blob: 6ad5a8467f87f1aed705aa793e6f1175e42f207d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 *
3 *
4 * Procedures for interfacing to Open Firmware.
5 *
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <stdarg.h>
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/string.h>
24#include <linux/init.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include <linux/threads.h>
26#include <linux/spinlock.h>
27#include <linux/types.h>
28#include <linux/pci.h>
29#include <linux/stringify.h>
30#include <linux/delay.h>
31#include <linux/initrd.h>
32#include <linux/bitops.h>
33#include <linux/module.h>
34
35#include <asm/prom.h>
36#include <asm/rtas.h>
37#include <asm/lmb.h>
38#include <asm/abs_addr.h>
39#include <asm/page.h>
40#include <asm/processor.h>
41#include <asm/irq.h>
42#include <asm/io.h>
43#include <asm/smp.h>
44#include <asm/system.h>
45#include <asm/mmu.h>
46#include <asm/pgtable.h>
47#include <asm/pci.h>
48#include <asm/iommu.h>
49#include <asm/bootinfo.h>
50#include <asm/ppcdebug.h>
51#include <asm/btext.h>
52#include <asm/sections.h>
53#include <asm/machdep.h>
54#include <asm/pSeries_reconfig.h>
55
56#ifdef DEBUG
57#define DBG(fmt...) udbg_printf(fmt)
58#else
59#define DBG(fmt...)
60#endif
61
62struct pci_reg_property {
63 struct pci_address addr;
64 u32 size_hi;
65 u32 size_lo;
66};
67
68struct isa_reg_property {
69 u32 space;
70 u32 address;
71 u32 size;
72};
73
74
75typedef int interpret_func(struct device_node *, unsigned long *,
76 int, int, int);
77
78extern struct rtas_t rtas;
79extern struct lmb lmb;
80extern unsigned long klimit;
81
82static int __initdata dt_root_addr_cells;
83static int __initdata dt_root_size_cells;
84static int __initdata iommu_is_off;
85int __initdata iommu_force_on;
86typedef u32 cell_t;
87
88#if 0
89static struct boot_param_header *initial_boot_params __initdata;
90#else
91struct boot_param_header *initial_boot_params;
92#endif
93
94static struct device_node *allnodes = NULL;
95
96/* use when traversing tree through the allnext, child, sibling,
97 * or parent members of struct device_node.
98 */
99static DEFINE_RWLOCK(devtree_lock);
100
101/* export that to outside world */
102struct device_node *of_chosen;
103
104/*
105 * Wrapper for allocating memory for various data that needs to be
106 * attached to device nodes as they are processed at boot or when
107 * added to the device tree later (e.g. DLPAR). At boot there is
108 * already a region reserved so we just increment *mem_start by size;
109 * otherwise we call kmalloc.
110 */
111static void * prom_alloc(unsigned long size, unsigned long *mem_start)
112{
113 unsigned long tmp;
114
115 if (!mem_start)
116 return kmalloc(size, GFP_KERNEL);
117
118 tmp = *mem_start;
119 *mem_start += size;
120 return (void *)tmp;
121}
122
123/*
124 * Find the device_node with a given phandle.
125 */
126static struct device_node * find_phandle(phandle ph)
127{
128 struct device_node *np;
129
130 for (np = allnodes; np != 0; np = np->allnext)
131 if (np->linux_phandle == ph)
132 return np;
133 return NULL;
134}
135
136/*
137 * Find the interrupt parent of a node.
138 */
139static struct device_node * __devinit intr_parent(struct device_node *p)
140{
141 phandle *parp;
142
143 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
144 if (parp == NULL)
145 return p->parent;
146 return find_phandle(*parp);
147}
148
149/*
150 * Find out the size of each entry of the interrupts property
151 * for a node.
152 */
153int __devinit prom_n_intr_cells(struct device_node *np)
154{
155 struct device_node *p;
156 unsigned int *icp;
157
158 for (p = np; (p = intr_parent(p)) != NULL; ) {
159 icp = (unsigned int *)
160 get_property(p, "#interrupt-cells", NULL);
161 if (icp != NULL)
162 return *icp;
163 if (get_property(p, "interrupt-controller", NULL) != NULL
164 || get_property(p, "interrupt-map", NULL) != NULL) {
165 printk("oops, node %s doesn't have #interrupt-cells\n",
166 p->full_name);
167 return 1;
168 }
169 }
170#ifdef DEBUG_IRQ
171 printk("prom_n_intr_cells failed for %s\n", np->full_name);
172#endif
173 return 1;
174}
175
176/*
177 * Map an interrupt from a device up to the platform interrupt
178 * descriptor.
179 */
180static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
181 struct device_node *np, unsigned int *ints,
182 int nintrc)
183{
184 struct device_node *p, *ipar;
185 unsigned int *imap, *imask, *ip;
186 int i, imaplen, match;
187 int newintrc = 0, newaddrc = 0;
188 unsigned int *reg;
189 int naddrc;
190
191 reg = (unsigned int *) get_property(np, "reg", NULL);
192 naddrc = prom_n_addr_cells(np);
193 p = intr_parent(np);
194 while (p != NULL) {
195 if (get_property(p, "interrupt-controller", NULL) != NULL)
196 /* this node is an interrupt controller, stop here */
197 break;
198 imap = (unsigned int *)
199 get_property(p, "interrupt-map", &imaplen);
200 if (imap == NULL) {
201 p = intr_parent(p);
202 continue;
203 }
204 imask = (unsigned int *)
205 get_property(p, "interrupt-map-mask", NULL);
206 if (imask == NULL) {
207 printk("oops, %s has interrupt-map but no mask\n",
208 p->full_name);
209 return 0;
210 }
211 imaplen /= sizeof(unsigned int);
212 match = 0;
213 ipar = NULL;
214 while (imaplen > 0 && !match) {
215 /* check the child-interrupt field */
216 match = 1;
217 for (i = 0; i < naddrc && match; ++i)
218 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
219 for (; i < naddrc + nintrc && match; ++i)
220 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
221 imap += naddrc + nintrc;
222 imaplen -= naddrc + nintrc;
223 /* grab the interrupt parent */
224 ipar = find_phandle((phandle) *imap++);
225 --imaplen;
226 if (ipar == NULL) {
227 printk("oops, no int parent %x in map of %s\n",
228 imap[-1], p->full_name);
229 return 0;
230 }
231 /* find the parent's # addr and intr cells */
232 ip = (unsigned int *)
233 get_property(ipar, "#interrupt-cells", NULL);
234 if (ip == NULL) {
235 printk("oops, no #interrupt-cells on %s\n",
236 ipar->full_name);
237 return 0;
238 }
239 newintrc = *ip;
240 ip = (unsigned int *)
241 get_property(ipar, "#address-cells", NULL);
242 newaddrc = (ip == NULL)? 0: *ip;
243 imap += newaddrc + newintrc;
244 imaplen -= newaddrc + newintrc;
245 }
246 if (imaplen < 0) {
247 printk("oops, error decoding int-map on %s, len=%d\n",
248 p->full_name, imaplen);
249 return 0;
250 }
251 if (!match) {
252#ifdef DEBUG_IRQ
253 printk("oops, no match in %s int-map for %s\n",
254 p->full_name, np->full_name);
255#endif
256 return 0;
257 }
258 p = ipar;
259 naddrc = newaddrc;
260 nintrc = newintrc;
261 ints = imap - nintrc;
262 reg = ints - naddrc;
263 }
264 if (p == NULL) {
265#ifdef DEBUG_IRQ
266 printk("hmmm, int tree for %s doesn't have ctrler\n",
267 np->full_name);
268#endif
269 return 0;
270 }
271 *irq = ints;
272 *ictrler = p;
273 return nintrc;
274}
275
276static int __devinit finish_node_interrupts(struct device_node *np,
277 unsigned long *mem_start,
278 int measure_only)
279{
280 unsigned int *ints;
281 int intlen, intrcells, intrcount;
282 int i, j, n;
283 unsigned int *irq, virq;
284 struct device_node *ic;
285
286 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
287 if (ints == NULL)
288 return 0;
289 intrcells = prom_n_intr_cells(np);
290 intlen /= intrcells * sizeof(unsigned int);
291
292 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
293 if (!np->intrs)
294 return -ENOMEM;
295
296 if (measure_only)
297 return 0;
298
299 intrcount = 0;
300 for (i = 0; i < intlen; ++i, ints += intrcells) {
301 n = map_interrupt(&irq, &ic, np, ints, intrcells);
302 if (n <= 0)
303 continue;
304
305 /* don't map IRQ numbers under a cascaded 8259 controller */
306 if (ic && device_is_compatible(ic, "chrp,iic")) {
307 np->intrs[intrcount].line = irq[0];
308 } else {
309 virq = virt_irq_create_mapping(irq[0]);
310 if (virq == NO_IRQ) {
311 printk(KERN_CRIT "Could not allocate interrupt"
312 " number for %s\n", np->full_name);
313 continue;
314 }
315 np->intrs[intrcount].line = irq_offset_up(virq);
316 }
317
318 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
319 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
320 char *name = get_property(ic->parent, "name", NULL);
321 if (name && !strcmp(name, "u3"))
322 np->intrs[intrcount].line += 128;
Paul Mackerrasdc3ec752005-05-01 08:58:44 -0700323 else if (!(name && !strcmp(name, "mac-io")))
324 /* ignore other cascaded controllers, such as
325 the k2-sata-root */
326 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700327 }
328 np->intrs[intrcount].sense = 1;
329 if (n > 1)
330 np->intrs[intrcount].sense = irq[1];
331 if (n > 2) {
332 printk("hmmm, got %d intr cells for %s:", n,
333 np->full_name);
334 for (j = 0; j < n; ++j)
335 printk(" %d", irq[j]);
336 printk("\n");
337 }
338 ++intrcount;
339 }
340 np->n_intrs = intrcount;
341
342 return 0;
343}
344
345static int __devinit interpret_pci_props(struct device_node *np,
346 unsigned long *mem_start,
347 int naddrc, int nsizec,
348 int measure_only)
349{
350 struct address_range *adr;
351 struct pci_reg_property *pci_addrs;
352 int i, l, n_addrs;
353
354 pci_addrs = (struct pci_reg_property *)
355 get_property(np, "assigned-addresses", &l);
356 if (!pci_addrs)
357 return 0;
358
359 n_addrs = l / sizeof(*pci_addrs);
360
361 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
362 if (!adr)
363 return -ENOMEM;
364
365 if (measure_only)
366 return 0;
367
368 np->addrs = adr;
369 np->n_addrs = n_addrs;
370
371 for (i = 0; i < n_addrs; i++) {
372 adr[i].space = pci_addrs[i].addr.a_hi;
373 adr[i].address = pci_addrs[i].addr.a_lo |
374 ((u64)pci_addrs[i].addr.a_mid << 32);
375 adr[i].size = pci_addrs[i].size_lo;
376 }
377
378 return 0;
379}
380
381static int __init interpret_dbdma_props(struct device_node *np,
382 unsigned long *mem_start,
383 int naddrc, int nsizec,
384 int measure_only)
385{
386 struct reg_property32 *rp;
387 struct address_range *adr;
388 unsigned long base_address;
389 int i, l;
390 struct device_node *db;
391
392 base_address = 0;
393 if (!measure_only) {
394 for (db = np->parent; db != NULL; db = db->parent) {
395 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
396 base_address = db->addrs[0].address;
397 break;
398 }
399 }
400 }
401
402 rp = (struct reg_property32 *) get_property(np, "reg", &l);
403 if (rp != 0 && l >= sizeof(struct reg_property32)) {
404 i = 0;
405 adr = (struct address_range *) (*mem_start);
406 while ((l -= sizeof(struct reg_property32)) >= 0) {
407 if (!measure_only) {
408 adr[i].space = 2;
409 adr[i].address = rp[i].address + base_address;
410 adr[i].size = rp[i].size;
411 }
412 ++i;
413 }
414 np->addrs = adr;
415 np->n_addrs = i;
416 (*mem_start) += i * sizeof(struct address_range);
417 }
418
419 return 0;
420}
421
422static int __init interpret_macio_props(struct device_node *np,
423 unsigned long *mem_start,
424 int naddrc, int nsizec,
425 int measure_only)
426{
427 struct reg_property32 *rp;
428 struct address_range *adr;
429 unsigned long base_address;
430 int i, l;
431 struct device_node *db;
432
433 base_address = 0;
434 if (!measure_only) {
435 for (db = np->parent; db != NULL; db = db->parent) {
436 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
437 base_address = db->addrs[0].address;
438 break;
439 }
440 }
441 }
442
443 rp = (struct reg_property32 *) get_property(np, "reg", &l);
444 if (rp != 0 && l >= sizeof(struct reg_property32)) {
445 i = 0;
446 adr = (struct address_range *) (*mem_start);
447 while ((l -= sizeof(struct reg_property32)) >= 0) {
448 if (!measure_only) {
449 adr[i].space = 2;
450 adr[i].address = rp[i].address + base_address;
451 adr[i].size = rp[i].size;
452 }
453 ++i;
454 }
455 np->addrs = adr;
456 np->n_addrs = i;
457 (*mem_start) += i * sizeof(struct address_range);
458 }
459
460 return 0;
461}
462
463static int __init interpret_isa_props(struct device_node *np,
464 unsigned long *mem_start,
465 int naddrc, int nsizec,
466 int measure_only)
467{
468 struct isa_reg_property *rp;
469 struct address_range *adr;
470 int i, l;
471
472 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
473 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
474 i = 0;
475 adr = (struct address_range *) (*mem_start);
476 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
477 if (!measure_only) {
478 adr[i].space = rp[i].space;
479 adr[i].address = rp[i].address;
480 adr[i].size = rp[i].size;
481 }
482 ++i;
483 }
484 np->addrs = adr;
485 np->n_addrs = i;
486 (*mem_start) += i * sizeof(struct address_range);
487 }
488
489 return 0;
490}
491
492static int __init interpret_root_props(struct device_node *np,
493 unsigned long *mem_start,
494 int naddrc, int nsizec,
495 int measure_only)
496{
497 struct address_range *adr;
498 int i, l;
499 unsigned int *rp;
500 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
501
502 rp = (unsigned int *) get_property(np, "reg", &l);
503 if (rp != 0 && l >= rpsize) {
504 i = 0;
505 adr = (struct address_range *) (*mem_start);
506 while ((l -= rpsize) >= 0) {
507 if (!measure_only) {
508 adr[i].space = 0;
509 adr[i].address = rp[naddrc - 1];
510 adr[i].size = rp[naddrc + nsizec - 1];
511 }
512 ++i;
513 rp += naddrc + nsizec;
514 }
515 np->addrs = adr;
516 np->n_addrs = i;
517 (*mem_start) += i * sizeof(struct address_range);
518 }
519
520 return 0;
521}
522
523static int __devinit finish_node(struct device_node *np,
524 unsigned long *mem_start,
525 interpret_func *ifunc,
526 int naddrc, int nsizec,
527 int measure_only)
528{
529 struct device_node *child;
530 int *ip, rc = 0;
531
532 /* get the device addresses and interrupts */
533 if (ifunc != NULL)
534 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
535 if (rc)
536 goto out;
537
538 rc = finish_node_interrupts(np, mem_start, measure_only);
539 if (rc)
540 goto out;
541
542 /* Look for #address-cells and #size-cells properties. */
543 ip = (int *) get_property(np, "#address-cells", NULL);
544 if (ip != NULL)
545 naddrc = *ip;
546 ip = (int *) get_property(np, "#size-cells", NULL);
547 if (ip != NULL)
548 nsizec = *ip;
549
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
551 ifunc = interpret_root_props;
552 else if (np->type == 0)
553 ifunc = NULL;
554 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
555 ifunc = interpret_pci_props;
556 else if (!strcmp(np->type, "dbdma"))
557 ifunc = interpret_dbdma_props;
558 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
559 ifunc = interpret_macio_props;
560 else if (!strcmp(np->type, "isa"))
561 ifunc = interpret_isa_props;
562 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
563 ifunc = interpret_root_props;
564 else if (!((ifunc == interpret_dbdma_props
565 || ifunc == interpret_macio_props)
566 && (!strcmp(np->type, "escc")
567 || !strcmp(np->type, "media-bay"))))
568 ifunc = NULL;
569
570 for (child = np->child; child != NULL; child = child->sibling) {
571 rc = finish_node(child, mem_start, ifunc,
572 naddrc, nsizec, measure_only);
573 if (rc)
574 goto out;
575 }
576out:
577 return rc;
578}
579
580/**
581 * finish_device_tree is called once things are running normally
582 * (i.e. with text and data mapped to the address they were linked at).
583 * It traverses the device tree and fills in some of the additional,
584 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
585 * mapping is also initialized at this point.
586 */
587void __init finish_device_tree(void)
588{
589 unsigned long start, end, size = 0;
590
591 DBG(" -> finish_device_tree\n");
592
593 if (ppc64_interrupt_controller == IC_INVALID) {
594 DBG("failed to configure interrupt controller type\n");
595 panic("failed to configure interrupt controller type\n");
596 }
597
598 /* Initialize virtual IRQ map */
599 virt_irq_init();
600
601 /*
602 * Finish device-tree (pre-parsing some properties etc...)
603 * We do this in 2 passes. One with "measure_only" set, which
604 * will only measure the amount of memory needed, then we can
605 * allocate that memory, and call finish_node again. However,
606 * we must be careful as most routines will fail nowadays when
607 * prom_alloc() returns 0, so we must make sure our first pass
608 * doesn't start at 0. We pre-initialize size to 16 for that
609 * reason and then remove those additional 16 bytes
610 */
611 size = 16;
612 finish_node(allnodes, &size, NULL, 0, 0, 1);
613 size -= 16;
614 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
615 finish_node(allnodes, &end, NULL, 0, 0, 0);
616 BUG_ON(end != start + size);
617
618 DBG(" <- finish_device_tree\n");
619}
620
621#ifdef DEBUG
622#define printk udbg_printf
623#endif
624
625static inline char *find_flat_dt_string(u32 offset)
626{
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200627 return ((char *)initial_boot_params) +
628 initial_boot_params->off_dt_strings + offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629}
630
631/**
632 * This function is used to scan the flattened device-tree, it is
633 * used to extract the memory informations at boot before we can
634 * unflatten the tree
635 */
636static int __init scan_flat_dt(int (*it)(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200637 const char *uname, int depth,
638 void *data),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639 void *data)
640{
641 unsigned long p = ((unsigned long)initial_boot_params) +
642 initial_boot_params->off_dt_struct;
643 int rc = 0;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200644 int depth = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645
646 do {
647 u32 tag = *((u32 *)p);
648 char *pathp;
649
650 p += 4;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200651 if (tag == OF_DT_END_NODE) {
652 depth --;
653 continue;
654 }
655 if (tag == OF_DT_NOP)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656 continue;
657 if (tag == OF_DT_END)
658 break;
659 if (tag == OF_DT_PROP) {
660 u32 sz = *((u32 *)p);
661 p += 8;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200662 if (initial_boot_params->version < 0x10)
663 p = _ALIGN(p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664 p += sz;
665 p = _ALIGN(p, 4);
666 continue;
667 }
668 if (tag != OF_DT_BEGIN_NODE) {
669 printk(KERN_WARNING "Invalid tag %x scanning flattened"
670 " device tree !\n", tag);
671 return -EINVAL;
672 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200673 depth++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674 pathp = (char *)p;
675 p = _ALIGN(p + strlen(pathp) + 1, 4);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200676 if ((*pathp) == '/') {
677 char *lp, *np;
678 for (lp = NULL, np = pathp; *np; np++)
679 if ((*np) == '/')
680 lp = np+1;
681 if (lp != NULL)
682 pathp = lp;
683 }
684 rc = it(p, pathp, depth, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700685 if (rc != 0)
686 break;
687 } while(1);
688
689 return rc;
690}
691
692/**
693 * This function can be used within scan_flattened_dt callback to get
694 * access to properties
695 */
696static void* __init get_flat_dt_prop(unsigned long node, const char *name,
697 unsigned long *size)
698{
699 unsigned long p = node;
700
701 do {
702 u32 tag = *((u32 *)p);
703 u32 sz, noff;
704 const char *nstr;
705
706 p += 4;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200707 if (tag == OF_DT_NOP)
708 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709 if (tag != OF_DT_PROP)
710 return NULL;
711
712 sz = *((u32 *)p);
713 noff = *((u32 *)(p + 4));
714 p += 8;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200715 if (initial_boot_params->version < 0x10)
716 p = _ALIGN(p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717
718 nstr = find_flat_dt_string(noff);
719 if (nstr == NULL) {
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200720 printk(KERN_WARNING "Can't find property index"
721 " name !\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700722 return NULL;
723 }
724 if (strcmp(name, nstr) == 0) {
725 if (size)
726 *size = sz;
727 return (void *)p;
728 }
729 p += sz;
730 p = _ALIGN(p, 4);
731 } while(1);
732}
733
734static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200735 unsigned long align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736{
737 void *res;
738
739 *mem = _ALIGN(*mem, align);
740 res = (void *)*mem;
741 *mem += size;
742
743 return res;
744}
745
746static unsigned long __init unflatten_dt_node(unsigned long mem,
747 unsigned long *p,
748 struct device_node *dad,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200749 struct device_node ***allnextpp,
750 unsigned long fpsize)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751{
752 struct device_node *np;
753 struct property *pp, **prev_pp = NULL;
754 char *pathp;
755 u32 tag;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200756 unsigned int l, allocl;
757 int has_name = 0;
758 int new_format = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759
760 tag = *((u32 *)(*p));
761 if (tag != OF_DT_BEGIN_NODE) {
762 printk("Weird tag at start of node: %x\n", tag);
763 return mem;
764 }
765 *p += 4;
766 pathp = (char *)*p;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200767 l = allocl = strlen(pathp) + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768 *p = _ALIGN(*p + l, 4);
769
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200770 /* version 0x10 has a more compact unit name here instead of the full
771 * path. we accumulate the full path size using "fpsize", we'll rebuild
772 * it later. We detect this because the first character of the name is
773 * not '/'.
774 */
775 if ((*pathp) != '/') {
776 new_format = 1;
777 if (fpsize == 0) {
778 /* root node: special case. fpsize accounts for path
779 * plus terminating zero. root node only has '/', so
780 * fpsize should be 2, but we want to avoid the first
781 * level nodes to have two '/' so we use fpsize 1 here
782 */
783 fpsize = 1;
784 allocl = 2;
785 } else {
786 /* account for '/' and path size minus terminal 0
787 * already in 'l'
788 */
789 fpsize += l;
790 allocl = fpsize;
791 }
792 }
793
794
795 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 __alignof__(struct device_node));
797 if (allnextpp) {
798 memset(np, 0, sizeof(*np));
799 np->full_name = ((char*)np) + sizeof(struct device_node);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200800 if (new_format) {
801 char *p = np->full_name;
802 /* rebuild full path for new format */
803 if (dad && dad->parent) {
804 strcpy(p, dad->full_name);
805#ifdef DEBUG
806 if ((strlen(p) + l + 1) != allocl) {
807 DBG("%s: p: %d, l: %d, a: %d\n",
808 pathp, strlen(p), l, allocl);
809 }
810#endif
811 p += strlen(p);
812 }
813 *(p++) = '/';
814 memcpy(p, pathp, l);
815 } else
816 memcpy(np->full_name, pathp, l);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817 prev_pp = &np->properties;
818 **allnextpp = np;
819 *allnextpp = &np->allnext;
820 if (dad != NULL) {
821 np->parent = dad;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200822 /* we temporarily use the next field as `last_child'*/
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823 if (dad->next == 0)
824 dad->child = np;
825 else
826 dad->next->sibling = np;
827 dad->next = np;
828 }
829 kref_init(&np->kref);
830 }
831 while(1) {
832 u32 sz, noff;
833 char *pname;
834
835 tag = *((u32 *)(*p));
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200836 if (tag == OF_DT_NOP) {
837 *p += 4;
838 continue;
839 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840 if (tag != OF_DT_PROP)
841 break;
842 *p += 4;
843 sz = *((u32 *)(*p));
844 noff = *((u32 *)((*p) + 4));
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200845 *p += 8;
846 if (initial_boot_params->version < 0x10)
847 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848
849 pname = find_flat_dt_string(noff);
850 if (pname == NULL) {
851 printk("Can't find property name in list !\n");
852 break;
853 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200854 if (strcmp(pname, "name") == 0)
855 has_name = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856 l = strlen(pname) + 1;
857 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
858 __alignof__(struct property));
859 if (allnextpp) {
860 if (strcmp(pname, "linux,phandle") == 0) {
861 np->node = *((u32 *)*p);
862 if (np->linux_phandle == 0)
863 np->linux_phandle = np->node;
864 }
865 if (strcmp(pname, "ibm,phandle") == 0)
866 np->linux_phandle = *((u32 *)*p);
867 pp->name = pname;
868 pp->length = sz;
869 pp->value = (void *)*p;
870 *prev_pp = pp;
871 prev_pp = &pp->next;
872 }
873 *p = _ALIGN((*p) + sz, 4);
874 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200875 /* with version 0x10 we may not have the name property, recreate
876 * it here from the unit name if absent
877 */
878 if (!has_name) {
879 char *p = pathp, *ps = pathp, *pa = NULL;
880 int sz;
881
882 while (*p) {
883 if ((*p) == '@')
884 pa = p;
885 if ((*p) == '/')
886 ps = p + 1;
887 p++;
888 }
889 if (pa < ps)
890 pa = p;
891 sz = (pa - ps) + 1;
892 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
893 __alignof__(struct property));
894 if (allnextpp) {
895 pp->name = "name";
896 pp->length = sz;
897 pp->value = (unsigned char *)(pp + 1);
898 *prev_pp = pp;
899 prev_pp = &pp->next;
900 memcpy(pp->value, ps, sz - 1);
901 ((char *)pp->value)[sz - 1] = 0;
902 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
903 }
904 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905 if (allnextpp) {
906 *prev_pp = NULL;
907 np->name = get_property(np, "name", NULL);
908 np->type = get_property(np, "device_type", NULL);
909
910 if (!np->name)
911 np->name = "<NULL>";
912 if (!np->type)
913 np->type = "<NULL>";
914 }
915 while (tag == OF_DT_BEGIN_NODE) {
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200916 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917 tag = *((u32 *)(*p));
918 }
919 if (tag != OF_DT_END_NODE) {
Michael Ellerman145ec7d2005-08-09 15:20:18 +1000920 printk("Weird tag at end of node: %x\n", tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700921 return mem;
922 }
923 *p += 4;
924 return mem;
925}
926
927
928/**
929 * unflattens the device-tree passed by the firmware, creating the
930 * tree of struct device_node. It also fills the "name" and "type"
931 * pointers of the nodes so the normal device-tree walking functions
932 * can be used (this used to be done by finish_device_tree)
933 */
934void __init unflatten_device_tree(void)
935{
936 unsigned long start, mem, size;
937 struct device_node **allnextp = &allnodes;
Paul Mackerras3892c5f2005-05-06 13:29:34 +1000938 char *p = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 int l = 0;
940
941 DBG(" -> unflatten_device_tree()\n");
942
943 /* First pass, scan for size */
944 start = ((unsigned long)initial_boot_params) +
945 initial_boot_params->off_dt_struct;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200946 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
947 size = (size | 3) + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948
949 DBG(" size is %lx, allocating...\n", size);
950
951 /* Allocate memory for the expanded device tree */
Michael Ellerman95920322005-08-09 15:20:19 +1000952 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
953 if (!mem) {
954 DBG("Couldn't allocate memory with lmb_alloc()!\n");
955 panic("Couldn't allocate memory with lmb_alloc()!\n");
956 }
957 mem = (unsigned long)abs_to_virt(mem);
958
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200959 ((u32 *)mem)[size / 4] = 0xdeadbeef;
960
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961 DBG(" unflattening...\n", mem);
962
963 /* Second pass, do actual unflattening */
964 start = ((unsigned long)initial_boot_params) +
965 initial_boot_params->off_dt_struct;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200966 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967 if (*((u32 *)start) != OF_DT_END)
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200968 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
969 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
970 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
971 ((u32 *)mem)[size / 4] );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 *allnextp = NULL;
973
974 /* Get pointer to OF "/chosen" node for use everywhere */
975 of_chosen = of_find_node_by_path("/chosen");
976
977 /* Retreive command line */
978 if (of_chosen != NULL) {
979 p = (char *)get_property(of_chosen, "bootargs", &l);
980 if (p != NULL && l > 0)
981 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
982 }
983#ifdef CONFIG_CMDLINE
984 if (l == 0 || (l == 1 && (*p) == 0))
985 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
986#endif /* CONFIG_CMDLINE */
987
988 DBG("Command line is: %s\n", cmd_line);
989
990 DBG(" <- unflatten_device_tree()\n");
991}
992
993
994static int __init early_init_dt_scan_cpus(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200995 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996{
997 char *type = get_flat_dt_prop(node, "device_type", NULL);
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -0700998 u32 *prop;
Anton Blanchard9b843cd2005-06-21 17:15:55 -0700999 unsigned long size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000
1001 /* We are scanning "cpu" nodes only */
1002 if (type == NULL || strcmp(type, "cpu") != 0)
1003 return 0;
1004
1005 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1006 */
1007 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1008 u32 *pft_size;
1009 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
1010 if (pft_size != NULL) {
1011 /* pft_size[0] is the NUMA CEC cookie */
1012 ppc64_pft_size = pft_size[1];
1013 }
1014 }
1015
1016 if (initial_boot_params && initial_boot_params->version >= 2) {
1017 /* version 2 of the kexec param format adds the phys cpuid
1018 * of booted proc.
1019 */
1020 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1021 boot_cpuid = 0;
1022 } else {
1023 /* Check if it's the boot-cpu, set it's hw index in paca now */
1024 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1025 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
1026 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1027 boot_cpuid_phys = get_hard_smp_processor_id(0);
1028 }
1029 }
1030
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -07001031#ifdef CONFIG_ALTIVEC
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001032 /* Check if we have a VMX and eventually update CPU features */
1033 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
1034 if (prop && (*prop) > 0) {
1035 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1036 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1037 }
1038
1039 /* Same goes for Apple's "altivec" property */
1040 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1041 if (prop) {
1042 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1043 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1044 }
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -07001045#endif /* CONFIG_ALTIVEC */
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001046
Anton Blanchard9b843cd2005-06-21 17:15:55 -07001047 /*
1048 * Check for an SMT capable CPU and set the CPU feature. We do
1049 * this by looking at the size of the ibm,ppc-interrupt-server#s
1050 * property
1051 */
1052 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1053 &size);
1054 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1055 if (prop && ((size / sizeof(u32)) > 1))
1056 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1057
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058 return 0;
1059}
1060
1061static int __init early_init_dt_scan_chosen(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001062 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063{
1064 u32 *prop;
1065 u64 *prop64;
1066 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
1067
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001068 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1069
1070 if (depth != 1 || strcmp(uname, "chosen") != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001071 return 0;
1072
1073 /* get platform type */
1074 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1075 if (prop == NULL)
1076 return 0;
1077 systemcfg->platform = *prop;
1078
1079 /* check if iommu is forced on or off */
1080 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1081 iommu_is_off = 1;
1082 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1083 iommu_force_on = 1;
1084
1085 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
1086 if (prop64)
1087 memory_limit = *prop64;
1088
1089 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1090 if (prop64)
1091 tce_alloc_start = *prop64;
1092
1093 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1094 if (prop64)
1095 tce_alloc_end = *prop64;
1096
1097#ifdef CONFIG_PPC_RTAS
1098 /* To help early debugging via the front panel, we retreive a minimal
1099 * set of RTAS infos now if available
1100 */
1101 {
1102 u64 *basep, *entryp;
1103
1104 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
1105 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1106 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
1107 if (basep && entryp && prop) {
1108 rtas.base = *basep;
1109 rtas.entry = *entryp;
1110 rtas.size = *prop;
1111 }
1112 }
1113#endif /* CONFIG_PPC_RTAS */
1114
1115 /* break now */
1116 return 1;
1117}
1118
1119static int __init early_init_dt_scan_root(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001120 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121{
1122 u32 *prop;
1123
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001124 if (depth != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125 return 0;
1126
1127 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1128 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001129 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1130
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1132 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001133 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134
1135 /* break now */
1136 return 1;
1137}
1138
1139static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1140{
1141 cell_t *p = *cellp;
1142 unsigned long r = 0;
1143
1144 /* Ignore more than 2 cells */
1145 while (s > 2) {
1146 p++;
1147 s--;
1148 }
1149 while (s) {
1150 r <<= 32;
1151 r |= *(p++);
1152 s--;
1153 }
1154
1155 *cellp = p;
1156 return r;
1157}
1158
1159
1160static int __init early_init_dt_scan_memory(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001161 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162{
1163 char *type = get_flat_dt_prop(node, "device_type", NULL);
1164 cell_t *reg, *endp;
1165 unsigned long l;
1166
1167 /* We are scanning "memory" nodes only */
1168 if (type == NULL || strcmp(type, "memory") != 0)
1169 return 0;
1170
1171 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1172 if (reg == NULL)
1173 return 0;
1174
1175 endp = reg + (l / sizeof(cell_t));
1176
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001177 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1178 uname, l, reg[0], reg[1], reg[2], reg[3]);
1179
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1181 unsigned long base, size;
1182
1183 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1184 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1185
1186 if (size == 0)
1187 continue;
1188 DBG(" - %lx , %lx\n", base, size);
1189 if (iommu_is_off) {
1190 if (base >= 0x80000000ul)
1191 continue;
1192 if ((base + size) > 0x80000000ul)
1193 size = 0x80000000ul - base;
1194 }
1195 lmb_add(base, size);
1196 }
1197 return 0;
1198}
1199
1200static void __init early_reserve_mem(void)
1201{
1202 u64 base, size;
1203 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1204 initial_boot_params->off_mem_rsvmap);
1205 while (1) {
1206 base = *(reserve_map++);
1207 size = *(reserve_map++);
1208 if (size == 0)
1209 break;
1210 DBG("reserving: %lx -> %lx\n", base, size);
1211 lmb_reserve(base, size);
1212 }
1213
1214#if 0
1215 DBG("memory reserved, lmbs :\n");
1216 lmb_dump_all();
1217#endif
1218}
1219
1220void __init early_init_devtree(void *params)
1221{
1222 DBG(" -> early_init_devtree()\n");
1223
1224 /* Setup flat device-tree pointer */
1225 initial_boot_params = params;
1226
1227 /* By default, hash size is not set */
1228 ppc64_pft_size = 0;
1229
1230 /* Retreive various informations from the /chosen node of the
1231 * device-tree, including the platform type, initrd location and
1232 * size, TCE reserve, and more ...
1233 */
1234 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1235
1236 /* Scan memory nodes and rebuild LMBs */
1237 lmb_init();
1238 scan_flat_dt(early_init_dt_scan_root, NULL);
1239 scan_flat_dt(early_init_dt_scan_memory, NULL);
1240 lmb_enforce_memory_limit();
1241 lmb_analyze();
1242 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1243 lmb_reserve(0, __pa(klimit));
1244
1245 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1246
1247 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1248 early_reserve_mem();
1249
1250 DBG("Scanning CPUs ...\n");
1251
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001252 /* Retreive hash table size from flattened tree plus other
1253 * CPU related informations (altivec support, boot CPU ID, ...)
1254 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1256
1257 /* If hash size wasn't obtained above, we calculate it now based on
1258 * the total RAM size
1259 */
1260 if (ppc64_pft_size == 0) {
1261 unsigned long rnd_mem_size, pteg_count;
1262
1263 /* round mem_size up to next power of 2 */
1264 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1265 if (rnd_mem_size < systemcfg->physicalMemorySize)
1266 rnd_mem_size <<= 1;
1267
1268 /* # pages / 2 */
1269 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1270
1271 ppc64_pft_size = __ilog2(pteg_count << 7);
1272 }
1273
1274 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1275 DBG(" <- early_init_devtree()\n");
1276}
1277
1278#undef printk
1279
1280int
1281prom_n_addr_cells(struct device_node* np)
1282{
1283 int* ip;
1284 do {
1285 if (np->parent)
1286 np = np->parent;
1287 ip = (int *) get_property(np, "#address-cells", NULL);
1288 if (ip != NULL)
1289 return *ip;
1290 } while (np->parent);
1291 /* No #address-cells property for the root node, default to 1 */
1292 return 1;
1293}
1294
1295int
1296prom_n_size_cells(struct device_node* np)
1297{
1298 int* ip;
1299 do {
1300 if (np->parent)
1301 np = np->parent;
1302 ip = (int *) get_property(np, "#size-cells", NULL);
1303 if (ip != NULL)
1304 return *ip;
1305 } while (np->parent);
1306 /* No #size-cells property for the root node, default to 1 */
1307 return 1;
1308}
1309
1310/**
1311 * Work out the sense (active-low level / active-high edge)
1312 * of each interrupt from the device tree.
1313 */
1314void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1315{
1316 struct device_node *np;
1317 int i, j;
1318
1319 /* default to level-triggered */
1320 memset(senses, 1, max - off);
1321
1322 for (np = allnodes; np != 0; np = np->allnext) {
1323 for (j = 0; j < np->n_intrs; j++) {
1324 i = np->intrs[j].line;
1325 if (i >= off && i < max)
1326 senses[i-off] = np->intrs[j].sense ?
1327 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1328 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1329 }
1330 }
1331}
1332
1333/**
1334 * Construct and return a list of the device_nodes with a given name.
1335 */
1336struct device_node *
1337find_devices(const char *name)
1338{
1339 struct device_node *head, **prevp, *np;
1340
1341 prevp = &head;
1342 for (np = allnodes; np != 0; np = np->allnext) {
1343 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1344 *prevp = np;
1345 prevp = &np->next;
1346 }
1347 }
1348 *prevp = NULL;
1349 return head;
1350}
1351EXPORT_SYMBOL(find_devices);
1352
1353/**
1354 * Construct and return a list of the device_nodes with a given type.
1355 */
1356struct device_node *
1357find_type_devices(const char *type)
1358{
1359 struct device_node *head, **prevp, *np;
1360
1361 prevp = &head;
1362 for (np = allnodes; np != 0; np = np->allnext) {
1363 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1364 *prevp = np;
1365 prevp = &np->next;
1366 }
1367 }
1368 *prevp = NULL;
1369 return head;
1370}
1371EXPORT_SYMBOL(find_type_devices);
1372
1373/**
1374 * Returns all nodes linked together
1375 */
1376struct device_node *
1377find_all_nodes(void)
1378{
1379 struct device_node *head, **prevp, *np;
1380
1381 prevp = &head;
1382 for (np = allnodes; np != 0; np = np->allnext) {
1383 *prevp = np;
1384 prevp = &np->next;
1385 }
1386 *prevp = NULL;
1387 return head;
1388}
1389EXPORT_SYMBOL(find_all_nodes);
1390
1391/** Checks if the given "compat" string matches one of the strings in
1392 * the device's "compatible" property
1393 */
1394int
1395device_is_compatible(struct device_node *device, const char *compat)
1396{
1397 const char* cp;
1398 int cplen, l;
1399
1400 cp = (char *) get_property(device, "compatible", &cplen);
1401 if (cp == NULL)
1402 return 0;
1403 while (cplen > 0) {
1404 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1405 return 1;
1406 l = strlen(cp) + 1;
1407 cp += l;
1408 cplen -= l;
1409 }
1410
1411 return 0;
1412}
1413EXPORT_SYMBOL(device_is_compatible);
1414
1415
1416/**
1417 * Indicates whether the root node has a given value in its
1418 * compatible property.
1419 */
1420int
1421machine_is_compatible(const char *compat)
1422{
1423 struct device_node *root;
1424 int rc = 0;
1425
1426 root = of_find_node_by_path("/");
1427 if (root) {
1428 rc = device_is_compatible(root, compat);
1429 of_node_put(root);
1430 }
1431 return rc;
1432}
1433EXPORT_SYMBOL(machine_is_compatible);
1434
1435/**
1436 * Construct and return a list of the device_nodes with a given type
1437 * and compatible property.
1438 */
1439struct device_node *
1440find_compatible_devices(const char *type, const char *compat)
1441{
1442 struct device_node *head, **prevp, *np;
1443
1444 prevp = &head;
1445 for (np = allnodes; np != 0; np = np->allnext) {
1446 if (type != NULL
1447 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1448 continue;
1449 if (device_is_compatible(np, compat)) {
1450 *prevp = np;
1451 prevp = &np->next;
1452 }
1453 }
1454 *prevp = NULL;
1455 return head;
1456}
1457EXPORT_SYMBOL(find_compatible_devices);
1458
1459/**
1460 * Find the device_node with a given full_name.
1461 */
1462struct device_node *
1463find_path_device(const char *path)
1464{
1465 struct device_node *np;
1466
1467 for (np = allnodes; np != 0; np = np->allnext)
1468 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1469 return np;
1470 return NULL;
1471}
1472EXPORT_SYMBOL(find_path_device);
1473
1474/*******
1475 *
1476 * New implementation of the OF "find" APIs, return a refcounted
1477 * object, call of_node_put() when done. The device tree and list
1478 * are protected by a rw_lock.
1479 *
1480 * Note that property management will need some locking as well,
1481 * this isn't dealt with yet.
1482 *
1483 *******/
1484
1485/**
1486 * of_find_node_by_name - Find a node by its "name" property
1487 * @from: The node to start searching from or NULL, the node
1488 * you pass will not be searched, only the next one
1489 * will; typically, you pass what the previous call
1490 * returned. of_node_put() will be called on it
1491 * @name: The name string to match against
1492 *
1493 * Returns a node pointer with refcount incremented, use
1494 * of_node_put() on it when done.
1495 */
1496struct device_node *of_find_node_by_name(struct device_node *from,
1497 const char *name)
1498{
1499 struct device_node *np;
1500
1501 read_lock(&devtree_lock);
1502 np = from ? from->allnext : allnodes;
1503 for (; np != 0; np = np->allnext)
1504 if (np->name != 0 && strcasecmp(np->name, name) == 0
1505 && of_node_get(np))
1506 break;
1507 if (from)
1508 of_node_put(from);
1509 read_unlock(&devtree_lock);
1510 return np;
1511}
1512EXPORT_SYMBOL(of_find_node_by_name);
1513
1514/**
1515 * of_find_node_by_type - Find a node by its "device_type" property
1516 * @from: The node to start searching from or NULL, the node
1517 * you pass will not be searched, only the next one
1518 * will; typically, you pass what the previous call
1519 * returned. of_node_put() will be called on it
1520 * @name: The type string to match against
1521 *
1522 * Returns a node pointer with refcount incremented, use
1523 * of_node_put() on it when done.
1524 */
1525struct device_node *of_find_node_by_type(struct device_node *from,
1526 const char *type)
1527{
1528 struct device_node *np;
1529
1530 read_lock(&devtree_lock);
1531 np = from ? from->allnext : allnodes;
1532 for (; np != 0; np = np->allnext)
1533 if (np->type != 0 && strcasecmp(np->type, type) == 0
1534 && of_node_get(np))
1535 break;
1536 if (from)
1537 of_node_put(from);
1538 read_unlock(&devtree_lock);
1539 return np;
1540}
1541EXPORT_SYMBOL(of_find_node_by_type);
1542
1543/**
1544 * of_find_compatible_node - Find a node based on type and one of the
1545 * tokens in its "compatible" property
1546 * @from: The node to start searching from or NULL, the node
1547 * you pass will not be searched, only the next one
1548 * will; typically, you pass what the previous call
1549 * returned. of_node_put() will be called on it
1550 * @type: The type string to match "device_type" or NULL to ignore
1551 * @compatible: The string to match to one of the tokens in the device
1552 * "compatible" list.
1553 *
1554 * Returns a node pointer with refcount incremented, use
1555 * of_node_put() on it when done.
1556 */
1557struct device_node *of_find_compatible_node(struct device_node *from,
1558 const char *type, const char *compatible)
1559{
1560 struct device_node *np;
1561
1562 read_lock(&devtree_lock);
1563 np = from ? from->allnext : allnodes;
1564 for (; np != 0; np = np->allnext) {
1565 if (type != NULL
1566 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1567 continue;
1568 if (device_is_compatible(np, compatible) && of_node_get(np))
1569 break;
1570 }
1571 if (from)
1572 of_node_put(from);
1573 read_unlock(&devtree_lock);
1574 return np;
1575}
1576EXPORT_SYMBOL(of_find_compatible_node);
1577
1578/**
1579 * of_find_node_by_path - Find a node matching a full OF path
1580 * @path: The full path to match
1581 *
1582 * Returns a node pointer with refcount incremented, use
1583 * of_node_put() on it when done.
1584 */
1585struct device_node *of_find_node_by_path(const char *path)
1586{
1587 struct device_node *np = allnodes;
1588
1589 read_lock(&devtree_lock);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001590 for (; np != 0; np = np->allnext) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1592 && of_node_get(np))
1593 break;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001594 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 read_unlock(&devtree_lock);
1596 return np;
1597}
1598EXPORT_SYMBOL(of_find_node_by_path);
1599
1600/**
1601 * of_find_node_by_phandle - Find a node given a phandle
1602 * @handle: phandle of the node to find
1603 *
1604 * Returns a node pointer with refcount incremented, use
1605 * of_node_put() on it when done.
1606 */
1607struct device_node *of_find_node_by_phandle(phandle handle)
1608{
1609 struct device_node *np;
1610
1611 read_lock(&devtree_lock);
1612 for (np = allnodes; np != 0; np = np->allnext)
1613 if (np->linux_phandle == handle)
1614 break;
1615 if (np)
1616 of_node_get(np);
1617 read_unlock(&devtree_lock);
1618 return np;
1619}
1620EXPORT_SYMBOL(of_find_node_by_phandle);
1621
1622/**
1623 * of_find_all_nodes - Get next node in global list
1624 * @prev: Previous node or NULL to start iteration
1625 * of_node_put() will be called on it
1626 *
1627 * Returns a node pointer with refcount incremented, use
1628 * of_node_put() on it when done.
1629 */
1630struct device_node *of_find_all_nodes(struct device_node *prev)
1631{
1632 struct device_node *np;
1633
1634 read_lock(&devtree_lock);
1635 np = prev ? prev->allnext : allnodes;
1636 for (; np != 0; np = np->allnext)
1637 if (of_node_get(np))
1638 break;
1639 if (prev)
1640 of_node_put(prev);
1641 read_unlock(&devtree_lock);
1642 return np;
1643}
1644EXPORT_SYMBOL(of_find_all_nodes);
1645
1646/**
1647 * of_get_parent - Get a node's parent if any
1648 * @node: Node to get parent
1649 *
1650 * Returns a node pointer with refcount incremented, use
1651 * of_node_put() on it when done.
1652 */
1653struct device_node *of_get_parent(const struct device_node *node)
1654{
1655 struct device_node *np;
1656
1657 if (!node)
1658 return NULL;
1659
1660 read_lock(&devtree_lock);
1661 np = of_node_get(node->parent);
1662 read_unlock(&devtree_lock);
1663 return np;
1664}
1665EXPORT_SYMBOL(of_get_parent);
1666
1667/**
1668 * of_get_next_child - Iterate a node childs
1669 * @node: parent node
1670 * @prev: previous child of the parent node, or NULL to get first
1671 *
1672 * Returns a node pointer with refcount incremented, use
1673 * of_node_put() on it when done.
1674 */
1675struct device_node *of_get_next_child(const struct device_node *node,
1676 struct device_node *prev)
1677{
1678 struct device_node *next;
1679
1680 read_lock(&devtree_lock);
1681 next = prev ? prev->sibling : node->child;
1682 for (; next != 0; next = next->sibling)
1683 if (of_node_get(next))
1684 break;
1685 if (prev)
1686 of_node_put(prev);
1687 read_unlock(&devtree_lock);
1688 return next;
1689}
1690EXPORT_SYMBOL(of_get_next_child);
1691
1692/**
1693 * of_node_get - Increment refcount of a node
1694 * @node: Node to inc refcount, NULL is supported to
1695 * simplify writing of callers
1696 *
1697 * Returns node.
1698 */
1699struct device_node *of_node_get(struct device_node *node)
1700{
1701 if (node)
1702 kref_get(&node->kref);
1703 return node;
1704}
1705EXPORT_SYMBOL(of_node_get);
1706
1707static inline struct device_node * kref_to_device_node(struct kref *kref)
1708{
1709 return container_of(kref, struct device_node, kref);
1710}
1711
1712/**
1713 * of_node_release - release a dynamically allocated node
1714 * @kref: kref element of the node to be released
1715 *
1716 * In of_node_put() this function is passed to kref_put()
1717 * as the destructor.
1718 */
1719static void of_node_release(struct kref *kref)
1720{
1721 struct device_node *node = kref_to_device_node(kref);
1722 struct property *prop = node->properties;
1723
1724 if (!OF_IS_DYNAMIC(node))
1725 return;
1726 while (prop) {
1727 struct property *next = prop->next;
1728 kfree(prop->name);
1729 kfree(prop->value);
1730 kfree(prop);
1731 prop = next;
1732 }
1733 kfree(node->intrs);
1734 kfree(node->addrs);
1735 kfree(node->full_name);
1736 kfree(node);
1737}
1738
1739/**
1740 * of_node_put - Decrement refcount of a node
1741 * @node: Node to dec refcount, NULL is supported to
1742 * simplify writing of callers
1743 *
1744 */
1745void of_node_put(struct device_node *node)
1746{
1747 if (node)
1748 kref_put(&node->kref, of_node_release);
1749}
1750EXPORT_SYMBOL(of_node_put);
1751
1752/*
1753 * Fix up the uninitialized fields in a new device node:
1754 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1755 *
1756 * A lot of boot-time code is duplicated here, because functions such
1757 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1758 * slab allocator.
1759 *
1760 * This should probably be split up into smaller chunks.
1761 */
1762
1763static int of_finish_dynamic_node(struct device_node *node,
1764 unsigned long *unused1, int unused2,
1765 int unused3, int unused4)
1766{
1767 struct device_node *parent = of_get_parent(node);
1768 int err = 0;
1769 phandle *ibm_phandle;
1770
1771 node->name = get_property(node, "name", NULL);
1772 node->type = get_property(node, "device_type", NULL);
1773
1774 if (!parent) {
1775 err = -ENODEV;
1776 goto out;
1777 }
1778
1779 /* We don't support that function on PowerMac, at least
1780 * not yet
1781 */
1782 if (systemcfg->platform == PLATFORM_POWERMAC)
1783 return -ENODEV;
1784
1785 /* fix up new node's linux_phandle field */
1786 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1787 node->linux_phandle = *ibm_phandle;
1788
1789out:
1790 of_node_put(parent);
1791 return err;
1792}
1793
1794/*
1795 * Plug a device node into the tree and global list.
1796 */
1797void of_attach_node(struct device_node *np)
1798{
1799 write_lock(&devtree_lock);
1800 np->sibling = np->parent->child;
1801 np->allnext = allnodes;
1802 np->parent->child = np;
1803 allnodes = np;
1804 write_unlock(&devtree_lock);
1805}
1806
1807/*
1808 * "Unplug" a node from the device tree. The caller must hold
1809 * a reference to the node. The memory associated with the node
1810 * is not freed until its refcount goes to zero.
1811 */
1812void of_detach_node(const struct device_node *np)
1813{
1814 struct device_node *parent;
1815
1816 write_lock(&devtree_lock);
1817
1818 parent = np->parent;
1819
1820 if (allnodes == np)
1821 allnodes = np->allnext;
1822 else {
1823 struct device_node *prev;
1824 for (prev = allnodes;
1825 prev->allnext != np;
1826 prev = prev->allnext)
1827 ;
1828 prev->allnext = np->allnext;
1829 }
1830
1831 if (parent->child == np)
1832 parent->child = np->sibling;
1833 else {
1834 struct device_node *prevsib;
1835 for (prevsib = np->parent->child;
1836 prevsib->sibling != np;
1837 prevsib = prevsib->sibling)
1838 ;
1839 prevsib->sibling = np->sibling;
1840 }
1841
1842 write_unlock(&devtree_lock);
1843}
1844
1845static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1846{
1847 int err;
1848
1849 switch (action) {
1850 case PSERIES_RECONFIG_ADD:
1851 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1852 if (err < 0) {
1853 printk(KERN_ERR "finish_node returned %d\n", err);
1854 err = NOTIFY_BAD;
1855 }
1856 break;
1857 default:
1858 err = NOTIFY_DONE;
1859 break;
1860 }
1861 return err;
1862}
1863
1864static struct notifier_block prom_reconfig_nb = {
1865 .notifier_call = prom_reconfig_notifier,
1866 .priority = 10, /* This one needs to run first */
1867};
1868
1869static int __init prom_reconfig_setup(void)
1870{
1871 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1872}
1873__initcall(prom_reconfig_setup);
1874
1875/*
1876 * Find a property with a given name for a given node
1877 * and return the value.
1878 */
1879unsigned char *
1880get_property(struct device_node *np, const char *name, int *lenp)
1881{
1882 struct property *pp;
1883
1884 for (pp = np->properties; pp != 0; pp = pp->next)
1885 if (strcmp(pp->name, name) == 0) {
1886 if (lenp != 0)
1887 *lenp = pp->length;
1888 return pp->value;
1889 }
1890 return NULL;
1891}
1892EXPORT_SYMBOL(get_property);
1893
1894/*
1895 * Add a property to a node
1896 */
1897void
1898prom_add_property(struct device_node* np, struct property* prop)
1899{
1900 struct property **next = &np->properties;
1901
1902 prop->next = NULL;
1903 while (*next)
1904 next = &(*next)->next;
1905 *next = prop;
1906}
1907
1908#if 0
1909void
1910print_properties(struct device_node *np)
1911{
1912 struct property *pp;
1913 char *cp;
1914 int i, n;
1915
1916 for (pp = np->properties; pp != 0; pp = pp->next) {
1917 printk(KERN_INFO "%s", pp->name);
1918 for (i = strlen(pp->name); i < 16; ++i)
1919 printk(" ");
1920 cp = (char *) pp->value;
1921 for (i = pp->length; i > 0; --i, ++cp)
1922 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1923 || (i == 1 && *cp != 0))
1924 break;
1925 if (i == 0 && pp->length > 1) {
1926 /* looks like a string */
1927 printk(" %s\n", (char *) pp->value);
1928 } else {
1929 /* dump it in hex */
1930 n = pp->length;
1931 if (n > 64)
1932 n = 64;
1933 if (pp->length % 4 == 0) {
1934 unsigned int *p = (unsigned int *) pp->value;
1935
1936 n /= 4;
1937 for (i = 0; i < n; ++i) {
1938 if (i != 0 && (i % 4) == 0)
1939 printk("\n ");
1940 printk(" %08x", *p++);
1941 }
1942 } else {
1943 unsigned char *bp = pp->value;
1944
1945 for (i = 0; i < n; ++i) {
1946 if (i != 0 && (i % 16) == 0)
1947 printk("\n ");
1948 printk(" %02x", *bp++);
1949 }
1950 }
1951 printk("\n");
1952 if (pp->length > 64)
1953 printk(" ... (length = %d)\n",
1954 pp->length);
1955 }
1956 }
1957}
1958#endif
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968