blob: 52c69a34d6975cb5b078083cf57a6cda9a7d5f5f [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
Ingo Molnarcdd6c482009-09-21 12:02:48 +020059int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61/*
62 * max perf event sample rate
63 */
64int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66static atomic64_t perf_event_id;
67
68/*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71static DEFINE_SPINLOCK(perf_resource_lock);
72
73/*
74 * Architecture provided APIs - weak aliases:
75 */
76extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77{
78 return NULL;
79}
80
81void __weak hw_perf_disable(void) { barrier(); }
82void __weak hw_perf_enable(void) { barrier(); }
83
Ingo Molnarcdd6c482009-09-21 12:02:48 +020084int __weak
85hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +010087 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +020088{
89 return 0;
90}
91
92void __weak perf_event_print_debug(void) { }
93
94static DEFINE_PER_CPU(int, perf_disable_count);
95
Ingo Molnarcdd6c482009-09-21 12:02:48 +020096void perf_disable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200100}
101
102void perf_enable(void)
103{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100104 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200105 hw_perf_enable();
106}
107
108static void get_ctx(struct perf_event_context *ctx)
109{
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111}
112
113static void free_ctx(struct rcu_head *head)
114{
115 struct perf_event_context *ctx;
116
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
119}
120
121static void put_ctx(struct perf_event_context *ctx)
122{
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
129 }
130}
131
132static void unclone_ctx(struct perf_event_context *ctx)
133{
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
137 }
138}
139
140/*
141 * If we inherit events we want to return the parent event id
142 * to userspace.
143 */
144static u64 primary_event_id(struct perf_event *event)
145{
146 u64 id = event->id;
147
148 if (event->parent)
149 id = event->parent->id;
150
151 return id;
152}
153
154/*
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
158 */
159static struct perf_event_context *
160perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161{
162 struct perf_event_context *ctx;
163
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
168 /*
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
177 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100178 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200181 goto retry;
182 }
183
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200186 ctx = NULL;
187 }
188 }
189 rcu_read_unlock();
190 return ctx;
191}
192
193/*
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
197 */
198static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199{
200 struct perf_event_context *ctx;
201 unsigned long flags;
202
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 }
208 return ctx;
209}
210
211static void perf_unpin_context(struct perf_event_context *ctx)
212{
213 unsigned long flags;
214
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100215 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200216 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200218 put_ctx(ctx);
219}
220
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100221static inline u64 perf_clock(void)
222{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100223 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100224}
225
226/*
227 * Update the record of the current time in a context.
228 */
229static void update_context_time(struct perf_event_context *ctx)
230{
231 u64 now = perf_clock();
232
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
235}
236
237/*
238 * Update the total_time_enabled and total_time_running fields for a event.
239 */
240static void update_event_times(struct perf_event *event)
241{
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
244
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
248
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
253
254 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100255
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
260
261 event->total_time_running = run_end - event->tstamp_running;
262}
263
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100264static struct list_head *
265ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266{
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
271}
272
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200273/*
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277static void
278list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279{
280 struct perf_event *group_leader = event->group_leader;
281
282 /*
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
286 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100287 if (group_leader == event) {
288 struct list_head *list;
289
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
292
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308}
309
310/*
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
313 */
314static void
315list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316{
317 struct perf_event *sibling, *tmp;
318
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
324
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
330
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100331 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100342
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100349 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200350
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100354
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200357 }
358}
359
360static void
361event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
364{
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
367
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
376
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
382}
383
384static void
385group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
388{
389 struct perf_event *event;
390
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
393
394 event_sched_out(group_event, cpuctx, ctx);
395
396 /*
397 * Schedule out siblings (if any):
398 */
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
401
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
404}
405
406/*
407 * Cross CPU call to remove a performance event
408 *
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
411 */
412static void __perf_event_remove_from_context(void *info)
413{
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
417
418 /*
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
422 */
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
425
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100426 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200427 /*
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
430 */
431 perf_disable();
432
433 event_sched_out(event, cpuctx, ctx);
434
435 list_del_event(event, ctx);
436
437 if (!ctx->task) {
438 /*
439 * Allow more per task events with respect to the
440 * reservation:
441 */
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
445 }
446
447 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100448 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200449}
450
451
452/*
453 * Remove the event from a task's (or a CPU's) list of events.
454 *
455 * Must be called with ctx->mutex held.
456 *
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
459 *
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
466 */
467static void perf_event_remove_from_context(struct perf_event *event)
468{
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
471
472 if (!task) {
473 /*
474 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200475 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200476 */
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
481 }
482
483retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
486
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100487 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200488 /*
489 * If the context is active we need to retry the smp call.
490 */
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100492 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200493 goto retry;
494 }
495
496 /*
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
500 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100501 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200502 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100503 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504}
505
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506/*
507 * Update total_time_enabled and total_time_running for all events in a group.
508 */
509static void update_group_times(struct perf_event *leader)
510{
511 struct perf_event *event;
512
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
516}
517
518/*
519 * Cross CPU call to disable a performance event
520 */
521static void __perf_event_disable(void *info)
522{
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
526
527 /*
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
530 */
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
533
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100534 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200535
536 /*
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
539 */
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
548 }
549
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100550 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200551}
552
553/*
554 * Disable a event.
555 *
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
565 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100566void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200567{
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
570
571 if (!task) {
572 /*
573 * Disable the event on the cpu that it's on
574 */
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
578 }
579
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
582
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100583 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200584 /*
585 * If the event is still active, we need to retry the cross-call.
586 */
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100588 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200589 goto retry;
590 }
591
592 /*
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
595 */
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100601 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200602}
603
604static int
605event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100607 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200608{
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
611
612 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100613 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200614 /*
615 * The new state must be visible before we turn it on in the hardware:
616 */
617 smp_wmb();
618
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
623 }
624
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
630
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
633
634 return 0;
635}
636
637static int
638group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100640 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200641{
642 struct perf_event *event, *partial_group;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Peter Zijlstra6e377382010-02-11 13:21:58 +0100648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200649 if (ret)
650 return ret < 0 ? ret : 0;
651
Peter Zijlstra6e377382010-02-11 13:21:58 +0100652 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200653 return -EAGAIN;
654
655 /*
656 * Schedule in siblings as one group (if any):
657 */
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100659 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200660 partial_group = event;
661 goto group_error;
662 }
663 }
664
665 return 0;
666
667group_error:
668 /*
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
676 }
677 event_sched_out(group_event, cpuctx, ctx);
678
679 return -EAGAIN;
680}
681
682/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200683 * Work out whether we can put this event group on the CPU now.
684 */
685static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
688{
689 /*
690 * Groups consisting entirely of software events can always go on.
691 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100692 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200693 return 1;
694 /*
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
697 */
698 if (cpuctx->exclusive)
699 return 0;
700 /*
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
703 */
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
706 /*
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
709 */
710 return can_add_hw;
711}
712
713static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
715{
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
720}
721
722/*
723 * Cross CPU call to install and enable a performance event
724 *
725 * Must be called with ctx->mutex held
726 */
727static void __perf_install_in_context(void *info)
728{
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100748 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
755 */
756 perf_disable();
757
758 add_event_to_ctx(event, ctx);
759
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
762
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200763 /*
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
766 */
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
770
771 /*
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
775 */
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100779 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780
781 if (err) {
782 /*
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
786 */
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
792 }
793 }
794
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
797
798 unlock:
799 perf_enable();
800
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100801 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200802}
803
804/*
805 * Attach a performance event to a context
806 *
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
809 *
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
813 *
814 * Must be called with ctx->mutex held.
815 */
816static void
817perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
820{
821 struct task_struct *task = ctx->task;
822
823 if (!task) {
824 /*
825 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200826 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200827 */
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
831 }
832
833retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
836
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100837 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200838 /*
839 * we need to retry the smp call.
840 */
841 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100842 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200843 goto retry;
844 }
845
846 /*
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
850 */
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100853 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200854}
855
856/*
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
863 */
864static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
866{
867 struct perf_event *sub;
868
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
875}
876
877/*
878 * Cross CPU call to enable a performance event
879 */
880static void __perf_event_enable(void *info)
881{
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
887
888 /*
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
891 */
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
896 }
897
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100898 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200899 ctx->is_active = 1;
900 update_context_time(ctx);
901
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
905
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
908
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100921 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100923 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200924 perf_enable();
925 }
926
927 if (err) {
928 /*
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
931 */
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
937 }
938 }
939
940 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100941 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200942}
943
944/*
945 * Enable a event.
946 *
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
952 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100953void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200954{
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
957
958 if (!task) {
959 /*
960 * Enable the event on the cpu that it's on
961 */
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
965 }
966
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100967 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
970
971 /*
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
977 */
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
980
981 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100982 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200983 task_oncpu_function_call(task, __perf_event_enable, event);
984
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100985 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200986
987 /*
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
990 */
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
993
994 /*
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
997 */
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1000
1001 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001002 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001003}
1004
1005static int perf_event_refresh(struct perf_event *event, int refresh)
1006{
1007 /*
1008 * not supported on inherited events
1009 */
1010 if (event->attr.inherit)
1011 return -EINVAL;
1012
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1015
1016 return 0;
1017}
1018
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001019enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023};
1024
1025static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001028{
1029 struct perf_event *event;
1030
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001031 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001038 if (!ctx->nr_active)
1039 goto out_enable;
1040
1041 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1044
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001045 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001047 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001048
1049 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001050 perf_enable();
1051 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001052 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001053}
1054
1055/*
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1065 */
1066static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1068{
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1072}
1073
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001074static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1076{
1077 u64 value;
1078
1079 if (!event->attr.inherit_stat)
1080 return;
1081
1082 /*
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1088 */
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001091 event->pmu->read(event);
1092 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001093
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 /*
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1105 */
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1109
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1112
1113 /*
1114 * Since we swizzled the values, update the user visible data too.
1115 */
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1118}
1119
1120#define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1122
1123static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1125{
1126 struct perf_event *event, *next_event;
1127
1128 if (!ctx->nr_stat)
1129 return;
1130
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001131 update_context_time(ctx);
1132
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1138
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1141
1142 __perf_event_sync_stat(event, next_event);
1143
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1146 }
1147}
1148
1149/*
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1152 *
1153 * We stop each event and update the event value in event->count.
1154 *
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1159 */
1160void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001161 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001162{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 struct pt_regs *regs;
1168 int do_switch = 1;
1169
1170 regs = task_pt_regs(task);
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172
1173 if (likely(!ctx || !cpuctx->task_ctx))
1174 return;
1175
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001176 rcu_read_lock();
1177 parent = rcu_dereference(ctx->parent_ctx);
1178 next_ctx = next->perf_event_ctxp;
1179 if (parent && next_ctx &&
1180 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 /*
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1189 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001190 raw_spin_lock(&ctx->lock);
1191 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001192 if (context_equiv(ctx, next_ctx)) {
1193 /*
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1196 */
1197 task->perf_event_ctxp = next_ctx;
1198 next->perf_event_ctxp = ctx;
1199 ctx->task = next;
1200 next_ctx->task = task;
1201 do_switch = 0;
1202
1203 perf_event_sync_stat(ctx, next_ctx);
1204 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001205 raw_spin_unlock(&next_ctx->lock);
1206 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001207 }
1208 rcu_read_unlock();
1209
1210 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001211 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001212 cpuctx->task_ctx = NULL;
1213 }
1214}
1215
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001216static void task_ctx_sched_out(struct perf_event_context *ctx,
1217 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218{
1219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221 if (!cpuctx->task_ctx)
1222 return;
1223
1224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225 return;
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001228 cpuctx->task_ctx = NULL;
1229}
1230
1231/*
1232 * Called with IRQs disabled
1233 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001234static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001235{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001236 task_ctx_sched_out(ctx, EVENT_ALL);
1237}
1238
1239/*
1240 * Called with IRQs disabled
1241 */
1242static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243 enum event_type_t event_type)
1244{
1245 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246}
1247
1248static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001250 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001253
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001254 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001256 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001257 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001272}
1273
1274static void
1275ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001276 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001277{
1278 struct perf_event *event;
1279 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001280
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001281 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001284 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285 /*
1286 * Listen to the 'cpu' scheduling filter constraint
1287 * of events:
1288 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001289 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001292 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001293 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001294 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001296}
1297
1298static void
1299ctx_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx,
1301 enum event_type_t event_type)
1302{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001303 raw_spin_lock(&ctx->lock);
1304 ctx->is_active = 1;
1305 if (likely(!ctx->nr_events))
1306 goto out;
1307
1308 ctx->timestamp = perf_clock();
1309
1310 perf_disable();
1311
1312 /*
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1315 */
1316 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001317 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001318
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001321 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001322
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001323 perf_enable();
1324 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001325 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001326}
1327
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001328static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329 enum event_type_t event_type)
1330{
1331 struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333 ctx_sched_in(ctx, cpuctx, event_type);
1334}
1335
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001336static void task_ctx_sched_in(struct task_struct *task,
1337 enum event_type_t event_type)
1338{
1339 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340 struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342 if (likely(!ctx))
1343 return;
1344 if (cpuctx->task_ctx == ctx)
1345 return;
1346 ctx_sched_in(ctx, cpuctx, event_type);
1347 cpuctx->task_ctx = ctx;
1348}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001349/*
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1352 *
1353 * We restore the event value and then enable it.
1354 *
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1359 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001360void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001364
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365 if (likely(!ctx))
1366 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001367
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001368 if (cpuctx->task_ctx == ctx)
1369 return;
1370
1371 /*
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1375 */
1376 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377
1378 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381
1382 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001383}
1384
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
Peter Zijlstraabd50712010-01-26 18:50:16 +01001389static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1390{
1391 u64 frequency = event->attr.sample_freq;
1392 u64 sec = NSEC_PER_SEC;
1393 u64 divisor, dividend;
1394
1395 int count_fls, nsec_fls, frequency_fls, sec_fls;
1396
1397 count_fls = fls64(count);
1398 nsec_fls = fls64(nsec);
1399 frequency_fls = fls64(frequency);
1400 sec_fls = 30;
1401
1402 /*
1403 * We got @count in @nsec, with a target of sample_freq HZ
1404 * the target period becomes:
1405 *
1406 * @count * 10^9
1407 * period = -------------------
1408 * @nsec * sample_freq
1409 *
1410 */
1411
1412 /*
1413 * Reduce accuracy by one bit such that @a and @b converge
1414 * to a similar magnitude.
1415 */
1416#define REDUCE_FLS(a, b) \
1417do { \
1418 if (a##_fls > b##_fls) { \
1419 a >>= 1; \
1420 a##_fls--; \
1421 } else { \
1422 b >>= 1; \
1423 b##_fls--; \
1424 } \
1425} while (0)
1426
1427 /*
1428 * Reduce accuracy until either term fits in a u64, then proceed with
1429 * the other, so that finally we can do a u64/u64 division.
1430 */
1431 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1432 REDUCE_FLS(nsec, frequency);
1433 REDUCE_FLS(sec, count);
1434 }
1435
1436 if (count_fls + sec_fls > 64) {
1437 divisor = nsec * frequency;
1438
1439 while (count_fls + sec_fls > 64) {
1440 REDUCE_FLS(count, sec);
1441 divisor >>= 1;
1442 }
1443
1444 dividend = count * sec;
1445 } else {
1446 dividend = count * sec;
1447
1448 while (nsec_fls + frequency_fls > 64) {
1449 REDUCE_FLS(nsec, frequency);
1450 dividend >>= 1;
1451 }
1452
1453 divisor = nsec * frequency;
1454 }
1455
1456 return div64_u64(dividend, divisor);
1457}
1458
Stephane Eraniand76a0812010-02-08 17:06:01 +02001459static void perf_event_stop(struct perf_event *event)
1460{
1461 if (!event->pmu->stop)
1462 return event->pmu->disable(event);
1463
1464 return event->pmu->stop(event);
1465}
1466
1467static int perf_event_start(struct perf_event *event)
1468{
1469 if (!event->pmu->start)
1470 return event->pmu->enable(event);
1471
1472 return event->pmu->start(event);
1473}
1474
Peter Zijlstraabd50712010-01-26 18:50:16 +01001475static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001476{
1477 struct hw_perf_event *hwc = &event->hw;
1478 u64 period, sample_period;
1479 s64 delta;
1480
Peter Zijlstraabd50712010-01-26 18:50:16 +01001481 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001482
1483 delta = (s64)(period - hwc->sample_period);
1484 delta = (delta + 7) / 8; /* low pass filter */
1485
1486 sample_period = hwc->sample_period + delta;
1487
1488 if (!sample_period)
1489 sample_period = 1;
1490
1491 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001492
1493 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1494 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001495 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001497 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001498 perf_enable();
1499 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001500}
1501
1502static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1503{
1504 struct perf_event *event;
1505 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001506 u64 interrupts, now;
1507 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001508
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001509 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001511 if (event->state != PERF_EVENT_STATE_ACTIVE)
1512 continue;
1513
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001514 if (event->cpu != -1 && event->cpu != smp_processor_id())
1515 continue;
1516
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001517 hwc = &event->hw;
1518
1519 interrupts = hwc->interrupts;
1520 hwc->interrupts = 0;
1521
1522 /*
1523 * unthrottle events on the tick
1524 */
1525 if (interrupts == MAX_INTERRUPTS) {
1526 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001527 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001528 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001529 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001530 }
1531
1532 if (!event->attr.freq || !event->attr.sample_freq)
1533 continue;
1534
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001535 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001536 event->pmu->read(event);
1537 now = atomic64_read(&event->count);
1538 delta = now - hwc->freq_count_stamp;
1539 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001540
Peter Zijlstraabd50712010-01-26 18:50:16 +01001541 if (delta > 0)
1542 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001543 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001544 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001545 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001546}
1547
1548/*
1549 * Round-robin a context's events:
1550 */
1551static void rotate_ctx(struct perf_event_context *ctx)
1552{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001553 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001554
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001555 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001556 list_rotate_left(&ctx->flexible_groups);
1557
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001558 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559}
1560
Peter Zijlstra49f47432009-12-27 11:51:52 +01001561void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001562{
1563 struct perf_cpu_context *cpuctx;
1564 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001565 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001566
1567 if (!atomic_read(&nr_events))
1568 return;
1569
Peter Zijlstra49f47432009-12-27 11:51:52 +01001570 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001571 if (cpuctx->ctx.nr_events &&
1572 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1573 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001575 ctx = curr->perf_event_ctxp;
1576 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1577 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001578
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001579 perf_ctx_adjust_freq(&cpuctx->ctx);
1580 if (ctx)
1581 perf_ctx_adjust_freq(ctx);
1582
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001583 if (!rotate)
1584 return;
1585
1586 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001587 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001588 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001589 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001590
1591 rotate_ctx(&cpuctx->ctx);
1592 if (ctx)
1593 rotate_ctx(ctx);
1594
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001595 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001596 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001597 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001598 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001599}
1600
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001601static int event_enable_on_exec(struct perf_event *event,
1602 struct perf_event_context *ctx)
1603{
1604 if (!event->attr.enable_on_exec)
1605 return 0;
1606
1607 event->attr.enable_on_exec = 0;
1608 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1609 return 0;
1610
1611 __perf_event_mark_enabled(event, ctx);
1612
1613 return 1;
1614}
1615
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001616/*
1617 * Enable all of a task's events that have been marked enable-on-exec.
1618 * This expects task == current.
1619 */
1620static void perf_event_enable_on_exec(struct task_struct *task)
1621{
1622 struct perf_event_context *ctx;
1623 struct perf_event *event;
1624 unsigned long flags;
1625 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001626 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001627
1628 local_irq_save(flags);
1629 ctx = task->perf_event_ctxp;
1630 if (!ctx || !ctx->nr_events)
1631 goto out;
1632
1633 __perf_event_task_sched_out(ctx);
1634
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001635 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001636
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001637 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1638 ret = event_enable_on_exec(event, ctx);
1639 if (ret)
1640 enabled = 1;
1641 }
1642
1643 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1644 ret = event_enable_on_exec(event, ctx);
1645 if (ret)
1646 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001647 }
1648
1649 /*
1650 * Unclone this context if we enabled any event.
1651 */
1652 if (enabled)
1653 unclone_ctx(ctx);
1654
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001655 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001656
Peter Zijlstra49f47432009-12-27 11:51:52 +01001657 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001658 out:
1659 local_irq_restore(flags);
1660}
1661
1662/*
1663 * Cross CPU call to read the hardware event
1664 */
1665static void __perf_event_read(void *info)
1666{
1667 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1668 struct perf_event *event = info;
1669 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001670
1671 /*
1672 * If this is a task context, we need to check whether it is
1673 * the current task context of this cpu. If not it has been
1674 * scheduled out before the smp call arrived. In that case
1675 * event->count would have been updated to a recent sample
1676 * when the event was scheduled out.
1677 */
1678 if (ctx->task && cpuctx->task_ctx != ctx)
1679 return;
1680
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001681 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001682 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001683 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001684 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001685
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001686 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001687}
1688
1689static u64 perf_event_read(struct perf_event *event)
1690{
1691 /*
1692 * If event is enabled and currently active on a CPU, update the
1693 * value in the event structure:
1694 */
1695 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1696 smp_call_function_single(event->oncpu,
1697 __perf_event_read, event, 1);
1698 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001699 struct perf_event_context *ctx = event->ctx;
1700 unsigned long flags;
1701
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001702 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001703 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001704 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001705 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001706 }
1707
1708 return atomic64_read(&event->count);
1709}
1710
1711/*
1712 * Initialize the perf_event context in a task_struct:
1713 */
1714static void
1715__perf_event_init_context(struct perf_event_context *ctx,
1716 struct task_struct *task)
1717{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001718 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001719 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001720 INIT_LIST_HEAD(&ctx->pinned_groups);
1721 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001722 INIT_LIST_HEAD(&ctx->event_list);
1723 atomic_set(&ctx->refcount, 1);
1724 ctx->task = task;
1725}
1726
1727static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1728{
1729 struct perf_event_context *ctx;
1730 struct perf_cpu_context *cpuctx;
1731 struct task_struct *task;
1732 unsigned long flags;
1733 int err;
1734
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001735 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001736 /* Must be root to operate on a CPU event: */
1737 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1738 return ERR_PTR(-EACCES);
1739
Paul Mackerras0f624e72009-12-15 19:40:32 +11001740 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001741 return ERR_PTR(-EINVAL);
1742
1743 /*
1744 * We could be clever and allow to attach a event to an
1745 * offline CPU and activate it when the CPU comes up, but
1746 * that's for later.
1747 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001748 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001749 return ERR_PTR(-ENODEV);
1750
1751 cpuctx = &per_cpu(perf_cpu_context, cpu);
1752 ctx = &cpuctx->ctx;
1753 get_ctx(ctx);
1754
1755 return ctx;
1756 }
1757
1758 rcu_read_lock();
1759 if (!pid)
1760 task = current;
1761 else
1762 task = find_task_by_vpid(pid);
1763 if (task)
1764 get_task_struct(task);
1765 rcu_read_unlock();
1766
1767 if (!task)
1768 return ERR_PTR(-ESRCH);
1769
1770 /*
1771 * Can't attach events to a dying task.
1772 */
1773 err = -ESRCH;
1774 if (task->flags & PF_EXITING)
1775 goto errout;
1776
1777 /* Reuse ptrace permission checks for now. */
1778 err = -EACCES;
1779 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1780 goto errout;
1781
1782 retry:
1783 ctx = perf_lock_task_context(task, &flags);
1784 if (ctx) {
1785 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001786 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787 }
1788
1789 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001790 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001791 err = -ENOMEM;
1792 if (!ctx)
1793 goto errout;
1794 __perf_event_init_context(ctx, task);
1795 get_ctx(ctx);
1796 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1797 /*
1798 * We raced with some other task; use
1799 * the context they set.
1800 */
1801 kfree(ctx);
1802 goto retry;
1803 }
1804 get_task_struct(task);
1805 }
1806
1807 put_task_struct(task);
1808 return ctx;
1809
1810 errout:
1811 put_task_struct(task);
1812 return ERR_PTR(err);
1813}
1814
Li Zefan6fb29152009-10-15 11:21:42 +08001815static void perf_event_free_filter(struct perf_event *event);
1816
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001817static void free_event_rcu(struct rcu_head *head)
1818{
1819 struct perf_event *event;
1820
1821 event = container_of(head, struct perf_event, rcu_head);
1822 if (event->ns)
1823 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001824 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001825 kfree(event);
1826}
1827
1828static void perf_pending_sync(struct perf_event *event);
1829
1830static void free_event(struct perf_event *event)
1831{
1832 perf_pending_sync(event);
1833
1834 if (!event->parent) {
1835 atomic_dec(&nr_events);
1836 if (event->attr.mmap)
1837 atomic_dec(&nr_mmap_events);
1838 if (event->attr.comm)
1839 atomic_dec(&nr_comm_events);
1840 if (event->attr.task)
1841 atomic_dec(&nr_task_events);
1842 }
1843
1844 if (event->output) {
1845 fput(event->output->filp);
1846 event->output = NULL;
1847 }
1848
1849 if (event->destroy)
1850 event->destroy(event);
1851
1852 put_ctx(event->ctx);
1853 call_rcu(&event->rcu_head, free_event_rcu);
1854}
1855
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001856int perf_event_release_kernel(struct perf_event *event)
1857{
1858 struct perf_event_context *ctx = event->ctx;
1859
1860 WARN_ON_ONCE(ctx->parent_ctx);
1861 mutex_lock(&ctx->mutex);
1862 perf_event_remove_from_context(event);
1863 mutex_unlock(&ctx->mutex);
1864
1865 mutex_lock(&event->owner->perf_event_mutex);
1866 list_del_init(&event->owner_entry);
1867 mutex_unlock(&event->owner->perf_event_mutex);
1868 put_task_struct(event->owner);
1869
1870 free_event(event);
1871
1872 return 0;
1873}
1874EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1875
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001876/*
1877 * Called when the last reference to the file is gone.
1878 */
1879static int perf_release(struct inode *inode, struct file *file)
1880{
1881 struct perf_event *event = file->private_data;
1882
1883 file->private_data = NULL;
1884
1885 return perf_event_release_kernel(event);
1886}
1887
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001888static int perf_event_read_size(struct perf_event *event)
1889{
1890 int entry = sizeof(u64); /* value */
1891 int size = 0;
1892 int nr = 1;
1893
1894 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1895 size += sizeof(u64);
1896
1897 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1898 size += sizeof(u64);
1899
1900 if (event->attr.read_format & PERF_FORMAT_ID)
1901 entry += sizeof(u64);
1902
1903 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1904 nr += event->group_leader->nr_siblings;
1905 size += sizeof(u64);
1906 }
1907
1908 size += entry * nr;
1909
1910 return size;
1911}
1912
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001913u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001914{
1915 struct perf_event *child;
1916 u64 total = 0;
1917
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001918 *enabled = 0;
1919 *running = 0;
1920
Peter Zijlstra6f105812009-11-20 22:19:56 +01001921 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001922 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001923 *enabled += event->total_time_enabled +
1924 atomic64_read(&event->child_total_time_enabled);
1925 *running += event->total_time_running +
1926 atomic64_read(&event->child_total_time_running);
1927
1928 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001929 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001930 *enabled += child->total_time_enabled;
1931 *running += child->total_time_running;
1932 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001933 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001934
1935 return total;
1936}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001937EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001938
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001939static int perf_event_read_group(struct perf_event *event,
1940 u64 read_format, char __user *buf)
1941{
1942 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001943 int n = 0, size = 0, ret = -EFAULT;
1944 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001945 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001946 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001947
Peter Zijlstra6f105812009-11-20 22:19:56 +01001948 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001949 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950
1951 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001952 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1953 values[n++] = enabled;
1954 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1955 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001956 values[n++] = count;
1957 if (read_format & PERF_FORMAT_ID)
1958 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001959
1960 size = n * sizeof(u64);
1961
1962 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001963 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001964
Peter Zijlstra6f105812009-11-20 22:19:56 +01001965 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001966
1967 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001968 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001969
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001970 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001971 if (read_format & PERF_FORMAT_ID)
1972 values[n++] = primary_event_id(sub);
1973
1974 size = n * sizeof(u64);
1975
Stephane Eranian184d3da2009-11-23 21:40:49 -08001976 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001977 ret = -EFAULT;
1978 goto unlock;
1979 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001980
1981 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001982 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001983unlock:
1984 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001985
Peter Zijlstraabf48682009-11-20 22:19:49 +01001986 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001987}
1988
1989static int perf_event_read_one(struct perf_event *event,
1990 u64 read_format, char __user *buf)
1991{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001992 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001993 u64 values[4];
1994 int n = 0;
1995
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001996 values[n++] = perf_event_read_value(event, &enabled, &running);
1997 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1998 values[n++] = enabled;
1999 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2000 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002001 if (read_format & PERF_FORMAT_ID)
2002 values[n++] = primary_event_id(event);
2003
2004 if (copy_to_user(buf, values, n * sizeof(u64)))
2005 return -EFAULT;
2006
2007 return n * sizeof(u64);
2008}
2009
2010/*
2011 * Read the performance event - simple non blocking version for now
2012 */
2013static ssize_t
2014perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2015{
2016 u64 read_format = event->attr.read_format;
2017 int ret;
2018
2019 /*
2020 * Return end-of-file for a read on a event that is in
2021 * error state (i.e. because it was pinned but it couldn't be
2022 * scheduled on to the CPU at some point).
2023 */
2024 if (event->state == PERF_EVENT_STATE_ERROR)
2025 return 0;
2026
2027 if (count < perf_event_read_size(event))
2028 return -ENOSPC;
2029
2030 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002031 if (read_format & PERF_FORMAT_GROUP)
2032 ret = perf_event_read_group(event, read_format, buf);
2033 else
2034 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002035
2036 return ret;
2037}
2038
2039static ssize_t
2040perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2041{
2042 struct perf_event *event = file->private_data;
2043
2044 return perf_read_hw(event, buf, count);
2045}
2046
2047static unsigned int perf_poll(struct file *file, poll_table *wait)
2048{
2049 struct perf_event *event = file->private_data;
2050 struct perf_mmap_data *data;
2051 unsigned int events = POLL_HUP;
2052
2053 rcu_read_lock();
2054 data = rcu_dereference(event->data);
2055 if (data)
2056 events = atomic_xchg(&data->poll, 0);
2057 rcu_read_unlock();
2058
2059 poll_wait(file, &event->waitq, wait);
2060
2061 return events;
2062}
2063
2064static void perf_event_reset(struct perf_event *event)
2065{
2066 (void)perf_event_read(event);
2067 atomic64_set(&event->count, 0);
2068 perf_event_update_userpage(event);
2069}
2070
2071/*
2072 * Holding the top-level event's child_mutex means that any
2073 * descendant process that has inherited this event will block
2074 * in sync_child_event if it goes to exit, thus satisfying the
2075 * task existence requirements of perf_event_enable/disable.
2076 */
2077static void perf_event_for_each_child(struct perf_event *event,
2078 void (*func)(struct perf_event *))
2079{
2080 struct perf_event *child;
2081
2082 WARN_ON_ONCE(event->ctx->parent_ctx);
2083 mutex_lock(&event->child_mutex);
2084 func(event);
2085 list_for_each_entry(child, &event->child_list, child_list)
2086 func(child);
2087 mutex_unlock(&event->child_mutex);
2088}
2089
2090static void perf_event_for_each(struct perf_event *event,
2091 void (*func)(struct perf_event *))
2092{
2093 struct perf_event_context *ctx = event->ctx;
2094 struct perf_event *sibling;
2095
2096 WARN_ON_ONCE(ctx->parent_ctx);
2097 mutex_lock(&ctx->mutex);
2098 event = event->group_leader;
2099
2100 perf_event_for_each_child(event, func);
2101 func(event);
2102 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2103 perf_event_for_each_child(event, func);
2104 mutex_unlock(&ctx->mutex);
2105}
2106
2107static int perf_event_period(struct perf_event *event, u64 __user *arg)
2108{
2109 struct perf_event_context *ctx = event->ctx;
2110 unsigned long size;
2111 int ret = 0;
2112 u64 value;
2113
2114 if (!event->attr.sample_period)
2115 return -EINVAL;
2116
2117 size = copy_from_user(&value, arg, sizeof(value));
2118 if (size != sizeof(value))
2119 return -EFAULT;
2120
2121 if (!value)
2122 return -EINVAL;
2123
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002124 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002125 if (event->attr.freq) {
2126 if (value > sysctl_perf_event_sample_rate) {
2127 ret = -EINVAL;
2128 goto unlock;
2129 }
2130
2131 event->attr.sample_freq = value;
2132 } else {
2133 event->attr.sample_period = value;
2134 event->hw.sample_period = value;
2135 }
2136unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002137 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002138
2139 return ret;
2140}
2141
Li Zefan6fb29152009-10-15 11:21:42 +08002142static int perf_event_set_output(struct perf_event *event, int output_fd);
2143static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002144
2145static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2146{
2147 struct perf_event *event = file->private_data;
2148 void (*func)(struct perf_event *);
2149 u32 flags = arg;
2150
2151 switch (cmd) {
2152 case PERF_EVENT_IOC_ENABLE:
2153 func = perf_event_enable;
2154 break;
2155 case PERF_EVENT_IOC_DISABLE:
2156 func = perf_event_disable;
2157 break;
2158 case PERF_EVENT_IOC_RESET:
2159 func = perf_event_reset;
2160 break;
2161
2162 case PERF_EVENT_IOC_REFRESH:
2163 return perf_event_refresh(event, arg);
2164
2165 case PERF_EVENT_IOC_PERIOD:
2166 return perf_event_period(event, (u64 __user *)arg);
2167
2168 case PERF_EVENT_IOC_SET_OUTPUT:
2169 return perf_event_set_output(event, arg);
2170
Li Zefan6fb29152009-10-15 11:21:42 +08002171 case PERF_EVENT_IOC_SET_FILTER:
2172 return perf_event_set_filter(event, (void __user *)arg);
2173
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002174 default:
2175 return -ENOTTY;
2176 }
2177
2178 if (flags & PERF_IOC_FLAG_GROUP)
2179 perf_event_for_each(event, func);
2180 else
2181 perf_event_for_each_child(event, func);
2182
2183 return 0;
2184}
2185
2186int perf_event_task_enable(void)
2187{
2188 struct perf_event *event;
2189
2190 mutex_lock(&current->perf_event_mutex);
2191 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2192 perf_event_for_each_child(event, perf_event_enable);
2193 mutex_unlock(&current->perf_event_mutex);
2194
2195 return 0;
2196}
2197
2198int perf_event_task_disable(void)
2199{
2200 struct perf_event *event;
2201
2202 mutex_lock(&current->perf_event_mutex);
2203 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2204 perf_event_for_each_child(event, perf_event_disable);
2205 mutex_unlock(&current->perf_event_mutex);
2206
2207 return 0;
2208}
2209
2210#ifndef PERF_EVENT_INDEX_OFFSET
2211# define PERF_EVENT_INDEX_OFFSET 0
2212#endif
2213
2214static int perf_event_index(struct perf_event *event)
2215{
2216 if (event->state != PERF_EVENT_STATE_ACTIVE)
2217 return 0;
2218
2219 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2220}
2221
2222/*
2223 * Callers need to ensure there can be no nesting of this function, otherwise
2224 * the seqlock logic goes bad. We can not serialize this because the arch
2225 * code calls this from NMI context.
2226 */
2227void perf_event_update_userpage(struct perf_event *event)
2228{
2229 struct perf_event_mmap_page *userpg;
2230 struct perf_mmap_data *data;
2231
2232 rcu_read_lock();
2233 data = rcu_dereference(event->data);
2234 if (!data)
2235 goto unlock;
2236
2237 userpg = data->user_page;
2238
2239 /*
2240 * Disable preemption so as to not let the corresponding user-space
2241 * spin too long if we get preempted.
2242 */
2243 preempt_disable();
2244 ++userpg->lock;
2245 barrier();
2246 userpg->index = perf_event_index(event);
2247 userpg->offset = atomic64_read(&event->count);
2248 if (event->state == PERF_EVENT_STATE_ACTIVE)
2249 userpg->offset -= atomic64_read(&event->hw.prev_count);
2250
2251 userpg->time_enabled = event->total_time_enabled +
2252 atomic64_read(&event->child_total_time_enabled);
2253
2254 userpg->time_running = event->total_time_running +
2255 atomic64_read(&event->child_total_time_running);
2256
2257 barrier();
2258 ++userpg->lock;
2259 preempt_enable();
2260unlock:
2261 rcu_read_unlock();
2262}
2263
Peter Zijlstra906010b2009-09-21 16:08:49 +02002264static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002265{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002266 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002267}
2268
Peter Zijlstra906010b2009-09-21 16:08:49 +02002269#ifndef CONFIG_PERF_USE_VMALLOC
2270
2271/*
2272 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2273 */
2274
2275static struct page *
2276perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2277{
2278 if (pgoff > data->nr_pages)
2279 return NULL;
2280
2281 if (pgoff == 0)
2282 return virt_to_page(data->user_page);
2283
2284 return virt_to_page(data->data_pages[pgoff - 1]);
2285}
2286
2287static struct perf_mmap_data *
2288perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002289{
2290 struct perf_mmap_data *data;
2291 unsigned long size;
2292 int i;
2293
2294 WARN_ON(atomic_read(&event->mmap_count));
2295
2296 size = sizeof(struct perf_mmap_data);
2297 size += nr_pages * sizeof(void *);
2298
2299 data = kzalloc(size, GFP_KERNEL);
2300 if (!data)
2301 goto fail;
2302
2303 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2304 if (!data->user_page)
2305 goto fail_user_page;
2306
2307 for (i = 0; i < nr_pages; i++) {
2308 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2309 if (!data->data_pages[i])
2310 goto fail_data_pages;
2311 }
2312
Peter Zijlstra906010b2009-09-21 16:08:49 +02002313 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002314 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002315
Peter Zijlstra906010b2009-09-21 16:08:49 +02002316 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002317
2318fail_data_pages:
2319 for (i--; i >= 0; i--)
2320 free_page((unsigned long)data->data_pages[i]);
2321
2322 free_page((unsigned long)data->user_page);
2323
2324fail_user_page:
2325 kfree(data);
2326
2327fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002328 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002329}
2330
2331static void perf_mmap_free_page(unsigned long addr)
2332{
2333 struct page *page = virt_to_page((void *)addr);
2334
2335 page->mapping = NULL;
2336 __free_page(page);
2337}
2338
Peter Zijlstra906010b2009-09-21 16:08:49 +02002339static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002340{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002341 int i;
2342
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002343 perf_mmap_free_page((unsigned long)data->user_page);
2344 for (i = 0; i < data->nr_pages; i++)
2345 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002346 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002347}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002348
Peter Zijlstra906010b2009-09-21 16:08:49 +02002349#else
2350
2351/*
2352 * Back perf_mmap() with vmalloc memory.
2353 *
2354 * Required for architectures that have d-cache aliasing issues.
2355 */
2356
2357static struct page *
2358perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2359{
2360 if (pgoff > (1UL << data->data_order))
2361 return NULL;
2362
2363 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2364}
2365
2366static void perf_mmap_unmark_page(void *addr)
2367{
2368 struct page *page = vmalloc_to_page(addr);
2369
2370 page->mapping = NULL;
2371}
2372
2373static void perf_mmap_data_free_work(struct work_struct *work)
2374{
2375 struct perf_mmap_data *data;
2376 void *base;
2377 int i, nr;
2378
2379 data = container_of(work, struct perf_mmap_data, work);
2380 nr = 1 << data->data_order;
2381
2382 base = data->user_page;
2383 for (i = 0; i < nr + 1; i++)
2384 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2385
2386 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002387 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002388}
2389
2390static void perf_mmap_data_free(struct perf_mmap_data *data)
2391{
2392 schedule_work(&data->work);
2393}
2394
2395static struct perf_mmap_data *
2396perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2397{
2398 struct perf_mmap_data *data;
2399 unsigned long size;
2400 void *all_buf;
2401
2402 WARN_ON(atomic_read(&event->mmap_count));
2403
2404 size = sizeof(struct perf_mmap_data);
2405 size += sizeof(void *);
2406
2407 data = kzalloc(size, GFP_KERNEL);
2408 if (!data)
2409 goto fail;
2410
2411 INIT_WORK(&data->work, perf_mmap_data_free_work);
2412
2413 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2414 if (!all_buf)
2415 goto fail_all_buf;
2416
2417 data->user_page = all_buf;
2418 data->data_pages[0] = all_buf + PAGE_SIZE;
2419 data->data_order = ilog2(nr_pages);
2420 data->nr_pages = 1;
2421
2422 return data;
2423
2424fail_all_buf:
2425 kfree(data);
2426
2427fail:
2428 return NULL;
2429}
2430
2431#endif
2432
2433static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2434{
2435 struct perf_event *event = vma->vm_file->private_data;
2436 struct perf_mmap_data *data;
2437 int ret = VM_FAULT_SIGBUS;
2438
2439 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2440 if (vmf->pgoff == 0)
2441 ret = 0;
2442 return ret;
2443 }
2444
2445 rcu_read_lock();
2446 data = rcu_dereference(event->data);
2447 if (!data)
2448 goto unlock;
2449
2450 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2451 goto unlock;
2452
2453 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2454 if (!vmf->page)
2455 goto unlock;
2456
2457 get_page(vmf->page);
2458 vmf->page->mapping = vma->vm_file->f_mapping;
2459 vmf->page->index = vmf->pgoff;
2460
2461 ret = 0;
2462unlock:
2463 rcu_read_unlock();
2464
2465 return ret;
2466}
2467
2468static void
2469perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2470{
2471 long max_size = perf_data_size(data);
2472
2473 atomic_set(&data->lock, -1);
2474
2475 if (event->attr.watermark) {
2476 data->watermark = min_t(long, max_size,
2477 event->attr.wakeup_watermark);
2478 }
2479
2480 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002481 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002482
2483
2484 rcu_assign_pointer(event->data, data);
2485}
2486
2487static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2488{
2489 struct perf_mmap_data *data;
2490
2491 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2492 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002493}
2494
Peter Zijlstra906010b2009-09-21 16:08:49 +02002495static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002496{
2497 struct perf_mmap_data *data = event->data;
2498
2499 WARN_ON(atomic_read(&event->mmap_count));
2500
2501 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002502 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002503}
2504
2505static void perf_mmap_open(struct vm_area_struct *vma)
2506{
2507 struct perf_event *event = vma->vm_file->private_data;
2508
2509 atomic_inc(&event->mmap_count);
2510}
2511
2512static void perf_mmap_close(struct vm_area_struct *vma)
2513{
2514 struct perf_event *event = vma->vm_file->private_data;
2515
2516 WARN_ON_ONCE(event->ctx->parent_ctx);
2517 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002518 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002519 struct user_struct *user = current_user();
2520
Peter Zijlstra906010b2009-09-21 16:08:49 +02002521 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002522 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002523 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002524 mutex_unlock(&event->mmap_mutex);
2525 }
2526}
2527
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002528static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002529 .open = perf_mmap_open,
2530 .close = perf_mmap_close,
2531 .fault = perf_mmap_fault,
2532 .page_mkwrite = perf_mmap_fault,
2533};
2534
2535static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2536{
2537 struct perf_event *event = file->private_data;
2538 unsigned long user_locked, user_lock_limit;
2539 struct user_struct *user = current_user();
2540 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002541 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002542 unsigned long vma_size;
2543 unsigned long nr_pages;
2544 long user_extra, extra;
2545 int ret = 0;
2546
2547 if (!(vma->vm_flags & VM_SHARED))
2548 return -EINVAL;
2549
2550 vma_size = vma->vm_end - vma->vm_start;
2551 nr_pages = (vma_size / PAGE_SIZE) - 1;
2552
2553 /*
2554 * If we have data pages ensure they're a power-of-two number, so we
2555 * can do bitmasks instead of modulo.
2556 */
2557 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2558 return -EINVAL;
2559
2560 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2561 return -EINVAL;
2562
2563 if (vma->vm_pgoff != 0)
2564 return -EINVAL;
2565
2566 WARN_ON_ONCE(event->ctx->parent_ctx);
2567 mutex_lock(&event->mmap_mutex);
2568 if (event->output) {
2569 ret = -EINVAL;
2570 goto unlock;
2571 }
2572
2573 if (atomic_inc_not_zero(&event->mmap_count)) {
2574 if (nr_pages != event->data->nr_pages)
2575 ret = -EINVAL;
2576 goto unlock;
2577 }
2578
2579 user_extra = nr_pages + 1;
2580 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2581
2582 /*
2583 * Increase the limit linearly with more CPUs:
2584 */
2585 user_lock_limit *= num_online_cpus();
2586
2587 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2588
2589 extra = 0;
2590 if (user_locked > user_lock_limit)
2591 extra = user_locked - user_lock_limit;
2592
Jiri Slaby78d7d402010-03-05 13:42:54 -08002593 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002594 lock_limit >>= PAGE_SHIFT;
2595 locked = vma->vm_mm->locked_vm + extra;
2596
2597 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2598 !capable(CAP_IPC_LOCK)) {
2599 ret = -EPERM;
2600 goto unlock;
2601 }
2602
2603 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002604
2605 data = perf_mmap_data_alloc(event, nr_pages);
2606 ret = -ENOMEM;
2607 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002608 goto unlock;
2609
Peter Zijlstra906010b2009-09-21 16:08:49 +02002610 ret = 0;
2611 perf_mmap_data_init(event, data);
2612
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002613 atomic_set(&event->mmap_count, 1);
2614 atomic_long_add(user_extra, &user->locked_vm);
2615 vma->vm_mm->locked_vm += extra;
2616 event->data->nr_locked = extra;
2617 if (vma->vm_flags & VM_WRITE)
2618 event->data->writable = 1;
2619
2620unlock:
2621 mutex_unlock(&event->mmap_mutex);
2622
2623 vma->vm_flags |= VM_RESERVED;
2624 vma->vm_ops = &perf_mmap_vmops;
2625
2626 return ret;
2627}
2628
2629static int perf_fasync(int fd, struct file *filp, int on)
2630{
2631 struct inode *inode = filp->f_path.dentry->d_inode;
2632 struct perf_event *event = filp->private_data;
2633 int retval;
2634
2635 mutex_lock(&inode->i_mutex);
2636 retval = fasync_helper(fd, filp, on, &event->fasync);
2637 mutex_unlock(&inode->i_mutex);
2638
2639 if (retval < 0)
2640 return retval;
2641
2642 return 0;
2643}
2644
2645static const struct file_operations perf_fops = {
2646 .release = perf_release,
2647 .read = perf_read,
2648 .poll = perf_poll,
2649 .unlocked_ioctl = perf_ioctl,
2650 .compat_ioctl = perf_ioctl,
2651 .mmap = perf_mmap,
2652 .fasync = perf_fasync,
2653};
2654
2655/*
2656 * Perf event wakeup
2657 *
2658 * If there's data, ensure we set the poll() state and publish everything
2659 * to user-space before waking everybody up.
2660 */
2661
2662void perf_event_wakeup(struct perf_event *event)
2663{
2664 wake_up_all(&event->waitq);
2665
2666 if (event->pending_kill) {
2667 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2668 event->pending_kill = 0;
2669 }
2670}
2671
2672/*
2673 * Pending wakeups
2674 *
2675 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2676 *
2677 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2678 * single linked list and use cmpxchg() to add entries lockless.
2679 */
2680
2681static void perf_pending_event(struct perf_pending_entry *entry)
2682{
2683 struct perf_event *event = container_of(entry,
2684 struct perf_event, pending);
2685
2686 if (event->pending_disable) {
2687 event->pending_disable = 0;
2688 __perf_event_disable(event);
2689 }
2690
2691 if (event->pending_wakeup) {
2692 event->pending_wakeup = 0;
2693 perf_event_wakeup(event);
2694 }
2695}
2696
2697#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2698
2699static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2700 PENDING_TAIL,
2701};
2702
2703static void perf_pending_queue(struct perf_pending_entry *entry,
2704 void (*func)(struct perf_pending_entry *))
2705{
2706 struct perf_pending_entry **head;
2707
2708 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2709 return;
2710
2711 entry->func = func;
2712
2713 head = &get_cpu_var(perf_pending_head);
2714
2715 do {
2716 entry->next = *head;
2717 } while (cmpxchg(head, entry->next, entry) != entry->next);
2718
2719 set_perf_event_pending();
2720
2721 put_cpu_var(perf_pending_head);
2722}
2723
2724static int __perf_pending_run(void)
2725{
2726 struct perf_pending_entry *list;
2727 int nr = 0;
2728
2729 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2730 while (list != PENDING_TAIL) {
2731 void (*func)(struct perf_pending_entry *);
2732 struct perf_pending_entry *entry = list;
2733
2734 list = list->next;
2735
2736 func = entry->func;
2737 entry->next = NULL;
2738 /*
2739 * Ensure we observe the unqueue before we issue the wakeup,
2740 * so that we won't be waiting forever.
2741 * -- see perf_not_pending().
2742 */
2743 smp_wmb();
2744
2745 func(entry);
2746 nr++;
2747 }
2748
2749 return nr;
2750}
2751
2752static inline int perf_not_pending(struct perf_event *event)
2753{
2754 /*
2755 * If we flush on whatever cpu we run, there is a chance we don't
2756 * need to wait.
2757 */
2758 get_cpu();
2759 __perf_pending_run();
2760 put_cpu();
2761
2762 /*
2763 * Ensure we see the proper queue state before going to sleep
2764 * so that we do not miss the wakeup. -- see perf_pending_handle()
2765 */
2766 smp_rmb();
2767 return event->pending.next == NULL;
2768}
2769
2770static void perf_pending_sync(struct perf_event *event)
2771{
2772 wait_event(event->waitq, perf_not_pending(event));
2773}
2774
2775void perf_event_do_pending(void)
2776{
2777 __perf_pending_run();
2778}
2779
2780/*
2781 * Callchain support -- arch specific
2782 */
2783
2784__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2785{
2786 return NULL;
2787}
2788
2789/*
2790 * Output
2791 */
2792static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2793 unsigned long offset, unsigned long head)
2794{
2795 unsigned long mask;
2796
2797 if (!data->writable)
2798 return true;
2799
Peter Zijlstra906010b2009-09-21 16:08:49 +02002800 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002801
2802 offset = (offset - tail) & mask;
2803 head = (head - tail) & mask;
2804
2805 if ((int)(head - offset) < 0)
2806 return false;
2807
2808 return true;
2809}
2810
2811static void perf_output_wakeup(struct perf_output_handle *handle)
2812{
2813 atomic_set(&handle->data->poll, POLL_IN);
2814
2815 if (handle->nmi) {
2816 handle->event->pending_wakeup = 1;
2817 perf_pending_queue(&handle->event->pending,
2818 perf_pending_event);
2819 } else
2820 perf_event_wakeup(handle->event);
2821}
2822
2823/*
2824 * Curious locking construct.
2825 *
2826 * We need to ensure a later event_id doesn't publish a head when a former
2827 * event_id isn't done writing. However since we need to deal with NMIs we
2828 * cannot fully serialize things.
2829 *
2830 * What we do is serialize between CPUs so we only have to deal with NMI
2831 * nesting on a single CPU.
2832 *
2833 * We only publish the head (and generate a wakeup) when the outer-most
2834 * event_id completes.
2835 */
2836static void perf_output_lock(struct perf_output_handle *handle)
2837{
2838 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002839 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002840
2841 handle->locked = 0;
2842
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002843 for (;;) {
2844 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2845 if (cur == -1) {
2846 handle->locked = 1;
2847 break;
2848 }
2849 if (cur == cpu)
2850 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002851
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002852 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002853 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002854}
2855
2856static void perf_output_unlock(struct perf_output_handle *handle)
2857{
2858 struct perf_mmap_data *data = handle->data;
2859 unsigned long head;
2860 int cpu;
2861
2862 data->done_head = data->head;
2863
2864 if (!handle->locked)
2865 goto out;
2866
2867again:
2868 /*
2869 * The xchg implies a full barrier that ensures all writes are done
2870 * before we publish the new head, matched by a rmb() in userspace when
2871 * reading this position.
2872 */
2873 while ((head = atomic_long_xchg(&data->done_head, 0)))
2874 data->user_page->data_head = head;
2875
2876 /*
2877 * NMI can happen here, which means we can miss a done_head update.
2878 */
2879
2880 cpu = atomic_xchg(&data->lock, -1);
2881 WARN_ON_ONCE(cpu != smp_processor_id());
2882
2883 /*
2884 * Therefore we have to validate we did not indeed do so.
2885 */
2886 if (unlikely(atomic_long_read(&data->done_head))) {
2887 /*
2888 * Since we had it locked, we can lock it again.
2889 */
2890 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2891 cpu_relax();
2892
2893 goto again;
2894 }
2895
2896 if (atomic_xchg(&data->wakeup, 0))
2897 perf_output_wakeup(handle);
2898out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002899 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002900}
2901
2902void perf_output_copy(struct perf_output_handle *handle,
2903 const void *buf, unsigned int len)
2904{
2905 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002906 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002907 unsigned int size;
2908 void **pages;
2909
2910 offset = handle->offset;
2911 pages_mask = handle->data->nr_pages - 1;
2912 pages = handle->data->data_pages;
2913
2914 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002915 unsigned long page_offset;
2916 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002917 int nr;
2918
2919 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002920 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2921 page_offset = offset & (page_size - 1);
2922 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002923
2924 memcpy(pages[nr] + page_offset, buf, size);
2925
2926 len -= size;
2927 buf += size;
2928 offset += size;
2929 } while (len);
2930
2931 handle->offset = offset;
2932
2933 /*
2934 * Check we didn't copy past our reservation window, taking the
2935 * possible unsigned int wrap into account.
2936 */
2937 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2938}
2939
2940int perf_output_begin(struct perf_output_handle *handle,
2941 struct perf_event *event, unsigned int size,
2942 int nmi, int sample)
2943{
2944 struct perf_event *output_event;
2945 struct perf_mmap_data *data;
2946 unsigned long tail, offset, head;
2947 int have_lost;
2948 struct {
2949 struct perf_event_header header;
2950 u64 id;
2951 u64 lost;
2952 } lost_event;
2953
2954 rcu_read_lock();
2955 /*
2956 * For inherited events we send all the output towards the parent.
2957 */
2958 if (event->parent)
2959 event = event->parent;
2960
2961 output_event = rcu_dereference(event->output);
2962 if (output_event)
2963 event = output_event;
2964
2965 data = rcu_dereference(event->data);
2966 if (!data)
2967 goto out;
2968
2969 handle->data = data;
2970 handle->event = event;
2971 handle->nmi = nmi;
2972 handle->sample = sample;
2973
2974 if (!data->nr_pages)
2975 goto fail;
2976
2977 have_lost = atomic_read(&data->lost);
2978 if (have_lost)
2979 size += sizeof(lost_event);
2980
2981 perf_output_lock(handle);
2982
2983 do {
2984 /*
2985 * Userspace could choose to issue a mb() before updating the
2986 * tail pointer. So that all reads will be completed before the
2987 * write is issued.
2988 */
2989 tail = ACCESS_ONCE(data->user_page->data_tail);
2990 smp_rmb();
2991 offset = head = atomic_long_read(&data->head);
2992 head += size;
2993 if (unlikely(!perf_output_space(data, tail, offset, head)))
2994 goto fail;
2995 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2996
2997 handle->offset = offset;
2998 handle->head = head;
2999
3000 if (head - tail > data->watermark)
3001 atomic_set(&data->wakeup, 1);
3002
3003 if (have_lost) {
3004 lost_event.header.type = PERF_RECORD_LOST;
3005 lost_event.header.misc = 0;
3006 lost_event.header.size = sizeof(lost_event);
3007 lost_event.id = event->id;
3008 lost_event.lost = atomic_xchg(&data->lost, 0);
3009
3010 perf_output_put(handle, lost_event);
3011 }
3012
3013 return 0;
3014
3015fail:
3016 atomic_inc(&data->lost);
3017 perf_output_unlock(handle);
3018out:
3019 rcu_read_unlock();
3020
3021 return -ENOSPC;
3022}
3023
3024void perf_output_end(struct perf_output_handle *handle)
3025{
3026 struct perf_event *event = handle->event;
3027 struct perf_mmap_data *data = handle->data;
3028
3029 int wakeup_events = event->attr.wakeup_events;
3030
3031 if (handle->sample && wakeup_events) {
3032 int events = atomic_inc_return(&data->events);
3033 if (events >= wakeup_events) {
3034 atomic_sub(wakeup_events, &data->events);
3035 atomic_set(&data->wakeup, 1);
3036 }
3037 }
3038
3039 perf_output_unlock(handle);
3040 rcu_read_unlock();
3041}
3042
3043static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3044{
3045 /*
3046 * only top level events have the pid namespace they were created in
3047 */
3048 if (event->parent)
3049 event = event->parent;
3050
3051 return task_tgid_nr_ns(p, event->ns);
3052}
3053
3054static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3055{
3056 /*
3057 * only top level events have the pid namespace they were created in
3058 */
3059 if (event->parent)
3060 event = event->parent;
3061
3062 return task_pid_nr_ns(p, event->ns);
3063}
3064
3065static void perf_output_read_one(struct perf_output_handle *handle,
3066 struct perf_event *event)
3067{
3068 u64 read_format = event->attr.read_format;
3069 u64 values[4];
3070 int n = 0;
3071
3072 values[n++] = atomic64_read(&event->count);
3073 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3074 values[n++] = event->total_time_enabled +
3075 atomic64_read(&event->child_total_time_enabled);
3076 }
3077 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3078 values[n++] = event->total_time_running +
3079 atomic64_read(&event->child_total_time_running);
3080 }
3081 if (read_format & PERF_FORMAT_ID)
3082 values[n++] = primary_event_id(event);
3083
3084 perf_output_copy(handle, values, n * sizeof(u64));
3085}
3086
3087/*
3088 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3089 */
3090static void perf_output_read_group(struct perf_output_handle *handle,
3091 struct perf_event *event)
3092{
3093 struct perf_event *leader = event->group_leader, *sub;
3094 u64 read_format = event->attr.read_format;
3095 u64 values[5];
3096 int n = 0;
3097
3098 values[n++] = 1 + leader->nr_siblings;
3099
3100 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3101 values[n++] = leader->total_time_enabled;
3102
3103 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3104 values[n++] = leader->total_time_running;
3105
3106 if (leader != event)
3107 leader->pmu->read(leader);
3108
3109 values[n++] = atomic64_read(&leader->count);
3110 if (read_format & PERF_FORMAT_ID)
3111 values[n++] = primary_event_id(leader);
3112
3113 perf_output_copy(handle, values, n * sizeof(u64));
3114
3115 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3116 n = 0;
3117
3118 if (sub != event)
3119 sub->pmu->read(sub);
3120
3121 values[n++] = atomic64_read(&sub->count);
3122 if (read_format & PERF_FORMAT_ID)
3123 values[n++] = primary_event_id(sub);
3124
3125 perf_output_copy(handle, values, n * sizeof(u64));
3126 }
3127}
3128
3129static void perf_output_read(struct perf_output_handle *handle,
3130 struct perf_event *event)
3131{
3132 if (event->attr.read_format & PERF_FORMAT_GROUP)
3133 perf_output_read_group(handle, event);
3134 else
3135 perf_output_read_one(handle, event);
3136}
3137
3138void perf_output_sample(struct perf_output_handle *handle,
3139 struct perf_event_header *header,
3140 struct perf_sample_data *data,
3141 struct perf_event *event)
3142{
3143 u64 sample_type = data->type;
3144
3145 perf_output_put(handle, *header);
3146
3147 if (sample_type & PERF_SAMPLE_IP)
3148 perf_output_put(handle, data->ip);
3149
3150 if (sample_type & PERF_SAMPLE_TID)
3151 perf_output_put(handle, data->tid_entry);
3152
3153 if (sample_type & PERF_SAMPLE_TIME)
3154 perf_output_put(handle, data->time);
3155
3156 if (sample_type & PERF_SAMPLE_ADDR)
3157 perf_output_put(handle, data->addr);
3158
3159 if (sample_type & PERF_SAMPLE_ID)
3160 perf_output_put(handle, data->id);
3161
3162 if (sample_type & PERF_SAMPLE_STREAM_ID)
3163 perf_output_put(handle, data->stream_id);
3164
3165 if (sample_type & PERF_SAMPLE_CPU)
3166 perf_output_put(handle, data->cpu_entry);
3167
3168 if (sample_type & PERF_SAMPLE_PERIOD)
3169 perf_output_put(handle, data->period);
3170
3171 if (sample_type & PERF_SAMPLE_READ)
3172 perf_output_read(handle, event);
3173
3174 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3175 if (data->callchain) {
3176 int size = 1;
3177
3178 if (data->callchain)
3179 size += data->callchain->nr;
3180
3181 size *= sizeof(u64);
3182
3183 perf_output_copy(handle, data->callchain, size);
3184 } else {
3185 u64 nr = 0;
3186 perf_output_put(handle, nr);
3187 }
3188 }
3189
3190 if (sample_type & PERF_SAMPLE_RAW) {
3191 if (data->raw) {
3192 perf_output_put(handle, data->raw->size);
3193 perf_output_copy(handle, data->raw->data,
3194 data->raw->size);
3195 } else {
3196 struct {
3197 u32 size;
3198 u32 data;
3199 } raw = {
3200 .size = sizeof(u32),
3201 .data = 0,
3202 };
3203 perf_output_put(handle, raw);
3204 }
3205 }
3206}
3207
3208void perf_prepare_sample(struct perf_event_header *header,
3209 struct perf_sample_data *data,
3210 struct perf_event *event,
3211 struct pt_regs *regs)
3212{
3213 u64 sample_type = event->attr.sample_type;
3214
3215 data->type = sample_type;
3216
3217 header->type = PERF_RECORD_SAMPLE;
3218 header->size = sizeof(*header);
3219
3220 header->misc = 0;
3221 header->misc |= perf_misc_flags(regs);
3222
3223 if (sample_type & PERF_SAMPLE_IP) {
3224 data->ip = perf_instruction_pointer(regs);
3225
3226 header->size += sizeof(data->ip);
3227 }
3228
3229 if (sample_type & PERF_SAMPLE_TID) {
3230 /* namespace issues */
3231 data->tid_entry.pid = perf_event_pid(event, current);
3232 data->tid_entry.tid = perf_event_tid(event, current);
3233
3234 header->size += sizeof(data->tid_entry);
3235 }
3236
3237 if (sample_type & PERF_SAMPLE_TIME) {
3238 data->time = perf_clock();
3239
3240 header->size += sizeof(data->time);
3241 }
3242
3243 if (sample_type & PERF_SAMPLE_ADDR)
3244 header->size += sizeof(data->addr);
3245
3246 if (sample_type & PERF_SAMPLE_ID) {
3247 data->id = primary_event_id(event);
3248
3249 header->size += sizeof(data->id);
3250 }
3251
3252 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3253 data->stream_id = event->id;
3254
3255 header->size += sizeof(data->stream_id);
3256 }
3257
3258 if (sample_type & PERF_SAMPLE_CPU) {
3259 data->cpu_entry.cpu = raw_smp_processor_id();
3260 data->cpu_entry.reserved = 0;
3261
3262 header->size += sizeof(data->cpu_entry);
3263 }
3264
3265 if (sample_type & PERF_SAMPLE_PERIOD)
3266 header->size += sizeof(data->period);
3267
3268 if (sample_type & PERF_SAMPLE_READ)
3269 header->size += perf_event_read_size(event);
3270
3271 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3272 int size = 1;
3273
3274 data->callchain = perf_callchain(regs);
3275
3276 if (data->callchain)
3277 size += data->callchain->nr;
3278
3279 header->size += size * sizeof(u64);
3280 }
3281
3282 if (sample_type & PERF_SAMPLE_RAW) {
3283 int size = sizeof(u32);
3284
3285 if (data->raw)
3286 size += data->raw->size;
3287 else
3288 size += sizeof(u32);
3289
3290 WARN_ON_ONCE(size & (sizeof(u64)-1));
3291 header->size += size;
3292 }
3293}
3294
3295static void perf_event_output(struct perf_event *event, int nmi,
3296 struct perf_sample_data *data,
3297 struct pt_regs *regs)
3298{
3299 struct perf_output_handle handle;
3300 struct perf_event_header header;
3301
3302 perf_prepare_sample(&header, data, event, regs);
3303
3304 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3305 return;
3306
3307 perf_output_sample(&handle, &header, data, event);
3308
3309 perf_output_end(&handle);
3310}
3311
3312/*
3313 * read event_id
3314 */
3315
3316struct perf_read_event {
3317 struct perf_event_header header;
3318
3319 u32 pid;
3320 u32 tid;
3321};
3322
3323static void
3324perf_event_read_event(struct perf_event *event,
3325 struct task_struct *task)
3326{
3327 struct perf_output_handle handle;
3328 struct perf_read_event read_event = {
3329 .header = {
3330 .type = PERF_RECORD_READ,
3331 .misc = 0,
3332 .size = sizeof(read_event) + perf_event_read_size(event),
3333 },
3334 .pid = perf_event_pid(event, task),
3335 .tid = perf_event_tid(event, task),
3336 };
3337 int ret;
3338
3339 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3340 if (ret)
3341 return;
3342
3343 perf_output_put(&handle, read_event);
3344 perf_output_read(&handle, event);
3345
3346 perf_output_end(&handle);
3347}
3348
3349/*
3350 * task tracking -- fork/exit
3351 *
3352 * enabled by: attr.comm | attr.mmap | attr.task
3353 */
3354
3355struct perf_task_event {
3356 struct task_struct *task;
3357 struct perf_event_context *task_ctx;
3358
3359 struct {
3360 struct perf_event_header header;
3361
3362 u32 pid;
3363 u32 ppid;
3364 u32 tid;
3365 u32 ptid;
3366 u64 time;
3367 } event_id;
3368};
3369
3370static void perf_event_task_output(struct perf_event *event,
3371 struct perf_task_event *task_event)
3372{
3373 struct perf_output_handle handle;
3374 int size;
3375 struct task_struct *task = task_event->task;
3376 int ret;
3377
3378 size = task_event->event_id.header.size;
3379 ret = perf_output_begin(&handle, event, size, 0, 0);
3380
3381 if (ret)
3382 return;
3383
3384 task_event->event_id.pid = perf_event_pid(event, task);
3385 task_event->event_id.ppid = perf_event_pid(event, current);
3386
3387 task_event->event_id.tid = perf_event_tid(event, task);
3388 task_event->event_id.ptid = perf_event_tid(event, current);
3389
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003390 perf_output_put(&handle, task_event->event_id);
3391
3392 perf_output_end(&handle);
3393}
3394
3395static int perf_event_task_match(struct perf_event *event)
3396{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003397 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003398 return 0;
3399
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003400 if (event->cpu != -1 && event->cpu != smp_processor_id())
3401 return 0;
3402
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003403 if (event->attr.comm || event->attr.mmap || event->attr.task)
3404 return 1;
3405
3406 return 0;
3407}
3408
3409static void perf_event_task_ctx(struct perf_event_context *ctx,
3410 struct perf_task_event *task_event)
3411{
3412 struct perf_event *event;
3413
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003414 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3415 if (perf_event_task_match(event))
3416 perf_event_task_output(event, task_event);
3417 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003418}
3419
3420static void perf_event_task_event(struct perf_task_event *task_event)
3421{
3422 struct perf_cpu_context *cpuctx;
3423 struct perf_event_context *ctx = task_event->task_ctx;
3424
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003425 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003426 cpuctx = &get_cpu_var(perf_cpu_context);
3427 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003428 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003429 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003430 if (ctx)
3431 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003432 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003433 rcu_read_unlock();
3434}
3435
3436static void perf_event_task(struct task_struct *task,
3437 struct perf_event_context *task_ctx,
3438 int new)
3439{
3440 struct perf_task_event task_event;
3441
3442 if (!atomic_read(&nr_comm_events) &&
3443 !atomic_read(&nr_mmap_events) &&
3444 !atomic_read(&nr_task_events))
3445 return;
3446
3447 task_event = (struct perf_task_event){
3448 .task = task,
3449 .task_ctx = task_ctx,
3450 .event_id = {
3451 .header = {
3452 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3453 .misc = 0,
3454 .size = sizeof(task_event.event_id),
3455 },
3456 /* .pid */
3457 /* .ppid */
3458 /* .tid */
3459 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003460 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003461 },
3462 };
3463
3464 perf_event_task_event(&task_event);
3465}
3466
3467void perf_event_fork(struct task_struct *task)
3468{
3469 perf_event_task(task, NULL, 1);
3470}
3471
3472/*
3473 * comm tracking
3474 */
3475
3476struct perf_comm_event {
3477 struct task_struct *task;
3478 char *comm;
3479 int comm_size;
3480
3481 struct {
3482 struct perf_event_header header;
3483
3484 u32 pid;
3485 u32 tid;
3486 } event_id;
3487};
3488
3489static void perf_event_comm_output(struct perf_event *event,
3490 struct perf_comm_event *comm_event)
3491{
3492 struct perf_output_handle handle;
3493 int size = comm_event->event_id.header.size;
3494 int ret = perf_output_begin(&handle, event, size, 0, 0);
3495
3496 if (ret)
3497 return;
3498
3499 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3500 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3501
3502 perf_output_put(&handle, comm_event->event_id);
3503 perf_output_copy(&handle, comm_event->comm,
3504 comm_event->comm_size);
3505 perf_output_end(&handle);
3506}
3507
3508static int perf_event_comm_match(struct perf_event *event)
3509{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003510 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003511 return 0;
3512
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003513 if (event->cpu != -1 && event->cpu != smp_processor_id())
3514 return 0;
3515
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003516 if (event->attr.comm)
3517 return 1;
3518
3519 return 0;
3520}
3521
3522static void perf_event_comm_ctx(struct perf_event_context *ctx,
3523 struct perf_comm_event *comm_event)
3524{
3525 struct perf_event *event;
3526
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003527 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3528 if (perf_event_comm_match(event))
3529 perf_event_comm_output(event, comm_event);
3530 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003531}
3532
3533static void perf_event_comm_event(struct perf_comm_event *comm_event)
3534{
3535 struct perf_cpu_context *cpuctx;
3536 struct perf_event_context *ctx;
3537 unsigned int size;
3538 char comm[TASK_COMM_LEN];
3539
3540 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003541 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003542 size = ALIGN(strlen(comm)+1, sizeof(u64));
3543
3544 comm_event->comm = comm;
3545 comm_event->comm_size = size;
3546
3547 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3548
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003549 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003550 cpuctx = &get_cpu_var(perf_cpu_context);
3551 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003552 ctx = rcu_dereference(current->perf_event_ctxp);
3553 if (ctx)
3554 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003555 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003556 rcu_read_unlock();
3557}
3558
3559void perf_event_comm(struct task_struct *task)
3560{
3561 struct perf_comm_event comm_event;
3562
3563 if (task->perf_event_ctxp)
3564 perf_event_enable_on_exec(task);
3565
3566 if (!atomic_read(&nr_comm_events))
3567 return;
3568
3569 comm_event = (struct perf_comm_event){
3570 .task = task,
3571 /* .comm */
3572 /* .comm_size */
3573 .event_id = {
3574 .header = {
3575 .type = PERF_RECORD_COMM,
3576 .misc = 0,
3577 /* .size */
3578 },
3579 /* .pid */
3580 /* .tid */
3581 },
3582 };
3583
3584 perf_event_comm_event(&comm_event);
3585}
3586
3587/*
3588 * mmap tracking
3589 */
3590
3591struct perf_mmap_event {
3592 struct vm_area_struct *vma;
3593
3594 const char *file_name;
3595 int file_size;
3596
3597 struct {
3598 struct perf_event_header header;
3599
3600 u32 pid;
3601 u32 tid;
3602 u64 start;
3603 u64 len;
3604 u64 pgoff;
3605 } event_id;
3606};
3607
3608static void perf_event_mmap_output(struct perf_event *event,
3609 struct perf_mmap_event *mmap_event)
3610{
3611 struct perf_output_handle handle;
3612 int size = mmap_event->event_id.header.size;
3613 int ret = perf_output_begin(&handle, event, size, 0, 0);
3614
3615 if (ret)
3616 return;
3617
3618 mmap_event->event_id.pid = perf_event_pid(event, current);
3619 mmap_event->event_id.tid = perf_event_tid(event, current);
3620
3621 perf_output_put(&handle, mmap_event->event_id);
3622 perf_output_copy(&handle, mmap_event->file_name,
3623 mmap_event->file_size);
3624 perf_output_end(&handle);
3625}
3626
3627static int perf_event_mmap_match(struct perf_event *event,
3628 struct perf_mmap_event *mmap_event)
3629{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003630 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003631 return 0;
3632
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003633 if (event->cpu != -1 && event->cpu != smp_processor_id())
3634 return 0;
3635
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003636 if (event->attr.mmap)
3637 return 1;
3638
3639 return 0;
3640}
3641
3642static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3643 struct perf_mmap_event *mmap_event)
3644{
3645 struct perf_event *event;
3646
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003647 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3648 if (perf_event_mmap_match(event, mmap_event))
3649 perf_event_mmap_output(event, mmap_event);
3650 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003651}
3652
3653static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3654{
3655 struct perf_cpu_context *cpuctx;
3656 struct perf_event_context *ctx;
3657 struct vm_area_struct *vma = mmap_event->vma;
3658 struct file *file = vma->vm_file;
3659 unsigned int size;
3660 char tmp[16];
3661 char *buf = NULL;
3662 const char *name;
3663
3664 memset(tmp, 0, sizeof(tmp));
3665
3666 if (file) {
3667 /*
3668 * d_path works from the end of the buffer backwards, so we
3669 * need to add enough zero bytes after the string to handle
3670 * the 64bit alignment we do later.
3671 */
3672 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3673 if (!buf) {
3674 name = strncpy(tmp, "//enomem", sizeof(tmp));
3675 goto got_name;
3676 }
3677 name = d_path(&file->f_path, buf, PATH_MAX);
3678 if (IS_ERR(name)) {
3679 name = strncpy(tmp, "//toolong", sizeof(tmp));
3680 goto got_name;
3681 }
3682 } else {
3683 if (arch_vma_name(mmap_event->vma)) {
3684 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3685 sizeof(tmp));
3686 goto got_name;
3687 }
3688
3689 if (!vma->vm_mm) {
3690 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3691 goto got_name;
3692 }
3693
3694 name = strncpy(tmp, "//anon", sizeof(tmp));
3695 goto got_name;
3696 }
3697
3698got_name:
3699 size = ALIGN(strlen(name)+1, sizeof(u64));
3700
3701 mmap_event->file_name = name;
3702 mmap_event->file_size = size;
3703
3704 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3705
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003706 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003707 cpuctx = &get_cpu_var(perf_cpu_context);
3708 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003709 ctx = rcu_dereference(current->perf_event_ctxp);
3710 if (ctx)
3711 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003712 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003713 rcu_read_unlock();
3714
3715 kfree(buf);
3716}
3717
3718void __perf_event_mmap(struct vm_area_struct *vma)
3719{
3720 struct perf_mmap_event mmap_event;
3721
3722 if (!atomic_read(&nr_mmap_events))
3723 return;
3724
3725 mmap_event = (struct perf_mmap_event){
3726 .vma = vma,
3727 /* .file_name */
3728 /* .file_size */
3729 .event_id = {
3730 .header = {
3731 .type = PERF_RECORD_MMAP,
3732 .misc = 0,
3733 /* .size */
3734 },
3735 /* .pid */
3736 /* .tid */
3737 .start = vma->vm_start,
3738 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003739 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003740 },
3741 };
3742
3743 perf_event_mmap_event(&mmap_event);
3744}
3745
3746/*
3747 * IRQ throttle logging
3748 */
3749
3750static void perf_log_throttle(struct perf_event *event, int enable)
3751{
3752 struct perf_output_handle handle;
3753 int ret;
3754
3755 struct {
3756 struct perf_event_header header;
3757 u64 time;
3758 u64 id;
3759 u64 stream_id;
3760 } throttle_event = {
3761 .header = {
3762 .type = PERF_RECORD_THROTTLE,
3763 .misc = 0,
3764 .size = sizeof(throttle_event),
3765 },
3766 .time = perf_clock(),
3767 .id = primary_event_id(event),
3768 .stream_id = event->id,
3769 };
3770
3771 if (enable)
3772 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3773
3774 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3775 if (ret)
3776 return;
3777
3778 perf_output_put(&handle, throttle_event);
3779 perf_output_end(&handle);
3780}
3781
3782/*
3783 * Generic event overflow handling, sampling.
3784 */
3785
3786static int __perf_event_overflow(struct perf_event *event, int nmi,
3787 int throttle, struct perf_sample_data *data,
3788 struct pt_regs *regs)
3789{
3790 int events = atomic_read(&event->event_limit);
3791 struct hw_perf_event *hwc = &event->hw;
3792 int ret = 0;
3793
3794 throttle = (throttle && event->pmu->unthrottle != NULL);
3795
3796 if (!throttle) {
3797 hwc->interrupts++;
3798 } else {
3799 if (hwc->interrupts != MAX_INTERRUPTS) {
3800 hwc->interrupts++;
3801 if (HZ * hwc->interrupts >
3802 (u64)sysctl_perf_event_sample_rate) {
3803 hwc->interrupts = MAX_INTERRUPTS;
3804 perf_log_throttle(event, 0);
3805 ret = 1;
3806 }
3807 } else {
3808 /*
3809 * Keep re-disabling events even though on the previous
3810 * pass we disabled it - just in case we raced with a
3811 * sched-in and the event got enabled again:
3812 */
3813 ret = 1;
3814 }
3815 }
3816
3817 if (event->attr.freq) {
3818 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003819 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003820
Peter Zijlstraabd50712010-01-26 18:50:16 +01003821 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003822
Peter Zijlstraabd50712010-01-26 18:50:16 +01003823 if (delta > 0 && delta < 2*TICK_NSEC)
3824 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003825 }
3826
3827 /*
3828 * XXX event_limit might not quite work as expected on inherited
3829 * events
3830 */
3831
3832 event->pending_kill = POLL_IN;
3833 if (events && atomic_dec_and_test(&event->event_limit)) {
3834 ret = 1;
3835 event->pending_kill = POLL_HUP;
3836 if (nmi) {
3837 event->pending_disable = 1;
3838 perf_pending_queue(&event->pending,
3839 perf_pending_event);
3840 } else
3841 perf_event_disable(event);
3842 }
3843
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003844 if (event->overflow_handler)
3845 event->overflow_handler(event, nmi, data, regs);
3846 else
3847 perf_event_output(event, nmi, data, regs);
3848
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003849 return ret;
3850}
3851
3852int perf_event_overflow(struct perf_event *event, int nmi,
3853 struct perf_sample_data *data,
3854 struct pt_regs *regs)
3855{
3856 return __perf_event_overflow(event, nmi, 1, data, regs);
3857}
3858
3859/*
3860 * Generic software event infrastructure
3861 */
3862
3863/*
3864 * We directly increment event->count and keep a second value in
3865 * event->hw.period_left to count intervals. This period event
3866 * is kept in the range [-sample_period, 0] so that we can use the
3867 * sign as trigger.
3868 */
3869
3870static u64 perf_swevent_set_period(struct perf_event *event)
3871{
3872 struct hw_perf_event *hwc = &event->hw;
3873 u64 period = hwc->last_period;
3874 u64 nr, offset;
3875 s64 old, val;
3876
3877 hwc->last_period = hwc->sample_period;
3878
3879again:
3880 old = val = atomic64_read(&hwc->period_left);
3881 if (val < 0)
3882 return 0;
3883
3884 nr = div64_u64(period + val, period);
3885 offset = nr * period;
3886 val -= offset;
3887 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3888 goto again;
3889
3890 return nr;
3891}
3892
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003893static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003894 int nmi, struct perf_sample_data *data,
3895 struct pt_regs *regs)
3896{
3897 struct hw_perf_event *hwc = &event->hw;
3898 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003899
3900 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003901 if (!overflow)
3902 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003903
3904 if (hwc->interrupts == MAX_INTERRUPTS)
3905 return;
3906
3907 for (; overflow; overflow--) {
3908 if (__perf_event_overflow(event, nmi, throttle,
3909 data, regs)) {
3910 /*
3911 * We inhibit the overflow from happening when
3912 * hwc->interrupts == MAX_INTERRUPTS.
3913 */
3914 break;
3915 }
3916 throttle = 1;
3917 }
3918}
3919
3920static void perf_swevent_unthrottle(struct perf_event *event)
3921{
3922 /*
3923 * Nothing to do, we already reset hwc->interrupts.
3924 */
3925}
3926
3927static void perf_swevent_add(struct perf_event *event, u64 nr,
3928 int nmi, struct perf_sample_data *data,
3929 struct pt_regs *regs)
3930{
3931 struct hw_perf_event *hwc = &event->hw;
3932
3933 atomic64_add(nr, &event->count);
3934
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003935 if (!regs)
3936 return;
3937
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003938 if (!hwc->sample_period)
3939 return;
3940
3941 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3942 return perf_swevent_overflow(event, 1, nmi, data, regs);
3943
3944 if (atomic64_add_negative(nr, &hwc->period_left))
3945 return;
3946
3947 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003948}
3949
3950static int perf_swevent_is_counting(struct perf_event *event)
3951{
3952 /*
3953 * The event is active, we're good!
3954 */
3955 if (event->state == PERF_EVENT_STATE_ACTIVE)
3956 return 1;
3957
3958 /*
3959 * The event is off/error, not counting.
3960 */
3961 if (event->state != PERF_EVENT_STATE_INACTIVE)
3962 return 0;
3963
3964 /*
3965 * The event is inactive, if the context is active
3966 * we're part of a group that didn't make it on the 'pmu',
3967 * not counting.
3968 */
3969 if (event->ctx->is_active)
3970 return 0;
3971
3972 /*
3973 * We're inactive and the context is too, this means the
3974 * task is scheduled out, we're counting events that happen
3975 * to us, like migration events.
3976 */
3977 return 1;
3978}
3979
Li Zefan6fb29152009-10-15 11:21:42 +08003980static int perf_tp_event_match(struct perf_event *event,
3981 struct perf_sample_data *data);
3982
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003983static int perf_exclude_event(struct perf_event *event,
3984 struct pt_regs *regs)
3985{
3986 if (regs) {
3987 if (event->attr.exclude_user && user_mode(regs))
3988 return 1;
3989
3990 if (event->attr.exclude_kernel && !user_mode(regs))
3991 return 1;
3992 }
3993
3994 return 0;
3995}
3996
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003997static int perf_swevent_match(struct perf_event *event,
3998 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003999 u32 event_id,
4000 struct perf_sample_data *data,
4001 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004002{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004003 if (event->cpu != -1 && event->cpu != smp_processor_id())
4004 return 0;
4005
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004006 if (!perf_swevent_is_counting(event))
4007 return 0;
4008
4009 if (event->attr.type != type)
4010 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004011
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004012 if (event->attr.config != event_id)
4013 return 0;
4014
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004015 if (perf_exclude_event(event, regs))
4016 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004017
Li Zefan6fb29152009-10-15 11:21:42 +08004018 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4019 !perf_tp_event_match(event, data))
4020 return 0;
4021
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004022 return 1;
4023}
4024
4025static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4026 enum perf_type_id type,
4027 u32 event_id, u64 nr, int nmi,
4028 struct perf_sample_data *data,
4029 struct pt_regs *regs)
4030{
4031 struct perf_event *event;
4032
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004033 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004034 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004035 perf_swevent_add(event, nr, nmi, data, regs);
4036 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004037}
4038
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004039int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004040{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004041 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4042 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004043
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004044 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004045 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004046 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004047 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004048 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004049 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004050 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004051 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004052
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004053 if (cpuctx->recursion[rctx]) {
4054 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004055 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004056 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004057
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004058 cpuctx->recursion[rctx]++;
4059 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004060
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004061 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004062}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004063EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004064
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004065void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004066{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004067 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4068 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004069 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004070 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004071}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004072EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004073
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004074static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4075 u64 nr, int nmi,
4076 struct perf_sample_data *data,
4077 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004078{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004079 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004080 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004081
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004082 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004083 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004084 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4085 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004086 /*
4087 * doesn't really matter which of the child contexts the
4088 * events ends up in.
4089 */
4090 ctx = rcu_dereference(current->perf_event_ctxp);
4091 if (ctx)
4092 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4093 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004094}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004095
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004096void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4097 struct pt_regs *regs, u64 addr)
4098{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004099 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004100 int rctx;
4101
4102 rctx = perf_swevent_get_recursion_context();
4103 if (rctx < 0)
4104 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004105
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004106 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004107
4108 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004109
4110 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004111}
4112
4113static void perf_swevent_read(struct perf_event *event)
4114{
4115}
4116
4117static int perf_swevent_enable(struct perf_event *event)
4118{
4119 struct hw_perf_event *hwc = &event->hw;
4120
4121 if (hwc->sample_period) {
4122 hwc->last_period = hwc->sample_period;
4123 perf_swevent_set_period(event);
4124 }
4125 return 0;
4126}
4127
4128static void perf_swevent_disable(struct perf_event *event)
4129{
4130}
4131
4132static const struct pmu perf_ops_generic = {
4133 .enable = perf_swevent_enable,
4134 .disable = perf_swevent_disable,
4135 .read = perf_swevent_read,
4136 .unthrottle = perf_swevent_unthrottle,
4137};
4138
4139/*
4140 * hrtimer based swevent callback
4141 */
4142
4143static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4144{
4145 enum hrtimer_restart ret = HRTIMER_RESTART;
4146 struct perf_sample_data data;
4147 struct pt_regs *regs;
4148 struct perf_event *event;
4149 u64 period;
4150
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004151 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004152 event->pmu->read(event);
4153
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004154 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004155 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004156 regs = get_irq_regs();
4157 /*
4158 * In case we exclude kernel IPs or are somehow not in interrupt
4159 * context, provide the next best thing, the user IP.
4160 */
4161 if ((event->attr.exclude_kernel || !regs) &&
4162 !event->attr.exclude_user)
4163 regs = task_pt_regs(current);
4164
4165 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004166 if (!(event->attr.exclude_idle && current->pid == 0))
4167 if (perf_event_overflow(event, 0, &data, regs))
4168 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004169 }
4170
4171 period = max_t(u64, 10000, event->hw.sample_period);
4172 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4173
4174 return ret;
4175}
4176
Soeren Sandmann721a6692009-09-15 14:33:08 +02004177static void perf_swevent_start_hrtimer(struct perf_event *event)
4178{
4179 struct hw_perf_event *hwc = &event->hw;
4180
4181 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4182 hwc->hrtimer.function = perf_swevent_hrtimer;
4183 if (hwc->sample_period) {
4184 u64 period;
4185
4186 if (hwc->remaining) {
4187 if (hwc->remaining < 0)
4188 period = 10000;
4189 else
4190 period = hwc->remaining;
4191 hwc->remaining = 0;
4192 } else {
4193 period = max_t(u64, 10000, hwc->sample_period);
4194 }
4195 __hrtimer_start_range_ns(&hwc->hrtimer,
4196 ns_to_ktime(period), 0,
4197 HRTIMER_MODE_REL, 0);
4198 }
4199}
4200
4201static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4202{
4203 struct hw_perf_event *hwc = &event->hw;
4204
4205 if (hwc->sample_period) {
4206 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4207 hwc->remaining = ktime_to_ns(remaining);
4208
4209 hrtimer_cancel(&hwc->hrtimer);
4210 }
4211}
4212
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004213/*
4214 * Software event: cpu wall time clock
4215 */
4216
4217static void cpu_clock_perf_event_update(struct perf_event *event)
4218{
4219 int cpu = raw_smp_processor_id();
4220 s64 prev;
4221 u64 now;
4222
4223 now = cpu_clock(cpu);
Xiao Guangrongec89a062009-12-09 11:30:36 +08004224 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004225 atomic64_add(now - prev, &event->count);
4226}
4227
4228static int cpu_clock_perf_event_enable(struct perf_event *event)
4229{
4230 struct hw_perf_event *hwc = &event->hw;
4231 int cpu = raw_smp_processor_id();
4232
4233 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004234 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004235
4236 return 0;
4237}
4238
4239static void cpu_clock_perf_event_disable(struct perf_event *event)
4240{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004241 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004242 cpu_clock_perf_event_update(event);
4243}
4244
4245static void cpu_clock_perf_event_read(struct perf_event *event)
4246{
4247 cpu_clock_perf_event_update(event);
4248}
4249
4250static const struct pmu perf_ops_cpu_clock = {
4251 .enable = cpu_clock_perf_event_enable,
4252 .disable = cpu_clock_perf_event_disable,
4253 .read = cpu_clock_perf_event_read,
4254};
4255
4256/*
4257 * Software event: task time clock
4258 */
4259
4260static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4261{
4262 u64 prev;
4263 s64 delta;
4264
4265 prev = atomic64_xchg(&event->hw.prev_count, now);
4266 delta = now - prev;
4267 atomic64_add(delta, &event->count);
4268}
4269
4270static int task_clock_perf_event_enable(struct perf_event *event)
4271{
4272 struct hw_perf_event *hwc = &event->hw;
4273 u64 now;
4274
4275 now = event->ctx->time;
4276
4277 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004278
4279 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004280
4281 return 0;
4282}
4283
4284static void task_clock_perf_event_disable(struct perf_event *event)
4285{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004286 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004287 task_clock_perf_event_update(event, event->ctx->time);
4288
4289}
4290
4291static void task_clock_perf_event_read(struct perf_event *event)
4292{
4293 u64 time;
4294
4295 if (!in_nmi()) {
4296 update_context_time(event->ctx);
4297 time = event->ctx->time;
4298 } else {
4299 u64 now = perf_clock();
4300 u64 delta = now - event->ctx->timestamp;
4301 time = event->ctx->time + delta;
4302 }
4303
4304 task_clock_perf_event_update(event, time);
4305}
4306
4307static const struct pmu perf_ops_task_clock = {
4308 .enable = task_clock_perf_event_enable,
4309 .disable = task_clock_perf_event_disable,
4310 .read = task_clock_perf_event_read,
4311};
4312
Li Zefan07b139c2009-12-21 14:27:35 +08004313#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004314
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004315void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4316 int entry_size)
4317{
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004318 struct pt_regs *regs = get_irq_regs();
4319 struct perf_sample_data data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004320 struct perf_raw_record raw = {
4321 .size = entry_size,
4322 .data = record,
4323 };
4324
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004325 perf_sample_data_init(&data, addr);
4326 data.raw = &raw;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004327
4328 if (!regs)
4329 regs = task_pt_regs(current);
4330
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004331 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004332 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004333 &data, regs);
4334}
4335EXPORT_SYMBOL_GPL(perf_tp_event);
4336
Li Zefan6fb29152009-10-15 11:21:42 +08004337static int perf_tp_event_match(struct perf_event *event,
4338 struct perf_sample_data *data)
4339{
4340 void *record = data->raw->data;
4341
4342 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4343 return 1;
4344 return 0;
4345}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004346
4347static void tp_perf_event_destroy(struct perf_event *event)
4348{
4349 ftrace_profile_disable(event->attr.config);
4350}
4351
4352static const struct pmu *tp_perf_event_init(struct perf_event *event)
4353{
4354 /*
4355 * Raw tracepoint data is a severe data leak, only allow root to
4356 * have these.
4357 */
4358 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4359 perf_paranoid_tracepoint_raw() &&
4360 !capable(CAP_SYS_ADMIN))
4361 return ERR_PTR(-EPERM);
4362
4363 if (ftrace_profile_enable(event->attr.config))
4364 return NULL;
4365
4366 event->destroy = tp_perf_event_destroy;
4367
4368 return &perf_ops_generic;
4369}
Li Zefan6fb29152009-10-15 11:21:42 +08004370
4371static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4372{
4373 char *filter_str;
4374 int ret;
4375
4376 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4377 return -EINVAL;
4378
4379 filter_str = strndup_user(arg, PAGE_SIZE);
4380 if (IS_ERR(filter_str))
4381 return PTR_ERR(filter_str);
4382
4383 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4384
4385 kfree(filter_str);
4386 return ret;
4387}
4388
4389static void perf_event_free_filter(struct perf_event *event)
4390{
4391 ftrace_profile_free_filter(event);
4392}
4393
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004394#else
Li Zefan6fb29152009-10-15 11:21:42 +08004395
4396static int perf_tp_event_match(struct perf_event *event,
4397 struct perf_sample_data *data)
4398{
4399 return 1;
4400}
4401
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004402static const struct pmu *tp_perf_event_init(struct perf_event *event)
4403{
4404 return NULL;
4405}
Li Zefan6fb29152009-10-15 11:21:42 +08004406
4407static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4408{
4409 return -ENOENT;
4410}
4411
4412static void perf_event_free_filter(struct perf_event *event)
4413{
4414}
4415
Li Zefan07b139c2009-12-21 14:27:35 +08004416#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004417
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004418#ifdef CONFIG_HAVE_HW_BREAKPOINT
4419static void bp_perf_event_destroy(struct perf_event *event)
4420{
4421 release_bp_slot(event);
4422}
4423
4424static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4425{
4426 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004427
4428 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004429 if (err)
4430 return ERR_PTR(err);
4431
4432 bp->destroy = bp_perf_event_destroy;
4433
4434 return &perf_ops_bp;
4435}
4436
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004437void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004438{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004439 struct perf_sample_data sample;
4440 struct pt_regs *regs = data;
4441
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004442 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004443
4444 if (!perf_exclude_event(bp, regs))
4445 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004446}
4447#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004448static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4449{
4450 return NULL;
4451}
4452
4453void perf_bp_event(struct perf_event *bp, void *regs)
4454{
4455}
4456#endif
4457
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004458atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4459
4460static void sw_perf_event_destroy(struct perf_event *event)
4461{
4462 u64 event_id = event->attr.config;
4463
4464 WARN_ON(event->parent);
4465
4466 atomic_dec(&perf_swevent_enabled[event_id]);
4467}
4468
4469static const struct pmu *sw_perf_event_init(struct perf_event *event)
4470{
4471 const struct pmu *pmu = NULL;
4472 u64 event_id = event->attr.config;
4473
4474 /*
4475 * Software events (currently) can't in general distinguish
4476 * between user, kernel and hypervisor events.
4477 * However, context switches and cpu migrations are considered
4478 * to be kernel events, and page faults are never hypervisor
4479 * events.
4480 */
4481 switch (event_id) {
4482 case PERF_COUNT_SW_CPU_CLOCK:
4483 pmu = &perf_ops_cpu_clock;
4484
4485 break;
4486 case PERF_COUNT_SW_TASK_CLOCK:
4487 /*
4488 * If the user instantiates this as a per-cpu event,
4489 * use the cpu_clock event instead.
4490 */
4491 if (event->ctx->task)
4492 pmu = &perf_ops_task_clock;
4493 else
4494 pmu = &perf_ops_cpu_clock;
4495
4496 break;
4497 case PERF_COUNT_SW_PAGE_FAULTS:
4498 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4499 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4500 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4501 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004502 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4503 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004504 if (!event->parent) {
4505 atomic_inc(&perf_swevent_enabled[event_id]);
4506 event->destroy = sw_perf_event_destroy;
4507 }
4508 pmu = &perf_ops_generic;
4509 break;
4510 }
4511
4512 return pmu;
4513}
4514
4515/*
4516 * Allocate and initialize a event structure
4517 */
4518static struct perf_event *
4519perf_event_alloc(struct perf_event_attr *attr,
4520 int cpu,
4521 struct perf_event_context *ctx,
4522 struct perf_event *group_leader,
4523 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004524 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004525 gfp_t gfpflags)
4526{
4527 const struct pmu *pmu;
4528 struct perf_event *event;
4529 struct hw_perf_event *hwc;
4530 long err;
4531
4532 event = kzalloc(sizeof(*event), gfpflags);
4533 if (!event)
4534 return ERR_PTR(-ENOMEM);
4535
4536 /*
4537 * Single events are their own group leaders, with an
4538 * empty sibling list:
4539 */
4540 if (!group_leader)
4541 group_leader = event;
4542
4543 mutex_init(&event->child_mutex);
4544 INIT_LIST_HEAD(&event->child_list);
4545
4546 INIT_LIST_HEAD(&event->group_entry);
4547 INIT_LIST_HEAD(&event->event_entry);
4548 INIT_LIST_HEAD(&event->sibling_list);
4549 init_waitqueue_head(&event->waitq);
4550
4551 mutex_init(&event->mmap_mutex);
4552
4553 event->cpu = cpu;
4554 event->attr = *attr;
4555 event->group_leader = group_leader;
4556 event->pmu = NULL;
4557 event->ctx = ctx;
4558 event->oncpu = -1;
4559
4560 event->parent = parent_event;
4561
4562 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4563 event->id = atomic64_inc_return(&perf_event_id);
4564
4565 event->state = PERF_EVENT_STATE_INACTIVE;
4566
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004567 if (!overflow_handler && parent_event)
4568 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004569
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004570 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004571
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004572 if (attr->disabled)
4573 event->state = PERF_EVENT_STATE_OFF;
4574
4575 pmu = NULL;
4576
4577 hwc = &event->hw;
4578 hwc->sample_period = attr->sample_period;
4579 if (attr->freq && attr->sample_freq)
4580 hwc->sample_period = 1;
4581 hwc->last_period = hwc->sample_period;
4582
4583 atomic64_set(&hwc->period_left, hwc->sample_period);
4584
4585 /*
4586 * we currently do not support PERF_FORMAT_GROUP on inherited events
4587 */
4588 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4589 goto done;
4590
4591 switch (attr->type) {
4592 case PERF_TYPE_RAW:
4593 case PERF_TYPE_HARDWARE:
4594 case PERF_TYPE_HW_CACHE:
4595 pmu = hw_perf_event_init(event);
4596 break;
4597
4598 case PERF_TYPE_SOFTWARE:
4599 pmu = sw_perf_event_init(event);
4600 break;
4601
4602 case PERF_TYPE_TRACEPOINT:
4603 pmu = tp_perf_event_init(event);
4604 break;
4605
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004606 case PERF_TYPE_BREAKPOINT:
4607 pmu = bp_perf_event_init(event);
4608 break;
4609
4610
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004611 default:
4612 break;
4613 }
4614done:
4615 err = 0;
4616 if (!pmu)
4617 err = -EINVAL;
4618 else if (IS_ERR(pmu))
4619 err = PTR_ERR(pmu);
4620
4621 if (err) {
4622 if (event->ns)
4623 put_pid_ns(event->ns);
4624 kfree(event);
4625 return ERR_PTR(err);
4626 }
4627
4628 event->pmu = pmu;
4629
4630 if (!event->parent) {
4631 atomic_inc(&nr_events);
4632 if (event->attr.mmap)
4633 atomic_inc(&nr_mmap_events);
4634 if (event->attr.comm)
4635 atomic_inc(&nr_comm_events);
4636 if (event->attr.task)
4637 atomic_inc(&nr_task_events);
4638 }
4639
4640 return event;
4641}
4642
4643static int perf_copy_attr(struct perf_event_attr __user *uattr,
4644 struct perf_event_attr *attr)
4645{
4646 u32 size;
4647 int ret;
4648
4649 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4650 return -EFAULT;
4651
4652 /*
4653 * zero the full structure, so that a short copy will be nice.
4654 */
4655 memset(attr, 0, sizeof(*attr));
4656
4657 ret = get_user(size, &uattr->size);
4658 if (ret)
4659 return ret;
4660
4661 if (size > PAGE_SIZE) /* silly large */
4662 goto err_size;
4663
4664 if (!size) /* abi compat */
4665 size = PERF_ATTR_SIZE_VER0;
4666
4667 if (size < PERF_ATTR_SIZE_VER0)
4668 goto err_size;
4669
4670 /*
4671 * If we're handed a bigger struct than we know of,
4672 * ensure all the unknown bits are 0 - i.e. new
4673 * user-space does not rely on any kernel feature
4674 * extensions we dont know about yet.
4675 */
4676 if (size > sizeof(*attr)) {
4677 unsigned char __user *addr;
4678 unsigned char __user *end;
4679 unsigned char val;
4680
4681 addr = (void __user *)uattr + sizeof(*attr);
4682 end = (void __user *)uattr + size;
4683
4684 for (; addr < end; addr++) {
4685 ret = get_user(val, addr);
4686 if (ret)
4687 return ret;
4688 if (val)
4689 goto err_size;
4690 }
4691 size = sizeof(*attr);
4692 }
4693
4694 ret = copy_from_user(attr, uattr, size);
4695 if (ret)
4696 return -EFAULT;
4697
4698 /*
4699 * If the type exists, the corresponding creation will verify
4700 * the attr->config.
4701 */
4702 if (attr->type >= PERF_TYPE_MAX)
4703 return -EINVAL;
4704
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304705 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004706 return -EINVAL;
4707
4708 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4709 return -EINVAL;
4710
4711 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4712 return -EINVAL;
4713
4714out:
4715 return ret;
4716
4717err_size:
4718 put_user(sizeof(*attr), &uattr->size);
4719 ret = -E2BIG;
4720 goto out;
4721}
4722
Li Zefan6fb29152009-10-15 11:21:42 +08004723static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004724{
4725 struct perf_event *output_event = NULL;
4726 struct file *output_file = NULL;
4727 struct perf_event *old_output;
4728 int fput_needed = 0;
4729 int ret = -EINVAL;
4730
4731 if (!output_fd)
4732 goto set;
4733
4734 output_file = fget_light(output_fd, &fput_needed);
4735 if (!output_file)
4736 return -EBADF;
4737
4738 if (output_file->f_op != &perf_fops)
4739 goto out;
4740
4741 output_event = output_file->private_data;
4742
4743 /* Don't chain output fds */
4744 if (output_event->output)
4745 goto out;
4746
4747 /* Don't set an output fd when we already have an output channel */
4748 if (event->data)
4749 goto out;
4750
4751 atomic_long_inc(&output_file->f_count);
4752
4753set:
4754 mutex_lock(&event->mmap_mutex);
4755 old_output = event->output;
4756 rcu_assign_pointer(event->output, output_event);
4757 mutex_unlock(&event->mmap_mutex);
4758
4759 if (old_output) {
4760 /*
4761 * we need to make sure no existing perf_output_*()
4762 * is still referencing this event.
4763 */
4764 synchronize_rcu();
4765 fput(old_output->filp);
4766 }
4767
4768 ret = 0;
4769out:
4770 fput_light(output_file, fput_needed);
4771 return ret;
4772}
4773
4774/**
4775 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4776 *
4777 * @attr_uptr: event_id type attributes for monitoring/sampling
4778 * @pid: target pid
4779 * @cpu: target cpu
4780 * @group_fd: group leader event fd
4781 */
4782SYSCALL_DEFINE5(perf_event_open,
4783 struct perf_event_attr __user *, attr_uptr,
4784 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4785{
4786 struct perf_event *event, *group_leader;
4787 struct perf_event_attr attr;
4788 struct perf_event_context *ctx;
4789 struct file *event_file = NULL;
4790 struct file *group_file = NULL;
4791 int fput_needed = 0;
4792 int fput_needed2 = 0;
4793 int err;
4794
4795 /* for future expandability... */
4796 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4797 return -EINVAL;
4798
4799 err = perf_copy_attr(attr_uptr, &attr);
4800 if (err)
4801 return err;
4802
4803 if (!attr.exclude_kernel) {
4804 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4805 return -EACCES;
4806 }
4807
4808 if (attr.freq) {
4809 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4810 return -EINVAL;
4811 }
4812
4813 /*
4814 * Get the target context (task or percpu):
4815 */
4816 ctx = find_get_context(pid, cpu);
4817 if (IS_ERR(ctx))
4818 return PTR_ERR(ctx);
4819
4820 /*
4821 * Look up the group leader (we will attach this event to it):
4822 */
4823 group_leader = NULL;
4824 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4825 err = -EINVAL;
4826 group_file = fget_light(group_fd, &fput_needed);
4827 if (!group_file)
4828 goto err_put_context;
4829 if (group_file->f_op != &perf_fops)
4830 goto err_put_context;
4831
4832 group_leader = group_file->private_data;
4833 /*
4834 * Do not allow a recursive hierarchy (this new sibling
4835 * becoming part of another group-sibling):
4836 */
4837 if (group_leader->group_leader != group_leader)
4838 goto err_put_context;
4839 /*
4840 * Do not allow to attach to a group in a different
4841 * task or CPU context:
4842 */
4843 if (group_leader->ctx != ctx)
4844 goto err_put_context;
4845 /*
4846 * Only a group leader can be exclusive or pinned
4847 */
4848 if (attr.exclusive || attr.pinned)
4849 goto err_put_context;
4850 }
4851
4852 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004853 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004854 err = PTR_ERR(event);
4855 if (IS_ERR(event))
4856 goto err_put_context;
4857
Roland Dreier628ff7c2009-12-18 09:41:24 -08004858 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004859 if (err < 0)
4860 goto err_free_put_context;
4861
4862 event_file = fget_light(err, &fput_needed2);
4863 if (!event_file)
4864 goto err_free_put_context;
4865
4866 if (flags & PERF_FLAG_FD_OUTPUT) {
4867 err = perf_event_set_output(event, group_fd);
4868 if (err)
4869 goto err_fput_free_put_context;
4870 }
4871
4872 event->filp = event_file;
4873 WARN_ON_ONCE(ctx->parent_ctx);
4874 mutex_lock(&ctx->mutex);
4875 perf_install_in_context(ctx, event, cpu);
4876 ++ctx->generation;
4877 mutex_unlock(&ctx->mutex);
4878
4879 event->owner = current;
4880 get_task_struct(current);
4881 mutex_lock(&current->perf_event_mutex);
4882 list_add_tail(&event->owner_entry, &current->perf_event_list);
4883 mutex_unlock(&current->perf_event_mutex);
4884
4885err_fput_free_put_context:
4886 fput_light(event_file, fput_needed2);
4887
4888err_free_put_context:
4889 if (err < 0)
4890 kfree(event);
4891
4892err_put_context:
4893 if (err < 0)
4894 put_ctx(ctx);
4895
4896 fput_light(group_file, fput_needed);
4897
4898 return err;
4899}
4900
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004901/**
4902 * perf_event_create_kernel_counter
4903 *
4904 * @attr: attributes of the counter to create
4905 * @cpu: cpu in which the counter is bound
4906 * @pid: task to profile
4907 */
4908struct perf_event *
4909perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004910 pid_t pid,
4911 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004912{
4913 struct perf_event *event;
4914 struct perf_event_context *ctx;
4915 int err;
4916
4917 /*
4918 * Get the target context (task or percpu):
4919 */
4920
4921 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004922 if (IS_ERR(ctx)) {
4923 err = PTR_ERR(ctx);
4924 goto err_exit;
4925 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004926
4927 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004928 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004929 if (IS_ERR(event)) {
4930 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004931 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004932 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004933
4934 event->filp = NULL;
4935 WARN_ON_ONCE(ctx->parent_ctx);
4936 mutex_lock(&ctx->mutex);
4937 perf_install_in_context(ctx, event, cpu);
4938 ++ctx->generation;
4939 mutex_unlock(&ctx->mutex);
4940
4941 event->owner = current;
4942 get_task_struct(current);
4943 mutex_lock(&current->perf_event_mutex);
4944 list_add_tail(&event->owner_entry, &current->perf_event_list);
4945 mutex_unlock(&current->perf_event_mutex);
4946
4947 return event;
4948
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004949 err_put_context:
4950 put_ctx(ctx);
4951 err_exit:
4952 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004953}
4954EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4955
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004956/*
4957 * inherit a event from parent task to child task:
4958 */
4959static struct perf_event *
4960inherit_event(struct perf_event *parent_event,
4961 struct task_struct *parent,
4962 struct perf_event_context *parent_ctx,
4963 struct task_struct *child,
4964 struct perf_event *group_leader,
4965 struct perf_event_context *child_ctx)
4966{
4967 struct perf_event *child_event;
4968
4969 /*
4970 * Instead of creating recursive hierarchies of events,
4971 * we link inherited events back to the original parent,
4972 * which has a filp for sure, which we use as the reference
4973 * count:
4974 */
4975 if (parent_event->parent)
4976 parent_event = parent_event->parent;
4977
4978 child_event = perf_event_alloc(&parent_event->attr,
4979 parent_event->cpu, child_ctx,
4980 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004981 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004982 if (IS_ERR(child_event))
4983 return child_event;
4984 get_ctx(child_ctx);
4985
4986 /*
4987 * Make the child state follow the state of the parent event,
4988 * not its attr.disabled bit. We hold the parent's mutex,
4989 * so we won't race with perf_event_{en, dis}able_family.
4990 */
4991 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4992 child_event->state = PERF_EVENT_STATE_INACTIVE;
4993 else
4994 child_event->state = PERF_EVENT_STATE_OFF;
4995
Peter Zijlstra75c9f322010-01-29 09:04:26 +01004996 if (parent_event->attr.freq) {
4997 u64 sample_period = parent_event->hw.sample_period;
4998 struct hw_perf_event *hwc = &child_event->hw;
4999
5000 hwc->sample_period = sample_period;
5001 hwc->last_period = sample_period;
5002
5003 atomic64_set(&hwc->period_left, sample_period);
5004 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005005
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005006 child_event->overflow_handler = parent_event->overflow_handler;
5007
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005008 /*
5009 * Link it up in the child's context:
5010 */
5011 add_event_to_ctx(child_event, child_ctx);
5012
5013 /*
5014 * Get a reference to the parent filp - we will fput it
5015 * when the child event exits. This is safe to do because
5016 * we are in the parent and we know that the filp still
5017 * exists and has a nonzero count:
5018 */
5019 atomic_long_inc(&parent_event->filp->f_count);
5020
5021 /*
5022 * Link this into the parent event's child list
5023 */
5024 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5025 mutex_lock(&parent_event->child_mutex);
5026 list_add_tail(&child_event->child_list, &parent_event->child_list);
5027 mutex_unlock(&parent_event->child_mutex);
5028
5029 return child_event;
5030}
5031
5032static int inherit_group(struct perf_event *parent_event,
5033 struct task_struct *parent,
5034 struct perf_event_context *parent_ctx,
5035 struct task_struct *child,
5036 struct perf_event_context *child_ctx)
5037{
5038 struct perf_event *leader;
5039 struct perf_event *sub;
5040 struct perf_event *child_ctr;
5041
5042 leader = inherit_event(parent_event, parent, parent_ctx,
5043 child, NULL, child_ctx);
5044 if (IS_ERR(leader))
5045 return PTR_ERR(leader);
5046 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5047 child_ctr = inherit_event(sub, parent, parent_ctx,
5048 child, leader, child_ctx);
5049 if (IS_ERR(child_ctr))
5050 return PTR_ERR(child_ctr);
5051 }
5052 return 0;
5053}
5054
5055static void sync_child_event(struct perf_event *child_event,
5056 struct task_struct *child)
5057{
5058 struct perf_event *parent_event = child_event->parent;
5059 u64 child_val;
5060
5061 if (child_event->attr.inherit_stat)
5062 perf_event_read_event(child_event, child);
5063
5064 child_val = atomic64_read(&child_event->count);
5065
5066 /*
5067 * Add back the child's count to the parent's count:
5068 */
5069 atomic64_add(child_val, &parent_event->count);
5070 atomic64_add(child_event->total_time_enabled,
5071 &parent_event->child_total_time_enabled);
5072 atomic64_add(child_event->total_time_running,
5073 &parent_event->child_total_time_running);
5074
5075 /*
5076 * Remove this event from the parent's list
5077 */
5078 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5079 mutex_lock(&parent_event->child_mutex);
5080 list_del_init(&child_event->child_list);
5081 mutex_unlock(&parent_event->child_mutex);
5082
5083 /*
5084 * Release the parent event, if this was the last
5085 * reference to it.
5086 */
5087 fput(parent_event->filp);
5088}
5089
5090static void
5091__perf_event_exit_task(struct perf_event *child_event,
5092 struct perf_event_context *child_ctx,
5093 struct task_struct *child)
5094{
5095 struct perf_event *parent_event;
5096
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005097 perf_event_remove_from_context(child_event);
5098
5099 parent_event = child_event->parent;
5100 /*
5101 * It can happen that parent exits first, and has events
5102 * that are still around due to the child reference. These
5103 * events need to be zapped - but otherwise linger.
5104 */
5105 if (parent_event) {
5106 sync_child_event(child_event, child);
5107 free_event(child_event);
5108 }
5109}
5110
5111/*
5112 * When a child task exits, feed back event values to parent events.
5113 */
5114void perf_event_exit_task(struct task_struct *child)
5115{
5116 struct perf_event *child_event, *tmp;
5117 struct perf_event_context *child_ctx;
5118 unsigned long flags;
5119
5120 if (likely(!child->perf_event_ctxp)) {
5121 perf_event_task(child, NULL, 0);
5122 return;
5123 }
5124
5125 local_irq_save(flags);
5126 /*
5127 * We can't reschedule here because interrupts are disabled,
5128 * and either child is current or it is a task that can't be
5129 * scheduled, so we are now safe from rescheduling changing
5130 * our context.
5131 */
5132 child_ctx = child->perf_event_ctxp;
5133 __perf_event_task_sched_out(child_ctx);
5134
5135 /*
5136 * Take the context lock here so that if find_get_context is
5137 * reading child->perf_event_ctxp, we wait until it has
5138 * incremented the context's refcount before we do put_ctx below.
5139 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005140 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005141 child->perf_event_ctxp = NULL;
5142 /*
5143 * If this context is a clone; unclone it so it can't get
5144 * swapped to another process while we're removing all
5145 * the events from it.
5146 */
5147 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005148 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005149 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005150
5151 /*
5152 * Report the task dead after unscheduling the events so that we
5153 * won't get any samples after PERF_RECORD_EXIT. We can however still
5154 * get a few PERF_RECORD_READ events.
5155 */
5156 perf_event_task(child, child_ctx, 0);
5157
5158 /*
5159 * We can recurse on the same lock type through:
5160 *
5161 * __perf_event_exit_task()
5162 * sync_child_event()
5163 * fput(parent_event->filp)
5164 * perf_release()
5165 * mutex_lock(&ctx->mutex)
5166 *
5167 * But since its the parent context it won't be the same instance.
5168 */
5169 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5170
5171again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005172 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5173 group_entry)
5174 __perf_event_exit_task(child_event, child_ctx, child);
5175
5176 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005177 group_entry)
5178 __perf_event_exit_task(child_event, child_ctx, child);
5179
5180 /*
5181 * If the last event was a group event, it will have appended all
5182 * its siblings to the list, but we obtained 'tmp' before that which
5183 * will still point to the list head terminating the iteration.
5184 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005185 if (!list_empty(&child_ctx->pinned_groups) ||
5186 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005187 goto again;
5188
5189 mutex_unlock(&child_ctx->mutex);
5190
5191 put_ctx(child_ctx);
5192}
5193
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005194static void perf_free_event(struct perf_event *event,
5195 struct perf_event_context *ctx)
5196{
5197 struct perf_event *parent = event->parent;
5198
5199 if (WARN_ON_ONCE(!parent))
5200 return;
5201
5202 mutex_lock(&parent->child_mutex);
5203 list_del_init(&event->child_list);
5204 mutex_unlock(&parent->child_mutex);
5205
5206 fput(parent->filp);
5207
5208 list_del_event(event, ctx);
5209 free_event(event);
5210}
5211
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005212/*
5213 * free an unexposed, unused context as created by inheritance by
5214 * init_task below, used by fork() in case of fail.
5215 */
5216void perf_event_free_task(struct task_struct *task)
5217{
5218 struct perf_event_context *ctx = task->perf_event_ctxp;
5219 struct perf_event *event, *tmp;
5220
5221 if (!ctx)
5222 return;
5223
5224 mutex_lock(&ctx->mutex);
5225again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005226 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5227 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005228
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005229 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5230 group_entry)
5231 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005232
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005233 if (!list_empty(&ctx->pinned_groups) ||
5234 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005235 goto again;
5236
5237 mutex_unlock(&ctx->mutex);
5238
5239 put_ctx(ctx);
5240}
5241
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005242static int
5243inherit_task_group(struct perf_event *event, struct task_struct *parent,
5244 struct perf_event_context *parent_ctx,
5245 struct task_struct *child,
5246 int *inherited_all)
5247{
5248 int ret;
5249 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5250
5251 if (!event->attr.inherit) {
5252 *inherited_all = 0;
5253 return 0;
5254 }
5255
5256 if (!child_ctx) {
5257 /*
5258 * This is executed from the parent task context, so
5259 * inherit events that have been marked for cloning.
5260 * First allocate and initialize a context for the
5261 * child.
5262 */
5263
5264 child_ctx = kzalloc(sizeof(struct perf_event_context),
5265 GFP_KERNEL);
5266 if (!child_ctx)
5267 return -ENOMEM;
5268
5269 __perf_event_init_context(child_ctx, child);
5270 child->perf_event_ctxp = child_ctx;
5271 get_task_struct(child);
5272 }
5273
5274 ret = inherit_group(event, parent, parent_ctx,
5275 child, child_ctx);
5276
5277 if (ret)
5278 *inherited_all = 0;
5279
5280 return ret;
5281}
5282
5283
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005284/*
5285 * Initialize the perf_event context in task_struct
5286 */
5287int perf_event_init_task(struct task_struct *child)
5288{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005289 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005290 struct perf_event_context *cloned_ctx;
5291 struct perf_event *event;
5292 struct task_struct *parent = current;
5293 int inherited_all = 1;
5294 int ret = 0;
5295
5296 child->perf_event_ctxp = NULL;
5297
5298 mutex_init(&child->perf_event_mutex);
5299 INIT_LIST_HEAD(&child->perf_event_list);
5300
5301 if (likely(!parent->perf_event_ctxp))
5302 return 0;
5303
5304 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005305 * If the parent's context is a clone, pin it so it won't get
5306 * swapped under us.
5307 */
5308 parent_ctx = perf_pin_task_context(parent);
5309
5310 /*
5311 * No need to check if parent_ctx != NULL here; since we saw
5312 * it non-NULL earlier, the only reason for it to become NULL
5313 * is if we exit, and since we're currently in the middle of
5314 * a fork we can't be exiting at the same time.
5315 */
5316
5317 /*
5318 * Lock the parent list. No need to lock the child - not PID
5319 * hashed yet and not running, so nobody can access it.
5320 */
5321 mutex_lock(&parent_ctx->mutex);
5322
5323 /*
5324 * We dont have to disable NMIs - we are only looking at
5325 * the list, not manipulating it:
5326 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005327 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5328 ret = inherit_task_group(event, parent, parent_ctx, child,
5329 &inherited_all);
5330 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005331 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005332 }
5333
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005334 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5335 ret = inherit_task_group(event, parent, parent_ctx, child,
5336 &inherited_all);
5337 if (ret)
5338 break;
5339 }
5340
5341 child_ctx = child->perf_event_ctxp;
5342
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005343 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005344 /*
5345 * Mark the child context as a clone of the parent
5346 * context, or of whatever the parent is a clone of.
5347 * Note that if the parent is a clone, it could get
5348 * uncloned at any point, but that doesn't matter
5349 * because the list of events and the generation
5350 * count can't have changed since we took the mutex.
5351 */
5352 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5353 if (cloned_ctx) {
5354 child_ctx->parent_ctx = cloned_ctx;
5355 child_ctx->parent_gen = parent_ctx->parent_gen;
5356 } else {
5357 child_ctx->parent_ctx = parent_ctx;
5358 child_ctx->parent_gen = parent_ctx->generation;
5359 }
5360 get_ctx(child_ctx->parent_ctx);
5361 }
5362
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005363 mutex_unlock(&parent_ctx->mutex);
5364
5365 perf_unpin_context(parent_ctx);
5366
5367 return ret;
5368}
5369
5370static void __cpuinit perf_event_init_cpu(int cpu)
5371{
5372 struct perf_cpu_context *cpuctx;
5373
5374 cpuctx = &per_cpu(perf_cpu_context, cpu);
5375 __perf_event_init_context(&cpuctx->ctx, NULL);
5376
5377 spin_lock(&perf_resource_lock);
5378 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5379 spin_unlock(&perf_resource_lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005380}
5381
5382#ifdef CONFIG_HOTPLUG_CPU
5383static void __perf_event_exit_cpu(void *info)
5384{
5385 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5386 struct perf_event_context *ctx = &cpuctx->ctx;
5387 struct perf_event *event, *tmp;
5388
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005389 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5390 __perf_event_remove_from_context(event);
5391 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005392 __perf_event_remove_from_context(event);
5393}
5394static void perf_event_exit_cpu(int cpu)
5395{
5396 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5397 struct perf_event_context *ctx = &cpuctx->ctx;
5398
5399 mutex_lock(&ctx->mutex);
5400 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5401 mutex_unlock(&ctx->mutex);
5402}
5403#else
5404static inline void perf_event_exit_cpu(int cpu) { }
5405#endif
5406
5407static int __cpuinit
5408perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5409{
5410 unsigned int cpu = (long)hcpu;
5411
5412 switch (action) {
5413
5414 case CPU_UP_PREPARE:
5415 case CPU_UP_PREPARE_FROZEN:
5416 perf_event_init_cpu(cpu);
5417 break;
5418
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005419 case CPU_DOWN_PREPARE:
5420 case CPU_DOWN_PREPARE_FROZEN:
5421 perf_event_exit_cpu(cpu);
5422 break;
5423
5424 default:
5425 break;
5426 }
5427
5428 return NOTIFY_OK;
5429}
5430
5431/*
5432 * This has to have a higher priority than migration_notifier in sched.c.
5433 */
5434static struct notifier_block __cpuinitdata perf_cpu_nb = {
5435 .notifier_call = perf_cpu_notify,
5436 .priority = 20,
5437};
5438
5439void __init perf_event_init(void)
5440{
5441 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5442 (void *)(long)smp_processor_id());
5443 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5444 (void *)(long)smp_processor_id());
5445 register_cpu_notifier(&perf_cpu_nb);
5446}
5447
Andi Kleenc9be0a32010-01-05 12:47:58 +01005448static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5449 struct sysdev_class_attribute *attr,
5450 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005451{
5452 return sprintf(buf, "%d\n", perf_reserved_percpu);
5453}
5454
5455static ssize_t
5456perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005457 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005458 const char *buf,
5459 size_t count)
5460{
5461 struct perf_cpu_context *cpuctx;
5462 unsigned long val;
5463 int err, cpu, mpt;
5464
5465 err = strict_strtoul(buf, 10, &val);
5466 if (err)
5467 return err;
5468 if (val > perf_max_events)
5469 return -EINVAL;
5470
5471 spin_lock(&perf_resource_lock);
5472 perf_reserved_percpu = val;
5473 for_each_online_cpu(cpu) {
5474 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005475 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005476 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5477 perf_max_events - perf_reserved_percpu);
5478 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005479 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005480 }
5481 spin_unlock(&perf_resource_lock);
5482
5483 return count;
5484}
5485
Andi Kleenc9be0a32010-01-05 12:47:58 +01005486static ssize_t perf_show_overcommit(struct sysdev_class *class,
5487 struct sysdev_class_attribute *attr,
5488 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005489{
5490 return sprintf(buf, "%d\n", perf_overcommit);
5491}
5492
5493static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005494perf_set_overcommit(struct sysdev_class *class,
5495 struct sysdev_class_attribute *attr,
5496 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005497{
5498 unsigned long val;
5499 int err;
5500
5501 err = strict_strtoul(buf, 10, &val);
5502 if (err)
5503 return err;
5504 if (val > 1)
5505 return -EINVAL;
5506
5507 spin_lock(&perf_resource_lock);
5508 perf_overcommit = val;
5509 spin_unlock(&perf_resource_lock);
5510
5511 return count;
5512}
5513
5514static SYSDEV_CLASS_ATTR(
5515 reserve_percpu,
5516 0644,
5517 perf_show_reserve_percpu,
5518 perf_set_reserve_percpu
5519 );
5520
5521static SYSDEV_CLASS_ATTR(
5522 overcommit,
5523 0644,
5524 perf_show_overcommit,
5525 perf_set_overcommit
5526 );
5527
5528static struct attribute *perfclass_attrs[] = {
5529 &attr_reserve_percpu.attr,
5530 &attr_overcommit.attr,
5531 NULL
5532};
5533
5534static struct attribute_group perfclass_attr_group = {
5535 .attrs = perfclass_attrs,
5536 .name = "perf_events",
5537};
5538
5539static int __init perf_event_sysfs_init(void)
5540{
5541 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5542 &perfclass_attr_group);
5543}
5544device_initcall(perf_event_sysfs_init);