Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Broadcom BCMSDH to gSPI Protocol Conversion Layer |
| 3 | * |
| 4 | * Copyright (C) 2010, Broadcom Corporation |
| 5 | * All Rights Reserved. |
| 6 | * |
| 7 | * This is UNPUBLISHED PROPRIETARY SOURCE CODE of Broadcom Corporation; |
| 8 | * the contents of this file may not be disclosed to third parties, copied |
| 9 | * or duplicated in any form, in whole or in part, without the prior |
| 10 | * written permission of Broadcom Corporation. |
| 11 | * |
| 12 | * $Id: bcmspibrcm.c,v 1.11.2.10.2.9.6.11 2009/05/21 13:21:57 Exp $ |
| 13 | */ |
| 14 | |
| 15 | #define HSMODE |
| 16 | |
| 17 | #include <typedefs.h> |
| 18 | |
| 19 | #include <bcmdevs.h> |
| 20 | #include <bcmendian.h> |
| 21 | #include <bcmutils.h> |
| 22 | #include <osl.h> |
| 23 | #include <hndsoc.h> |
| 24 | #include <siutils.h> |
| 25 | #include <sbchipc.h> |
| 26 | #include <sbsdio.h> |
| 27 | #include <spid.h> |
| 28 | |
| 29 | #include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */ |
| 30 | #include <sdiovar.h> /* ioctl/iovars */ |
| 31 | #include <sdio.h> |
| 32 | |
| 33 | #include <pcicfg.h> |
| 34 | |
| 35 | |
| 36 | #include <bcmspibrcm.h> |
| 37 | #include <bcmspi.h> |
| 38 | |
| 39 | #define F0_RESPONSE_DELAY 16 |
| 40 | #define F1_RESPONSE_DELAY 16 |
| 41 | #define F2_RESPONSE_DELAY F0_RESPONSE_DELAY |
| 42 | |
| 43 | #define CMDLEN 4 |
| 44 | |
| 45 | #define DWORDMODE_ON (sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 2) && (sd->dwordmode == TRUE) |
| 46 | |
| 47 | /* Globals */ |
| 48 | uint sd_msglevel = 0; |
| 49 | |
| 50 | uint sd_hiok = FALSE; /* Use hi-speed mode if available? */ |
| 51 | uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */ |
| 52 | uint sd_f2_blocksize = 64; /* Default blocksize */ |
| 53 | |
| 54 | |
| 55 | uint sd_divisor = 2; |
| 56 | uint sd_power = 1; /* Default to SD Slot powered ON */ |
| 57 | uint sd_clock = 1; /* Default to SD Clock turned ON */ |
| 58 | uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */ |
| 59 | |
| 60 | uint8 spi_outbuf[SPI_MAX_PKT_LEN]; |
| 61 | uint8 spi_inbuf[SPI_MAX_PKT_LEN]; |
| 62 | |
| 63 | /* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits |
| 64 | * assuming we will not exceed F0 response delay > 100 bytes at 48MHz. |
| 65 | */ |
| 66 | #define BUF2_PKT_LEN 128 |
| 67 | uint8 spi_outbuf2[BUF2_PKT_LEN]; |
| 68 | uint8 spi_inbuf2[BUF2_PKT_LEN]; |
| 69 | |
| 70 | /* Prototypes */ |
| 71 | static bool bcmspi_test_card(sdioh_info_t *sd); |
| 72 | static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd); |
| 73 | static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode); |
| 74 | static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, |
| 75 | uint32 *data, uint32 datalen); |
| 76 | static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, |
| 77 | int regsize, uint32 *data); |
| 78 | static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, |
| 79 | int regsize, uint32 data); |
| 80 | static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, |
| 81 | uint8 *data); |
| 82 | static int bcmspi_driver_init(sdioh_info_t *sd); |
| 83 | static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, |
| 84 | uint32 addr, int nbytes, uint32 *data); |
| 85 | static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, |
| 86 | uint32 *data); |
| 87 | static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer); |
| 88 | static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg); |
| 89 | |
| 90 | /* |
| 91 | * Public entry points & extern's |
| 92 | */ |
| 93 | extern sdioh_info_t * |
| 94 | sdioh_attach(osl_t *osh, void *bar0, uint irq) |
| 95 | { |
| 96 | sdioh_info_t *sd; |
| 97 | |
| 98 | sd_trace(("%s\n", __FUNCTION__)); |
| 99 | if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) { |
| 100 | sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh))); |
| 101 | return NULL; |
| 102 | } |
| 103 | bzero((char *)sd, sizeof(sdioh_info_t)); |
| 104 | sd->osh = osh; |
| 105 | if (spi_osinit(sd) != 0) { |
| 106 | sd_err(("%s: spi_osinit() failed\n", __FUNCTION__)); |
| 107 | MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| 108 | return NULL; |
| 109 | } |
| 110 | |
| 111 | sd->bar0 = bar0; |
| 112 | sd->irq = irq; |
| 113 | sd->intr_handler = NULL; |
| 114 | sd->intr_handler_arg = NULL; |
| 115 | sd->intr_handler_valid = FALSE; |
| 116 | |
| 117 | /* Set defaults */ |
| 118 | sd->use_client_ints = TRUE; |
| 119 | sd->sd_use_dma = FALSE; /* DMA Not supported */ |
| 120 | |
| 121 | /* Spi device default is 16bit mode, change to 4 when device is changed to 32bit |
| 122 | * mode |
| 123 | */ |
| 124 | sd->wordlen = 2; |
| 125 | |
| 126 | if (!spi_hw_attach(sd)) { |
| 127 | sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__)); |
| 128 | spi_osfree(sd); |
| 129 | MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| 130 | return (NULL); |
| 131 | } |
| 132 | |
| 133 | if (bcmspi_driver_init(sd) != SUCCESS) { |
| 134 | sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__)); |
| 135 | spi_hw_detach(sd); |
| 136 | spi_osfree(sd); |
| 137 | MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| 138 | return (NULL); |
| 139 | } |
| 140 | |
| 141 | if (spi_register_irq(sd, irq) != SUCCESS) { |
| 142 | sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq)); |
| 143 | spi_hw_detach(sd); |
| 144 | spi_osfree(sd); |
| 145 | MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| 146 | return (NULL); |
| 147 | } |
| 148 | |
| 149 | sd_trace(("%s: Done\n", __FUNCTION__)); |
| 150 | |
| 151 | return sd; |
| 152 | } |
| 153 | |
| 154 | extern SDIOH_API_RC |
| 155 | sdioh_detach(osl_t *osh, sdioh_info_t *sd) |
| 156 | { |
| 157 | sd_trace(("%s\n", __FUNCTION__)); |
| 158 | if (sd) { |
| 159 | sd_err(("%s: detaching from hardware\n", __FUNCTION__)); |
| 160 | spi_free_irq(sd->irq, sd); |
| 161 | spi_hw_detach(sd); |
| 162 | spi_osfree(sd); |
| 163 | MFREE(sd->osh, sd, sizeof(sdioh_info_t)); |
| 164 | } |
| 165 | return SDIOH_API_RC_SUCCESS; |
| 166 | } |
| 167 | |
| 168 | /* Configure callback to client when we recieve client interrupt */ |
| 169 | extern SDIOH_API_RC |
| 170 | sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh) |
| 171 | { |
| 172 | sd_trace(("%s: Entering\n", __FUNCTION__)); |
| 173 | sd->intr_handler = fn; |
| 174 | sd->intr_handler_arg = argh; |
| 175 | sd->intr_handler_valid = TRUE; |
| 176 | return SDIOH_API_RC_SUCCESS; |
| 177 | } |
| 178 | |
| 179 | extern SDIOH_API_RC |
| 180 | sdioh_interrupt_deregister(sdioh_info_t *sd) |
| 181 | { |
| 182 | sd_trace(("%s: Entering\n", __FUNCTION__)); |
| 183 | sd->intr_handler_valid = FALSE; |
| 184 | sd->intr_handler = NULL; |
| 185 | sd->intr_handler_arg = NULL; |
| 186 | return SDIOH_API_RC_SUCCESS; |
| 187 | } |
| 188 | |
| 189 | extern SDIOH_API_RC |
| 190 | sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff) |
| 191 | { |
| 192 | sd_trace(("%s: Entering\n", __FUNCTION__)); |
| 193 | *onoff = sd->client_intr_enabled; |
| 194 | return SDIOH_API_RC_SUCCESS; |
| 195 | } |
| 196 | |
| 197 | #if defined(DHD_DEBUG) |
| 198 | extern bool |
| 199 | sdioh_interrupt_pending(sdioh_info_t *sd) |
| 200 | { |
| 201 | return 0; |
| 202 | } |
| 203 | #endif |
| 204 | |
| 205 | extern SDIOH_API_RC |
| 206 | sdioh_query_device(sdioh_info_t *sd) |
| 207 | { |
| 208 | /* Return a BRCM ID appropriate to the dongle class */ |
| 209 | return (sd->num_funcs > 1) ? BCM4329_D11NDUAL_ID : BCM4318_D11G_ID; |
| 210 | } |
| 211 | |
| 212 | /* Provide dstatus bits of spi-transaction for dhd layers. */ |
| 213 | extern uint32 |
| 214 | sdioh_get_dstatus(sdioh_info_t *sd) |
| 215 | { |
| 216 | return sd->card_dstatus; |
| 217 | } |
| 218 | |
| 219 | extern void |
| 220 | sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev) |
| 221 | { |
| 222 | sd->chip = chip; |
| 223 | sd->chiprev = chiprev; |
| 224 | } |
| 225 | |
| 226 | extern void |
| 227 | sdioh_dwordmode(sdioh_info_t *sd, bool set) |
| 228 | { |
| 229 | uint8 reg = 0; |
| 230 | int status; |
| 231 | |
| 232 | if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != |
| 233 | SUCCESS) { |
| 234 | sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); |
| 235 | return; |
| 236 | } |
| 237 | |
| 238 | if (set) { |
| 239 | reg |= DWORD_PKT_LEN_EN; |
| 240 | sd->dwordmode = TRUE; |
| 241 | sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */ |
| 242 | } else { |
| 243 | reg &= ~DWORD_PKT_LEN_EN; |
| 244 | sd->dwordmode = FALSE; |
| 245 | sd->client_block_size[SPI_FUNC_2] = 2048; |
| 246 | } |
| 247 | |
| 248 | if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, ®)) != |
| 249 | SUCCESS) { |
| 250 | sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__)); |
| 251 | return; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | |
| 256 | uint |
| 257 | sdioh_query_iofnum(sdioh_info_t *sd) |
| 258 | { |
| 259 | return sd->num_funcs; |
| 260 | } |
| 261 | |
| 262 | /* IOVar table */ |
| 263 | enum { |
| 264 | IOV_MSGLEVEL = 1, |
| 265 | IOV_BLOCKMODE, |
| 266 | IOV_BLOCKSIZE, |
| 267 | IOV_DMA, |
| 268 | IOV_USEINTS, |
| 269 | IOV_NUMINTS, |
| 270 | IOV_NUMLOCALINTS, |
| 271 | IOV_HOSTREG, |
| 272 | IOV_DEVREG, |
| 273 | IOV_DIVISOR, |
| 274 | IOV_SDMODE, |
| 275 | IOV_HISPEED, |
| 276 | IOV_HCIREGS, |
| 277 | IOV_POWER, |
| 278 | IOV_CLOCK, |
| 279 | IOV_SPIERRSTATS, |
| 280 | IOV_RESP_DELAY_ALL |
| 281 | }; |
| 282 | |
| 283 | const bcm_iovar_t sdioh_iovars[] = { |
| 284 | {"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 }, |
| 285 | {"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */ |
| 286 | {"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 }, |
| 287 | {"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 }, |
| 288 | {"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 }, |
| 289 | {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 }, |
| 290 | {"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, |
| 291 | {"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) }, |
| 292 | {"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 }, |
| 293 | {"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 }, |
| 294 | {"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 }, |
| 295 | {"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100}, |
| 296 | {"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0}, |
| 297 | {"spi_errstats", IOV_SPIERRSTATS, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) }, |
| 298 | {"spi_respdelay", IOV_RESP_DELAY_ALL, 0, IOVT_BOOL, 0 }, |
| 299 | {NULL, 0, 0, 0, 0 } |
| 300 | }; |
| 301 | |
| 302 | int |
| 303 | sdioh_iovar_op(sdioh_info_t *si, const char *name, |
| 304 | void *params, int plen, void *arg, int len, bool set) |
| 305 | { |
| 306 | const bcm_iovar_t *vi = NULL; |
| 307 | int bcmerror = 0; |
| 308 | int val_size; |
| 309 | int32 int_val = 0; |
| 310 | bool bool_val; |
| 311 | uint32 actionid; |
| 312 | /* |
| 313 | sdioh_regs_t *regs; |
| 314 | */ |
| 315 | |
| 316 | ASSERT(name); |
| 317 | ASSERT(len >= 0); |
| 318 | |
| 319 | /* Get must have return space; Set does not take qualifiers */ |
| 320 | ASSERT(set || (arg && len)); |
| 321 | ASSERT(!set || (!params && !plen)); |
| 322 | |
| 323 | sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name)); |
| 324 | |
| 325 | if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) { |
| 326 | bcmerror = BCME_UNSUPPORTED; |
| 327 | goto exit; |
| 328 | } |
| 329 | |
| 330 | if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0) |
| 331 | goto exit; |
| 332 | |
| 333 | /* Set up params so get and set can share the convenience variables */ |
| 334 | if (params == NULL) { |
| 335 | params = arg; |
| 336 | plen = len; |
| 337 | } |
| 338 | |
| 339 | if (vi->type == IOVT_VOID) |
| 340 | val_size = 0; |
| 341 | else if (vi->type == IOVT_BUFFER) |
| 342 | val_size = len; |
| 343 | else |
| 344 | val_size = sizeof(int); |
| 345 | |
| 346 | if (plen >= (int)sizeof(int_val)) |
| 347 | bcopy(params, &int_val, sizeof(int_val)); |
| 348 | |
| 349 | bool_val = (int_val != 0) ? TRUE : FALSE; |
| 350 | |
| 351 | actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid); |
| 352 | switch (actionid) { |
| 353 | case IOV_GVAL(IOV_MSGLEVEL): |
| 354 | int_val = (int32)sd_msglevel; |
| 355 | bcopy(&int_val, arg, val_size); |
| 356 | break; |
| 357 | |
| 358 | case IOV_SVAL(IOV_MSGLEVEL): |
| 359 | sd_msglevel = int_val; |
| 360 | break; |
| 361 | |
| 362 | case IOV_GVAL(IOV_BLOCKSIZE): |
| 363 | if ((uint32)int_val > si->num_funcs) { |
| 364 | bcmerror = BCME_BADARG; |
| 365 | break; |
| 366 | } |
| 367 | int_val = (int32)si->client_block_size[int_val]; |
| 368 | bcopy(&int_val, arg, val_size); |
| 369 | break; |
| 370 | |
| 371 | case IOV_GVAL(IOV_DMA): |
| 372 | int_val = (int32)si->sd_use_dma; |
| 373 | bcopy(&int_val, arg, val_size); |
| 374 | break; |
| 375 | |
| 376 | case IOV_SVAL(IOV_DMA): |
| 377 | si->sd_use_dma = (bool)int_val; |
| 378 | break; |
| 379 | |
| 380 | case IOV_GVAL(IOV_USEINTS): |
| 381 | int_val = (int32)si->use_client_ints; |
| 382 | bcopy(&int_val, arg, val_size); |
| 383 | break; |
| 384 | |
| 385 | case IOV_SVAL(IOV_USEINTS): |
| 386 | break; |
| 387 | |
| 388 | case IOV_GVAL(IOV_DIVISOR): |
| 389 | int_val = (uint32)sd_divisor; |
| 390 | bcopy(&int_val, arg, val_size); |
| 391 | break; |
| 392 | |
| 393 | case IOV_SVAL(IOV_DIVISOR): |
| 394 | sd_divisor = int_val; |
| 395 | if (!spi_start_clock(si, (uint16)sd_divisor)) { |
| 396 | sd_err(("%s: set clock failed\n", __FUNCTION__)); |
| 397 | bcmerror = BCME_ERROR; |
| 398 | } |
| 399 | break; |
| 400 | |
| 401 | case IOV_GVAL(IOV_POWER): |
| 402 | int_val = (uint32)sd_power; |
| 403 | bcopy(&int_val, arg, val_size); |
| 404 | break; |
| 405 | |
| 406 | case IOV_SVAL(IOV_POWER): |
| 407 | sd_power = int_val; |
| 408 | break; |
| 409 | |
| 410 | case IOV_GVAL(IOV_CLOCK): |
| 411 | int_val = (uint32)sd_clock; |
| 412 | bcopy(&int_val, arg, val_size); |
| 413 | break; |
| 414 | |
| 415 | case IOV_SVAL(IOV_CLOCK): |
| 416 | sd_clock = int_val; |
| 417 | break; |
| 418 | |
| 419 | case IOV_GVAL(IOV_SDMODE): |
| 420 | int_val = (uint32)sd_sdmode; |
| 421 | bcopy(&int_val, arg, val_size); |
| 422 | break; |
| 423 | |
| 424 | case IOV_SVAL(IOV_SDMODE): |
| 425 | sd_sdmode = int_val; |
| 426 | break; |
| 427 | |
| 428 | case IOV_GVAL(IOV_HISPEED): |
| 429 | int_val = (uint32)sd_hiok; |
| 430 | bcopy(&int_val, arg, val_size); |
| 431 | break; |
| 432 | |
| 433 | case IOV_SVAL(IOV_HISPEED): |
| 434 | sd_hiok = int_val; |
| 435 | |
| 436 | if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) { |
| 437 | sd_err(("%s: Failed changing highspeed mode to %d.\n", |
| 438 | __FUNCTION__, sd_hiok)); |
| 439 | bcmerror = BCME_ERROR; |
| 440 | return ERROR; |
| 441 | } |
| 442 | break; |
| 443 | |
| 444 | case IOV_GVAL(IOV_NUMINTS): |
| 445 | int_val = (int32)si->intrcount; |
| 446 | bcopy(&int_val, arg, val_size); |
| 447 | break; |
| 448 | |
| 449 | case IOV_GVAL(IOV_NUMLOCALINTS): |
| 450 | int_val = (int32)si->local_intrcount; |
| 451 | bcopy(&int_val, arg, val_size); |
| 452 | break; |
| 453 | case IOV_GVAL(IOV_DEVREG): |
| 454 | { |
| 455 | sdreg_t *sd_ptr = (sdreg_t *)params; |
| 456 | uint8 data; |
| 457 | |
| 458 | if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) { |
| 459 | bcmerror = BCME_SDIO_ERROR; |
| 460 | break; |
| 461 | } |
| 462 | |
| 463 | int_val = (int)data; |
| 464 | bcopy(&int_val, arg, sizeof(int_val)); |
| 465 | break; |
| 466 | } |
| 467 | |
| 468 | case IOV_SVAL(IOV_DEVREG): |
| 469 | { |
| 470 | sdreg_t *sd_ptr = (sdreg_t *)params; |
| 471 | uint8 data = (uint8)sd_ptr->value; |
| 472 | |
| 473 | if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) { |
| 474 | bcmerror = BCME_SDIO_ERROR; |
| 475 | break; |
| 476 | } |
| 477 | break; |
| 478 | } |
| 479 | |
| 480 | |
| 481 | case IOV_GVAL(IOV_SPIERRSTATS): |
| 482 | { |
| 483 | bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t)); |
| 484 | break; |
| 485 | } |
| 486 | |
| 487 | case IOV_SVAL(IOV_SPIERRSTATS): |
| 488 | { |
| 489 | bzero(&si->spierrstats, sizeof(struct spierrstats_t)); |
| 490 | break; |
| 491 | } |
| 492 | |
| 493 | case IOV_GVAL(IOV_RESP_DELAY_ALL): |
| 494 | int_val = (int32)si->resp_delay_all; |
| 495 | bcopy(&int_val, arg, val_size); |
| 496 | break; |
| 497 | |
| 498 | case IOV_SVAL(IOV_RESP_DELAY_ALL): |
| 499 | si->resp_delay_all = (bool)int_val; |
| 500 | int_val = STATUS_ENABLE|INTR_WITH_STATUS; |
| 501 | if (si->resp_delay_all) |
| 502 | int_val |= RESP_DELAY_ALL; |
| 503 | else { |
| 504 | if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1, |
| 505 | F1_RESPONSE_DELAY) != SUCCESS) { |
| 506 | sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); |
| 507 | bcmerror = BCME_SDIO_ERROR; |
| 508 | break; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val) |
| 513 | != SUCCESS) { |
| 514 | sd_err(("%s: Unable to set response delay.\n", __FUNCTION__)); |
| 515 | bcmerror = BCME_SDIO_ERROR; |
| 516 | break; |
| 517 | } |
| 518 | break; |
| 519 | |
| 520 | default: |
| 521 | bcmerror = BCME_UNSUPPORTED; |
| 522 | break; |
| 523 | } |
| 524 | exit: |
| 525 | |
| 526 | return bcmerror; |
| 527 | } |
| 528 | |
| 529 | extern SDIOH_API_RC |
| 530 | sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) |
| 531 | { |
| 532 | SDIOH_API_RC status; |
| 533 | /* No lock needed since sdioh_request_byte does locking */ |
| 534 | status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data); |
| 535 | return status; |
| 536 | } |
| 537 | |
| 538 | extern SDIOH_API_RC |
| 539 | sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data) |
| 540 | { |
| 541 | /* No lock needed since sdioh_request_byte does locking */ |
| 542 | SDIOH_API_RC status; |
| 543 | |
| 544 | if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) { |
| 545 | uint8 dummy_data; |
| 546 | status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data); |
| 547 | if (status) { |
| 548 | sd_err(("sdioh_cfg_read() failed.\n")); |
| 549 | return status; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data); |
| 554 | return status; |
| 555 | } |
| 556 | |
| 557 | extern SDIOH_API_RC |
| 558 | sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length) |
| 559 | { |
| 560 | uint32 count; |
| 561 | int offset; |
| 562 | uint32 cis_byte; |
| 563 | uint16 *cis = (uint16 *)cisd; |
| 564 | uint bar0 = SI_ENUM_BASE; |
| 565 | int status; |
| 566 | uint8 data; |
| 567 | |
| 568 | sd_trace(("%s: Func %d\n", __FUNCTION__, func)); |
| 569 | |
| 570 | spi_lock(sd); |
| 571 | |
| 572 | /* Set sb window address to 0x18000000 */ |
| 573 | data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK; |
| 574 | status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data); |
| 575 | if (status == SUCCESS) { |
| 576 | data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK; |
| 577 | status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data); |
| 578 | } else { |
| 579 | sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); |
| 580 | spi_unlock(sd); |
| 581 | return (BCME_ERROR); |
| 582 | } |
| 583 | if (status == SUCCESS) { |
| 584 | data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK; |
| 585 | status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data); |
| 586 | } else { |
| 587 | sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__)); |
| 588 | spi_unlock(sd); |
| 589 | return (BCME_ERROR); |
| 590 | } |
| 591 | |
| 592 | offset = CC_OTP; /* OTP offset in chipcommon. */ |
| 593 | for (count = 0; count < length/2; count++) { |
| 594 | if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) { |
| 595 | sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__)); |
| 596 | spi_unlock(sd); |
| 597 | return (BCME_ERROR); |
| 598 | } |
| 599 | |
| 600 | *cis = (uint16)cis_byte; |
| 601 | cis++; |
| 602 | offset += 2; |
| 603 | } |
| 604 | |
| 605 | spi_unlock(sd); |
| 606 | |
| 607 | return (BCME_OK); |
| 608 | } |
| 609 | |
| 610 | extern SDIOH_API_RC |
| 611 | sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte) |
| 612 | { |
| 613 | int status; |
| 614 | uint32 cmd_arg; |
| 615 | uint32 dstatus; |
| 616 | uint32 data = (uint32)(*byte); |
| 617 | |
| 618 | spi_lock(sd); |
| 619 | |
| 620 | cmd_arg = 0; |
| 621 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 622 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| 623 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 624 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1); |
| 625 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); |
| 626 | |
| 627 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 628 | sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x, data=0x%x\n", __FUNCTION__, rw, func, |
| 629 | regaddr, data)); |
| 630 | |
| 631 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, |
| 632 | cmd_arg, &data, 1)) != SUCCESS) { |
| 633 | spi_unlock(sd); |
| 634 | return status; |
| 635 | } |
| 636 | |
| 637 | if (rw == SDIOH_READ) |
| 638 | *byte = (uint8)data; |
| 639 | |
| 640 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 641 | if (dstatus) |
| 642 | sd_trace(("dstatus =0x%x\n", dstatus)); |
| 643 | |
| 644 | spi_unlock(sd); |
| 645 | return SDIOH_API_RC_SUCCESS; |
| 646 | } |
| 647 | |
| 648 | extern SDIOH_API_RC |
| 649 | sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr, |
| 650 | uint32 *word, uint nbytes) |
| 651 | { |
| 652 | int status; |
| 653 | |
| 654 | spi_lock(sd); |
| 655 | |
| 656 | if (rw == SDIOH_READ) |
| 657 | status = bcmspi_card_regread(sd, func, addr, nbytes, word); |
| 658 | else |
| 659 | status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word); |
| 660 | |
| 661 | spi_unlock(sd); |
| 662 | return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL); |
| 663 | } |
| 664 | |
| 665 | extern SDIOH_API_RC |
| 666 | sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func, |
| 667 | uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt) |
| 668 | { |
| 669 | int len; |
| 670 | int buflen = (int)buflen_u; |
| 671 | bool fifo = (fix_inc == SDIOH_DATA_FIX); |
| 672 | |
| 673 | spi_lock(sd); |
| 674 | |
| 675 | ASSERT(reg_width == 4); |
| 676 | ASSERT(buflen_u < (1 << 30)); |
| 677 | ASSERT(sd->client_block_size[func]); |
| 678 | |
| 679 | sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n", |
| 680 | __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W', |
| 681 | buflen_u, sd->r_cnt, sd->t_cnt, pkt)); |
| 682 | |
| 683 | /* Break buffer down into blocksize chunks. */ |
| 684 | while (buflen > 0) { |
| 685 | len = MIN(sd->client_block_size[func], buflen); |
| 686 | if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) { |
| 687 | sd_err(("%s: bcmspi_card_buf %s failed\n", |
| 688 | __FUNCTION__, rw == SDIOH_READ ? "Read" : "Write")); |
| 689 | spi_unlock(sd); |
| 690 | return SDIOH_API_RC_FAIL; |
| 691 | } |
| 692 | buffer += len; |
| 693 | buflen -= len; |
| 694 | if (!fifo) |
| 695 | addr += len; |
| 696 | } |
| 697 | spi_unlock(sd); |
| 698 | return SDIOH_API_RC_SUCCESS; |
| 699 | } |
| 700 | |
| 701 | /* This function allows write to gspi bus when another rd/wr function is deep down the call stack. |
| 702 | * Its main aim is to have simpler spi writes rather than recursive writes. |
| 703 | * e.g. When there is a need to program response delay on the fly after detecting the SPI-func |
| 704 | * this call will allow to program the response delay. |
| 705 | */ |
| 706 | static int |
| 707 | bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte) |
| 708 | { |
| 709 | uint32 cmd_arg; |
| 710 | uint32 datalen = 1; |
| 711 | uint32 hostlen; |
| 712 | |
| 713 | cmd_arg = 0; |
| 714 | |
| 715 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| 716 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| 717 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 718 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 719 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen); |
| 720 | |
| 721 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 722 | |
| 723 | |
| 724 | /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| 725 | * according to the wordlen mode(16/32bit) the device is in. |
| 726 | */ |
| 727 | ASSERT(sd->wordlen == 4 || sd->wordlen == 2); |
| 728 | datalen = ROUNDUP(datalen, sd->wordlen); |
| 729 | |
| 730 | /* Start by copying command in the spi-outbuffer */ |
| 731 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 732 | *(uint32 *)spi_outbuf2 = bcmswap32(cmd_arg); |
| 733 | if (datalen & 0x3) |
| 734 | datalen += (4 - (datalen & 0x3)); |
| 735 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 736 | *(uint16 *)spi_outbuf2 = bcmswap16(cmd_arg & 0xffff); |
| 737 | *(uint16 *)&spi_outbuf2[2] = bcmswap16((cmd_arg & 0xffff0000) >> 16); |
| 738 | if (datalen & 0x1) |
| 739 | datalen++; |
| 740 | } else { |
| 741 | sd_err(("%s: Host is %d bit spid, could not create SPI command.\n", |
| 742 | __FUNCTION__, 8 * sd->wordlen)); |
| 743 | return ERROR; |
| 744 | } |
| 745 | |
| 746 | /* for Write, put the data into the output buffer */ |
| 747 | if (datalen != 0) { |
| 748 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 749 | *(uint32 *)&spi_outbuf2[CMDLEN] = bcmswap32(byte); |
| 750 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 751 | *(uint16 *)&spi_outbuf2[CMDLEN] = bcmswap16(byte & 0xffff); |
| 752 | *(uint16 *)&spi_outbuf2[CMDLEN + 2] = |
| 753 | bcmswap16((byte & 0xffff0000) >> 16); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | /* +4 for cmd, +4 for dstatus */ |
| 758 | hostlen = datalen + 8; |
| 759 | hostlen += (4 - (hostlen & 0x3)); |
| 760 | spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen); |
| 761 | |
| 762 | /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| 763 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 764 | sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| 765 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 766 | sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN ]) | |
| 767 | (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN + 2]) << 16)); |
| 768 | } else { |
| 769 | sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", |
| 770 | __FUNCTION__, 8 * sd->wordlen)); |
| 771 | return ERROR; |
| 772 | } |
| 773 | |
| 774 | if (sd->card_dstatus) |
| 775 | sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus)); |
| 776 | |
| 777 | return (BCME_OK); |
| 778 | } |
| 779 | |
| 780 | /* Program the response delay corresponding to the spi function */ |
| 781 | static int |
| 782 | bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay) |
| 783 | { |
| 784 | if (sd->resp_delay_all == FALSE) |
| 785 | return (BCME_OK); |
| 786 | |
| 787 | if (sd->prev_fun == func) |
| 788 | return (BCME_OK); |
| 789 | |
| 790 | if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY) |
| 791 | return (BCME_OK); |
| 792 | |
| 793 | bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay); |
| 794 | |
| 795 | /* Remember function for which to avoid reprogramming resp-delay in next iteration */ |
| 796 | sd->prev_fun = func; |
| 797 | |
| 798 | return (BCME_OK); |
| 799 | |
| 800 | } |
| 801 | |
| 802 | #define GSPI_RESYNC_PATTERN 0x0 |
| 803 | |
| 804 | /* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI. |
| 805 | * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is |
| 806 | * synchronised and all queued resuests are cancelled. |
| 807 | */ |
| 808 | static int |
| 809 | bcmspi_resync_f1(sdioh_info_t *sd) |
| 810 | { |
| 811 | uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0; |
| 812 | |
| 813 | |
| 814 | /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| 815 | * according to the wordlen mode(16/32bit) the device is in. |
| 816 | */ |
| 817 | ASSERT(sd->wordlen == 4 || sd->wordlen == 2); |
| 818 | datalen = ROUNDUP(datalen, sd->wordlen); |
| 819 | |
| 820 | /* Start by copying command in the spi-outbuffer */ |
| 821 | *(uint32 *)spi_outbuf2 = cmd_arg; |
| 822 | |
| 823 | /* for Write, put the data into the output buffer */ |
| 824 | *(uint32 *)&spi_outbuf2[CMDLEN] = data; |
| 825 | |
| 826 | /* +4 for cmd, +4 for dstatus */ |
| 827 | spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8); |
| 828 | |
| 829 | /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| 830 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 831 | sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]); |
| 832 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 833 | sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN ]) | |
| 834 | (bcmswap16(*(uint16 *)&spi_inbuf2[datalen + CMDLEN + 2]) << 16)); |
| 835 | } else { |
| 836 | sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n", |
| 837 | __FUNCTION__, 8 * sd->wordlen)); |
| 838 | return ERROR; |
| 839 | } |
| 840 | |
| 841 | if (sd->card_dstatus) |
| 842 | sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus)); |
| 843 | |
| 844 | return (BCME_OK); |
| 845 | } |
| 846 | |
| 847 | uint32 dstatus_count = 0; |
| 848 | |
| 849 | static int |
| 850 | bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg) |
| 851 | { |
| 852 | uint32 dstatus = sd->card_dstatus; |
| 853 | struct spierrstats_t *spierrstats = &sd->spierrstats; |
| 854 | int err = SUCCESS; |
| 855 | |
| 856 | sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus)); |
| 857 | |
| 858 | /* Store dstatus of last few gSPI transactions */ |
| 859 | spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus; |
| 860 | spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg; |
| 861 | dstatus_count++; |
| 862 | |
| 863 | if (sd->card_init_done == FALSE) |
| 864 | return err; |
| 865 | |
| 866 | if (dstatus & STATUS_DATA_NOT_AVAILABLE) { |
| 867 | spierrstats->dna++; |
| 868 | sd_trace(("Read data not available on F1 addr = 0x%x\n", |
| 869 | GFIELD(cmd_arg, SPI_REG_ADDR))); |
| 870 | /* Clear dna bit */ |
| 871 | bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE); |
| 872 | } |
| 873 | |
| 874 | if (dstatus & STATUS_UNDERFLOW) { |
| 875 | spierrstats->rdunderflow++; |
| 876 | sd_err(("FIFO underflow happened due to current F2 read command.\n")); |
| 877 | } |
| 878 | |
| 879 | if (dstatus & STATUS_OVERFLOW) { |
| 880 | spierrstats->wroverflow++; |
| 881 | sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n")); |
| 882 | if ((sd->chip == BCM4329_CHIP_ID) && (sd->chiprev == 0)) { |
| 883 | bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW); |
| 884 | bcmspi_resync_f1(sd); |
| 885 | sd_err(("Recovering from F1 FIFO overflow.\n")); |
| 886 | } else { |
| 887 | err = ERROR_OF; |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | if (dstatus & STATUS_F2_INTR) { |
| 892 | spierrstats->f2interrupt++; |
| 893 | sd_trace(("Interrupt from F2. SW should clear corresponding IntStatus bits\n")); |
| 894 | } |
| 895 | |
| 896 | if (dstatus & STATUS_F3_INTR) { |
| 897 | spierrstats->f3interrupt++; |
| 898 | sd_err(("Interrupt from F3. SW should clear corresponding IntStatus bits\n")); |
| 899 | } |
| 900 | |
| 901 | if (dstatus & STATUS_HOST_CMD_DATA_ERR) { |
| 902 | spierrstats->hostcmddataerr++; |
| 903 | sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n")); |
| 904 | } |
| 905 | |
| 906 | if (dstatus & STATUS_F2_PKT_AVAILABLE) { |
| 907 | spierrstats->f2pktavailable++; |
| 908 | sd_trace(("Packet is available/ready in F2 TX FIFO\n")); |
| 909 | sd_trace(("Packet length = %d\n", sd->dwordmode ? |
| 910 | ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) : |
| 911 | ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT))); |
| 912 | } |
| 913 | |
| 914 | if (dstatus & STATUS_F3_PKT_AVAILABLE) { |
| 915 | spierrstats->f3pktavailable++; |
| 916 | sd_err(("Packet is available/ready in F3 TX FIFO\n")); |
| 917 | sd_err(("Packet length = %d\n", |
| 918 | (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT)); |
| 919 | } |
| 920 | |
| 921 | return err; |
| 922 | } |
| 923 | |
| 924 | extern int |
| 925 | sdioh_abort(sdioh_info_t *sd, uint func) |
| 926 | { |
| 927 | return 0; |
| 928 | } |
| 929 | |
| 930 | int |
| 931 | sdioh_start(sdioh_info_t *sd, int stage) |
| 932 | { |
| 933 | return SUCCESS; |
| 934 | } |
| 935 | |
| 936 | int |
| 937 | sdioh_stop(sdioh_info_t *sd) |
| 938 | { |
| 939 | return SUCCESS; |
| 940 | } |
| 941 | |
| 942 | |
| 943 | |
| 944 | /* |
| 945 | * Private/Static work routines |
| 946 | */ |
| 947 | static int |
| 948 | bcmspi_host_init(sdioh_info_t *sd) |
| 949 | { |
| 950 | |
| 951 | /* Default power on mode */ |
| 952 | sd->sd_mode = SDIOH_MODE_SPI; |
| 953 | sd->polled_mode = TRUE; |
| 954 | sd->host_init_done = TRUE; |
| 955 | sd->card_init_done = FALSE; |
| 956 | sd->adapter_slot = 1; |
| 957 | |
| 958 | return (SUCCESS); |
| 959 | } |
| 960 | |
| 961 | static int |
| 962 | get_client_blocksize(sdioh_info_t *sd) |
| 963 | { |
| 964 | uint32 regdata[2]; |
| 965 | int status; |
| 966 | |
| 967 | /* Find F1/F2/F3 max packet size */ |
| 968 | if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG, |
| 969 | 8, regdata)) != SUCCESS) { |
| 970 | return status; |
| 971 | } |
| 972 | |
| 973 | sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n", |
| 974 | regdata[0], regdata[1])); |
| 975 | |
| 976 | sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2; |
| 977 | sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1])); |
| 978 | ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1); |
| 979 | |
| 980 | sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2; |
| 981 | sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2])); |
| 982 | ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2); |
| 983 | |
| 984 | sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2; |
| 985 | sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3])); |
| 986 | ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3); |
| 987 | |
| 988 | return 0; |
| 989 | } |
| 990 | |
| 991 | static int |
| 992 | bcmspi_client_init(sdioh_info_t *sd) |
| 993 | { |
| 994 | uint32 status_en_reg = 0; |
| 995 | sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot)); |
| 996 | |
| 997 | #ifdef HSMODE |
| 998 | if (!spi_start_clock(sd, (uint16)sd_divisor)) { |
| 999 | sd_err(("spi_start_clock failed\n")); |
| 1000 | return ERROR; |
| 1001 | } |
| 1002 | #else |
| 1003 | /* Start at ~400KHz clock rate for initialization */ |
| 1004 | if (!spi_start_clock(sd, 128)) { |
| 1005 | sd_err(("spi_start_clock failed\n")); |
| 1006 | return ERROR; |
| 1007 | } |
| 1008 | #endif /* HSMODE */ |
| 1009 | |
| 1010 | if (!bcmspi_host_device_init_adapt(sd)) { |
| 1011 | sd_err(("bcmspi_host_device_init_adapt failed\n")); |
| 1012 | return ERROR; |
| 1013 | } |
| 1014 | |
| 1015 | if (!bcmspi_test_card(sd)) { |
| 1016 | sd_err(("bcmspi_test_card failed\n")); |
| 1017 | return ERROR; |
| 1018 | } |
| 1019 | |
| 1020 | sd->num_funcs = SPI_MAX_IOFUNCS; |
| 1021 | |
| 1022 | get_client_blocksize(sd); |
| 1023 | |
| 1024 | /* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */ |
| 1025 | bcmspi_resync_f1(sd); |
| 1026 | |
| 1027 | sd->dwordmode = FALSE; |
| 1028 | |
| 1029 | bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg); |
| 1030 | |
| 1031 | sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__)); |
| 1032 | status_en_reg |= INTR_WITH_STATUS; |
| 1033 | |
| 1034 | |
| 1035 | if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, |
| 1036 | status_en_reg & 0xff) != SUCCESS) { |
| 1037 | sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__)); |
| 1038 | return ERROR; |
| 1039 | } |
| 1040 | |
| 1041 | |
| 1042 | #ifndef HSMODE |
| 1043 | /* After configuring for High-Speed mode, set the desired clock rate. */ |
| 1044 | if (!spi_start_clock(sd, 4)) { |
| 1045 | sd_err(("spi_start_clock failed\n")); |
| 1046 | return ERROR; |
| 1047 | } |
| 1048 | #endif /* HSMODE */ |
| 1049 | |
| 1050 | sd->card_init_done = TRUE; |
| 1051 | |
| 1052 | |
| 1053 | return SUCCESS; |
| 1054 | } |
| 1055 | |
| 1056 | static int |
| 1057 | bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode) |
| 1058 | { |
| 1059 | uint32 regdata; |
| 1060 | int status; |
| 1061 | |
| 1062 | if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG, |
| 1063 | 4, ®data)) != SUCCESS) |
| 1064 | return status; |
| 1065 | |
| 1066 | sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata)); |
| 1067 | |
| 1068 | |
| 1069 | if (hsmode == TRUE) { |
| 1070 | sd_trace(("Attempting to enable High-Speed mode.\n")); |
| 1071 | |
| 1072 | if (regdata & HIGH_SPEED_MODE) { |
| 1073 | sd_trace(("Device is already in High-Speed mode.\n")); |
| 1074 | return status; |
| 1075 | } else { |
| 1076 | regdata |= HIGH_SPEED_MODE; |
| 1077 | sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); |
| 1078 | if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, |
| 1079 | 4, regdata)) != SUCCESS) { |
| 1080 | return status; |
| 1081 | } |
| 1082 | } |
| 1083 | } else { |
| 1084 | sd_trace(("Attempting to disable High-Speed mode.\n")); |
| 1085 | |
| 1086 | if (regdata & HIGH_SPEED_MODE) { |
| 1087 | regdata &= ~HIGH_SPEED_MODE; |
| 1088 | sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG)); |
| 1089 | if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG, |
| 1090 | 4, regdata)) != SUCCESS) |
| 1091 | return status; |
| 1092 | } |
| 1093 | else { |
| 1094 | sd_trace(("Device is already in Low-Speed mode.\n")); |
| 1095 | return status; |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | spi_controller_highspeed_mode(sd, hsmode); |
| 1100 | |
| 1101 | return TRUE; |
| 1102 | } |
| 1103 | |
| 1104 | #define bcmspi_find_curr_mode(sd) { \ |
| 1105 | sd->wordlen = 2; \ |
| 1106 | status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ |
| 1107 | regdata &= 0xff; \ |
| 1108 | if ((regdata == 0xad) || (regdata == 0x5b) || \ |
| 1109 | (regdata == 0x5d) || (regdata == 0x5a)) \ |
| 1110 | break; \ |
| 1111 | sd->wordlen = 4; \ |
| 1112 | status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, ®data); \ |
| 1113 | regdata &= 0xff; \ |
| 1114 | if ((regdata == 0xad) || (regdata == 0x5b) || \ |
| 1115 | (regdata == 0x5d) || (regdata == 0x5a)) \ |
| 1116 | break; \ |
| 1117 | sd_trace(("Silicon testability issue: regdata = 0x%x." \ |
| 1118 | " Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \ |
| 1119 | OSL_DELAY(100000); \ |
| 1120 | } |
| 1121 | |
| 1122 | #define INIT_ADAPT_LOOP 100 |
| 1123 | |
| 1124 | /* Adapt clock-phase-speed-bitwidth between host and device */ |
| 1125 | static bool |
| 1126 | bcmspi_host_device_init_adapt(sdioh_info_t *sd) |
| 1127 | { |
| 1128 | uint32 wrregdata, regdata = 0; |
| 1129 | int status; |
| 1130 | int i; |
| 1131 | |
| 1132 | /* Due to a silicon testability issue, the first command from the Host |
| 1133 | * to the device will get corrupted (first bit will be lost). So the |
| 1134 | * Host should poll the device with a safe read request. ie: The Host |
| 1135 | * should try to read F0 addr 0x14 using the Fixed address mode |
| 1136 | * (This will prevent a unintended write command to be detected by device) |
| 1137 | */ |
| 1138 | for (i = 0; i < INIT_ADAPT_LOOP; i++) { |
| 1139 | /* If device was not power-cycled it will stay in 32bit mode with |
| 1140 | * response-delay-all bit set. Alternate the iteration so that |
| 1141 | * read either with or without response-delay for F0 to succeed. |
| 1142 | */ |
| 1143 | bcmspi_find_curr_mode(sd); |
| 1144 | sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE; |
| 1145 | |
| 1146 | bcmspi_find_curr_mode(sd); |
| 1147 | sd->dwordmode = TRUE; |
| 1148 | |
| 1149 | bcmspi_find_curr_mode(sd); |
| 1150 | sd->dwordmode = FALSE; |
| 1151 | } |
| 1152 | |
| 1153 | /* Bail out, device not detected */ |
| 1154 | if (i == INIT_ADAPT_LOOP) |
| 1155 | return FALSE; |
| 1156 | |
| 1157 | /* Softreset the spid logic */ |
| 1158 | if ((sd->dwordmode) || (sd->wordlen == 4)) { |
| 1159 | bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI); |
| 1160 | bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, ®data); |
| 1161 | sd_trace(("reset reg read = 0x%x\n", regdata)); |
| 1162 | sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode, |
| 1163 | sd->wordlen, sd->resp_delay_all)); |
| 1164 | /* Restore default state after softreset */ |
| 1165 | sd->wordlen = 2; |
| 1166 | sd->dwordmode = FALSE; |
| 1167 | } |
| 1168 | |
| 1169 | if (sd->wordlen == 4) { |
| 1170 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != |
| 1171 | SUCCESS) |
| 1172 | return FALSE; |
| 1173 | if (regdata == TEST_RO_DATA_32BIT_LE) { |
| 1174 | sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n", |
| 1175 | regdata)); |
| 1176 | sd_trace(("Spid power was left on.\n")); |
| 1177 | } else { |
| 1178 | sd_err(("Spid power was left on but signature read failed." |
| 1179 | " Value read = 0x%x\n", regdata)); |
| 1180 | return FALSE; |
| 1181 | } |
| 1182 | } else { |
| 1183 | sd->wordlen = 2; |
| 1184 | |
| 1185 | #define CTRL_REG_DEFAULT 0x00010430 /* according to the host m/c */ |
| 1186 | |
| 1187 | wrregdata = (CTRL_REG_DEFAULT); |
| 1188 | sd->resp_delay_all = TRUE; |
| 1189 | if (sd->resp_delay_all == TRUE) { |
| 1190 | /* Enable response delay for all */ |
| 1191 | wrregdata |= (RESP_DELAY_ALL << 16); |
| 1192 | /* Program response delay value */ |
| 1193 | wrregdata &= 0xffff00ff; |
| 1194 | wrregdata |= (F1_RESPONSE_DELAY << 8); |
| 1195 | sd->prev_fun = SPI_FUNC_1; |
| 1196 | bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); |
| 1197 | } |
| 1198 | |
| 1199 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| 1200 | return FALSE; |
| 1201 | sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata)); |
| 1202 | |
| 1203 | #ifndef HSMODE |
| 1204 | wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY); |
| 1205 | wrregdata &= ~HIGH_SPEED_MODE; |
| 1206 | bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); |
| 1207 | #endif /* HSMODE */ |
| 1208 | |
| 1209 | for (i = 0; i < INIT_ADAPT_LOOP; i++) { |
| 1210 | if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) { |
| 1211 | sd_trace(("0xfeedbead was leftshifted by 1-bit.\n")); |
| 1212 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, |
| 1213 | ®data)) != SUCCESS) |
| 1214 | return FALSE; |
| 1215 | } |
| 1216 | OSL_DELAY(1000); |
| 1217 | } |
| 1218 | |
| 1219 | |
| 1220 | /* Change to host controller intr-polarity of active-low */ |
| 1221 | wrregdata &= ~INTR_POLARITY; |
| 1222 | sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n", |
| 1223 | wrregdata)); |
| 1224 | /* Change to 32bit mode */ |
| 1225 | wrregdata |= WORD_LENGTH_32; |
| 1226 | bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata); |
| 1227 | |
| 1228 | /* Change command/data packaging in 32bit LE mode */ |
| 1229 | sd->wordlen = 4; |
| 1230 | |
| 1231 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| 1232 | return FALSE; |
| 1233 | |
| 1234 | if (regdata == TEST_RO_DATA_32BIT_LE) { |
| 1235 | sd_trace(("Read spid passed. Value read = 0x%x\n", regdata)); |
| 1236 | sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n")); |
| 1237 | } else { |
| 1238 | sd_err(("Stale spid reg values read as it was kept powered. Value read =" |
| 1239 | "0x%x\n", regdata)); |
| 1240 | return FALSE; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | |
| 1245 | return TRUE; |
| 1246 | } |
| 1247 | |
| 1248 | static bool |
| 1249 | bcmspi_test_card(sdioh_info_t *sd) |
| 1250 | { |
| 1251 | uint32 regdata; |
| 1252 | int status; |
| 1253 | |
| 1254 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, ®data)) != SUCCESS) |
| 1255 | return FALSE; |
| 1256 | |
| 1257 | if (regdata == (TEST_RO_DATA_32BIT_LE)) |
| 1258 | sd_trace(("32bit LE regdata = 0x%x\n", regdata)); |
| 1259 | else { |
| 1260 | sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata)); |
| 1261 | return FALSE; |
| 1262 | } |
| 1263 | |
| 1264 | |
| 1265 | #define RW_PATTERN1 0xA0A1A2A3 |
| 1266 | #define RW_PATTERN2 0x4B5B6B7B |
| 1267 | |
| 1268 | regdata = RW_PATTERN1; |
| 1269 | if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) |
| 1270 | return FALSE; |
| 1271 | regdata = 0; |
| 1272 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) |
| 1273 | return FALSE; |
| 1274 | if (regdata != RW_PATTERN1) { |
| 1275 | sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", |
| 1276 | RW_PATTERN1, regdata)); |
| 1277 | return FALSE; |
| 1278 | } else |
| 1279 | sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); |
| 1280 | |
| 1281 | regdata = RW_PATTERN2; |
| 1282 | if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS) |
| 1283 | return FALSE; |
| 1284 | regdata = 0; |
| 1285 | if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, ®data)) != SUCCESS) |
| 1286 | return FALSE; |
| 1287 | if (regdata != RW_PATTERN2) { |
| 1288 | sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n", |
| 1289 | RW_PATTERN2, regdata)); |
| 1290 | return FALSE; |
| 1291 | } else |
| 1292 | sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata)); |
| 1293 | |
| 1294 | return TRUE; |
| 1295 | } |
| 1296 | |
| 1297 | static int |
| 1298 | bcmspi_driver_init(sdioh_info_t *sd) |
| 1299 | { |
| 1300 | sd_trace(("%s\n", __FUNCTION__)); |
| 1301 | if ((bcmspi_host_init(sd)) != SUCCESS) { |
| 1302 | return ERROR; |
| 1303 | } |
| 1304 | |
| 1305 | if (bcmspi_client_init(sd) != SUCCESS) { |
| 1306 | return ERROR; |
| 1307 | } |
| 1308 | |
| 1309 | return SUCCESS; |
| 1310 | } |
| 1311 | |
| 1312 | /* Read device reg */ |
| 1313 | static int |
| 1314 | bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) |
| 1315 | { |
| 1316 | int status; |
| 1317 | uint32 cmd_arg, dstatus; |
| 1318 | |
| 1319 | ASSERT(regsize); |
| 1320 | |
| 1321 | if (func == 2) |
| 1322 | sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); |
| 1323 | |
| 1324 | cmd_arg = 0; |
| 1325 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); |
| 1326 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| 1327 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 1328 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 1329 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); |
| 1330 | |
| 1331 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 1332 | sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x, data=0x%x\n", __FUNCTION__, 0, func, |
| 1333 | regaddr, *data)); |
| 1334 | |
| 1335 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) |
| 1336 | != SUCCESS) |
| 1337 | return status; |
| 1338 | |
| 1339 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 1340 | if (dstatus) |
| 1341 | sd_trace(("dstatus =0x%x\n", dstatus)); |
| 1342 | |
| 1343 | return SUCCESS; |
| 1344 | } |
| 1345 | |
| 1346 | static int |
| 1347 | bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data) |
| 1348 | { |
| 1349 | |
| 1350 | int status; |
| 1351 | uint32 cmd_arg; |
| 1352 | uint32 dstatus; |
| 1353 | |
| 1354 | ASSERT(regsize); |
| 1355 | |
| 1356 | if (func == 2) |
| 1357 | sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n")); |
| 1358 | |
| 1359 | cmd_arg = 0; |
| 1360 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0); |
| 1361 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); /* Fixed access */ |
| 1362 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 1363 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 1364 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize); |
| 1365 | |
| 1366 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 1367 | |
| 1368 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) |
| 1369 | != SUCCESS) |
| 1370 | return status; |
| 1371 | |
| 1372 | sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x, data=0x%x\n", __FUNCTION__, 0, func, |
| 1373 | regaddr, *data)); |
| 1374 | |
| 1375 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 1376 | sd_trace(("dstatus =0x%x\n", dstatus)); |
| 1377 | return SUCCESS; |
| 1378 | } |
| 1379 | |
| 1380 | /* write a device register */ |
| 1381 | static int |
| 1382 | bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data) |
| 1383 | { |
| 1384 | int status; |
| 1385 | uint32 cmd_arg, dstatus; |
| 1386 | |
| 1387 | ASSERT(regsize); |
| 1388 | |
| 1389 | cmd_arg = 0; |
| 1390 | |
| 1391 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| 1392 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| 1393 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 1394 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 1395 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize); |
| 1396 | |
| 1397 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 1398 | sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x, data=0x%x\n", __FUNCTION__, 1, func, |
| 1399 | regaddr, data)); |
| 1400 | |
| 1401 | |
| 1402 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) |
| 1403 | != SUCCESS) |
| 1404 | return status; |
| 1405 | |
| 1406 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 1407 | if (dstatus) |
| 1408 | sd_trace(("dstatus =0x%x\n", dstatus)); |
| 1409 | |
| 1410 | return SUCCESS; |
| 1411 | } |
| 1412 | |
| 1413 | /* write a device register - 1 byte */ |
| 1414 | static int |
| 1415 | bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte) |
| 1416 | { |
| 1417 | int status; |
| 1418 | uint32 cmd_arg; |
| 1419 | uint32 dstatus; |
| 1420 | uint32 data = (uint32)(*byte); |
| 1421 | |
| 1422 | cmd_arg = 0; |
| 1423 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 1424 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); /* Incremental access */ |
| 1425 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr); |
| 1426 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1); |
| 1427 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1); |
| 1428 | |
| 1429 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 1430 | sd_trace(("%s: func=%d, regaddr=0x%08x, data=0x%x\n", __FUNCTION__, func, |
| 1431 | regaddr, data)); |
| 1432 | |
| 1433 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, |
| 1434 | cmd_arg, &data, 1)) != SUCCESS) { |
| 1435 | return status; |
| 1436 | } |
| 1437 | |
| 1438 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 1439 | if (dstatus) |
| 1440 | sd_trace(("dstatus =0x%x\n", dstatus)); |
| 1441 | |
| 1442 | return SUCCESS; |
| 1443 | } |
| 1444 | |
| 1445 | void |
| 1446 | bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer) |
| 1447 | { |
| 1448 | *dstatus_buffer = sd->card_dstatus; |
| 1449 | } |
| 1450 | |
| 1451 | /* 'data' is of type uint32 whereas other buffers are of type uint8 */ |
| 1452 | static int |
| 1453 | bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg, |
| 1454 | uint32 *data, uint32 datalen) |
| 1455 | { |
| 1456 | uint32 i, j; |
| 1457 | uint8 resp_delay = 0; |
| 1458 | int err = SUCCESS; |
| 1459 | uint32 hostlen; |
| 1460 | uint32 spilen = 0; |
| 1461 | uint32 dstatus_idx = 0; |
| 1462 | uint16 templen, buslen, len, *ptr = NULL; |
| 1463 | |
| 1464 | sd_trace(("spi cmd = 0x%x\n", cmd_arg)); |
| 1465 | |
| 1466 | if (DWORDMODE_ON) { |
| 1467 | spilen = GFIELD(cmd_arg, SPI_LEN); |
| 1468 | if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_0) || |
| 1469 | (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_1)) |
| 1470 | dstatus_idx = spilen * 3; |
| 1471 | |
| 1472 | if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && |
| 1473 | (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { |
| 1474 | spilen = spilen << 2; |
| 1475 | dstatus_idx = (spilen % 16) ? (16 - (spilen % 16)) : 0; |
| 1476 | /* convert len to mod16 size */ |
| 1477 | spilen = ROUNDUP(spilen, 16); |
| 1478 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | /* Set up and issue the SPI command. MSByte goes out on bus first. Increase datalen |
| 1483 | * according to the wordlen mode(16/32bit) the device is in. |
| 1484 | */ |
| 1485 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 1486 | *(uint32 *)spi_outbuf = bcmswap32(cmd_arg); |
| 1487 | if (datalen & 0x3) |
| 1488 | datalen += (4 - (datalen & 0x3)); |
| 1489 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 1490 | *(uint16 *)spi_outbuf = bcmswap16(cmd_arg & 0xffff); |
| 1491 | *(uint16 *)&spi_outbuf[2] = bcmswap16((cmd_arg & 0xffff0000) >> 16); |
| 1492 | if (datalen & 0x1) |
| 1493 | datalen++; |
| 1494 | if (datalen < 4) |
| 1495 | datalen = ROUNDUP(datalen, 4); |
| 1496 | } else { |
| 1497 | sd_err(("Host is %d bit spid, could not create SPI command.\n", |
| 1498 | 8 * sd->wordlen)); |
| 1499 | return ERROR; |
| 1500 | } |
| 1501 | |
| 1502 | /* for Write, put the data into the output buffer */ |
| 1503 | if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) { |
| 1504 | /* We send len field of hw-header always a mod16 size, both from host and dongle */ |
| 1505 | if (DWORDMODE_ON) { |
| 1506 | if (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) { |
| 1507 | ptr = (uint16 *)&data[0]; |
| 1508 | templen = *ptr; |
| 1509 | /* ASSERT(*ptr == ~*(ptr + 1)); */ |
| 1510 | templen = ROUNDUP(templen, 16); |
| 1511 | *ptr = templen; |
| 1512 | sd_trace(("actual tx len = %d\n", (uint16)(~*(ptr+1)))); |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | if (datalen != 0) { |
| 1517 | for (i = 0; i < datalen/4; i++) { |
| 1518 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 1519 | *(uint32 *)&spi_outbuf[i * 4 + CMDLEN] = |
| 1520 | bcmswap32(data[i]); |
| 1521 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 1522 | *(uint16 *)&spi_outbuf[i * 4 + CMDLEN] = |
| 1523 | bcmswap16(data[i] & 0xffff); |
| 1524 | *(uint16 *)&spi_outbuf[i * 4 + CMDLEN + 2] = |
| 1525 | bcmswap16((data[i] & 0xffff0000) >> 16); |
| 1526 | } |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | /* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */ |
| 1532 | if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { |
| 1533 | int func = GFIELD(cmd_arg, SPI_FUNCTION); |
| 1534 | switch (func) { |
| 1535 | case 0: |
| 1536 | resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0; |
| 1537 | break; |
| 1538 | case 1: |
| 1539 | resp_delay = F1_RESPONSE_DELAY; |
| 1540 | break; |
| 1541 | case 2: |
| 1542 | resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0; |
| 1543 | break; |
| 1544 | default: |
| 1545 | ASSERT(0); |
| 1546 | break; |
| 1547 | } |
| 1548 | /* Program response delay */ |
| 1549 | bcmspi_prog_resp_delay(sd, func, resp_delay); |
| 1550 | } |
| 1551 | |
| 1552 | /* +4 for cmd and +4 for dstatus */ |
| 1553 | hostlen = datalen + 8 + resp_delay; |
| 1554 | hostlen += dstatus_idx; |
| 1555 | hostlen += (4 - (hostlen & 0x3)); |
| 1556 | spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen); |
| 1557 | |
| 1558 | /* for Read, get the data into the input buffer */ |
| 1559 | if (datalen != 0) { |
| 1560 | if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */ |
| 1561 | for (j = 0; j < datalen/4; j++) { |
| 1562 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 1563 | data[j] = bcmswap32(*(uint32 *)&spi_inbuf[j * 4 + |
| 1564 | CMDLEN + resp_delay]); |
| 1565 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 1566 | data[j] = (bcmswap16(*(uint16 *)&spi_inbuf[j * 4 + |
| 1567 | CMDLEN + resp_delay])) | |
| 1568 | ((bcmswap16(*(uint16 *)&spi_inbuf[j * 4 + |
| 1569 | CMDLEN + resp_delay + 2])) << 16); |
| 1570 | } |
| 1571 | } |
| 1572 | |
| 1573 | if ((DWORDMODE_ON) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { |
| 1574 | ptr = (uint16 *)&data[0]; |
| 1575 | templen = *ptr; |
| 1576 | buslen = len = ~(*(ptr + 1)); |
| 1577 | buslen = ROUNDUP(buslen, 16); |
| 1578 | /* populate actual len in hw-header */ |
| 1579 | if (templen == buslen) |
| 1580 | *ptr = len; |
| 1581 | } |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | /* Restore back the len field of the hw header */ |
| 1586 | if (DWORDMODE_ON) { |
| 1587 | if ((GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2) && |
| 1588 | (GFIELD(cmd_arg, SPI_RW_FLAG) == 1)) { |
| 1589 | ptr = (uint16 *)&data[0]; |
| 1590 | *ptr = (uint16)(~*(ptr+1)); |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | dstatus_idx += (datalen + CMDLEN + resp_delay); |
| 1595 | /* Last 4bytes are dstatus. Device is configured to return status bits. */ |
| 1596 | if (sd->wordlen == 4) { /* 32bit spid */ |
| 1597 | sd->card_dstatus = bcmswap32(*(uint32 *)&spi_inbuf[dstatus_idx]); |
| 1598 | } else if (sd->wordlen == 2) { /* 16bit spid */ |
| 1599 | sd->card_dstatus = (bcmswap16(*(uint16 *)&spi_inbuf[dstatus_idx]) | |
| 1600 | (bcmswap16(*(uint16 *)&spi_inbuf[dstatus_idx + 2]) << 16)); |
| 1601 | } else { |
| 1602 | sd_err(("Host is %d bit machine, could not read SPI dstatus.\n", |
| 1603 | 8 * sd->wordlen)); |
| 1604 | return ERROR; |
| 1605 | } |
| 1606 | if (sd->card_dstatus == 0xffffffff) { |
| 1607 | sd_err(("looks like not a GSPI device or device is not powered.\n")); |
| 1608 | } |
| 1609 | |
| 1610 | err = bcmspi_update_stats(sd, cmd_arg); |
| 1611 | |
| 1612 | return err; |
| 1613 | |
| 1614 | } |
| 1615 | |
| 1616 | static int |
| 1617 | bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, |
| 1618 | uint32 addr, int nbytes, uint32 *data) |
| 1619 | { |
| 1620 | int status; |
| 1621 | uint32 cmd_arg; |
| 1622 | bool write = rw == SDIOH_READ ? 0 : 1; |
| 1623 | uint retries = 0; |
| 1624 | |
| 1625 | bool enable; |
| 1626 | uint32 spilen; |
| 1627 | |
| 1628 | cmd_arg = 0; |
| 1629 | |
| 1630 | ASSERT(nbytes); |
| 1631 | ASSERT(nbytes <= sd->client_block_size[func]); |
| 1632 | |
| 1633 | if (write) sd->t_cnt++; else sd->r_cnt++; |
| 1634 | |
| 1635 | if (func == 2) { |
| 1636 | /* Frame len check limited by gSPI. */ |
| 1637 | if ((nbytes > 2000) && write) { |
| 1638 | sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes)); |
| 1639 | } |
| 1640 | /* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */ |
| 1641 | /* If F2 fifo on device is not ready to receive data, don't do F2 transfer */ |
| 1642 | if (write) { |
| 1643 | uint32 dstatus; |
| 1644 | /* check F2 ready with cached one */ |
| 1645 | bcmspi_cmd_getdstatus(sd, &dstatus); |
| 1646 | if ((dstatus & STATUS_F2_RX_READY) == 0) { |
| 1647 | retries = WAIT_F2RXFIFORDY; |
| 1648 | enable = 0; |
| 1649 | while (retries-- && !enable) { |
| 1650 | OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000); |
| 1651 | bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4, |
| 1652 | &dstatus); |
| 1653 | if (dstatus & STATUS_F2_RX_READY) |
| 1654 | enable = TRUE; |
| 1655 | } |
| 1656 | if (!enable) { |
| 1657 | struct spierrstats_t *spierrstats = &sd->spierrstats; |
| 1658 | spierrstats->f2rxnotready++; |
| 1659 | sd_err(("F2 FIFO is not ready to receive data.\n")); |
| 1660 | return ERROR; |
| 1661 | } |
| 1662 | sd_trace(("No of retries on F2 ready %d\n", |
| 1663 | (WAIT_F2RXFIFORDY - retries))); |
| 1664 | } |
| 1665 | } |
| 1666 | } |
| 1667 | |
| 1668 | /* F2 transfers happen on 0 addr */ |
| 1669 | addr = (func == 2) ? 0 : addr; |
| 1670 | |
| 1671 | /* In pio mode buffer is read using fixed address fifo in func 1 */ |
| 1672 | if ((func == 1) && (fifo)) |
| 1673 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0); |
| 1674 | else |
| 1675 | cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1); |
| 1676 | |
| 1677 | cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func); |
| 1678 | cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr); |
| 1679 | cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write); |
| 1680 | spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes); |
| 1681 | if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) { |
| 1682 | /* convert len to mod4 size */ |
| 1683 | spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0); |
| 1684 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2)); |
| 1685 | } else |
| 1686 | cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen); |
| 1687 | |
| 1688 | if ((func == 2) && (fifo == 1)) { |
| 1689 | sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", |
| 1690 | __FUNCTION__, write ? "Wr" : "Rd", func, "INCR", |
| 1691 | addr, nbytes, sd->r_cnt, sd->t_cnt)); |
| 1692 | } |
| 1693 | |
| 1694 | sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg)); |
| 1695 | sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n", |
| 1696 | __FUNCTION__, write ? "Wd" : "Rd", func, "INCR", |
| 1697 | addr, nbytes, sd->r_cnt, sd->t_cnt)); |
| 1698 | |
| 1699 | |
| 1700 | if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, |
| 1701 | data, nbytes)) != SUCCESS) { |
| 1702 | sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, |
| 1703 | (write ? "write" : "read"))); |
| 1704 | return status; |
| 1705 | } |
| 1706 | |
| 1707 | /* gSPI expects that hw-header-len is equal to spi-command-len */ |
| 1708 | if ((func == 2) && (rw == SDIOH_WRITE) && (sd->dwordmode == FALSE)) { |
| 1709 | ASSERT((uint16)sd->data_xfer_count == (uint16)(*data & 0xffff)); |
| 1710 | ASSERT((uint16)sd->data_xfer_count == (uint16)(~((*data & 0xffff0000) >> 16))); |
| 1711 | } |
| 1712 | |
| 1713 | if ((nbytes > 2000) && !write) { |
| 1714 | sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes)); |
| 1715 | } |
| 1716 | |
| 1717 | return SUCCESS; |
| 1718 | } |
| 1719 | |
| 1720 | /* Reset and re-initialize the device */ |
| 1721 | int |
| 1722 | sdioh_sdio_reset(sdioh_info_t *si) |
| 1723 | { |
| 1724 | si->card_init_done = FALSE; |
| 1725 | return bcmspi_client_init(si); |
| 1726 | } |