blob: badaad9ff1392196b87793b854792720967bb122 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
Helge Deller12df29b2007-01-02 23:54:16 +010025#include <linux/clocksource.h>
Kyle McMartin9eb16862008-09-10 14:24:07 +000026#include <linux/platform_device.h>
Helge Dellerd75f0542009-02-09 00:43:36 +010027#include <linux/ftrace.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/irq.h>
32#include <asm/param.h>
33#include <asm/pdc.h>
34#include <asm/led.h>
35
36#include <linux/timex.h>
37
Grant Grundlerbed583f2006-09-08 23:29:22 -070038static unsigned long clocktick __read_mostly; /* timer cycles per tick */
Linus Torvalds1da177e2005-04-16 15:20:36 -070039
Matthew Wilcox1604f312006-10-04 15:12:52 -060040/*
41 * We keep time on PA-RISC Linux by using the Interval Timer which is
42 * a pair of registers; one is read-only and one is write-only; both
43 * accessed through CR16. The read-only register is 32 or 64 bits wide,
44 * and increments by 1 every CPU clock tick. The architecture only
45 * guarantees us a rate between 0.5 and 2, but all implementations use a
46 * rate of 1. The write-only register is 32-bits wide. When the lowest
47 * 32 bits of the read-only register compare equal to the write-only
48 * register, it raises a maskable external interrupt. Each processor has
49 * an Interval Timer of its own and they are not synchronised.
50 *
51 * We want to generate an interrupt every 1/HZ seconds. So we program
52 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
53 * is programmed with the intended time of the next tick. We can be
54 * held off for an arbitrarily long period of time by interrupts being
55 * disabled, so we may miss one or more ticks.
56 */
Helge Dellerd75f0542009-02-09 00:43:36 +010057irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -070058{
Grant Grundlerbed583f2006-09-08 23:29:22 -070059 unsigned long now;
60 unsigned long next_tick;
Matthew Wilcox1604f312006-10-04 15:12:52 -060061 unsigned long cycles_elapsed, ticks_elapsed;
Grant Grundler6e5dc422006-09-10 12:57:55 -070062 unsigned long cycles_remainder;
63 unsigned int cpu = smp_processor_id();
Helge Delleref017be2008-12-31 03:12:10 +000064 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -070065
Grant Grundler6b799d92006-09-04 13:56:11 -070066 /* gcc can optimize for "read-only" case with a local clocktick */
Grant Grundler6e5dc422006-09-10 12:57:55 -070067 unsigned long cpt = clocktick;
Grant Grundler6b799d92006-09-04 13:56:11 -070068
Matthew Wilcoxbe577a52006-10-06 20:47:23 -060069 profile_tick(CPU_PROFILING);
Linus Torvalds1da177e2005-04-16 15:20:36 -070070
Grant Grundlerbed583f2006-09-08 23:29:22 -070071 /* Initialize next_tick to the expected tick time. */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -060072 next_tick = cpuinfo->it_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -070073
Grant Grundlerbed583f2006-09-08 23:29:22 -070074 /* Get current interval timer.
75 * CR16 reads as 64 bits in CPU wide mode.
76 * CR16 reads as 32 bits in CPU narrow mode.
Linus Torvalds1da177e2005-04-16 15:20:36 -070077 */
Grant Grundlerbed583f2006-09-08 23:29:22 -070078 now = mfctl(16);
Linus Torvalds1da177e2005-04-16 15:20:36 -070079
Grant Grundlerbed583f2006-09-08 23:29:22 -070080 cycles_elapsed = now - next_tick;
81
Grant Grundler6e5dc422006-09-10 12:57:55 -070082 if ((cycles_elapsed >> 5) < cpt) {
83 /* use "cheap" math (add/subtract) instead
84 * of the more expensive div/mul method
Grant Grundlerbed583f2006-09-08 23:29:22 -070085 */
Grant Grundler6b799d92006-09-04 13:56:11 -070086 cycles_remainder = cycles_elapsed;
Matthew Wilcox1604f312006-10-04 15:12:52 -060087 ticks_elapsed = 1;
Grant Grundler6e5dc422006-09-10 12:57:55 -070088 while (cycles_remainder > cpt) {
89 cycles_remainder -= cpt;
Matthew Wilcox1604f312006-10-04 15:12:52 -060090 ticks_elapsed++;
Grant Grundler6e5dc422006-09-10 12:57:55 -070091 }
Grant Grundler6b799d92006-09-04 13:56:11 -070092 } else {
Grant Grundler6e5dc422006-09-10 12:57:55 -070093 cycles_remainder = cycles_elapsed % cpt;
Matthew Wilcox1604f312006-10-04 15:12:52 -060094 ticks_elapsed = 1 + cycles_elapsed / cpt;
Grant Grundler6b799d92006-09-04 13:56:11 -070095 }
Grant Grundlerbed583f2006-09-08 23:29:22 -070096
97 /* Can we differentiate between "early CR16" (aka Scenario 1) and
98 * "long delay" (aka Scenario 3)? I don't think so.
99 *
100 * We expected timer_interrupt to be delivered at least a few hundred
101 * cycles after the IT fires. But it's arbitrary how much time passes
102 * before we call it "late". I've picked one second.
103 */
Helge Deller324c7e62007-01-03 19:25:37 +0100104 if (unlikely(ticks_elapsed > HZ)) {
Grant Grundlerbed583f2006-09-08 23:29:22 -0700105 /* Scenario 3: very long delay? bad in any case */
Grant Grundler6b799d92006-09-04 13:56:11 -0700106 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
Grant Grundler6e5dc422006-09-10 12:57:55 -0700107 " cycles %lX rem %lX "
Grant Grundlerbed583f2006-09-08 23:29:22 -0700108 " next/now %lX/%lX\n",
109 cpu,
Grant Grundler6e5dc422006-09-10 12:57:55 -0700110 cycles_elapsed, cycles_remainder,
Grant Grundlerbed583f2006-09-08 23:29:22 -0700111 next_tick, now );
Grant Grundlerbed583f2006-09-08 23:29:22 -0700112 }
113
Grant Grundler6e5dc422006-09-10 12:57:55 -0700114 /* convert from "division remainder" to "remainder of clock tick" */
115 cycles_remainder = cpt - cycles_remainder;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700116
117 /* Determine when (in CR16 cycles) next IT interrupt will fire.
118 * We want IT to fire modulo clocktick even if we miss/skip some.
119 * But those interrupts don't in fact get delivered that regularly.
120 */
Grant Grundler6e5dc422006-09-10 12:57:55 -0700121 next_tick = now + cycles_remainder;
122
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600123 cpuinfo->it_value = next_tick;
Grant Grundler6b799d92006-09-04 13:56:11 -0700124
125 /* Skip one clocktick on purpose if we are likely to miss next_tick.
Grant Grundler6e5dc422006-09-10 12:57:55 -0700126 * We want to avoid the new next_tick being less than CR16.
127 * If that happened, itimer wouldn't fire until CR16 wrapped.
128 * We'll catch the tick we missed on the tick after that.
129 */
130 if (!(cycles_remainder >> 13))
131 next_tick += cpt;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700132
133 /* Program the IT when to deliver the next interrupt. */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600134 /* Only bottom 32-bits of next_tick are written to cr16. */
Grant Grundler6b799d92006-09-04 13:56:11 -0700135 mtctl(next_tick, 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136
Grant Grundler6e5dc422006-09-10 12:57:55 -0700137
138 /* Done mucking with unreliable delivery of interrupts.
139 * Go do system house keeping.
Grant Grundlerbed583f2006-09-08 23:29:22 -0700140 */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600141
142 if (!--cpuinfo->prof_counter) {
143 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
144 update_process_times(user_mode(get_irq_regs()));
145 }
146
Grant Grundler6e5dc422006-09-10 12:57:55 -0700147 if (cpu == 0) {
148 write_seqlock(&xtime_lock);
Matthew Wilcox1604f312006-10-04 15:12:52 -0600149 do_timer(ticks_elapsed);
Grant Grundler6e5dc422006-09-10 12:57:55 -0700150 write_sequnlock(&xtime_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 }
Grant Grundler6e5dc422006-09-10 12:57:55 -0700152
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153 return IRQ_HANDLED;
154}
155
Randolph Chung5cd55b02005-10-21 22:42:18 -0400156
157unsigned long profile_pc(struct pt_regs *regs)
158{
159 unsigned long pc = instruction_pointer(regs);
160
161 if (regs->gr[0] & PSW_N)
162 pc -= 4;
163
164#ifdef CONFIG_SMP
165 if (in_lock_functions(pc))
166 pc = regs->gr[2];
167#endif
168
169 return pc;
170}
171EXPORT_SYMBOL(profile_pc);
172
173
Helge Deller12df29b2007-01-02 23:54:16 +0100174/* clock source code */
175
176static cycle_t read_cr16(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177{
Helge Deller12df29b2007-01-02 23:54:16 +0100178 return get_cycles();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179}
180
Helge Deller12df29b2007-01-02 23:54:16 +0100181static struct clocksource clocksource_cr16 = {
182 .name = "cr16",
183 .rating = 300,
184 .read = read_cr16,
185 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
186 .mult = 0, /* to be set */
187 .shift = 22,
Kyle McMartin87c81742007-02-26 20:15:18 -0500188 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Helge Deller12df29b2007-01-02 23:54:16 +0100189};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700190
Kyle McMartinb2a82892007-02-26 21:24:56 -0500191#ifdef CONFIG_SMP
192int update_cr16_clocksource(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193{
Simon Arlott70226722007-05-11 20:42:34 +0100194 /* since the cr16 cycle counters are not synchronized across CPUs,
Helge Deller324c7e62007-01-03 19:25:37 +0100195 we'll check if we should switch to a safe clocksource: */
196 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
Kyle McMartin00d1f3c2007-02-26 20:10:42 -0500197 clocksource_change_rating(&clocksource_cr16, 0);
Kyle McMartin730e8442007-10-18 00:03:45 -0700198 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199 }
200
Kyle McMartin730e8442007-10-18 00:03:45 -0700201 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202}
Kyle McMartin01363222007-02-26 22:21:22 -0500203#else
204int update_cr16_clocksource(void)
205{
206 return 0; /* no change */
207}
Kyle McMartinb2a82892007-02-26 21:24:56 -0500208#endif /*CONFIG_SMP*/
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209
Grant Grundler56f335c2006-09-03 00:02:16 -0700210void __init start_cpu_itimer(void)
211{
212 unsigned int cpu = smp_processor_id();
213 unsigned long next_tick = mfctl(16) + clocktick;
214
215 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
216
Helge Delleref017be2008-12-31 03:12:10 +0000217 per_cpu(cpu_data, cpu).it_value = next_tick;
Grant Grundler56f335c2006-09-03 00:02:16 -0700218}
219
Kyle McMartin9eb16862008-09-10 14:24:07 +0000220struct platform_device rtc_parisc_dev = {
221 .name = "rtc-parisc",
222 .id = -1,
223};
224
225static int __init rtc_init(void)
226{
227 int ret;
228
229 ret = platform_device_register(&rtc_parisc_dev);
230 if (ret < 0)
231 printk(KERN_ERR "unable to register rtc device...\n");
232
233 /* not necessarily an error */
234 return 0;
235}
236module_init(rtc_init);
237
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238void __init time_init(void)
239{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240 static struct pdc_tod tod_data;
Helge Deller12df29b2007-01-02 23:54:16 +0100241 unsigned long current_cr16_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
243 clocktick = (100 * PAGE0->mem_10msec) / HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244
Grant Grundler56f335c2006-09-03 00:02:16 -0700245 start_cpu_itimer(); /* get CPU 0 started */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246
Helge Deller12df29b2007-01-02 23:54:16 +0100247 /* register at clocksource framework */
248 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
249 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
250 clocksource_cr16.shift);
Helge Deller12df29b2007-01-02 23:54:16 +0100251 clocksource_register(&clocksource_cr16);
252
Kyle McMartin09690b12006-10-05 23:45:45 -0400253 if (pdc_tod_read(&tod_data) == 0) {
254 unsigned long flags;
255
256 write_seqlock_irqsave(&xtime_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 xtime.tv_sec = tod_data.tod_sec;
258 xtime.tv_nsec = tod_data.tod_usec * 1000;
259 set_normalized_timespec(&wall_to_monotonic,
260 -xtime.tv_sec, -xtime.tv_nsec);
Kyle McMartin09690b12006-10-05 23:45:45 -0400261 write_sequnlock_irqrestore(&xtime_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262 } else {
263 printk(KERN_ERR "Error reading tod clock\n");
264 xtime.tv_sec = 0;
265 xtime.tv_nsec = 0;
266 }
267}