1 are given in
1990 the above example. When no playback or no capture is available,
1991 pass 0 to the corresponding argument.
1992 </para>
1993
1994 <para>
1995 If a chip supports multiple playbacks or captures, you can
1996 specify more numbers, but they must be handled properly in
1997 open/close, etc. callbacks. When you need to know which
1998 substream you are referring to, then it can be obtained from
Takashi Iwai446ab5f2005-11-17 15:12:54 +01001999 struct <structname>snd_pcm_substream</structname> data passed to each callback
Linus Torvalds1da177e2005-04-16 15:20:36 -07002000 as follows:
2001
2002 <informalexample>
2003 <programlisting>
2004<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002005 struct snd_pcm_substream *substream;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002006 int index = substream->number;
2007]]>
2008 </programlisting>
2009 </informalexample>
2010 </para>
2011
2012 <para>
2013 After the pcm is created, you need to set operators for each
2014 pcm stream.
2015
2016 <informalexample>
2017 <programlisting>
2018<![CDATA[
2019 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2020 &snd_mychip_playback_ops);
2021 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2022 &snd_mychip_capture_ops);
2023]]>
2024 </programlisting>
2025 </informalexample>
2026 </para>
2027
2028 <para>
2029 The operators are defined typically like this:
2030
2031 <informalexample>
2032 <programlisting>
2033<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002034 static struct snd_pcm_ops snd_mychip_playback_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002035 .open = snd_mychip_pcm_open,
2036 .close = snd_mychip_pcm_close,
2037 .ioctl = snd_pcm_lib_ioctl,
2038 .hw_params = snd_mychip_pcm_hw_params,
2039 .hw_free = snd_mychip_pcm_hw_free,
2040 .prepare = snd_mychip_pcm_prepare,
2041 .trigger = snd_mychip_pcm_trigger,
2042 .pointer = snd_mychip_pcm_pointer,
2043 };
2044]]>
2045 </programlisting>
2046 </informalexample>
2047
2048 Each of callbacks is explained in the subsection
2049 <link linkend="pcm-interface-operators"><citetitle>
2050 Operators</citetitle></link>.
2051 </para>
2052
2053 <para>
2054 After setting the operators, most likely you'd like to
2055 pre-allocate the buffer. For the pre-allocation, simply call
2056 the following:
2057
2058 <informalexample>
2059 <programlisting>
2060<![CDATA[
2061 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2062 snd_dma_pci_data(chip->pci),
2063 64*1024, 64*1024);
2064]]>
2065 </programlisting>
2066 </informalexample>
2067
2068 It will allocate up to 64kB buffer as default. The details of
2069 buffer management will be described in the later section <link
2070 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2071 Management</citetitle></link>.
2072 </para>
2073
2074 <para>
2075 Additionally, you can set some extra information for this pcm
2076 in pcm-&gt;info_flags.
2077 The available values are defined as
2078 <constant>SNDRV_PCM_INFO_XXX</constant> in
2079 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2080 the hardware definition (described later). When your soundchip
2081 supports only half-duplex, specify like this:
2082
2083 <informalexample>
2084 <programlisting>
2085<![CDATA[
2086 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2087]]>
2088 </programlisting>
2089 </informalexample>
2090 </para>
2091 </section>
2092
2093 <section id="pcm-interface-destructor">
2094 <title>... And the Destructor?</title>
2095 <para>
2096 The destructor for a pcm instance is not always
2097 necessary. Since the pcm device will be released by the middle
2098 layer code automatically, you don't have to call destructor
2099 explicitly.
2100 </para>
2101
2102 <para>
2103 The destructor would be necessary when you created some
2104 special records internally and need to release them. In such a
2105 case, set the destructor function to
2106 pcm-&gt;private_free:
2107
2108 <example>
2109 <title>PCM Instance with a Destructor</title>
2110 <programlisting>
2111<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002112 static void mychip_pcm_free(struct snd_pcm *pcm)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002114 struct mychip *chip = snd_pcm_chip(pcm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115 /* free your own data */
2116 kfree(chip->my_private_pcm_data);
Takashi Iwai95a5b082007-07-26 16:50:09 +02002117 /* do what you like else */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118 ....
2119 }
2120
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002121 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002123 struct snd_pcm *pcm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 ....
2125 /* allocate your own data */
2126 chip->my_private_pcm_data = kmalloc(...);
2127 /* set the destructor */
2128 pcm->private_data = chip;
2129 pcm->private_free = mychip_pcm_free;
2130 ....
2131 }
2132]]>
2133 </programlisting>
2134 </example>
2135 </para>
2136 </section>
2137
2138 <section id="pcm-interface-runtime">
2139 <title>Runtime Pointer - The Chest of PCM Information</title>
2140 <para>
2141 When the PCM substream is opened, a PCM runtime instance is
2142 allocated and assigned to the substream. This pointer is
2143 accessible via <constant>substream-&gt;runtime</constant>.
2144 This runtime pointer holds the various information; it holds
2145 the copy of hw_params and sw_params configurations, the buffer
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01002146 pointers, mmap records, spinlocks, etc. Almost everything you
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147 need for controlling the PCM can be found there.
2148 </para>
2149
2150 <para>
2151 The definition of runtime instance is found in
2152 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2153 copy from the file.
2154 <informalexample>
2155 <programlisting>
2156<![CDATA[
2157struct _snd_pcm_runtime {
2158 /* -- Status -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002159 struct snd_pcm_substream *trigger_master;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2161 int overrange;
2162 snd_pcm_uframes_t avail_max;
2163 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2164 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2165
2166 /* -- HW params -- */
2167 snd_pcm_access_t access; /* access mode */
2168 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2169 snd_pcm_subformat_t subformat; /* subformat */
2170 unsigned int rate; /* rate in Hz */
2171 unsigned int channels; /* channels */
2172 snd_pcm_uframes_t period_size; /* period size */
2173 unsigned int periods; /* periods */
2174 snd_pcm_uframes_t buffer_size; /* buffer size */
2175 unsigned int tick_time; /* tick time */
2176 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2177 size_t byte_align;
2178 unsigned int frame_bits;
2179 unsigned int sample_bits;
2180 unsigned int info;
2181 unsigned int rate_num;
2182 unsigned int rate_den;
2183
2184 /* -- SW params -- */
Takashi Iwai07799e72005-10-10 11:49:49 +02002185 struct timespec tstamp_mode; /* mmap timestamp is updated */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 unsigned int period_step;
2187 unsigned int sleep_min; /* min ticks to sleep */
2188 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2189 snd_pcm_uframes_t start_threshold;
2190 snd_pcm_uframes_t stop_threshold;
2191 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2192 noise is nearest than this */
2193 snd_pcm_uframes_t silence_size; /* Silence filling size */
2194 snd_pcm_uframes_t boundary; /* pointers wrap point */
2195
2196 snd_pcm_uframes_t silenced_start;
2197 snd_pcm_uframes_t silenced_size;
2198
2199 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2200
2201 /* -- mmap -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002202 volatile struct snd_pcm_mmap_status *status;
2203 volatile struct snd_pcm_mmap_control *control;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002204 atomic_t mmap_count;
2205
2206 /* -- locking / scheduling -- */
2207 spinlock_t lock;
2208 wait_queue_head_t sleep;
2209 struct timer_list tick_timer;
2210 struct fasync_struct *fasync;
2211
2212 /* -- private section -- */
2213 void *private_data;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002214 void (*private_free)(struct snd_pcm_runtime *runtime);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215
2216 /* -- hardware description -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002217 struct snd_pcm_hardware hw;
2218 struct snd_pcm_hw_constraints hw_constraints;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219
2220 /* -- interrupt callbacks -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002221 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2222 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223
2224 /* -- timer -- */
2225 unsigned int timer_resolution; /* timer resolution */
2226
2227 /* -- DMA -- */
2228 unsigned char *dma_area; /* DMA area */
2229 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2230 size_t dma_bytes; /* size of DMA area */
2231
2232 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2233
2234#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2235 /* -- OSS things -- */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002236 struct snd_pcm_oss_runtime oss;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002237#endif
2238};
2239]]>
2240 </programlisting>
2241 </informalexample>
2242 </para>
2243
2244 <para>
2245 For the operators (callbacks) of each sound driver, most of
2246 these records are supposed to be read-only. Only the PCM
2247 middle-layer changes / updates these info. The exceptions are
2248 the hardware description (hw), interrupt callbacks
2249 (transfer_ack_xxx), DMA buffer information, and the private
2250 data. Besides, if you use the standard buffer allocation
2251 method via <function>snd_pcm_lib_malloc_pages()</function>,
2252 you don't need to set the DMA buffer information by yourself.
2253 </para>
2254
2255 <para>
2256 In the sections below, important records are explained.
2257 </para>
2258
2259 <section id="pcm-interface-runtime-hw">
2260 <title>Hardware Description</title>
2261 <para>
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002262 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 contains the definitions of the fundamental hardware
2264 configuration. Above all, you'll need to define this in
2265 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2266 the open callback</citetitle></link>.
2267 Note that the runtime instance holds the copy of the
2268 descriptor, not the pointer to the existing descriptor. That
2269 is, in the open callback, you can modify the copied descriptor
2270 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2271 number of channels is 1 only on some chip models, you can
2272 still use the same hardware descriptor and change the
2273 channels_max later:
2274 <informalexample>
2275 <programlisting>
2276<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002277 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 ...
2279 runtime->hw = snd_mychip_playback_hw; /* common definition */
2280 if (chip->model == VERY_OLD_ONE)
2281 runtime->hw.channels_max = 1;
2282]]>
2283 </programlisting>
2284 </informalexample>
2285 </para>
2286
2287 <para>
2288 Typically, you'll have a hardware descriptor like below:
2289 <informalexample>
2290 <programlisting>
2291<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002292 static struct snd_pcm_hardware snd_mychip_playback_hw = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 .info = (SNDRV_PCM_INFO_MMAP |
2294 SNDRV_PCM_INFO_INTERLEAVED |
2295 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2296 SNDRV_PCM_INFO_MMAP_VALID),
2297 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2298 .rates = SNDRV_PCM_RATE_8000_48000,
2299 .rate_min = 8000,
2300 .rate_max = 48000,
2301 .channels_min = 2,
2302 .channels_max = 2,
2303 .buffer_bytes_max = 32768,
2304 .period_bytes_min = 4096,
2305 .period_bytes_max = 32768,
2306 .periods_min = 1,
2307 .periods_max = 1024,
2308 };
2309]]>
2310 </programlisting>
2311 </informalexample>
2312 </para>
2313
2314 <para>
2315 <itemizedlist>
2316 <listitem><para>
2317 The <structfield>info</structfield> field contains the type and
2318 capabilities of this pcm. The bit flags are defined in
2319 <filename>&lt;sound/asound.h&gt;</filename> as
2320 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2321 have to specify whether the mmap is supported and which
2322 interleaved format is supported.
2323 When the mmap is supported, add
2324 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2325 hardware supports the interleaved or the non-interleaved
2326 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2327 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2328 be set, respectively. If both are supported, you can set both,
2329 too.
2330 </para>
2331
2332 <para>
2333 In the above example, <constant>MMAP_VALID</constant> and
2334 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2335 mode. Usually both are set. Of course,
2336 <constant>MMAP_VALID</constant> is set only if the mmap is
2337 really supported.
2338 </para>
2339
2340 <para>
2341 The other possible flags are
2342 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2343 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2344 <constant>PAUSE</constant> bit means that the pcm supports the
2345 <quote>pause</quote> operation, while the
2346 <constant>RESUME</constant> bit means that the pcm supports
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002347 the full <quote>suspend/resume</quote> operation.
2348 If <constant>PAUSE</constant> flag is set,
2349 the <structfield>trigger</structfield> callback below
2350 must handle the corresponding (pause push/release) commands.
2351 The suspend/resume trigger commands can be defined even without
2352 <constant>RESUME</constant> flag. See <link
2353 linkend="power-management"><citetitle>
2354 Power Management</citetitle></link> section for details.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002355 </para>
2356
2357 <para>
2358 When the PCM substreams can be synchronized (typically,
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01002359 synchronized start/stop of a playback and a capture streams),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2361 too. In this case, you'll need to check the linked-list of
2362 PCM substreams in the trigger callback. This will be
2363 described in the later section.
2364 </para>
2365 </listitem>
2366
2367 <listitem>
2368 <para>
2369 <structfield>formats</structfield> field contains the bit-flags
2370 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2371 If the hardware supports more than one format, give all or'ed
2372 bits. In the example above, the signed 16bit little-endian
2373 format is specified.
2374 </para>
2375 </listitem>
2376
2377 <listitem>
2378 <para>
2379 <structfield>rates</structfield> field contains the bit-flags of
2380 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2381 When the chip supports continuous rates, pass
2382 <constant>CONTINUOUS</constant> bit additionally.
2383 The pre-defined rate bits are provided only for typical
2384 rates. If your chip supports unconventional rates, you need to add
2385 <constant>KNOT</constant> bit and set up the hardware
2386 constraint manually (explained later).
2387 </para>
2388 </listitem>
2389
2390 <listitem>
2391 <para>
2392 <structfield>rate_min</structfield> and
2393 <structfield>rate_max</structfield> define the minimal and
2394 maximal sample rate. This should correspond somehow to
2395 <structfield>rates</structfield> bits.
2396 </para>
2397 </listitem>
2398
2399 <listitem>
2400 <para>
2401 <structfield>channel_min</structfield> and
2402 <structfield>channel_max</structfield>
2403 define, as you might already expected, the minimal and maximal
2404 number of channels.
2405 </para>
2406 </listitem>
2407
2408 <listitem>
2409 <para>
2410 <structfield>buffer_bytes_max</structfield> defines the
2411 maximal buffer size in bytes. There is no
2412 <structfield>buffer_bytes_min</structfield> field, since
2413 it can be calculated from the minimal period size and the
2414 minimal number of periods.
2415 Meanwhile, <structfield>period_bytes_min</structfield> and
2416 define the minimal and maximal size of the period in bytes.
2417 <structfield>periods_max</structfield> and
2418 <structfield>periods_min</structfield> define the maximal and
2419 minimal number of periods in the buffer.
2420 </para>
2421
2422 <para>
2423 The <quote>period</quote> is a term, that corresponds to
2424 fragment in the OSS world. The period defines the size at
2425 which the PCM interrupt is generated. This size strongly
2426 depends on the hardware.
2427 Generally, the smaller period size will give you more
2428 interrupts, that is, more controls.
2429 In the case of capture, this size defines the input latency.
2430 On the other hand, the whole buffer size defines the
2431 output latency for the playback direction.
2432 </para>
2433 </listitem>
2434
2435 <listitem>
2436 <para>
2437 There is also a field <structfield>fifo_size</structfield>.
2438 This specifies the size of the hardware FIFO, but it's not
2439 used currently in the driver nor in the alsa-lib. So, you
2440 can ignore this field.
2441 </para>
2442 </listitem>
2443 </itemizedlist>
2444 </para>
2445 </section>
2446
2447 <section id="pcm-interface-runtime-config">
2448 <title>PCM Configurations</title>
2449 <para>
2450 Ok, let's go back again to the PCM runtime records.
2451 The most frequently referred records in the runtime instance are
2452 the PCM configurations.
2453 The PCM configurations are stored on runtime instance
2454 after the application sends <type>hw_params</type> data via
2455 alsa-lib. There are many fields copied from hw_params and
2456 sw_params structs. For example,
2457 <structfield>format</structfield> holds the format type
2458 chosen by the application. This field contains the enum value
2459 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2460 </para>
2461
2462 <para>
2463 One thing to be noted is that the configured buffer and period
2464 sizes are stored in <quote>frames</quote> in the runtime
2465 In the ALSA world, 1 frame = channels * samples-size.
2466 For conversion between frames and bytes, you can use the
2467 helper functions, <function>frames_to_bytes()</function> and
2468 <function>bytes_to_frames()</function>.
2469 <informalexample>
2470 <programlisting>
2471<![CDATA[
2472 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2473]]>
2474 </programlisting>
2475 </informalexample>
2476 </para>
2477
2478 <para>
2479 Also, many software parameters (sw_params) are
2480 stored in frames, too. Please check the type of the field.
2481 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2482 integer while <type>snd_pcm_sframes_t</type> is for the frames
2483 as signed integer.
2484 </para>
2485 </section>
2486
2487 <section id="pcm-interface-runtime-dma">
2488 <title>DMA Buffer Information</title>
2489 <para>
2490 The DMA buffer is defined by the following four fields,
2491 <structfield>dma_area</structfield>,
2492 <structfield>dma_addr</structfield>,
2493 <structfield>dma_bytes</structfield> and
2494 <structfield>dma_private</structfield>.
2495 The <structfield>dma_area</structfield> holds the buffer
2496 pointer (the logical address). You can call
2497 <function>memcpy</function> from/to
2498 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2499 holds the physical address of the buffer. This field is
2500 specified only when the buffer is a linear buffer.
2501 <structfield>dma_bytes</structfield> holds the size of buffer
2502 in bytes. <structfield>dma_private</structfield> is used for
2503 the ALSA DMA allocator.
2504 </para>
2505
2506 <para>
2507 If you use a standard ALSA function,
2508 <function>snd_pcm_lib_malloc_pages()</function>, for
2509 allocating the buffer, these fields are set by the ALSA middle
2510 layer, and you should <emphasis>not</emphasis> change them by
2511 yourself. You can read them but not write them.
2512 On the other hand, if you want to allocate the buffer by
2513 yourself, you'll need to manage it in hw_params callback.
2514 At least, <structfield>dma_bytes</structfield> is mandatory.
2515 <structfield>dma_area</structfield> is necessary when the
2516 buffer is mmapped. If your driver doesn't support mmap, this
2517 field is not necessary. <structfield>dma_addr</structfield>
2518 is also not mandatory. You can use
2519 <structfield>dma_private</structfield> as you like, too.
2520 </para>
2521 </section>
2522
2523 <section id="pcm-interface-runtime-status">
2524 <title>Running Status</title>
2525 <para>
2526 The running status can be referred via <constant>runtime-&gt;status</constant>.
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002527 This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528 record. For example, you can get the current DMA hardware
2529 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2530 </para>
2531
2532 <para>
2533 The DMA application pointer can be referred via
2534 <constant>runtime-&gt;control</constant>, which points
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002535 struct <structname>snd_pcm_mmap_control</structname> record.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 However, accessing directly to this value is not recommended.
2537 </para>
2538 </section>
2539
2540 <section id="pcm-interface-runtime-private">
2541 <title>Private Data</title>
2542 <para>
2543 You can allocate a record for the substream and store it in
2544 <constant>runtime-&gt;private_data</constant>. Usually, this
2545 done in
2546 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2547 the open callback</citetitle></link>.
2548 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2549 The <constant>pcm-&gt;private_data</constant> usually points the
2550 chip instance assigned statically at the creation of PCM, while the
2551 <constant>runtime-&gt;private_data</constant> points a dynamic
2552 data created at the PCM open callback.
2553
2554 <informalexample>
2555 <programlisting>
2556<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002557 static int snd_xxx_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002559 struct my_pcm_data *data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 ....
2561 data = kmalloc(sizeof(*data), GFP_KERNEL);
2562 substream->runtime->private_data = data;
2563 ....
2564 }
2565]]>
2566 </programlisting>
2567 </informalexample>
2568 </para>
2569
2570 <para>
2571 The allocated object must be released in
2572 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2573 the close callback</citetitle></link>.
2574 </para>
2575 </section>
2576
2577 <section id="pcm-interface-runtime-intr">
2578 <title>Interrupt Callbacks</title>
2579 <para>
2580 The field <structfield>transfer_ack_begin</structfield> and
2581 <structfield>transfer_ack_end</structfield> are called at
2582 the beginning and the end of
2583 <function>snd_pcm_period_elapsed()</function>, respectively.
2584 </para>
2585 </section>
2586
2587 </section>
2588
2589 <section id="pcm-interface-operators">
2590 <title>Operators</title>
2591 <para>
2592 OK, now let me explain the detail of each pcm callback
2593 (<parameter>ops</parameter>). In general, every callback must
2594 return 0 if successful, or a negative number with the error
2595 number such as <constant>-EINVAL</constant> at any
2596 error.
2597 </para>
2598
2599 <para>
2600 The callback function takes at least the argument with
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002601 <structname>snd_pcm_substream</structname> pointer. For retrieving the
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 chip record from the given substream instance, you can use the
2603 following macro.
2604
2605 <informalexample>
2606 <programlisting>
2607<![CDATA[
2608 int xxx() {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002609 struct mychip *chip = snd_pcm_substream_chip(substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610 ....
2611 }
2612]]>
2613 </programlisting>
2614 </informalexample>
2615
2616 The macro reads <constant>substream-&gt;private_data</constant>,
2617 which is a copy of <constant>pcm-&gt;private_data</constant>.
2618 You can override the former if you need to assign different data
2619 records per PCM substream. For example, cmi8330 driver assigns
2620 different private_data for playback and capture directions,
2621 because it uses two different codecs (SB- and AD-compatible) for
2622 different directions.
2623 </para>
2624
2625 <section id="pcm-interface-operators-open-callback">
2626 <title>open callback</title>
2627 <para>
2628 <informalexample>
2629 <programlisting>
2630<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002631 static int snd_xxx_open(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632]]>
2633 </programlisting>
2634 </informalexample>
2635
2636 This is called when a pcm substream is opened.
2637 </para>
2638
2639 <para>
2640 At least, here you have to initialize the runtime-&gt;hw
2641 record. Typically, this is done by like this:
2642
2643 <informalexample>
2644 <programlisting>
2645<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002646 static int snd_xxx_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002648 struct mychip *chip = snd_pcm_substream_chip(substream);
2649 struct snd_pcm_runtime *runtime = substream->runtime;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650
2651 runtime->hw = snd_mychip_playback_hw;
2652 return 0;
2653 }
2654]]>
2655 </programlisting>
2656 </informalexample>
2657
2658 where <parameter>snd_mychip_playback_hw</parameter> is the
2659 pre-defined hardware description.
2660 </para>
2661
2662 <para>
2663 You can allocate a private data in this callback, as described
2664 in <link linkend="pcm-interface-runtime-private"><citetitle>
2665 Private Data</citetitle></link> section.
2666 </para>
2667
2668 <para>
2669 If the hardware configuration needs more constraints, set the
2670 hardware constraints here, too.
2671 See <link linkend="pcm-interface-constraints"><citetitle>
2672 Constraints</citetitle></link> for more details.
2673 </para>
2674 </section>
2675
2676 <section id="pcm-interface-operators-close-callback">
2677 <title>close callback</title>
2678 <para>
2679 <informalexample>
2680 <programlisting>
2681<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002682 static int snd_xxx_close(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683]]>
2684 </programlisting>
2685 </informalexample>
2686
2687 Obviously, this is called when a pcm substream is closed.
2688 </para>
2689
2690 <para>
2691 Any private instance for a pcm substream allocated in the
2692 open callback will be released here.
2693
2694 <informalexample>
2695 <programlisting>
2696<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002697 static int snd_xxx_close(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698 {
2699 ....
2700 kfree(substream->runtime->private_data);
2701 ....
2702 }
2703]]>
2704 </programlisting>
2705 </informalexample>
2706 </para>
2707 </section>
2708
2709 <section id="pcm-interface-operators-ioctl-callback">
2710 <title>ioctl callback</title>
2711 <para>
2712 This is used for any special action to pcm ioctls. But
2713 usually you can pass a generic ioctl callback,
2714 <function>snd_pcm_lib_ioctl</function>.
2715 </para>
2716 </section>
2717
2718 <section id="pcm-interface-operators-hw-params-callback">
2719 <title>hw_params callback</title>
2720 <para>
2721 <informalexample>
2722 <programlisting>
2723<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002724 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2725 struct snd_pcm_hw_params *hw_params);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726]]>
2727 </programlisting>
2728 </informalexample>
2729
2730 This and <structfield>hw_free</structfield> callbacks exist
2731 only on ALSA 0.9.x.
2732 </para>
2733
2734 <para>
2735 This is called when the hardware parameter
2736 (<structfield>hw_params</structfield>) is set
2737 up by the application,
2738 that is, once when the buffer size, the period size, the
2739 format, etc. are defined for the pcm substream.
2740 </para>
2741
2742 <para>
2743 Many hardware set-up should be done in this callback,
2744 including the allocation of buffers.
2745 </para>
2746
2747 <para>
2748 Parameters to be initialized are retrieved by
2749 <function>params_xxx()</function> macros. For allocating a
2750 buffer, you can call a helper function,
2751
2752 <informalexample>
2753 <programlisting>
2754<![CDATA[
2755 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2756]]>
2757 </programlisting>
2758 </informalexample>
2759
2760 <function>snd_pcm_lib_malloc_pages()</function> is available
2761 only when the DMA buffers have been pre-allocated.
2762 See the section <link
2763 linkend="buffer-and-memory-buffer-types"><citetitle>
2764 Buffer Types</citetitle></link> for more details.
2765 </para>
2766
2767 <para>
2768 Note that this and <structfield>prepare</structfield> callbacks
2769 may be called multiple times per initialization.
2770 For example, the OSS emulation may
2771 call these callbacks at each change via its ioctl.
2772 </para>
2773
2774 <para>
2775 Thus, you need to take care not to allocate the same buffers
2776 many times, which will lead to memory leak! Calling the
2777 helper function above many times is OK. It will release the
2778 previous buffer automatically when it was already allocated.
2779 </para>
2780
2781 <para>
2782 Another note is that this callback is non-atomic
2783 (schedulable). This is important, because the
2784 <structfield>trigger</structfield> callback
2785 is atomic (non-schedulable). That is, mutex or any
2786 schedule-related functions are not available in
2787 <structfield>trigger</structfield> callback.
2788 Please see the subsection
2789 <link linkend="pcm-interface-atomicity"><citetitle>
2790 Atomicity</citetitle></link> for details.
2791 </para>
2792 </section>
2793
2794 <section id="pcm-interface-operators-hw-free-callback">
2795 <title>hw_free callback</title>
2796 <para>
2797 <informalexample>
2798 <programlisting>
2799<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002800 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801]]>
2802 </programlisting>
2803 </informalexample>
2804 </para>
2805
2806 <para>
2807 This is called to release the resources allocated via
2808 <structfield>hw_params</structfield>. For example, releasing the
2809 buffer via
2810 <function>snd_pcm_lib_malloc_pages()</function> is done by
2811 calling the following:
2812
2813 <informalexample>
2814 <programlisting>
2815<![CDATA[
2816 snd_pcm_lib_free_pages(substream);
2817]]>
2818 </programlisting>
2819 </informalexample>
2820 </para>
2821
2822 <para>
2823 This function is always called before the close callback is called.
2824 Also, the callback may be called multiple times, too.
2825 Keep track whether the resource was already released.
2826 </para>
2827 </section>
2828
2829 <section id="pcm-interface-operators-prepare-callback">
2830 <title>prepare callback</title>
2831 <para>
2832 <informalexample>
2833 <programlisting>
2834<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002835 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002836]]>
2837 </programlisting>
2838 </informalexample>
2839 </para>
2840
2841 <para>
2842 This callback is called when the pcm is
2843 <quote>prepared</quote>. You can set the format type, sample
2844 rate, etc. here. The difference from
2845 <structfield>hw_params</structfield> is that the
2846 <structfield>prepare</structfield> callback will be called at each
2847 time
2848 <function>snd_pcm_prepare()</function> is called, i.e. when
2849 recovered after underruns, etc.
2850 </para>
2851
2852 <para>
2853 Note that this callback became non-atomic since the recent version.
Akinobu Mita0b280022006-03-26 01:38:58 -08002854 You can use schedule-related functions safely in this callback now.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002855 </para>
2856
2857 <para>
2858 In this and the following callbacks, you can refer to the
2859 values via the runtime record,
2860 substream-&gt;runtime.
2861 For example, to get the current
2862 rate, format or channels, access to
2863 runtime-&gt;rate,
2864 runtime-&gt;format or
2865 runtime-&gt;channels, respectively.
2866 The physical address of the allocated buffer is set to
2867 runtime-&gt;dma_area. The buffer and period sizes are
2868 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2869 respectively.
2870 </para>
2871
2872 <para>
2873 Be careful that this callback will be called many times at
2874 each set up, too.
2875 </para>
2876 </section>
2877
2878 <section id="pcm-interface-operators-trigger-callback">
2879 <title>trigger callback</title>
2880 <para>
2881 <informalexample>
2882 <programlisting>
2883<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002884 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885]]>
2886 </programlisting>
2887 </informalexample>
2888
2889 This is called when the pcm is started, stopped or paused.
2890 </para>
2891
2892 <para>
2893 Which action is specified in the second argument,
2894 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2895 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2896 <constant>START</constant> and <constant>STOP</constant>
2897 commands must be defined in this callback.
2898
2899 <informalexample>
2900 <programlisting>
2901<![CDATA[
2902 switch (cmd) {
2903 case SNDRV_PCM_TRIGGER_START:
Takashi Iwai95a5b082007-07-26 16:50:09 +02002904 /* do something to start the PCM engine */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905 break;
2906 case SNDRV_PCM_TRIGGER_STOP:
Takashi Iwai95a5b082007-07-26 16:50:09 +02002907 /* do something to stop the PCM engine */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 break;
2909 default:
2910 return -EINVAL;
2911 }
2912]]>
2913 </programlisting>
2914 </informalexample>
2915 </para>
2916
2917 <para>
2918 When the pcm supports the pause operation (given in info
2919 field of the hardware table), <constant>PAUSE_PUSE</constant>
2920 and <constant>PAUSE_RELEASE</constant> commands must be
2921 handled here, too. The former is the command to pause the pcm,
2922 and the latter to restart the pcm again.
2923 </para>
2924
2925 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002926 When the pcm supports the suspend/resume operation,
2927 regardless of full or partial suspend/resume support,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002928 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2929 commands must be handled, too.
2930 These commands are issued when the power-management status is
2931 changed. Obviously, the <constant>SUSPEND</constant> and
2932 <constant>RESUME</constant>
2933 do suspend and resume of the pcm substream, and usually, they
2934 are identical with <constant>STOP</constant> and
2935 <constant>START</constant> commands, respectively.
Takashi Iwai5fe76e42005-11-17 17:26:09 +01002936 See <link linkend="power-management"><citetitle>
2937 Power Management</citetitle></link> section for details.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002938 </para>
2939
2940 <para>
2941 As mentioned, this callback is atomic. You cannot call
2942 the function going to sleep.
2943 The trigger callback should be as minimal as possible,
2944 just really triggering the DMA. The other stuff should be
2945 initialized hw_params and prepare callbacks properly
2946 beforehand.
2947 </para>
2948 </section>
2949
2950 <section id="pcm-interface-operators-pointer-callback">
2951 <title>pointer callback</title>
2952 <para>
2953 <informalexample>
2954 <programlisting>
2955<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01002956 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957]]>
2958 </programlisting>
2959 </informalexample>
2960
2961 This callback is called when the PCM middle layer inquires
2962 the current hardware position on the buffer. The position must
2963 be returned in frames (which was in bytes on ALSA 0.5.x),
2964 ranged from 0 to buffer_size - 1.
2965 </para>
2966
2967 <para>
2968 This is called usually from the buffer-update routine in the
2969 pcm middle layer, which is invoked when
2970 <function>snd_pcm_period_elapsed()</function> is called in the
2971 interrupt routine. Then the pcm middle layer updates the
2972 position and calculates the available space, and wakes up the
2973 sleeping poll threads, etc.
2974 </para>
2975
2976 <para>
2977 This callback is also atomic.
2978 </para>
2979 </section>
2980
2981 <section id="pcm-interface-operators-copy-silence">
2982 <title>copy and silence callbacks</title>
2983 <para>
2984 These callbacks are not mandatory, and can be omitted in
2985 most cases. These callbacks are used when the hardware buffer
2986 cannot be on the normal memory space. Some chips have their
2987 own buffer on the hardware which is not mappable. In such a
2988 case, you have to transfer the data manually from the memory
2989 buffer to the hardware buffer. Or, if the buffer is
2990 non-contiguous on both physical and virtual memory spaces,
2991 these callbacks must be defined, too.
2992 </para>
2993
2994 <para>
2995 If these two callbacks are defined, copy and set-silence
2996 operations are done by them. The detailed will be described in
2997 the later section <link
2998 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2999 Management</citetitle></link>.
3000 </para>
3001 </section>
3002
3003 <section id="pcm-interface-operators-ack">
3004 <title>ack callback</title>
3005 <para>
3006 This callback is also not mandatory. This callback is called
3007 when the appl_ptr is updated in read or write operations.
3008 Some drivers like emu10k1-fx and cs46xx need to track the
3009 current appl_ptr for the internal buffer, and this callback
3010 is useful only for such a purpose.
3011 </para>
3012 <para>
3013 This callback is atomic.
3014 </para>
3015 </section>
3016
3017 <section id="pcm-interface-operators-page-callback">
3018 <title>page callback</title>
3019
3020 <para>
3021 This callback is also not mandatory. This callback is used
3022 mainly for the non-contiguous buffer. The mmap calls this
3023 callback to get the page address. Some examples will be
3024 explained in the later section <link
3025 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3026 Management</citetitle></link>, too.
3027 </para>
3028 </section>
3029 </section>
3030
3031 <section id="pcm-interface-interrupt-handler">
3032 <title>Interrupt Handler</title>
3033 <para>
3034 The rest of pcm stuff is the PCM interrupt handler. The
3035 role of PCM interrupt handler in the sound driver is to update
3036 the buffer position and to tell the PCM middle layer when the
3037 buffer position goes across the prescribed period size. To
3038 inform this, call <function>snd_pcm_period_elapsed()</function>
3039 function.
3040 </para>
3041
3042 <para>
3043 There are several types of sound chips to generate the interrupts.
3044 </para>
3045
3046 <section id="pcm-interface-interrupt-handler-boundary">
3047 <title>Interrupts at the period (fragment) boundary</title>
3048 <para>
3049 This is the most frequently found type: the hardware
3050 generates an interrupt at each period boundary.
3051 In this case, you can call
3052 <function>snd_pcm_period_elapsed()</function> at each
3053 interrupt.
3054 </para>
3055
3056 <para>
3057 <function>snd_pcm_period_elapsed()</function> takes the
3058 substream pointer as its argument. Thus, you need to keep the
3059 substream pointer accessible from the chip instance. For
3060 example, define substream field in the chip record to hold the
3061 current running substream pointer, and set the pointer value
3062 at open callback (and reset at close callback).
3063 </para>
3064
3065 <para>
Adrian Bunk04187262006-06-30 18:23:04 +02003066 If you acquire a spinlock in the interrupt handler, and the
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067 lock is used in other pcm callbacks, too, then you have to
3068 release the lock before calling
3069 <function>snd_pcm_period_elapsed()</function>, because
3070 <function>snd_pcm_period_elapsed()</function> calls other pcm
3071 callbacks inside.
3072 </para>
3073
3074 <para>
3075 A typical coding would be like:
3076
3077 <example>
3078 <title>Interrupt Handler Case #1</title>
3079 <programlisting>
3080<![CDATA[
Takashi Iwaiad4d1de2007-01-16 17:46:35 +01003081 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003082 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003083 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003084 spin_lock(&chip->lock);
3085 ....
3086 if (pcm_irq_invoked(chip)) {
3087 /* call updater, unlock before it */
3088 spin_unlock(&chip->lock);
3089 snd_pcm_period_elapsed(chip->substream);
3090 spin_lock(&chip->lock);
Takashi Iwai95a5b082007-07-26 16:50:09 +02003091 /* acknowledge the interrupt if necessary */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003092 }
3093 ....
3094 spin_unlock(&chip->lock);
3095 return IRQ_HANDLED;
3096 }
3097]]>
3098 </programlisting>
3099 </example>
3100 </para>
3101 </section>
3102
3103 <section id="pcm-interface-interrupt-handler-timer">
3104 <title>High-frequent timer interrupts</title>
3105 <para>
3106 This is the case when the hardware doesn't generate interrupts
3107 at the period boundary but do timer-interrupts at the fixed
3108 timer rate (e.g. es1968 or ymfpci drivers).
3109 In this case, you need to check the current hardware
3110 position and accumulates the processed sample length at each
3111 interrupt. When the accumulated size overcomes the period
3112 size, call
3113 <function>snd_pcm_period_elapsed()</function> and reset the
3114 accumulator.
3115 </para>
3116
3117 <para>
3118 A typical coding would be like the following.
3119
3120 <example>
3121 <title>Interrupt Handler Case #2</title>
3122 <programlisting>
3123<![CDATA[
Takashi Iwaiad4d1de2007-01-16 17:46:35 +01003124 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003125 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003126 struct mychip *chip = dev_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003127 spin_lock(&chip->lock);
3128 ....
3129 if (pcm_irq_invoked(chip)) {
3130 unsigned int last_ptr, size;
3131 /* get the current hardware pointer (in frames) */
3132 last_ptr = get_hw_ptr(chip);
3133 /* calculate the processed frames since the
3134 * last update
3135 */
3136 if (last_ptr < chip->last_ptr)
3137 size = runtime->buffer_size + last_ptr
3138 - chip->last_ptr;
3139 else
3140 size = last_ptr - chip->last_ptr;
3141 /* remember the last updated point */
3142 chip->last_ptr = last_ptr;
3143 /* accumulate the size */
3144 chip->size += size;
3145 /* over the period boundary? */
3146 if (chip->size >= runtime->period_size) {
3147 /* reset the accumulator */
3148 chip->size %= runtime->period_size;
3149 /* call updater */
3150 spin_unlock(&chip->lock);
3151 snd_pcm_period_elapsed(substream);
3152 spin_lock(&chip->lock);
3153 }
Takashi Iwai95a5b082007-07-26 16:50:09 +02003154 /* acknowledge the interrupt if necessary */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155 }
3156 ....
3157 spin_unlock(&chip->lock);
3158 return IRQ_HANDLED;
3159 }
3160]]>
3161 </programlisting>
3162 </example>
3163 </para>
3164 </section>
3165
3166 <section id="pcm-interface-interrupt-handler-both">
3167 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3168 <para>
3169 In both cases, even if more than one period are elapsed, you
3170 don't have to call
3171 <function>snd_pcm_period_elapsed()</function> many times. Call
3172 only once. And the pcm layer will check the current hardware
3173 pointer and update to the latest status.
3174 </para>
3175 </section>
3176 </section>
3177
3178 <section id="pcm-interface-atomicity">
3179 <title>Atomicity</title>
3180 <para>
3181 One of the most important (and thus difficult to debug) problem
3182 on the kernel programming is the race condition.
3183 On linux kernel, usually it's solved via spin-locks or
3184 semaphores. In general, if the race condition may
3185 happen in the interrupt handler, it's handled as atomic, and you
3186 have to use spinlock for protecting the critical session. If it
3187 never happens in the interrupt and it may take relatively long
3188 time, you should use semaphore.
3189 </para>
3190
3191 <para>
3192 As already seen, some pcm callbacks are atomic and some are
3193 not. For example, <parameter>hw_params</parameter> callback is
3194 non-atomic, while <parameter>trigger</parameter> callback is
3195 atomic. This means, the latter is called already in a spinlock
3196 held by the PCM middle layer. Please take this atomicity into
3197 account when you use a spinlock or a semaphore in the callbacks.
3198 </para>
3199
3200 <para>
3201 In the atomic callbacks, you cannot use functions which may call
3202 <function>schedule</function> or go to
3203 <function>sleep</function>. The semaphore and mutex do sleep,
3204 and hence they cannot be used inside the atomic callbacks
3205 (e.g. <parameter>trigger</parameter> callback).
3206 For taking a certain delay in such a callback, please use
3207 <function>udelay()</function> or <function>mdelay()</function>.
3208 </para>
3209
3210 <para>
3211 All three atomic callbacks (trigger, pointer, and ack) are
3212 called with local interrupts disabled.
3213 </para>
3214
3215 </section>
3216 <section id="pcm-interface-constraints">
3217 <title>Constraints</title>
3218 <para>
3219 If your chip supports unconventional sample rates, or only the
3220 limited samples, you need to set a constraint for the
3221 condition.
3222 </para>
3223
3224 <para>
3225 For example, in order to restrict the sample rates in the some
3226 supported values, use
3227 <function>snd_pcm_hw_constraint_list()</function>.
3228 You need to call this function in the open callback.
3229
3230 <example>
3231 <title>Example of Hardware Constraints</title>
3232 <programlisting>
3233<![CDATA[
3234 static unsigned int rates[] =
3235 {4000, 10000, 22050, 44100};
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003236 static struct snd_pcm_hw_constraint_list constraints_rates = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003237 .count = ARRAY_SIZE(rates),
3238 .list = rates,
3239 .mask = 0,
3240 };
3241
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003242 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 {
3244 int err;
3245 ....
3246 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3247 SNDRV_PCM_HW_PARAM_RATE,
3248 &constraints_rates);
3249 if (err < 0)
3250 return err;
3251 ....
3252 }
3253]]>
3254 </programlisting>
3255 </example>
3256 </para>
3257
3258 <para>
3259 There are many different constraints.
3260 Look in <filename>sound/pcm.h</filename> for a complete list.
3261 You can even define your own constraint rules.
3262 For example, let's suppose my_chip can manage a substream of 1 channel
3263 if and only if the format is S16_LE, otherwise it supports any format
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01003264 specified in the <structname>snd_pcm_hardware</structname> structure (or in any
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265 other constraint_list). You can build a rule like this:
3266
3267 <example>
3268 <title>Example of Hardware Constraints for Channels</title>
3269 <programlisting>
3270<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003271 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3272 struct snd_pcm_hw_rule *rule)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003273 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003274 struct snd_interval *c = hw_param_interval(params,
3275 SNDRV_PCM_HW_PARAM_CHANNELS);
3276 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3277 struct snd_mask fmt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003278
3279 snd_mask_any(&fmt); /* Init the struct */
3280 if (c->min < 2) {
3281 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3282 return snd_mask_refine(f, &fmt);
3283 }
3284 return 0;
3285 }
3286]]>
3287 </programlisting>
3288 </example>
3289 </para>
3290
3291 <para>
3292 Then you need to call this function to add your rule:
3293
3294 <informalexample>
3295 <programlisting>
3296<![CDATA[
3297 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3298 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3299 -1);
3300]]>
3301 </programlisting>
3302 </informalexample>
3303 </para>
3304
3305 <para>
3306 The rule function is called when an application sets the number of
3307 channels. But an application can set the format before the number of
3308 channels. Thus you also need to define the inverse rule:
3309
3310 <example>
3311 <title>Example of Hardware Constraints for Channels</title>
3312 <programlisting>
3313<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003314 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3315 struct snd_pcm_hw_rule *rule)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003317 struct snd_interval *c = hw_param_interval(params,
3318 SNDRV_PCM_HW_PARAM_CHANNELS);
3319 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3320 struct snd_interval ch;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003321
3322 snd_interval_any(&ch);
3323 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3324 ch.min = ch.max = 1;
3325 ch.integer = 1;
3326 return snd_interval_refine(c, &ch);
3327 }
3328 return 0;
3329 }
3330]]>
3331 </programlisting>
3332 </example>
3333 </para>
3334
3335 <para>
3336 ...and in the open callback:
3337 <informalexample>
3338 <programlisting>
3339<![CDATA[
3340 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3341 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3342 -1);
3343]]>
3344 </programlisting>
3345 </informalexample>
3346 </para>
3347
3348 <para>
3349 I won't explain more details here, rather I
3350 would like to say, <quote>Luke, use the source.</quote>
3351 </para>
3352 </section>
3353
3354 </chapter>
3355
3356
3357<!-- ****************************************************** -->
3358<!-- Control Interface -->
3359<!-- ****************************************************** -->
3360 <chapter id="control-interface">
3361 <title>Control Interface</title>
3362
3363 <section id="control-interface-general">
3364 <title>General</title>
3365 <para>
3366 The control interface is used widely for many switches,
3367 sliders, etc. which are accessed from the user-space. Its most
3368 important use is the mixer interface. In other words, on ALSA
3369 0.9.x, all the mixer stuff is implemented on the control kernel
3370 API (while there was an independent mixer kernel API on 0.5.x).
3371 </para>
3372
3373 <para>
3374 ALSA has a well-defined AC97 control module. If your chip
3375 supports only the AC97 and nothing else, you can skip this
3376 section.
3377 </para>
3378
3379 <para>
3380 The control API is defined in
3381 <filename>&lt;sound/control.h&gt;</filename>.
3382 Include this file if you add your own controls.
3383 </para>
3384 </section>
3385
3386 <section id="control-interface-definition">
3387 <title>Definition of Controls</title>
3388 <para>
3389 For creating a new control, you need to define the three
3390 callbacks: <structfield>info</structfield>,
3391 <structfield>get</structfield> and
3392 <structfield>put</structfield>. Then, define a
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003393 struct <structname>snd_kcontrol_new</structname> record, such as:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003394
3395 <example>
3396 <title>Definition of a Control</title>
3397 <programlisting>
3398<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003399 static struct snd_kcontrol_new my_control __devinitdata = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003400 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3401 .name = "PCM Playback Switch",
3402 .index = 0,
3403 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
Takashi Iwai0b7bed42006-03-02 15:35:55 +01003404 .private_value = 0xffff,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405 .info = my_control_info,
3406 .get = my_control_get,
3407 .put = my_control_put
3408 };
3409]]>
3410 </programlisting>
3411 </example>
3412 </para>
3413
3414 <para>
3415 Most likely the control is created via
3416 <function>snd_ctl_new1()</function>, and in such a case, you can
3417 add <parameter>__devinitdata</parameter> prefix to the
3418 definition like above.
3419 </para>
3420
3421 <para>
3422 The <structfield>iface</structfield> field specifies the type of
Clemens Ladisch67ed4162005-07-29 15:32:58 +02003423 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3424 is usually <constant>MIXER</constant>.
3425 Use <constant>CARD</constant> for global controls that are not
3426 logically part of the mixer.
3427 If the control is closely associated with some specific device on
3428 the sound card, use <constant>HWDEP</constant>,
3429 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3430 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3431 specify the device number with the
3432 <structfield>device</structfield> and
3433 <structfield>subdevice</structfield> fields.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003434 </para>
3435
3436 <para>
3437 The <structfield>name</structfield> is the name identifier
3438 string. On ALSA 0.9.x, the control name is very important,
3439 because its role is classified from its name. There are
3440 pre-defined standard control names. The details are described in
3441 the subsection
3442 <link linkend="control-interface-control-names"><citetitle>
3443 Control Names</citetitle></link>.
3444 </para>
3445
3446 <para>
3447 The <structfield>index</structfield> field holds the index number
3448 of this control. If there are several different controls with
3449 the same name, they can be distinguished by the index
3450 number. This is the case when
3451 several codecs exist on the card. If the index is zero, you can
3452 omit the definition above.
3453 </para>
3454
3455 <para>
3456 The <structfield>access</structfield> field contains the access
3457 type of this control. Give the combination of bit masks,
3458 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3459 The detailed will be explained in the subsection
3460 <link linkend="control-interface-access-flags"><citetitle>
3461 Access Flags</citetitle></link>.
3462 </para>
3463
3464 <para>
Takashi Iwai0b7bed42006-03-02 15:35:55 +01003465 The <structfield>private_value</structfield> field contains
Linus Torvalds1da177e2005-04-16 15:20:36 -07003466 an arbitrary long integer value for this record. When using
3467 generic <structfield>info</structfield>,
3468 <structfield>get</structfield> and
3469 <structfield>put</structfield> callbacks, you can pass a value
3470 through this field. If several small numbers are necessary, you can
3471 combine them in bitwise. Or, it's possible to give a pointer
3472 (casted to unsigned long) of some record to this field, too.
3473 </para>
3474
3475 <para>
Clemens Ladischd1761d12007-09-10 08:05:19 +02003476 The <structfield>tlv</structfield> field can be used to provide
3477 metadata about the control; see the
3478 <link linkend="control-interface-tlv">
3479 <citetitle>Metadata</citetitle></link> subsection.
3480 </para>
3481
3482 <para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483 The other three are
3484 <link linkend="control-interface-callbacks"><citetitle>
3485 callback functions</citetitle></link>.
3486 </para>
3487 </section>
3488
3489 <section id="control-interface-control-names">
3490 <title>Control Names</title>
3491 <para>
3492 There are some standards for defining the control names. A
3493 control is usually defined from the three parts as
3494 <quote>SOURCE DIRECTION FUNCTION</quote>.
3495 </para>
3496
3497 <para>
3498 The first, <constant>SOURCE</constant>, specifies the source
3499 of the control, and is a string such as <quote>Master</quote>,
3500 <quote>PCM</quote>, <quote>CD</quote> or
3501 <quote>Line</quote>. There are many pre-defined sources.
3502 </para>
3503
3504 <para>
3505 The second, <constant>DIRECTION</constant>, is one of the
3506 following strings according to the direction of the control:
3507 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3508 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3509 be omitted, meaning both playback and capture directions.
3510 </para>
3511
3512 <para>
3513 The third, <constant>FUNCTION</constant>, is one of the
3514 following strings according to the function of the control:
3515 <quote>Switch</quote>, <quote>Volume</quote> and
3516 <quote>Route</quote>.
3517 </para>
3518
3519 <para>
3520 The example of control names are, thus, <quote>Master Capture
3521 Switch</quote> or <quote>PCM Playback Volume</quote>.
3522 </para>
3523
3524 <para>
3525 There are some exceptions:
3526 </para>
3527
3528 <section id="control-interface-control-names-global">
3529 <title>Global capture and playback</title>
3530 <para>
3531 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3532 and <quote>Capture Volume</quote> are used for the global
3533 capture (input) source, switch and volume. Similarly,
3534 <quote>Playback Switch</quote> and <quote>Playback
3535 Volume</quote> are used for the global output gain switch and
3536 volume.
3537 </para>
3538 </section>
3539
3540 <section id="control-interface-control-names-tone">
3541 <title>Tone-controls</title>
3542 <para>
3543 tone-control switch and volumes are specified like
3544 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3545 Switch</quote>, <quote>Tone Control - Bass</quote>,
3546 <quote>Tone Control - Center</quote>.
3547 </para>
3548 </section>
3549
3550 <section id="control-interface-control-names-3d">
3551 <title>3D controls</title>
3552 <para>
3553 3D-control switches and volumes are specified like <quote>3D
3554 Control - XXX</quote>, e.g. <quote>3D Control -
3555 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3556 Control - Space</quote>.
3557 </para>
3558 </section>
3559
3560 <section id="control-interface-control-names-mic">
3561 <title>Mic boost</title>
3562 <para>
3563 Mic-boost switch is set as <quote>Mic Boost</quote> or
3564 <quote>Mic Boost (6dB)</quote>.
3565 </para>
3566
3567 <para>
3568 More precise information can be found in
3569 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3570 </para>
3571 </section>
3572 </section>
3573
3574 <section id="control-interface-access-flags">
3575 <title>Access Flags</title>
3576
3577 <para>
3578 The access flag is the bit-flags which specifies the access type
3579 of the given control. The default access type is
3580 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3581 which means both read and write are allowed to this control.
3582 When the access flag is omitted (i.e. = 0), it is
3583 regarded as <constant>READWRITE</constant> access as default.
3584 </para>
3585
3586 <para>
3587 When the control is read-only, pass
3588 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3589 In this case, you don't have to define
3590 <structfield>put</structfield> callback.
3591 Similarly, when the control is write-only (although it's a rare
3592 case), you can use <constant>WRITE</constant> flag instead, and
3593 you don't need <structfield>get</structfield> callback.
3594 </para>
3595
3596 <para>
3597 If the control value changes frequently (e.g. the VU meter),
3598 <constant>VOLATILE</constant> flag should be given. This means
3599 that the control may be changed without
3600 <link linkend="control-interface-change-notification"><citetitle>
3601 notification</citetitle></link>. Applications should poll such
3602 a control constantly.
3603 </para>
3604
3605 <para>
3606 When the control is inactive, set
3607 <constant>INACTIVE</constant> flag, too.
3608 There are <constant>LOCK</constant> and
3609 <constant>OWNER</constant> flags for changing the write
3610 permissions.
3611 </para>
3612
3613 </section>
3614
3615 <section id="control-interface-callbacks">
3616 <title>Callbacks</title>
3617
3618 <section id="control-interface-callbacks-info">
3619 <title>info callback</title>
3620 <para>
3621 The <structfield>info</structfield> callback is used to get
3622 the detailed information of this control. This must store the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003623 values of the given struct <structname>snd_ctl_elem_info</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624 object. For example, for a boolean control with a single
3625 element will be:
3626
3627 <example>
3628 <title>Example of info callback</title>
3629 <programlisting>
3630<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +02003631 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003632 struct snd_ctl_elem_info *uinfo)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003633 {
3634 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3635 uinfo->count = 1;
3636 uinfo->value.integer.min = 0;
3637 uinfo->value.integer.max = 1;
3638 return 0;
3639 }
3640]]>
3641 </programlisting>
3642 </example>
3643 </para>
3644
3645 <para>
3646 The <structfield>type</structfield> field specifies the type
3647 of the control. There are <constant>BOOLEAN</constant>,
3648 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3649 <constant>BYTES</constant>, <constant>IEC958</constant> and
3650 <constant>INTEGER64</constant>. The
3651 <structfield>count</structfield> field specifies the
3652 number of elements in this control. For example, a stereo
3653 volume would have count = 2. The
3654 <structfield>value</structfield> field is a union, and
3655 the values stored are depending on the type. The boolean and
3656 integer are identical.
3657 </para>
3658
3659 <para>
3660 The enumerated type is a bit different from others. You'll
3661 need to set the string for the currently given item index.
3662
3663 <informalexample>
3664 <programlisting>
3665<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +02003666 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003667 struct snd_ctl_elem_info *uinfo)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 {
3669 static char *texts[4] = {
3670 "First", "Second", "Third", "Fourth"
3671 };
3672 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3673 uinfo->count = 1;
3674 uinfo->value.enumerated.items = 4;
3675 if (uinfo->value.enumerated.item > 3)
3676 uinfo->value.enumerated.item = 3;
3677 strcpy(uinfo->value.enumerated.name,
3678 texts[uinfo->value.enumerated.item]);
3679 return 0;
3680 }
3681]]>
3682 </programlisting>
3683 </informalexample>
3684 </para>
Takashi Iwai95a5b082007-07-26 16:50:09 +02003685
3686 <para>
3687 Some common info callbacks are prepared for easy use:
3688 <function>snd_ctl_boolean_mono_info()</function> and
3689 <function>snd_ctl_boolean_stereo_info()</function>.
3690 Obviously, the former is an info callback for a mono channel
3691 boolean item, just like <function>snd_myctl_mono_info</function>
3692 above, and the latter is for a stereo channel boolean item.
3693 </para>
3694
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695 </section>
3696
3697 <section id="control-interface-callbacks-get">
3698 <title>get callback</title>
3699
3700 <para>
3701 This callback is used to read the current value of the
3702 control and to return to the user-space.
3703 </para>
3704
3705 <para>
3706 For example,
3707
3708 <example>
3709 <title>Example of get callback</title>
3710 <programlisting>
3711<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003712 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3713 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003715 struct mychip *chip = snd_kcontrol_chip(kcontrol);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716 ucontrol->value.integer.value[0] = get_some_value(chip);
3717 return 0;
3718 }
3719]]>
3720 </programlisting>
3721 </example>
3722 </para>
3723
3724 <para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003725 The <structfield>value</structfield> field is depending on
3726 the type of control as well as on info callback. For example,
3727 the sb driver uses this field to store the register offset,
3728 the bit-shift and the bit-mask. The
3729 <structfield>private_value</structfield> is set like
3730 <informalexample>
3731 <programlisting>
3732<![CDATA[
3733 .private_value = reg | (shift << 16) | (mask << 24)
3734]]>
3735 </programlisting>
3736 </informalexample>
3737 and is retrieved in callbacks like
3738 <informalexample>
3739 <programlisting>
3740<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003741 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3742 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743 {
3744 int reg = kcontrol->private_value & 0xff;
3745 int shift = (kcontrol->private_value >> 16) & 0xff;
3746 int mask = (kcontrol->private_value >> 24) & 0xff;
3747 ....
3748 }
3749]]>
3750 </programlisting>
3751 </informalexample>
3752 </para>
3753
3754 <para>
3755 In <structfield>get</structfield> callback, you have to fill all the elements if the
3756 control has more than one elements,
3757 i.e. <structfield>count</structfield> &gt; 1.
3758 In the example above, we filled only one element
3759 (<structfield>value.integer.value[0]</structfield>) since it's
3760 assumed as <structfield>count</structfield> = 1.
3761 </para>
3762 </section>
3763
3764 <section id="control-interface-callbacks-put">
3765 <title>put callback</title>
3766
3767 <para>
3768 This callback is used to write a value from the user-space.
3769 </para>
3770
3771 <para>
3772 For example,
3773
3774 <example>
3775 <title>Example of put callback</title>
3776 <programlisting>
3777<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003778 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3779 struct snd_ctl_elem_value *ucontrol)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003780 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003781 struct mychip *chip = snd_kcontrol_chip(kcontrol);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003782 int changed = 0;
3783 if (chip->current_value !=
3784 ucontrol->value.integer.value[0]) {
3785 change_current_value(chip,
3786 ucontrol->value.integer.value[0]);
3787 changed = 1;
3788 }
3789 return changed;
3790 }
3791]]>
3792 </programlisting>
3793 </example>
3794
3795 As seen above, you have to return 1 if the value is
3796 changed. If the value is not changed, return 0 instead.
3797 If any fatal error happens, return a negative error code as
3798 usual.
3799 </para>
3800
3801 <para>
3802 Like <structfield>get</structfield> callback,
3803 when the control has more than one elements,
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01003804 all elements must be evaluated in this callback, too.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805 </para>
3806 </section>
3807
3808 <section id="control-interface-callbacks-all">
3809 <title>Callbacks are not atomic</title>
3810 <para>
3811 All these three callbacks are basically not atomic.
3812 </para>
3813 </section>
3814 </section>
3815
3816 <section id="control-interface-constructor">
3817 <title>Constructor</title>
3818 <para>
3819 When everything is ready, finally we can create a new
3820 control. For creating a control, there are two functions to be
3821 called, <function>snd_ctl_new1()</function> and
3822 <function>snd_ctl_add()</function>.
3823 </para>
3824
3825 <para>
3826 In the simplest way, you can do like this:
3827
3828 <informalexample>
3829 <programlisting>
3830<![CDATA[
Takashi Iwai95a5b082007-07-26 16:50:09 +02003831 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3832 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833 return err;
3834]]>
3835 </programlisting>
3836 </informalexample>
3837
3838 where <parameter>my_control</parameter> is the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003839 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840 is the object pointer to be passed to
3841 kcontrol-&gt;private_data
3842 which can be referred in callbacks.
3843 </para>
3844
3845 <para>
3846 <function>snd_ctl_new1()</function> allocates a new
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003847 <structname>snd_kcontrol</structname> instance (that's why the definition
Linus Torvalds1da177e2005-04-16 15:20:36 -07003848 of <parameter>my_control</parameter> can be with
3849 <parameter>__devinitdata</parameter>
3850 prefix), and <function>snd_ctl_add</function> assigns the given
3851 control component to the card.
3852 </para>
3853 </section>
3854
3855 <section id="control-interface-change-notification">
3856 <title>Change Notification</title>
3857 <para>
3858 If you need to change and update a control in the interrupt
3859 routine, you can call <function>snd_ctl_notify()</function>. For
3860 example,
3861
3862 <informalexample>
3863 <programlisting>
3864<![CDATA[
3865 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3866]]>
3867 </programlisting>
3868 </informalexample>
3869
3870 This function takes the card pointer, the event-mask, and the
3871 control id pointer for the notification. The event-mask
3872 specifies the types of notification, for example, in the above
3873 example, the change of control values is notified.
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003874 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875 to be notified.
3876 You can find some examples in <filename>es1938.c</filename> or
3877 <filename>es1968.c</filename> for hardware volume interrupts.
3878 </para>
3879 </section>
3880
Clemens Ladischd1761d12007-09-10 08:05:19 +02003881 <section id="control-interface-tlv">
3882 <title>Metadata</title>
3883 <para>
3884 To provide information about the dB values of a mixer control, use
3885 on of the <constant>DECLARE_TLV_xxx</constant> macros from
3886 <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
3887 containing this information, set the<structfield>tlv.p
3888 </structfield> field to point to this variable, and include the
3889 <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
3890 <structfield>access</structfield> field; like this:
3891 <informalexample>
3892 <programlisting>
3893<![CDATA[
3894 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
3895
3896 static struct snd_kcontrol_new my_control __devinitdata = {
3897 ...
3898 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3899 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3900 ...
3901 .tlv.p = db_scale_my_control,
3902 };
3903]]>
3904 </programlisting>
3905 </informalexample>
3906 </para>
3907
3908 <para>
3909 The <function>DECLARE_TLV_DB_SCALE</function> macro defines
3910 information about a mixer control where each step in the control's
3911 value changes the dB value by a constant dB amount.
3912 The first parameter is the name of the variable to be defined.
3913 The second parameter is the minimum value, in units of 0.01 dB.
3914 The third parameter is the step size, in units of 0.01 dB.
3915 Set the fourth parameter to 1 if the minimum value actually mutes
3916 the control.
3917 </para>
3918
3919 <para>
3920 The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
3921 information about a mixer control where the control's value affects
3922 the output linearly.
3923 The first parameter is the name of the variable to be defined.
3924 The second parameter is the minimum value, in units of 0.01 dB.
3925 The third parameter is the maximum value, in units of 0.01 dB.
3926 If the minimum value mutes the control, set the second parameter to
3927 <constant>TLV_DB_GAIN_MUTE</constant>.
3928 </para>
3929 </section>
3930
Linus Torvalds1da177e2005-04-16 15:20:36 -07003931 </chapter>
3932
3933
3934<!-- ****************************************************** -->
3935<!-- API for AC97 Codec -->
3936<!-- ****************************************************** -->
3937 <chapter id="api-ac97">
3938 <title>API for AC97 Codec</title>
3939
3940 <section>
3941 <title>General</title>
3942 <para>
3943 The ALSA AC97 codec layer is a well-defined one, and you don't
3944 have to write many codes to control it. Only low-level control
3945 routines are necessary. The AC97 codec API is defined in
3946 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3947 </para>
3948 </section>
3949
3950 <section id="api-ac97-example">
3951 <title>Full Code Example</title>
3952 <para>
3953 <example>
3954 <title>Example of AC97 Interface</title>
3955 <programlisting>
3956<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003957 struct mychip {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958 ....
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003959 struct snd_ac97 *ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003960 ....
3961 };
3962
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003963 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003964 unsigned short reg)
3965 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003966 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003967 ....
Takashi Iwai95a5b082007-07-26 16:50:09 +02003968 /* read a register value here from the codec */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969 return the_register_value;
3970 }
3971
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003972 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003973 unsigned short reg, unsigned short val)
3974 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003975 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976 ....
Takashi Iwai95a5b082007-07-26 16:50:09 +02003977 /* write the given register value to the codec */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003978 }
3979
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003980 static int snd_mychip_ac97(struct mychip *chip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003981 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003982 struct snd_ac97_bus *bus;
3983 struct snd_ac97_template ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984 int err;
Takashi Iwai446ab5f2005-11-17 15:12:54 +01003985 static struct snd_ac97_bus_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 .write = snd_mychip_ac97_write,
3987 .read = snd_mychip_ac97_read,
3988 };
3989
Takashi Iwai95a5b082007-07-26 16:50:09 +02003990 err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
3991 if (err < 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003992 return err;
3993 memset(&ac97, 0, sizeof(ac97));
3994 ac97.private_data = chip;
3995 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3996 }
3997
3998]]>
3999 </programlisting>
4000 </example>
4001 </para>
4002 </section>
4003
4004 <section id="api-ac97-constructor">
4005 <title>Constructor</title>
4006 <para>
4007 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
4008 with an <type>ac97_bus_ops_t</type> record with callback functions.
4009
4010 <informalexample>
4011 <programlisting>
4012<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004013 struct snd_ac97_bus *bus;
4014 static struct snd_ac97_bus_ops ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015 .write = snd_mychip_ac97_write,
4016 .read = snd_mychip_ac97_read,
4017 };
4018
4019 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
4020]]>
4021 </programlisting>
4022 </informalexample>
4023
4024 The bus record is shared among all belonging ac97 instances.
4025 </para>
4026
4027 <para>
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004028 And then call <function>snd_ac97_mixer()</function> with an
4029 struct <structname>snd_ac97_template</structname>
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030 record together with the bus pointer created above.
4031
4032 <informalexample>
4033 <programlisting>
4034<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004035 struct snd_ac97_template ac97;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036 int err;
4037
4038 memset(&ac97, 0, sizeof(ac97));
4039 ac97.private_data = chip;
4040 snd_ac97_mixer(bus, &ac97, &chip->ac97);
4041]]>
4042 </programlisting>
4043 </informalexample>
4044
4045 where chip-&gt;ac97 is the pointer of a newly created
4046 <type>ac97_t</type> instance.
4047 In this case, the chip pointer is set as the private data, so that
4048 the read/write callback functions can refer to this chip instance.
4049 This instance is not necessarily stored in the chip
4050 record. When you need to change the register values from the
4051 driver, or need the suspend/resume of ac97 codecs, keep this
4052 pointer to pass to the corresponding functions.
4053 </para>
4054 </section>
4055
4056 <section id="api-ac97-callbacks">
4057 <title>Callbacks</title>
4058 <para>
4059 The standard callbacks are <structfield>read</structfield> and
4060 <structfield>write</structfield>. Obviously they
4061 correspond to the functions for read and write accesses to the
4062 hardware low-level codes.
4063 </para>
4064
4065 <para>
4066 The <structfield>read</structfield> callback returns the
4067 register value specified in the argument.
4068
4069 <informalexample>
4070 <programlisting>
4071<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004072 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004073 unsigned short reg)
4074 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004075 struct mychip *chip = ac97->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004076 ....
4077 return the_register_value;
4078 }
4079]]>
4080 </programlisting>
4081 </informalexample>
4082
4083 Here, the chip can be cast from ac97-&gt;private_data.
4084 </para>
4085
4086 <para>
4087 Meanwhile, the <structfield>write</structfield> callback is
4088 used to set the register value.
4089
4090 <informalexample>
4091 <programlisting>
4092<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004093 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004094 unsigned short reg, unsigned short val)
4095]]>
4096 </programlisting>
4097 </informalexample>
4098 </para>
4099
4100 <para>
4101 These callbacks are non-atomic like the callbacks of control API.
4102 </para>
4103
4104 <para>
4105 There are also other callbacks:
4106 <structfield>reset</structfield>,
4107 <structfield>wait</structfield> and
4108 <structfield>init</structfield>.
4109 </para>
4110
4111 <para>
4112 The <structfield>reset</structfield> callback is used to reset
4113 the codec. If the chip requires a special way of reset, you can
4114 define this callback.
4115 </para>
4116
4117 <para>
4118 The <structfield>wait</structfield> callback is used for a
4119 certain wait at the standard initialization of the codec. If the
4120 chip requires the extra wait-time, define this callback.
4121 </para>
4122
4123 <para>
4124 The <structfield>init</structfield> callback is used for
4125 additional initialization of the codec.
4126 </para>
4127 </section>
4128
4129 <section id="api-ac97-updating-registers">
4130 <title>Updating Registers in The Driver</title>
4131 <para>
4132 If you need to access to the codec from the driver, you can
4133 call the following functions:
4134 <function>snd_ac97_write()</function>,
4135 <function>snd_ac97_read()</function>,
4136 <function>snd_ac97_update()</function> and
4137 <function>snd_ac97_update_bits()</function>.
4138 </para>
4139
4140 <para>
4141 Both <function>snd_ac97_write()</function> and
4142 <function>snd_ac97_update()</function> functions are used to
4143 set a value to the given register
4144 (<constant>AC97_XXX</constant>). The difference between them is
4145 that <function>snd_ac97_update()</function> doesn't write a
4146 value if the given value has been already set, while
4147 <function>snd_ac97_write()</function> always rewrites the
4148 value.
4149
4150 <informalexample>
4151 <programlisting>
4152<![CDATA[
4153 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4154 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4155]]>
4156 </programlisting>
4157 </informalexample>
4158 </para>
4159
4160 <para>
4161 <function>snd_ac97_read()</function> is used to read the value
4162 of the given register. For example,
4163
4164 <informalexample>
4165 <programlisting>
4166<![CDATA[
4167 value = snd_ac97_read(ac97, AC97_MASTER);
4168]]>
4169 </programlisting>
4170 </informalexample>
4171 </para>
4172
4173 <para>
4174 <function>snd_ac97_update_bits()</function> is used to update
4175 some bits of the given register.
4176
4177 <informalexample>
4178 <programlisting>
4179<![CDATA[
4180 snd_ac97_update_bits(ac97, reg, mask, value);
4181]]>
4182 </programlisting>
4183 </informalexample>
4184 </para>
4185
4186 <para>
4187 Also, there is a function to change the sample rate (of a
4188 certain register such as
4189 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4190 DRA is supported by the codec:
4191 <function>snd_ac97_set_rate()</function>.
4192
4193 <informalexample>
4194 <programlisting>
4195<![CDATA[
4196 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4197]]>
4198 </programlisting>
4199 </informalexample>
4200 </para>
4201
4202 <para>
4203 The following registers are available for setting the rate:
4204 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4205 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4206 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4207 <constant>AC97_SPDIF</constant>. When the
4208 <constant>AC97_SPDIF</constant> is specified, the register is
4209 not really changed but the corresponding IEC958 status bits will
4210 be updated.
4211 </para>
4212 </section>
4213
4214 <section id="api-ac97-clock-adjustment">
4215 <title>Clock Adjustment</title>
4216 <para>
4217 On some chip, the clock of the codec isn't 48000 but using a
4218 PCI clock (to save a quartz!). In this case, change the field
4219 bus-&gt;clock to the corresponding
4220 value. For example, intel8x0
4221 and es1968 drivers have the auto-measurement function of the
4222 clock.
4223 </para>
4224 </section>
4225
4226 <section id="api-ac97-proc-files">
4227 <title>Proc Files</title>
4228 <para>
4229 The ALSA AC97 interface will create a proc file such as
4230 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4231 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4232 see the current status and registers of the codec.
4233 </para>
4234 </section>
4235
4236 <section id="api-ac97-multiple-codecs">
4237 <title>Multiple Codecs</title>
4238 <para>
4239 When there are several codecs on the same card, you need to
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004240 call <function>snd_ac97_mixer()</function> multiple times with
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241 ac97.num=1 or greater. The <structfield>num</structfield> field
4242 specifies the codec
4243 number.
4244 </para>
4245
4246 <para>
4247 If you have set up multiple codecs, you need to either write
4248 different callbacks for each codec or check
4249 ac97-&gt;num in the
4250 callback routines.
4251 </para>
4252 </section>
4253
4254 </chapter>
4255
4256
4257<!-- ****************************************************** -->
4258<!-- MIDI (MPU401-UART) Interface -->
4259<!-- ****************************************************** -->
4260 <chapter id="midi-interface">
4261 <title>MIDI (MPU401-UART) Interface</title>
4262
4263 <section id="midi-interface-general">
4264 <title>General</title>
4265 <para>
4266 Many soundcards have built-in MIDI (MPU401-UART)
4267 interfaces. When the soundcard supports the standard MPU401-UART
4268 interface, most likely you can use the ALSA MPU401-UART API. The
4269 MPU401-UART API is defined in
4270 <filename>&lt;sound/mpu401.h&gt;</filename>.
4271 </para>
4272
4273 <para>
4274 Some soundchips have similar but a little bit different
4275 implementation of mpu401 stuff. For example, emu10k1 has its own
4276 mpu401 routines.
4277 </para>
4278 </section>
4279
4280 <section id="midi-interface-constructor">
4281 <title>Constructor</title>
4282 <para>
4283 For creating a rawmidi object, call
4284 <function>snd_mpu401_uart_new()</function>.
4285
4286 <informalexample>
4287 <programlisting>
4288<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004289 struct snd_rawmidi *rmidi;
Takashi Iwai302e4c22006-05-23 13:24:30 +02004290 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004291 irq, irq_flags, &rmidi);
4292]]>
4293 </programlisting>
4294 </informalexample>
4295 </para>
4296
4297 <para>
4298 The first argument is the card pointer, and the second is the
4299 index of this component. You can create up to 8 rawmidi
4300 devices.
4301 </para>
4302
4303 <para>
4304 The third argument is the type of the hardware,
4305 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4306 you can use <constant>MPU401_HW_MPU401</constant>.
4307 </para>
4308
4309 <para>
4310 The 4th argument is the i/o port address. Many
4311 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4312 might be a part of its own PCI i/o region. It depends on the
4313 chip design.
4314 </para>
4315
4316 <para>
Takashi Iwai302e4c22006-05-23 13:24:30 +02004317 The 5th argument is bitflags for additional information.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 When the i/o port address above is a part of the PCI i/o
4319 region, the MPU401 i/o port might have been already allocated
Takashi Iwai302e4c22006-05-23 13:24:30 +02004320 (reserved) by the driver itself. In such a case, pass a bit flag
4321 <constant>MPU401_INFO_INTEGRATED</constant>,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004322 and
4323 the mpu401-uart layer will allocate the i/o ports by itself.
4324 </para>
4325
Takashi Iwai302e4c22006-05-23 13:24:30 +02004326 <para>
4327 When the controller supports only the input or output MIDI stream,
4328 pass <constant>MPU401_INFO_INPUT</constant> or
4329 <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4330 Then the rawmidi instance is created as a single stream.
4331 </para>
4332
4333 <para>
4334 <constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4335 the access method to MMIO (via readb and writeb) instead of
4336 iob and outb. In this case, you have to pass the iomapped address
4337 to <function>snd_mpu401_uart_new()</function>.
4338 </para>
4339
4340 <para>
4341 When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4342 stream isn't checked in the default interrupt handler. The driver
4343 needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4344 by itself to start processing the output stream in irq handler.
4345 </para>
4346
Linus Torvalds1da177e2005-04-16 15:20:36 -07004347 <para>
4348 Usually, the port address corresponds to the command port and
4349 port + 1 corresponds to the data port. If not, you may change
4350 the <structfield>cport</structfield> field of
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004351 struct <structname>snd_mpu401</structname> manually
4352 afterward. However, <structname>snd_mpu401</structname> pointer is not
Linus Torvalds1da177e2005-04-16 15:20:36 -07004353 returned explicitly by
4354 <function>snd_mpu401_uart_new()</function>. You need to cast
4355 rmidi-&gt;private_data to
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004356 <structname>snd_mpu401</structname> explicitly,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357
4358 <informalexample>
4359 <programlisting>
4360<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004361 struct snd_mpu401 *mpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362 mpu = rmidi->private_data;
4363]]>
4364 </programlisting>
4365 </informalexample>
4366
4367 and reset the cport as you like:
4368
4369 <informalexample>
4370 <programlisting>
4371<![CDATA[
4372 mpu->cport = my_own_control_port;
4373]]>
4374 </programlisting>
4375 </informalexample>
4376 </para>
4377
4378 <para>
4379 The 6th argument specifies the irq number for UART. If the irq
4380 is already allocated, pass 0 to the 7th argument
4381 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4382 for irq allocation
4383 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4384 reserved by the mpu401-uart layer. If the card doesn't generates
4385 UART interrupts, pass -1 as the irq number. Then a timer
4386 interrupt will be invoked for polling.
4387 </para>
4388 </section>
4389
4390 <section id="midi-interface-interrupt-handler">
4391 <title>Interrupt Handler</title>
4392 <para>
4393 When the interrupt is allocated in
4394 <function>snd_mpu401_uart_new()</function>, the private
4395 interrupt handler is used, hence you don't have to do nothing
4396 else than creating the mpu401 stuff. Otherwise, you have to call
4397 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4398 a UART interrupt is invoked and checked in your own interrupt
4399 handler.
4400 </para>
4401
4402 <para>
4403 In this case, you need to pass the private_data of the
4404 returned rawmidi object from
4405 <function>snd_mpu401_uart_new()</function> as the second
4406 argument of <function>snd_mpu401_uart_interrupt()</function>.
4407
4408 <informalexample>
4409 <programlisting>
4410<![CDATA[
4411 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4412]]>
4413 </programlisting>
4414 </informalexample>
4415 </para>
4416 </section>
4417
4418 </chapter>
4419
4420
4421<!-- ****************************************************** -->
4422<!-- RawMIDI Interface -->
4423<!-- ****************************************************** -->
4424 <chapter id="rawmidi-interface">
4425 <title>RawMIDI Interface</title>
4426
4427 <section id="rawmidi-interface-overview">
4428 <title>Overview</title>
4429
4430 <para>
4431 The raw MIDI interface is used for hardware MIDI ports that can
4432 be accessed as a byte stream. It is not used for synthesizer
4433 chips that do not directly understand MIDI.
4434 </para>
4435
4436 <para>
4437 ALSA handles file and buffer management. All you have to do is
4438 to write some code to move data between the buffer and the
4439 hardware.
4440 </para>
4441
4442 <para>
4443 The rawmidi API is defined in
4444 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4445 </para>
4446 </section>
4447
4448 <section id="rawmidi-interface-constructor">
4449 <title>Constructor</title>
4450
4451 <para>
4452 To create a rawmidi device, call the
4453 <function>snd_rawmidi_new</function> function:
4454 <informalexample>
4455 <programlisting>
4456<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004457 struct snd_rawmidi *rmidi;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004458 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4459 if (err < 0)
4460 return err;
4461 rmidi->private_data = chip;
4462 strcpy(rmidi->name, "My MIDI");
4463 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4464 SNDRV_RAWMIDI_INFO_INPUT |
4465 SNDRV_RAWMIDI_INFO_DUPLEX;
4466]]>
4467 </programlisting>
4468 </informalexample>
4469 </para>
4470
4471 <para>
4472 The first argument is the card pointer, the second argument is
4473 the ID string.
4474 </para>
4475
4476 <para>
4477 The third argument is the index of this component. You can
4478 create up to 8 rawmidi devices.
4479 </para>
4480
4481 <para>
4482 The fourth and fifth arguments are the number of output and
4483 input substreams, respectively, of this device. (A substream is
4484 the equivalent of a MIDI port.)
4485 </para>
4486
4487 <para>
4488 Set the <structfield>info_flags</structfield> field to specify
4489 the capabilities of the device.
4490 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4491 at least one output port,
4492 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4493 least one input port,
4494 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4495 can handle output and input at the same time.
4496 </para>
4497
4498 <para>
4499 After the rawmidi device is created, you need to set the
4500 operators (callbacks) for each substream. There are helper
4501 functions to set the operators for all substream of a device:
4502 <informalexample>
4503 <programlisting>
4504<![CDATA[
4505 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4506 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4507]]>
4508 </programlisting>
4509 </informalexample>
4510 </para>
4511
4512 <para>
4513 The operators are usually defined like this:
4514 <informalexample>
4515 <programlisting>
4516<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004517 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004518 .open = snd_mymidi_output_open,
4519 .close = snd_mymidi_output_close,
4520 .trigger = snd_mymidi_output_trigger,
4521 };
4522]]>
4523 </programlisting>
4524 </informalexample>
4525 These callbacks are explained in the <link
4526 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4527 section.
4528 </para>
4529
4530 <para>
4531 If there is more than one substream, you should give each one a
4532 unique name:
4533 <informalexample>
4534 <programlisting>
4535<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004536 struct snd_rawmidi_substream *substream;
Takashi Iwai95a5b082007-07-26 16:50:09 +02004537 list_for_each_entry(substream,
4538 &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4539 list {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004540 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4541 }
4542 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4543]]>
4544 </programlisting>
4545 </informalexample>
4546 </para>
4547 </section>
4548
4549 <section id="rawmidi-interface-callbacks">
4550 <title>Callbacks</title>
4551
4552 <para>
4553 In all callbacks, the private data that you've set for the
4554 rawmidi device can be accessed as
4555 substream-&gt;rmidi-&gt;private_data.
4556 <!-- <code> isn't available before DocBook 4.3 -->
4557 </para>
4558
4559 <para>
4560 If there is more than one port, your callbacks can determine the
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004561 port index from the struct snd_rawmidi_substream data passed to each
Linus Torvalds1da177e2005-04-16 15:20:36 -07004562 callback:
4563 <informalexample>
4564 <programlisting>
4565<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004566 struct snd_rawmidi_substream *substream;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004567 int index = substream->number;
4568]]>
4569 </programlisting>
4570 </informalexample>
4571 </para>
4572
4573 <section id="rawmidi-interface-op-open">
4574 <title><function>open</function> callback</title>
4575
4576 <informalexample>
4577 <programlisting>
4578<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004579 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004580]]>
4581 </programlisting>
4582 </informalexample>
4583
4584 <para>
4585 This is called when a substream is opened.
4586 You can initialize the hardware here, but you should not yet
4587 start transmitting/receiving data.
4588 </para>
4589 </section>
4590
4591 <section id="rawmidi-interface-op-close">
4592 <title><function>close</function> callback</title>
4593
4594 <informalexample>
4595 <programlisting>
4596<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004597 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004598]]>
4599 </programlisting>
4600 </informalexample>
4601
4602 <para>
4603 Guess what.
4604 </para>
4605
4606 <para>
4607 The <function>open</function> and <function>close</function>
4608 callbacks of a rawmidi device are serialized with a mutex,
4609 and can sleep.
4610 </para>
4611 </section>
4612
4613 <section id="rawmidi-interface-op-trigger-out">
4614 <title><function>trigger</function> callback for output
4615 substreams</title>
4616
4617 <informalexample>
4618 <programlisting>
4619<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004620 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004621]]>
4622 </programlisting>
4623 </informalexample>
4624
4625 <para>
4626 This is called with a nonzero <parameter>up</parameter>
4627 parameter when there is some data in the substream buffer that
4628 must be transmitted.
4629 </para>
4630
4631 <para>
4632 To read data from the buffer, call
4633 <function>snd_rawmidi_transmit_peek</function>. It will
4634 return the number of bytes that have been read; this will be
4635 less than the number of bytes requested when there is no more
4636 data in the buffer.
4637 After the data has been transmitted successfully, call
4638 <function>snd_rawmidi_transmit_ack</function> to remove the
4639 data from the substream buffer:
4640 <informalexample>
4641 <programlisting>
4642<![CDATA[
4643 unsigned char data;
4644 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004645 if (snd_mychip_try_to_transmit(data))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004646 snd_rawmidi_transmit_ack(substream, 1);
4647 else
4648 break; /* hardware FIFO full */
4649 }
4650]]>
4651 </programlisting>
4652 </informalexample>
4653 </para>
4654
4655 <para>
4656 If you know beforehand that the hardware will accept data, you
4657 can use the <function>snd_rawmidi_transmit</function> function
4658 which reads some data and removes it from the buffer at once:
4659 <informalexample>
4660 <programlisting>
4661<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004662 while (snd_mychip_transmit_possible()) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004663 unsigned char data;
4664 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4665 break; /* no more data */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004666 snd_mychip_transmit(data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004667 }
4668]]>
4669 </programlisting>
4670 </informalexample>
4671 </para>
4672
4673 <para>
4674 If you know beforehand how many bytes you can accept, you can
4675 use a buffer size greater than one with the
4676 <function>snd_rawmidi_transmit*</function> functions.
4677 </para>
4678
4679 <para>
4680 The <function>trigger</function> callback must not sleep. If
4681 the hardware FIFO is full before the substream buffer has been
4682 emptied, you have to continue transmitting data later, either
4683 in an interrupt handler, or with a timer if the hardware
4684 doesn't have a MIDI transmit interrupt.
4685 </para>
4686
4687 <para>
4688 The <function>trigger</function> callback is called with a
4689 zero <parameter>up</parameter> parameter when the transmission
4690 of data should be aborted.
4691 </para>
4692 </section>
4693
4694 <section id="rawmidi-interface-op-trigger-in">
4695 <title><function>trigger</function> callback for input
4696 substreams</title>
4697
4698 <informalexample>
4699 <programlisting>
4700<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004701 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004702]]>
4703 </programlisting>
4704 </informalexample>
4705
4706 <para>
4707 This is called with a nonzero <parameter>up</parameter>
4708 parameter to enable receiving data, or with a zero
4709 <parameter>up</parameter> parameter do disable receiving data.
4710 </para>
4711
4712 <para>
4713 The <function>trigger</function> callback must not sleep; the
4714 actual reading of data from the device is usually done in an
4715 interrupt handler.
4716 </para>
4717
4718 <para>
4719 When data reception is enabled, your interrupt handler should
4720 call <function>snd_rawmidi_receive</function> for all received
4721 data:
4722 <informalexample>
4723 <programlisting>
4724<![CDATA[
4725 void snd_mychip_midi_interrupt(...)
4726 {
4727 while (mychip_midi_available()) {
4728 unsigned char data;
4729 data = mychip_midi_read();
4730 snd_rawmidi_receive(substream, &data, 1);
4731 }
4732 }
4733]]>
4734 </programlisting>
4735 </informalexample>
4736 </para>
4737 </section>
4738
4739 <section id="rawmidi-interface-op-drain">
4740 <title><function>drain</function> callback</title>
4741
4742 <informalexample>
4743 <programlisting>
4744<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004745 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004746]]>
4747 </programlisting>
4748 </informalexample>
4749
4750 <para>
4751 This is only used with output substreams. This function should wait
4752 until all data read from the substream buffer has been transmitted.
4753 This ensures that the device can be closed and the driver unloaded
4754 without losing data.
4755 </para>
4756
4757 <para>
4758 This callback is optional. If you do not set
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004759 <structfield>drain</structfield> in the struct snd_rawmidi_ops
Linus Torvalds1da177e2005-04-16 15:20:36 -07004760 structure, ALSA will simply wait for 50&nbsp;milliseconds
4761 instead.
4762 </para>
4763 </section>
4764 </section>
4765
4766 </chapter>
4767
4768
4769<!-- ****************************************************** -->
4770<!-- Miscellaneous Devices -->
4771<!-- ****************************************************** -->
4772 <chapter id="misc-devices">
4773 <title>Miscellaneous Devices</title>
4774
4775 <section id="misc-devices-opl3">
4776 <title>FM OPL3</title>
4777 <para>
4778 The FM OPL3 is still used on many chips (mainly for backward
4779 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4780 OPL3 API is defined in
4781 <filename>&lt;sound/opl3.h&gt;</filename>.
4782 </para>
4783
4784 <para>
4785 FM registers can be directly accessed through direct-FM API,
4786 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4787 ALSA native mode, FM registers are accessed through
4788 Hardware-Dependant Device direct-FM extension API, whereas in
4789 OSS compatible mode, FM registers can be accessed with OSS
4790 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4791 </para>
4792
4793 <para>
4794 For creating the OPL3 component, you have two functions to
4795 call. The first one is a constructor for <type>opl3_t</type>
4796 instance.
4797
4798 <informalexample>
4799 <programlisting>
4800<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004801 struct snd_opl3 *opl3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4803 integrated, &opl3);
4804]]>
4805 </programlisting>
4806 </informalexample>
4807 </para>
4808
4809 <para>
4810 The first argument is the card pointer, the second one is the
4811 left port address, and the third is the right port address. In
4812 most cases, the right port is placed at the left port + 2.
4813 </para>
4814
4815 <para>
4816 The fourth argument is the hardware type.
4817 </para>
4818
4819 <para>
4820 When the left and right ports have been already allocated by
4821 the card driver, pass non-zero to the fifth argument
4822 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4823 allocate the specified ports by itself.
4824 </para>
4825
4826 <para>
4827 When the accessing to the hardware requires special method
4828 instead of the standard I/O access, you can create opl3 instance
4829 separately with <function>snd_opl3_new()</function>.
4830
4831 <informalexample>
4832 <programlisting>
4833<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004834 struct snd_opl3 *opl3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004835 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4836]]>
4837 </programlisting>
4838 </informalexample>
4839 </para>
4840
4841 <para>
4842 Then set <structfield>command</structfield>,
4843 <structfield>private_data</structfield> and
4844 <structfield>private_free</structfield> for the private
4845 access function, the private data and the destructor.
4846 The l_port and r_port are not necessarily set. Only the
4847 command must be set properly. You can retrieve the data
4848 from opl3-&gt;private_data field.
4849 </para>
4850
4851 <para>
4852 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4853 call <function>snd_opl3_init()</function> to initialize the chip to the
4854 proper state. Note that <function>snd_opl3_create()</function> always
4855 calls it internally.
4856 </para>
4857
4858 <para>
4859 If the opl3 instance is created successfully, then create a
4860 hwdep device for this opl3.
4861
4862 <informalexample>
4863 <programlisting>
4864<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004865 struct snd_hwdep *opl3hwdep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004866 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4867]]>
4868 </programlisting>
4869 </informalexample>
4870 </para>
4871
4872 <para>
4873 The first argument is the <type>opl3_t</type> instance you
4874 created, and the second is the index number, usually 0.
4875 </para>
4876
4877 <para>
4878 The third argument is the index-offset for the sequencer
4879 client assigned to the OPL3 port. When there is an MPU401-UART,
4880 give 1 for here (UART always takes 0).
4881 </para>
4882 </section>
4883
4884 <section id="misc-devices-hardware-dependent">
4885 <title>Hardware-Dependent Devices</title>
4886 <para>
4887 Some chips need the access from the user-space for special
4888 controls or for loading the micro code. In such a case, you can
4889 create a hwdep (hardware-dependent) device. The hwdep API is
4890 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4891 find examples in opl3 driver or
4892 <filename>isa/sb/sb16_csp.c</filename>.
4893 </para>
4894
4895 <para>
4896 Creation of the <type>hwdep</type> instance is done via
4897 <function>snd_hwdep_new()</function>.
4898
4899 <informalexample>
4900 <programlisting>
4901<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004902 struct snd_hwdep *hw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004903 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4904]]>
4905 </programlisting>
4906 </informalexample>
4907
4908 where the third argument is the index number.
4909 </para>
4910
4911 <para>
4912 You can then pass any pointer value to the
4913 <parameter>private_data</parameter>.
4914 If you assign a private data, you should define the
4915 destructor, too. The destructor function is set to
4916 <structfield>private_free</structfield> field.
4917
4918 <informalexample>
4919 <programlisting>
4920<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004921 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004922 hw->private_data = p;
4923 hw->private_free = mydata_free;
4924]]>
4925 </programlisting>
4926 </informalexample>
4927
4928 and the implementation of destructor would be:
4929
4930 <informalexample>
4931 <programlisting>
4932<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004933 static void mydata_free(struct snd_hwdep *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004934 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01004935 struct mydata *p = hw->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936 kfree(p);
4937 }
4938]]>
4939 </programlisting>
4940 </informalexample>
4941 </para>
4942
4943 <para>
4944 The arbitrary file operations can be defined for this
4945 instance. The file operators are defined in
4946 <parameter>ops</parameter> table. For example, assume that
4947 this chip needs an ioctl.
4948
4949 <informalexample>
4950 <programlisting>
4951<![CDATA[
4952 hw->ops.open = mydata_open;
4953 hw->ops.ioctl = mydata_ioctl;
4954 hw->ops.release = mydata_release;
4955]]>
4956 </programlisting>
4957 </informalexample>
4958
4959 And implement the callback functions as you like.
4960 </para>
4961 </section>
4962
4963 <section id="misc-devices-IEC958">
4964 <title>IEC958 (S/PDIF)</title>
4965 <para>
4966 Usually the controls for IEC958 devices are implemented via
4967 control interface. There is a macro to compose a name string for
4968 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4969 defined in <filename>&lt;include/asound.h&gt;</filename>.
4970 </para>
4971
4972 <para>
4973 There are some standard controls for IEC958 status bits. These
4974 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4975 and the size of element is fixed as 4 bytes array
4976 (value.iec958.status[x]). For <structfield>info</structfield>
4977 callback, you don't specify
4978 the value field for this type (the count field must be set,
4979 though).
4980 </para>
4981
4982 <para>
4983 <quote>IEC958 Playback Con Mask</quote> is used to return the
4984 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4985 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4986 professional mode. They are read-only controls, and are defined
4987 as MIXER controls (iface =
4988 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4989 </para>
4990
4991 <para>
4992 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4993 defined for getting and setting the current default IEC958
4994 bits. Note that this one is usually defined as a PCM control
4995 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4996 although in some places it's defined as a MIXER control.
4997 </para>
4998
4999 <para>
5000 In addition, you can define the control switches to
5001 enable/disable or to set the raw bit mode. The implementation
5002 will depend on the chip, but the control should be named as
5003 <quote>IEC958 xxx</quote>, preferably using
5004 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
5005 </para>
5006
5007 <para>
5008 You can find several cases, for example,
5009 <filename>pci/emu10k1</filename>,
5010 <filename>pci/ice1712</filename>, or
5011 <filename>pci/cmipci.c</filename>.
5012 </para>
5013 </section>
5014
5015 </chapter>
5016
5017
5018<!-- ****************************************************** -->
5019<!-- Buffer and Memory Management -->
5020<!-- ****************************************************** -->
5021 <chapter id="buffer-and-memory">
5022 <title>Buffer and Memory Management</title>
5023
5024 <section id="buffer-and-memory-buffer-types">
5025 <title>Buffer Types</title>
5026 <para>
5027 ALSA provides several different buffer allocation functions
5028 depending on the bus and the architecture. All these have a
5029 consistent API. The allocation of physically-contiguous pages is
5030 done via
5031 <function>snd_malloc_xxx_pages()</function> function, where xxx
5032 is the bus type.
5033 </para>
5034
5035 <para>
5036 The allocation of pages with fallback is
5037 <function>snd_malloc_xxx_pages_fallback()</function>. This
5038 function tries to allocate the specified pages but if the pages
5039 are not available, it tries to reduce the page sizes until the
5040 enough space is found.
5041 </para>
5042
5043 <para>
5044 For releasing the space, call
5045 <function>snd_free_xxx_pages()</function> function.
5046 </para>
5047
5048 <para>
5049 Usually, ALSA drivers try to allocate and reserve
5050 a large contiguous physical space
5051 at the time the module is loaded for the later use.
5052 This is called <quote>pre-allocation</quote>.
5053 As already written, you can call the following function at the
5054 construction of pcm instance (in the case of PCI bus).
5055
5056 <informalexample>
5057 <programlisting>
5058<![CDATA[
5059 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5060 snd_dma_pci_data(pci), size, max);
5061]]>
5062 </programlisting>
5063 </informalexample>
5064
5065 where <parameter>size</parameter> is the byte size to be
5066 pre-allocated and the <parameter>max</parameter> is the maximal
5067 size to be changed via <filename>prealloc</filename> proc file.
5068 The allocator will try to get as large area as possible
5069 within the given size.
5070 </para>
5071
5072 <para>
5073 The second argument (type) and the third argument (device pointer)
5074 are dependent on the bus.
5075 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
5076 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
5077 For the continuous buffer unrelated to the bus can be pre-allocated
5078 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
5079 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5080 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5081 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
5082 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
5083 For the PCI scatter-gather buffers, use
5084 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5085 <function>snd_dma_pci_data(pci)</function>
5086 (see the section
5087 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5088 </citetitle></link>).
5089 </para>
5090
5091 <para>
5092 Once when the buffer is pre-allocated, you can use the
5093 allocator in the <structfield>hw_params</structfield> callback
5094
5095 <informalexample>
5096 <programlisting>
5097<![CDATA[
5098 snd_pcm_lib_malloc_pages(substream, size);
5099]]>
5100 </programlisting>
5101 </informalexample>
5102
5103 Note that you have to pre-allocate to use this function.
5104 </para>
5105 </section>
5106
5107 <section id="buffer-and-memory-external-hardware">
5108 <title>External Hardware Buffers</title>
5109 <para>
5110 Some chips have their own hardware buffers and the DMA
5111 transfer from the host memory is not available. In such a case,
5112 you need to either 1) copy/set the audio data directly to the
5113 external hardware buffer, or 2) make an intermediate buffer and
5114 copy/set the data from it to the external hardware buffer in
5115 interrupts (or in tasklets, preferably).
5116 </para>
5117
5118 <para>
5119 The first case works fine if the external hardware buffer is enough
5120 large. This method doesn't need any extra buffers and thus is
5121 more effective. You need to define the
5122 <structfield>copy</structfield> and
5123 <structfield>silence</structfield> callbacks for
5124 the data transfer. However, there is a drawback: it cannot
5125 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5126 wavetable PCM.
5127 </para>
5128
5129 <para>
5130 The second case allows the mmap of the buffer, although you have
5131 to handle an interrupt or a tasklet for transferring the data
5132 from the intermediate buffer to the hardware buffer. You can find an
5133 example in vxpocket driver.
5134 </para>
5135
5136 <para>
5137 Another case is that the chip uses a PCI memory-map
5138 region for the buffer instead of the host memory. In this case,
5139 mmap is available only on certain architectures like intel. In
5140 non-mmap mode, the data cannot be transferred as the normal
5141 way. Thus you need to define <structfield>copy</structfield> and
5142 <structfield>silence</structfield> callbacks as well
5143 as in the cases above. The examples are found in
5144 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5145 </para>
5146
5147 <para>
5148 The implementation of <structfield>copy</structfield> and
5149 <structfield>silence</structfield> callbacks depends upon
5150 whether the hardware supports interleaved or non-interleaved
5151 samples. The <structfield>copy</structfield> callback is
5152 defined like below, a bit
5153 differently depending whether the direction is playback or
5154 capture:
5155
5156 <informalexample>
5157 <programlisting>
5158<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005159 static int playback_copy(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005161 static int capture_copy(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005162 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5163]]>
5164 </programlisting>
5165 </informalexample>
5166 </para>
5167
5168 <para>
5169 In the case of interleaved samples, the second argument
5170 (<parameter>channel</parameter>) is not used. The third argument
5171 (<parameter>pos</parameter>) points the
5172 current position offset in frames.
5173 </para>
5174
5175 <para>
5176 The meaning of the fourth argument is different between
5177 playback and capture. For playback, it holds the source data
5178 pointer, and for capture, it's the destination data pointer.
5179 </para>
5180
5181 <para>
5182 The last argument is the number of frames to be copied.
5183 </para>
5184
5185 <para>
5186 What you have to do in this callback is again different
5187 between playback and capture directions. In the case of
5188 playback, you do: copy the given amount of data
5189 (<parameter>count</parameter>) at the specified pointer
5190 (<parameter>src</parameter>) to the specified offset
5191 (<parameter>pos</parameter>) on the hardware buffer. When
5192 coded like memcpy-like way, the copy would be like:
5193
5194 <informalexample>
5195 <programlisting>
5196<![CDATA[
5197 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5198 frames_to_bytes(runtime, count));
5199]]>
5200 </programlisting>
5201 </informalexample>
5202 </para>
5203
5204 <para>
5205 For the capture direction, you do: copy the given amount of
5206 data (<parameter>count</parameter>) at the specified offset
5207 (<parameter>pos</parameter>) on the hardware buffer to the
5208 specified pointer (<parameter>dst</parameter>).
5209
5210 <informalexample>
5211 <programlisting>
5212<![CDATA[
5213 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5214 frames_to_bytes(runtime, count));
5215]]>
5216 </programlisting>
5217 </informalexample>
5218
5219 Note that both of the position and the data amount are given
5220 in frames.
5221 </para>
5222
5223 <para>
5224 In the case of non-interleaved samples, the implementation
5225 will be a bit more complicated.
5226 </para>
5227
5228 <para>
5229 You need to check the channel argument, and if it's -1, copy
5230 the whole channels. Otherwise, you have to copy only the
5231 specified channel. Please check
5232 <filename>isa/gus/gus_pcm.c</filename> as an example.
5233 </para>
5234
5235 <para>
5236 The <structfield>silence</structfield> callback is also
5237 implemented in a similar way.
5238
5239 <informalexample>
5240 <programlisting>
5241<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005242 static int silence(struct snd_pcm_substream *substream, int channel,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005243 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5244]]>
5245 </programlisting>
5246 </informalexample>
5247 </para>
5248
5249 <para>
5250 The meanings of arguments are identical with the
5251 <structfield>copy</structfield>
5252 callback, although there is no <parameter>src/dst</parameter>
5253 argument. In the case of interleaved samples, the channel
5254 argument has no meaning, as well as on
5255 <structfield>copy</structfield> callback.
5256 </para>
5257
5258 <para>
5259 The role of <structfield>silence</structfield> callback is to
5260 set the given amount
5261 (<parameter>count</parameter>) of silence data at the
5262 specified offset (<parameter>pos</parameter>) on the hardware
5263 buffer. Suppose that the data format is signed (that is, the
5264 silent-data is 0), and the implementation using a memset-like
5265 function would be like:
5266
5267 <informalexample>
5268 <programlisting>
5269<![CDATA[
5270 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5271 frames_to_bytes(runtime, count));
5272]]>
5273 </programlisting>
5274 </informalexample>
5275 </para>
5276
5277 <para>
5278 In the case of non-interleaved samples, again, the
5279 implementation becomes a bit more complicated. See, for example,
5280 <filename>isa/gus/gus_pcm.c</filename>.
5281 </para>
5282 </section>
5283
5284 <section id="buffer-and-memory-non-contiguous">
5285 <title>Non-Contiguous Buffers</title>
5286 <para>
5287 If your hardware supports the page table like emu10k1 or the
5288 buffer descriptors like via82xx, you can use the scatter-gather
5289 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5290 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5291 </para>
5292
5293 <para>
5294 For creating the SG-buffer handler, call
5295 <function>snd_pcm_lib_preallocate_pages()</function> or
5296 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5297 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5298 in the PCM constructor like other PCI pre-allocator.
5299 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5300 where pci is the struct <structname>pci_dev</structname> pointer
5301 of the chip as well.
Giuliano Pochini44275f12006-01-27 12:02:05 +01005302 The <type>struct snd_sg_buf</type> instance is created as
Linus Torvalds1da177e2005-04-16 15:20:36 -07005303 substream-&gt;dma_private. You can cast
5304 the pointer like:
5305
5306 <informalexample>
5307 <programlisting>
5308<![CDATA[
Giuliano Pochini44275f12006-01-27 12:02:05 +01005309 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005310]]>
5311 </programlisting>
5312 </informalexample>
5313 </para>
5314
5315 <para>
5316 Then call <function>snd_pcm_lib_malloc_pages()</function>
5317 in <structfield>hw_params</structfield> callback
5318 as well as in the case of normal PCI buffer.
5319 The SG-buffer handler will allocate the non-contiguous kernel
5320 pages of the given size and map them onto the virtually contiguous
5321 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5322 The physical address (runtime-&gt;dma_addr) is set to zero,
5323 because the buffer is physically non-contigous.
5324 The physical address table is set up in sgbuf-&gt;table.
5325 You can get the physical address at a certain offset via
5326 <function>snd_pcm_sgbuf_get_addr()</function>.
5327 </para>
5328
5329 <para>
5330 When a SG-handler is used, you need to set
5331 <function>snd_pcm_sgbuf_ops_page</function> as
5332 the <structfield>page</structfield> callback.
5333 (See <link linkend="pcm-interface-operators-page-callback">
5334 <citetitle>page callback section</citetitle></link>.)
5335 </para>
5336
5337 <para>
5338 For releasing the data, call
5339 <function>snd_pcm_lib_free_pages()</function> in the
5340 <structfield>hw_free</structfield> callback as usual.
5341 </para>
5342 </section>
5343
5344 <section id="buffer-and-memory-vmalloced">
5345 <title>Vmalloc'ed Buffers</title>
5346 <para>
5347 It's possible to use a buffer allocated via
5348 <function>vmalloc</function>, for example, for an intermediate
5349 buffer. Since the allocated pages are not contiguous, you need
5350 to set the <structfield>page</structfield> callback to obtain
5351 the physical address at every offset.
5352 </para>
5353
5354 <para>
5355 The implementation of <structfield>page</structfield> callback
5356 would be like this:
5357
5358 <informalexample>
5359 <programlisting>
5360<![CDATA[
5361 #include <linux/vmalloc.h>
5362
5363 /* get the physical page pointer on the given offset */
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005364 static struct page *mychip_page(struct snd_pcm_substream *substream,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005365 unsigned long offset)
5366 {
5367 void *pageptr = substream->runtime->dma_area + offset;
5368 return vmalloc_to_page(pageptr);
5369 }
5370]]>
5371 </programlisting>
5372 </informalexample>
5373 </para>
5374 </section>
5375
5376 </chapter>
5377
5378
5379<!-- ****************************************************** -->
5380<!-- Proc Interface -->
5381<!-- ****************************************************** -->
5382 <chapter id="proc-interface">
5383 <title>Proc Interface</title>
5384 <para>
5385 ALSA provides an easy interface for procfs. The proc files are
5386 very useful for debugging. I recommend you set up proc files if
5387 you write a driver and want to get a running status or register
5388 dumps. The API is found in
5389 <filename>&lt;sound/info.h&gt;</filename>.
5390 </para>
5391
5392 <para>
5393 For creating a proc file, call
5394 <function>snd_card_proc_new()</function>.
5395
5396 <informalexample>
5397 <programlisting>
5398<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005399 struct snd_info_entry *entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005400 int err = snd_card_proc_new(card, "my-file", &entry);
5401]]>
5402 </programlisting>
5403 </informalexample>
5404
5405 where the second argument specifies the proc-file name to be
5406 created. The above example will create a file
5407 <filename>my-file</filename> under the card directory,
5408 e.g. <filename>/proc/asound/card0/my-file</filename>.
5409 </para>
5410
5411 <para>
5412 Like other components, the proc entry created via
5413 <function>snd_card_proc_new()</function> will be registered and
5414 released automatically in the card registration and release
5415 functions.
5416 </para>
5417
5418 <para>
5419 When the creation is successful, the function stores a new
5420 instance at the pointer given in the third argument.
5421 It is initialized as a text proc file for read only. For using
5422 this proc file as a read-only text file as it is, set the read
5423 callback with a private data via
5424 <function>snd_info_set_text_ops()</function>.
5425
5426 <informalexample>
5427 <programlisting>
5428<![CDATA[
Takashi Iwaibf850202006-04-28 15:13:41 +02005429 snd_info_set_text_ops(entry, chip, my_proc_read);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005430]]>
5431 </programlisting>
5432 </informalexample>
5433
5434 where the second argument (<parameter>chip</parameter>) is the
5435 private data to be used in the callbacks. The third parameter
5436 specifies the read buffer size and the fourth
5437 (<parameter>my_proc_read</parameter>) is the callback function, which
5438 is defined like
5439
5440 <informalexample>
5441 <programlisting>
5442<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005443 static void my_proc_read(struct snd_info_entry *entry,
5444 struct snd_info_buffer *buffer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005445]]>
5446 </programlisting>
5447 </informalexample>
5448
5449 </para>
5450
5451 <para>
5452 In the read callback, use <function>snd_iprintf()</function> for
5453 output strings, which works just like normal
5454 <function>printf()</function>. For example,
5455
5456 <informalexample>
5457 <programlisting>
5458<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005459 static void my_proc_read(struct snd_info_entry *entry,
5460 struct snd_info_buffer *buffer)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005461 {
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005462 struct my_chip *chip = entry->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005463
5464 snd_iprintf(buffer, "This is my chip!\n");
5465 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5466 }
5467]]>
5468 </programlisting>
5469 </informalexample>
5470 </para>
5471
5472 <para>
5473 The file permission can be changed afterwards. As default, it's
5474 set as read only for all users. If you want to add the write
5475 permission to the user (root as default), set like below:
5476
5477 <informalexample>
5478 <programlisting>
5479<![CDATA[
5480 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5481]]>
5482 </programlisting>
5483 </informalexample>
5484
5485 and set the write buffer size and the callback
5486
5487 <informalexample>
5488 <programlisting>
5489<![CDATA[
Linus Torvalds1da177e2005-04-16 15:20:36 -07005490 entry->c.text.write = my_proc_write;
5491]]>
5492 </programlisting>
5493 </informalexample>
5494 </para>
5495
5496 <para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005497 For the write callback, you can use
5498 <function>snd_info_get_line()</function> to get a text line, and
5499 <function>snd_info_get_str()</function> to retrieve a string from
5500 the line. Some examples are found in
5501 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5502 <filename>pcm_oss.c</filename>.
5503 </para>
5504
5505 <para>
5506 For a raw-data proc-file, set the attributes like the following:
5507
5508 <informalexample>
5509 <programlisting>
5510<![CDATA[
5511 static struct snd_info_entry_ops my_file_io_ops = {
5512 .read = my_file_io_read,
5513 };
5514
5515 entry->content = SNDRV_INFO_CONTENT_DATA;
5516 entry->private_data = chip;
5517 entry->c.ops = &my_file_io_ops;
5518 entry->size = 4096;
5519 entry->mode = S_IFREG | S_IRUGO;
5520]]>
5521 </programlisting>
5522 </informalexample>
5523 </para>
5524
5525 <para>
5526 The callback is much more complicated than the text-file
5527 version. You need to use a low-level i/o functions such as
5528 <function>copy_from/to_user()</function> to transfer the
5529 data.
5530
5531 <informalexample>
5532 <programlisting>
5533<![CDATA[
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005534 static long my_file_io_read(struct snd_info_entry *entry,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005535 void *file_private_data,
5536 struct file *file,
5537 char *buf,
5538 unsigned long count,
5539 unsigned long pos)
5540 {
5541 long size = count;
5542 if (pos + size > local_max_size)
5543 size = local_max_size - pos;
5544 if (copy_to_user(buf, local_data + pos, size))
5545 return -EFAULT;
5546 return size;
5547 }
5548]]>
5549 </programlisting>
5550 </informalexample>
5551 </para>
5552
5553 </chapter>
5554
5555
5556<!-- ****************************************************** -->
5557<!-- Power Management -->
5558<!-- ****************************************************** -->
5559 <chapter id="power-management">
5560 <title>Power Management</title>
5561 <para>
Paolo Ornati670e9f32006-10-03 22:57:56 +02005562 If the chip is supposed to work with suspend/resume
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563 functions, you need to add the power-management codes to the
5564 driver. The additional codes for the power-management should be
5565 <function>ifdef</function>'ed with
5566 <constant>CONFIG_PM</constant>.
5567 </para>
5568
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005569 <para>
5570 If the driver supports the suspend/resume
5571 <emphasis>fully</emphasis>, that is, the device can be
5572 properly resumed to the status at the suspend is called,
5573 you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5574 to pcm info field. Usually, this is possible when the
5575 registers of ths chip can be safely saved and restored to the
5576 RAM. If this is set, the trigger callback is called with
5577 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume
5578 callback is finished.
5579 </para>
5580
5581 <para>
5582 Even if the driver doesn't support PM fully but only the
5583 partial suspend/resume is possible, it's still worthy to
5584 implement suspend/resume callbacks. In such a case, applications
5585 would reset the status by calling
5586 <function>snd_pcm_prepare()</function> and restart the stream
5587 appropriately. Hence, you can define suspend/resume callbacks
5588 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5589 info flag to the PCM.
5590 </para>
5591
5592 <para>
5593 Note that the trigger with SUSPEND can be always called when
5594 <function>snd_pcm_suspend_all</function> is called,
5595 regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5596 The <constant>RESUME</constant> flag affects only the behavior
5597 of <function>snd_pcm_resume()</function>.
5598 (Thus, in theory,
5599 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5600 to be handled in the trigger callback when no
5601 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5602 it's better to keep it for compatibility reason.)
5603 </para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005604 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005605 In the earlier version of ALSA drivers, a common
5606 power-management layer was provided, but it has been removed.
5607 The driver needs to define the suspend/resume hooks according to
5608 the bus the device is assigned. In the case of PCI driver, the
5609 callbacks look like below:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005610
5611 <informalexample>
5612 <programlisting>
5613<![CDATA[
5614 #ifdef CONFIG_PM
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005615 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005616 {
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01005617 .... /* do things for suspend */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005618 return 0;
5619 }
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005620 static int snd_my_resume(struct pci_dev *pci)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005621 {
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01005622 .... /* do things for suspend */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005623 return 0;
5624 }
5625 #endif
5626]]>
5627 </programlisting>
5628 </informalexample>
5629 </para>
5630
5631 <para>
5632 The scheme of the real suspend job is as following.
5633
5634 <orderedlist>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005635 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5636 <listitem><para>Call <function>snd_power_change_state()</function> with
5637 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5638 power status.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005639 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005640 <listitem><para>If AC97 codecs are used, call
Takashi Iwaia7306332006-05-04 11:58:43 +02005641 <function>snd_ac97_suspend()</function> for each codec.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005642 <listitem><para>Save the register values if necessary.</para></listitem>
5643 <listitem><para>Stop the hardware if necessary.</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005644 <listitem><para>Disable the PCI device by calling
5645 <function>pci_disable_device()</function>. Then, call
5646 <function>pci_save_state()</function> at last.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005647 </orderedlist>
5648 </para>
5649
5650 <para>
5651 A typical code would be like:
5652
5653 <informalexample>
5654 <programlisting>
5655<![CDATA[
Alexey Dobriyan323579882006-01-15 02:12:54 +01005656 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005657 {
5658 /* (1) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005659 struct snd_card *card = pci_get_drvdata(pci);
5660 struct mychip *chip = card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005661 /* (2) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005662 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005663 /* (3) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005664 snd_pcm_suspend_all(chip->pcm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005665 /* (4) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005666 snd_ac97_suspend(chip->ac97);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005667 /* (5) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005668 snd_mychip_save_registers(chip);
5669 /* (6) */
5670 snd_mychip_stop_hardware(chip);
5671 /* (7) */
5672 pci_disable_device(pci);
5673 pci_save_state(pci);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005674 return 0;
5675 }
5676]]>
5677 </programlisting>
5678 </informalexample>
5679 </para>
5680
5681 <para>
5682 The scheme of the real resume job is as following.
5683
5684 <orderedlist>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005685 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5686 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5687 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5688 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005689 <listitem><para>Re-initialize the chip.</para></listitem>
5690 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5691 <listitem><para>Resume the mixer, e.g. calling
5692 <function>snd_ac97_resume()</function>.</para></listitem>
5693 <listitem><para>Restart the hardware (if any).</para></listitem>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005694 <listitem><para>Call <function>snd_power_change_state()</function> with
5695 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -07005696 </orderedlist>
5697 </para>
5698
5699 <para>
5700 A typical code would be like:
5701
5702 <informalexample>
5703 <programlisting>
5704<![CDATA[
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005705 static int mychip_resume(struct pci_dev *pci)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005706 {
5707 /* (1) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005708 struct snd_card *card = pci_get_drvdata(pci);
5709 struct mychip *chip = card->private_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005710 /* (2) */
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005711 pci_restore_state(pci);
5712 pci_enable_device(pci);
5713 pci_set_master(pci);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005714 /* (3) */
5715 snd_mychip_reinit_chip(chip);
5716 /* (4) */
5717 snd_mychip_restore_registers(chip);
5718 /* (5) */
5719 snd_ac97_resume(chip->ac97);
5720 /* (6) */
5721 snd_mychip_restart_chip(chip);
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005722 /* (7) */
5723 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005724 return 0;
5725 }
5726]]>
5727 </programlisting>
5728 </informalexample>
5729 </para>
5730
5731 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005732 As shown in the above, it's better to save registers after
5733 suspending the PCM operations via
5734 <function>snd_pcm_suspend_all()</function> or
5735 <function>snd_pcm_suspend()</function>. It means that the PCM
5736 streams are already stoppped when the register snapshot is
5737 taken. But, remind that you don't have to restart the PCM
5738 stream in the resume callback. It'll be restarted via
5739 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5740 when necessary.
5741 </para>
5742
5743 <para>
5744 OK, we have all callbacks now. Let's set them up. In the
5745 initialization of the card, make sure that you can get the chip
5746 data from the card instance, typically via
5747 <structfield>private_data</structfield> field, in case you
5748 created the chip data individually.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005749
5750 <informalexample>
5751 <programlisting>
5752<![CDATA[
5753 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5754 const struct pci_device_id *pci_id)
5755 {
5756 ....
Takashi Iwai446ab5f2005-11-17 15:12:54 +01005757 struct snd_card *card;
5758 struct mychip *chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005759 ....
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005760 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
5761 ....
5762 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5763 ....
5764 card->private_data = chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005765 ....
5766 }
5767]]>
5768 </programlisting>
5769 </informalexample>
5770
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005771 When you created the chip data with
5772 <function>snd_card_new()</function>, it's anyway accessible
5773 via <structfield>private_data</structfield> field.
5774
5775 <informalexample>
5776 <programlisting>
5777<![CDATA[
5778 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5779 const struct pci_device_id *pci_id)
5780 {
5781 ....
5782 struct snd_card *card;
5783 struct mychip *chip;
5784 ....
5785 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
5786 sizeof(struct mychip));
5787 ....
5788 chip = card->private_data;
5789 ....
5790 }
5791]]>
5792 </programlisting>
5793 </informalexample>
5794
Linus Torvalds1da177e2005-04-16 15:20:36 -07005795 </para>
5796
5797 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005798 If you need a space for saving the registers, allocate the
5799 buffer for it here, too, since it would be fatal
Linus Torvalds1da177e2005-04-16 15:20:36 -07005800 if you cannot allocate a memory in the suspend phase.
5801 The allocated buffer should be released in the corresponding
5802 destructor.
5803 </para>
5804
5805 <para>
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005806 And next, set suspend/resume callbacks to the pci_driver.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005807
5808 <informalexample>
5809 <programlisting>
5810<![CDATA[
5811 static struct pci_driver driver = {
5812 .name = "My Chip",
5813 .id_table = snd_my_ids,
5814 .probe = snd_my_probe,
5815 .remove = __devexit_p(snd_my_remove),
Takashi Iwai5fe76e42005-11-17 17:26:09 +01005816 #ifdef CONFIG_PM
5817 .suspend = snd_my_suspend,
5818 .resume = snd_my_resume,
5819 #endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005820 };
5821]]>
5822 </programlisting>
5823 </informalexample>
5824 </para>
5825
5826 </chapter>
5827
5828
5829<!-- ****************************************************** -->
5830<!-- Module Parameters -->
5831<!-- ****************************************************** -->
5832 <chapter id="module-parameters">
5833 <title>Module Parameters</title>
5834 <para>
5835 There are standard module options for ALSA. At least, each
5836 module should have <parameter>index</parameter>,
5837 <parameter>id</parameter> and <parameter>enable</parameter>
5838 options.
5839 </para>
5840
5841 <para>
5842 If the module supports multiple cards (usually up to
5843 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5844 arrays. The default initial values are defined already as
5845 constants for ease of programming:
5846
5847 <informalexample>
5848 <programlisting>
5849<![CDATA[
5850 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5851 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5852 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5853]]>
5854 </programlisting>
5855 </informalexample>
5856 </para>
5857
5858 <para>
5859 If the module supports only a single card, they could be single
5860 variables, instead. <parameter>enable</parameter> option is not
5861 always necessary in this case, but it wouldn't be so bad to have a
5862 dummy option for compatibility.
5863 </para>
5864
5865 <para>
5866 The module parameters must be declared with the standard
5867 <function>module_param()()</function>,
5868 <function>module_param_array()()</function> and
5869 <function>MODULE_PARM_DESC()</function> macros.
5870 </para>
5871
5872 <para>
5873 The typical coding would be like below:
5874
5875 <informalexample>
5876 <programlisting>
5877<![CDATA[
5878 #define CARD_NAME "My Chip"
5879
5880 module_param_array(index, int, NULL, 0444);
5881 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5882 module_param_array(id, charp, NULL, 0444);
5883 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5884 module_param_array(enable, bool, NULL, 0444);
5885 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5886]]>
5887 </programlisting>
5888 </informalexample>
5889 </para>
5890
5891 <para>
5892 Also, don't forget to define the module description, classes,
5893 license and devices. Especially, the recent modprobe requires to
5894 define the module license as GPL, etc., otherwise the system is
5895 shown as <quote>tainted</quote>.
5896
5897 <informalexample>
5898 <programlisting>
5899<![CDATA[
5900 MODULE_DESCRIPTION("My Chip");
5901 MODULE_LICENSE("GPL");
5902 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5903]]>
5904 </programlisting>
5905 </informalexample>
5906 </para>
5907
5908 </chapter>
5909
5910
5911<!-- ****************************************************** -->
5912<!-- How To Put Your Driver -->
5913<!-- ****************************************************** -->
5914 <chapter id="how-to-put-your-driver">
5915 <title>How To Put Your Driver Into ALSA Tree</title>
5916 <section>
5917 <title>General</title>
5918 <para>
5919 So far, you've learned how to write the driver codes.
5920 And you might have a question now: how to put my own
5921 driver into the ALSA driver tree?
5922 Here (finally :) the standard procedure is described briefly.
5923 </para>
5924
5925 <para>
5926 Suppose that you'll create a new PCI driver for the card
5927 <quote>xyz</quote>. The card module name would be
5928 snd-xyz. The new driver is usually put into alsa-driver
5929 tree, <filename>alsa-driver/pci</filename> directory in
5930 the case of PCI cards.
5931 Then the driver is evaluated, audited and tested
5932 by developers and users. After a certain time, the driver
5933 will go to alsa-kernel tree (to the corresponding directory,
5934 such as <filename>alsa-kernel/pci</filename>) and eventually
5935 integrated into Linux 2.6 tree (the directory would be
5936 <filename>linux/sound/pci</filename>).
5937 </para>
5938
5939 <para>
5940 In the following sections, the driver code is supposed
5941 to be put into alsa-driver tree. The two cases are assumed:
5942 a driver consisting of a single source file and one consisting
5943 of several source files.
5944 </para>
5945 </section>
5946
5947 <section>
5948 <title>Driver with A Single Source File</title>
5949 <para>
5950 <orderedlist>
5951 <listitem>
5952 <para>
5953 Modify alsa-driver/pci/Makefile
5954 </para>
5955
5956 <para>
5957 Suppose you have a file xyz.c. Add the following
5958 two lines
5959 <informalexample>
5960 <programlisting>
5961<![CDATA[
5962 snd-xyz-objs := xyz.o
5963 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5964]]>
5965 </programlisting>
5966 </informalexample>
5967 </para>
5968 </listitem>
5969
5970 <listitem>
5971 <para>
5972 Create the Kconfig entry
5973 </para>
5974
5975 <para>
5976 Add the new entry of Kconfig for your xyz driver.
5977 <informalexample>
5978 <programlisting>
5979<![CDATA[
5980 config SND_XYZ
5981 tristate "Foobar XYZ"
5982 depends on SND
5983 select SND_PCM
5984 help
5985 Say Y here to include support for Foobar XYZ soundcard.
5986
5987 To compile this driver as a module, choose M here: the module
5988 will be called snd-xyz.
5989]]>
5990 </programlisting>
5991 </informalexample>
5992
5993 the line, select SND_PCM, specifies that the driver xyz supports
5994 PCM. In addition to SND_PCM, the following components are
5995 supported for select command:
5996 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5997 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5998 Add the select command for each supported component.
5999 </para>
6000
6001 <para>
6002 Note that some selections imply the lowlevel selections.
6003 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
6004 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
6005 You don't need to give the lowlevel selections again.
6006 </para>
6007
6008 <para>
6009 For the details of Kconfig script, refer to the kbuild
6010 documentation.
6011 </para>
6012
6013 </listitem>
6014
6015 <listitem>
6016 <para>
6017 Run cvscompile script to re-generate the configure script and
6018 build the whole stuff again.
6019 </para>
6020 </listitem>
6021 </orderedlist>
6022 </para>
6023 </section>
6024
6025 <section>
6026 <title>Drivers with Several Source Files</title>
6027 <para>
6028 Suppose that the driver snd-xyz have several source files.
6029 They are located in the new subdirectory,
6030 pci/xyz.
6031
6032 <orderedlist>
6033 <listitem>
6034 <para>
6035 Add a new directory (<filename>xyz</filename>) in
6036 <filename>alsa-driver/pci/Makefile</filename> like below
6037
6038 <informalexample>
6039 <programlisting>
6040<![CDATA[
6041 obj-$(CONFIG_SND) += xyz/
6042]]>
6043 </programlisting>
6044 </informalexample>
6045 </para>
6046 </listitem>
6047
6048 <listitem>
6049 <para>
6050 Under the directory <filename>xyz</filename>, create a Makefile
6051
6052 <example>
6053 <title>Sample Makefile for a driver xyz</title>
6054 <programlisting>
6055<![CDATA[
6056 ifndef SND_TOPDIR
6057 SND_TOPDIR=../..
6058 endif
6059
6060 include $(SND_TOPDIR)/toplevel.config
6061 include $(SND_TOPDIR)/Makefile.conf
6062
6063 snd-xyz-objs := xyz.o abc.o def.o
6064
6065 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6066
6067 include $(SND_TOPDIR)/Rules.make
6068]]>
6069 </programlisting>
6070 </example>
6071 </para>
6072 </listitem>
6073
6074 <listitem>
6075 <para>
6076 Create the Kconfig entry
6077 </para>
6078
6079 <para>
6080 This procedure is as same as in the last section.
6081 </para>
6082 </listitem>
6083
6084 <listitem>
6085 <para>
6086 Run cvscompile script to re-generate the configure script and
6087 build the whole stuff again.
6088 </para>
6089 </listitem>
6090 </orderedlist>
6091 </para>
6092 </section>
6093
6094 </chapter>
6095
6096<!-- ****************************************************** -->
6097<!-- Useful Functions -->
6098<!-- ****************************************************** -->
6099 <chapter id="useful-functions">
6100 <title>Useful Functions</title>
6101
6102 <section id="useful-functions-snd-printk">
6103 <title><function>snd_printk()</function> and friends</title>
6104 <para>
6105 ALSA provides a verbose version of
6106 <function>printk()</function> function. If a kernel config
6107 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6108 function prints the given message together with the file name
6109 and the line of the caller. The <constant>KERN_XXX</constant>
6110 prefix is processed as
6111 well as the original <function>printk()</function> does, so it's
6112 recommended to add this prefix, e.g.
6113
6114 <informalexample>
6115 <programlisting>
6116<![CDATA[
6117 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6118]]>
6119 </programlisting>
6120 </informalexample>
6121 </para>
6122
6123 <para>
6124 There are also <function>printk()</function>'s for
6125 debugging. <function>snd_printd()</function> can be used for
6126 general debugging purposes. If
6127 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6128 compiled, and works just like
6129 <function>snd_printk()</function>. If the ALSA is compiled
6130 without the debugging flag, it's ignored.
6131 </para>
6132
6133 <para>
6134 <function>snd_printdd()</function> is compiled in only when
6135 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
6136 that <constant>DEBUG_DETECT</constant> is not set as default
6137 even if you configure the alsa-driver with
6138 <option>--with-debug=full</option> option. You need to give
6139 explicitly <option>--with-debug=detect</option> option instead.
6140 </para>
6141 </section>
6142
6143 <section id="useful-functions-snd-assert">
6144 <title><function>snd_assert()</function></title>
6145 <para>
6146 <function>snd_assert()</function> macro is similar with the
6147 normal <function>assert()</function> macro. For example,
6148
6149 <informalexample>
6150 <programlisting>
6151<![CDATA[
6152 snd_assert(pointer != NULL, return -EINVAL);
6153]]>
6154 </programlisting>
6155 </informalexample>
6156 </para>
6157
6158 <para>
6159 The first argument is the expression to evaluate, and the
6160 second argument is the action if it fails. When
6161 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006162 error message such as <computeroutput>BUG? (xxx)</computeroutput>
6163 together with stack trace.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006164 </para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006165 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006166 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006167 </para>
6168 </section>
6169
6170 <section id="useful-functions-snd-bug">
6171 <title><function>snd_BUG()</function></title>
6172 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006173 It shows <computeroutput>BUG?</computeroutput> message and
6174 stack trace as well as <function>snd_assert</function> at the point.
6175 It's useful to show that a fatal error happens there.
6176 </para>
6177 <para>
6178 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006179 </para>
6180 </section>
6181 </chapter>
6182
6183
6184<!-- ****************************************************** -->
6185<!-- Acknowledgments -->
6186<!-- ****************************************************** -->
Nicolas Kaiser5bda9fa2007-01-22 14:54:33 +01006187 <chapter id="acknowledgments">
Linus Torvalds1da177e2005-04-16 15:20:36 -07006188 <title>Acknowledgments</title>
6189 <para>
6190 I would like to thank Phil Kerr for his help for improvement and
6191 corrections of this document.
6192 </para>
6193 <para>
6194 Kevin Conder reformatted the original plain-text to the
6195 DocBook format.
6196 </para>
6197 <para>
6198 Giuliano Pochini corrected typos and contributed the example codes
6199 in the hardware constraints section.
6200 </para>
6201 </chapter>
6202
6203
6204</book>