blob: 6e52e0adff80dfc04fa921dd88a0df7bce8a4a2a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080037#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080052#include <linux/kprobes.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070053#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
Ingo Molnar48c08d32005-06-25 14:57:22 -0700173static unsigned int task_timeslice(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174{
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179}
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183/*
184 * These are the runqueue data structures:
185 */
186
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t;
190
191struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195};
196
197/*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700213 unsigned long cpu_load[3];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214#endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233#ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
Anton Blancharde9028b02006-03-23 02:59:20 -0800242 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700243#endif
244
245#ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263#endif
264};
265
266static DEFINE_PER_CPU(struct runqueue, runqueues);
267
Nick Piggin674311d2005-06-25 14:57:27 -0700268/*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700270 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275#define for_each_domain(cpu, domain) \
Nick Piggin674311d2005-06-25 14:57:27 -0700276for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277
278#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279#define this_rq() (&__get_cpu_var(runqueues))
280#define task_rq(p) cpu_rq(task_cpu(p))
281#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700284# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700286#ifndef finish_arch_switch
287# define finish_arch_switch(prev) do { } while (0)
288#endif
289
290#ifndef __ARCH_WANT_UNLOCKED_CTXSW
291static inline int task_running(runqueue_t *rq, task_t *p)
292{
293 return rq->curr == p;
294}
295
296static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297{
298}
299
300static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301{
Ingo Molnarda04c032005-09-13 11:17:59 +0200302#ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700306 spin_unlock_irq(&rq->lock);
307}
308
309#else /* __ARCH_WANT_UNLOCKED_CTXSW */
310static inline int task_running(runqueue_t *rq, task_t *p)
311{
312#ifdef CONFIG_SMP
313 return p->oncpu;
314#else
315 return rq->curr == p;
316#endif
317}
318
319static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320{
321#ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328#endif
329#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331#else
332 spin_unlock(&rq->lock);
333#endif
334}
335
336static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337{
338#ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346#endif
347#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
349#endif
350}
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700352
353/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360{
361 struct runqueue *rq;
362
363repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372}
373
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376{
377 spin_unlock_irqrestore(&rq->lock, *flags);
378}
379
380#ifdef CONFIG_SCHEDSTATS
381/*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
Nick Piggin68767a02005-06-25 14:57:20 -0700385#define SCHEDSTAT_VERSION 12
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
387static int show_schedstat(struct seq_file *seq, void *v)
388{
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395#ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398#endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412#ifdef CONFIG_SMP
413 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700414 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
Nick Piggin68767a02005-06-25 14:57:20 -0700433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
Nick Piggin674311d2005-06-25 14:57:27 -0700439 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440#endif
441 }
442 return 0;
443}
444
445static int schedstat_open(struct inode *inode, struct file *file)
446{
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462}
463
464struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469};
470
471# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473#else /* !CONFIG_SCHEDSTATS */
474# define schedstat_inc(rq, field) do { } while (0)
475# define schedstat_add(rq, field, amt) do { } while (0)
476#endif
477
478/*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483{
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491}
492
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#ifdef CONFIG_SCHEDSTATS
494/*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509static inline void sched_info_dequeued(task_t *t)
510{
511 t->sched_info.last_queued = 0;
512}
513
514/*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
Arjan van de Ven858119e2006-01-14 13:20:43 -0800519static void sched_info_arrive(task_t *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520{
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536}
537
538/*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553static inline void sched_info_queued(task_t *t)
554{
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557}
558
559/*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563static inline void sched_info_depart(task_t *t)
564{
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572}
573
574/*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579static inline void sched_info_switch(task_t *prev, task_t *next)
580{
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593}
594#else
595#define sched_info_queued(t) do { } while (0)
596#define sched_info_switch(t, next) do { } while (0)
597#endif /* CONFIG_SCHEDSTATS */
598
599/*
600 * Adding/removing a task to/from a priority array:
601 */
602static void dequeue_task(struct task_struct *p, prio_array_t *array)
603{
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608}
609
610static void enqueue_task(struct task_struct *p, prio_array_t *array)
611{
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617}
618
619/*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623static void requeue_task(struct task_struct *p, prio_array_t *array)
624{
625 list_move_tail(&p->run_list, array->queue + p->prio);
626}
627
628static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650static int effective_prio(task_t *p)
651{
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665}
666
667/*
668 * __activate_task - move a task to the runqueue.
669 */
670static inline void __activate_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task(p, rq->active);
Nick Piggina2000572006-02-10 01:51:02 -0800673 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674}
675
676/*
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
678 */
679static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
680{
681 enqueue_task_head(p, rq->active);
Nick Piggina2000572006-02-10 01:51:02 -0800682 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683}
684
Chen Shanga3464a12005-06-25 14:57:31 -0700685static int recalc_task_prio(task_t *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686{
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
690
Ingo Molnarb0a94992006-01-14 13:20:41 -0800691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
698 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700699
700 if (likely(sleep_time > 0)) {
701 /*
702 * User tasks that sleep a long time are categorised as
703 * idle and will get just interactive status to stay active &
704 * prevent them suddenly becoming cpu hogs and starving
705 * other processes.
706 */
707 if (p->mm && p->activated != -1 &&
708 sleep_time > INTERACTIVE_SLEEP(p)) {
709 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
710 DEF_TIMESLICE);
711 } else {
712 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713 * Tasks waking from uninterruptible sleep are
714 * limited in their sleep_avg rise as they
715 * are likely to be waiting on I/O
716 */
717 if (p->activated == -1 && p->mm) {
718 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
719 sleep_time = 0;
720 else if (p->sleep_avg + sleep_time >=
721 INTERACTIVE_SLEEP(p)) {
722 p->sleep_avg = INTERACTIVE_SLEEP(p);
723 sleep_time = 0;
724 }
725 }
726
727 /*
728 * This code gives a bonus to interactive tasks.
729 *
730 * The boost works by updating the 'average sleep time'
731 * value here, based on ->timestamp. The more time a
732 * task spends sleeping, the higher the average gets -
733 * and the higher the priority boost gets as well.
734 */
735 p->sleep_avg += sleep_time;
736
737 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
738 p->sleep_avg = NS_MAX_SLEEP_AVG;
739 }
740 }
741
Chen Shanga3464a12005-06-25 14:57:31 -0700742 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743}
744
745/*
746 * activate_task - move a task to the runqueue and do priority recalculation
747 *
748 * Update all the scheduling statistics stuff. (sleep average
749 * calculation, priority modifiers, etc.)
750 */
751static void activate_task(task_t *p, runqueue_t *rq, int local)
752{
753 unsigned long long now;
754
755 now = sched_clock();
756#ifdef CONFIG_SMP
757 if (!local) {
758 /* Compensate for drifting sched_clock */
759 runqueue_t *this_rq = this_rq();
760 now = (now - this_rq->timestamp_last_tick)
761 + rq->timestamp_last_tick;
762 }
763#endif
764
Chen, Kenneth Wa47ab932005-11-09 15:45:29 -0800765 if (!rt_task(p))
766 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700767
768 /*
769 * This checks to make sure it's not an uninterruptible task
770 * that is now waking up.
771 */
772 if (!p->activated) {
773 /*
774 * Tasks which were woken up by interrupts (ie. hw events)
775 * are most likely of interactive nature. So we give them
776 * the credit of extending their sleep time to the period
777 * of time they spend on the runqueue, waiting for execution
778 * on a CPU, first time around:
779 */
780 if (in_interrupt())
781 p->activated = 2;
782 else {
783 /*
784 * Normal first-time wakeups get a credit too for
785 * on-runqueue time, but it will be weighted down:
786 */
787 p->activated = 1;
788 }
789 }
790 p->timestamp = now;
791
792 __activate_task(p, rq);
793}
794
795/*
796 * deactivate_task - remove a task from the runqueue.
797 */
798static void deactivate_task(struct task_struct *p, runqueue_t *rq)
799{
Nick Piggina2000572006-02-10 01:51:02 -0800800 rq->nr_running--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801 dequeue_task(p, p->array);
802 p->array = NULL;
803}
804
805/*
806 * resched_task - mark a task 'to be rescheduled now'.
807 *
808 * On UP this means the setting of the need_resched flag, on SMP it
809 * might also involve a cross-CPU call to trigger the scheduler on
810 * the target CPU.
811 */
812#ifdef CONFIG_SMP
813static void resched_task(task_t *p)
814{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800815 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816
817 assert_spin_locked(&task_rq(p)->lock);
818
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800819 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
820 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800822 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
823
824 cpu = task_cpu(p);
825 if (cpu == smp_processor_id())
826 return;
827
828 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
829 smp_mb();
830 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
831 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832}
833#else
834static inline void resched_task(task_t *p)
835{
Nick Piggin64c7c8f2005-11-08 21:39:04 -0800836 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837 set_tsk_need_resched(p);
838}
839#endif
840
841/**
842 * task_curr - is this task currently executing on a CPU?
843 * @p: the task in question.
844 */
845inline int task_curr(const task_t *p)
846{
847 return cpu_curr(task_cpu(p)) == p;
848}
849
850#ifdef CONFIG_SMP
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851typedef struct {
852 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854 task_t *task;
855 int dest_cpu;
856
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 struct completion done;
858} migration_req_t;
859
860/*
861 * The task's runqueue lock must be held.
862 * Returns true if you have to wait for migration thread.
863 */
864static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
865{
866 runqueue_t *rq = task_rq(p);
867
868 /*
869 * If the task is not on a runqueue (and not running), then
870 * it is sufficient to simply update the task's cpu field.
871 */
872 if (!p->array && !task_running(rq, p)) {
873 set_task_cpu(p, dest_cpu);
874 return 0;
875 }
876
877 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878 req->task = p;
879 req->dest_cpu = dest_cpu;
880 list_add(&req->list, &rq->migration_queue);
881 return 1;
882}
883
884/*
885 * wait_task_inactive - wait for a thread to unschedule.
886 *
887 * The caller must ensure that the task *will* unschedule sometime soon,
888 * else this function might spin for a *long* time. This function can't
889 * be called with interrupts off, or it may introduce deadlock with
890 * smp_call_function() if an IPI is sent by the same process we are
891 * waiting to become inactive.
892 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -0700893void wait_task_inactive(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700894{
895 unsigned long flags;
896 runqueue_t *rq;
897 int preempted;
898
899repeat:
900 rq = task_rq_lock(p, &flags);
901 /* Must be off runqueue entirely, not preempted. */
902 if (unlikely(p->array || task_running(rq, p))) {
903 /* If it's preempted, we yield. It could be a while. */
904 preempted = !task_running(rq, p);
905 task_rq_unlock(rq, &flags);
906 cpu_relax();
907 if (preempted)
908 yield();
909 goto repeat;
910 }
911 task_rq_unlock(rq, &flags);
912}
913
914/***
915 * kick_process - kick a running thread to enter/exit the kernel
916 * @p: the to-be-kicked thread
917 *
918 * Cause a process which is running on another CPU to enter
919 * kernel-mode, without any delay. (to get signals handled.)
920 *
921 * NOTE: this function doesnt have to take the runqueue lock,
922 * because all it wants to ensure is that the remote task enters
923 * the kernel. If the IPI races and the task has been migrated
924 * to another CPU then no harm is done and the purpose has been
925 * achieved as well.
926 */
927void kick_process(task_t *p)
928{
929 int cpu;
930
931 preempt_disable();
932 cpu = task_cpu(p);
933 if ((cpu != smp_processor_id()) && task_curr(p))
934 smp_send_reschedule(cpu);
935 preempt_enable();
936}
937
938/*
939 * Return a low guess at the load of a migration-source cpu.
940 *
941 * We want to under-estimate the load of migration sources, to
942 * balance conservatively.
943 */
Con Kolivasb9104722005-11-08 21:38:55 -0800944static inline unsigned long source_load(int cpu, int type)
945{
Nick Piggina2000572006-02-10 01:51:02 -0800946 runqueue_t *rq = cpu_rq(cpu);
947 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
948 if (type == 0)
949 return load_now;
950
951 return min(rq->cpu_load[type-1], load_now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700952}
953
954/*
955 * Return a high guess at the load of a migration-target cpu
956 */
Con Kolivasb9104722005-11-08 21:38:55 -0800957static inline unsigned long target_load(int cpu, int type)
958{
Nick Piggina2000572006-02-10 01:51:02 -0800959 runqueue_t *rq = cpu_rq(cpu);
960 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
961 if (type == 0)
962 return load_now;
963
964 return max(rq->cpu_load[type-1], load_now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Nick Piggin147cbb42005-06-25 14:57:19 -0700967/*
968 * find_idlest_group finds and returns the least busy CPU group within the
969 * domain.
970 */
971static struct sched_group *
972find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
973{
974 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
975 unsigned long min_load = ULONG_MAX, this_load = 0;
976 int load_idx = sd->forkexec_idx;
977 int imbalance = 100 + (sd->imbalance_pct-100)/2;
978
979 do {
980 unsigned long load, avg_load;
981 int local_group;
982 int i;
983
M.Baris Demirayda5a5522005-09-10 00:26:09 -0700984 /* Skip over this group if it has no CPUs allowed */
985 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
986 goto nextgroup;
987
Nick Piggin147cbb42005-06-25 14:57:19 -0700988 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -0700989
990 /* Tally up the load of all CPUs in the group */
991 avg_load = 0;
992
993 for_each_cpu_mask(i, group->cpumask) {
994 /* Bias balancing toward cpus of our domain */
995 if (local_group)
996 load = source_load(i, load_idx);
997 else
998 load = target_load(i, load_idx);
999
1000 avg_load += load;
1001 }
1002
1003 /* Adjust by relative CPU power of the group */
1004 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1005
1006 if (local_group) {
1007 this_load = avg_load;
1008 this = group;
1009 } else if (avg_load < min_load) {
1010 min_load = avg_load;
1011 idlest = group;
1012 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001013nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001014 group = group->next;
1015 } while (group != sd->groups);
1016
1017 if (!idlest || 100*this_load < imbalance*min_load)
1018 return NULL;
1019 return idlest;
1020}
1021
1022/*
1023 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1024 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001025static int
1026find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001027{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001028 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001029 unsigned long load, min_load = ULONG_MAX;
1030 int idlest = -1;
1031 int i;
1032
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001033 /* Traverse only the allowed CPUs */
1034 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1035
1036 for_each_cpu_mask(i, tmp) {
Nick Piggin147cbb42005-06-25 14:57:19 -07001037 load = source_load(i, 0);
1038
1039 if (load < min_load || (load == min_load && i == this_cpu)) {
1040 min_load = load;
1041 idlest = i;
1042 }
1043 }
1044
1045 return idlest;
1046}
1047
Nick Piggin476d1392005-06-25 14:57:29 -07001048/*
1049 * sched_balance_self: balance the current task (running on cpu) in domains
1050 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1051 * SD_BALANCE_EXEC.
1052 *
1053 * Balance, ie. select the least loaded group.
1054 *
1055 * Returns the target CPU number, or the same CPU if no balancing is needed.
1056 *
1057 * preempt must be disabled.
1058 */
1059static int sched_balance_self(int cpu, int flag)
1060{
1061 struct task_struct *t = current;
1062 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001063
Nick Piggin476d1392005-06-25 14:57:29 -07001064 for_each_domain(cpu, tmp)
1065 if (tmp->flags & flag)
1066 sd = tmp;
1067
1068 while (sd) {
1069 cpumask_t span;
1070 struct sched_group *group;
1071 int new_cpu;
1072 int weight;
1073
1074 span = sd->span;
1075 group = find_idlest_group(sd, t, cpu);
1076 if (!group)
1077 goto nextlevel;
1078
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001079 new_cpu = find_idlest_cpu(group, t, cpu);
Nick Piggin476d1392005-06-25 14:57:29 -07001080 if (new_cpu == -1 || new_cpu == cpu)
1081 goto nextlevel;
1082
1083 /* Now try balancing at a lower domain level */
1084 cpu = new_cpu;
1085nextlevel:
1086 sd = NULL;
1087 weight = cpus_weight(span);
1088 for_each_domain(cpu, tmp) {
1089 if (weight <= cpus_weight(tmp->span))
1090 break;
1091 if (tmp->flags & flag)
1092 sd = tmp;
1093 }
1094 /* while loop will break here if sd == NULL */
1095 }
1096
1097 return cpu;
1098}
1099
1100#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101
1102/*
1103 * wake_idle() will wake a task on an idle cpu if task->cpu is
1104 * not idle and an idle cpu is available. The span of cpus to
1105 * search starts with cpus closest then further out as needed,
1106 * so we always favor a closer, idle cpu.
1107 *
1108 * Returns the CPU we should wake onto.
1109 */
1110#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1111static int wake_idle(int cpu, task_t *p)
1112{
1113 cpumask_t tmp;
1114 struct sched_domain *sd;
1115 int i;
1116
1117 if (idle_cpu(cpu))
1118 return cpu;
1119
1120 for_each_domain(cpu, sd) {
1121 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001122 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 for_each_cpu_mask(i, tmp) {
1124 if (idle_cpu(i))
1125 return i;
1126 }
1127 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001128 else
1129 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130 }
1131 return cpu;
1132}
1133#else
1134static inline int wake_idle(int cpu, task_t *p)
1135{
1136 return cpu;
1137}
1138#endif
1139
1140/***
1141 * try_to_wake_up - wake up a thread
1142 * @p: the to-be-woken-up thread
1143 * @state: the mask of task states that can be woken
1144 * @sync: do a synchronous wakeup?
1145 *
1146 * Put it on the run-queue if it's not already there. The "current"
1147 * thread is always on the run-queue (except when the actual
1148 * re-schedule is in progress), and as such you're allowed to do
1149 * the simpler "current->state = TASK_RUNNING" to mark yourself
1150 * runnable without the overhead of this.
1151 *
1152 * returns failure only if the task is already active.
1153 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001154static int try_to_wake_up(task_t *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155{
1156 int cpu, this_cpu, success = 0;
1157 unsigned long flags;
1158 long old_state;
1159 runqueue_t *rq;
1160#ifdef CONFIG_SMP
1161 unsigned long load, this_load;
Nick Piggin78979862005-06-25 14:57:13 -07001162 struct sched_domain *sd, *this_sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 int new_cpu;
1164#endif
1165
1166 rq = task_rq_lock(p, &flags);
1167 old_state = p->state;
1168 if (!(old_state & state))
1169 goto out;
1170
1171 if (p->array)
1172 goto out_running;
1173
1174 cpu = task_cpu(p);
1175 this_cpu = smp_processor_id();
1176
1177#ifdef CONFIG_SMP
1178 if (unlikely(task_running(rq, p)))
1179 goto out_activate;
1180
Nick Piggin78979862005-06-25 14:57:13 -07001181 new_cpu = cpu;
1182
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183 schedstat_inc(rq, ttwu_cnt);
1184 if (cpu == this_cpu) {
1185 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001186 goto out_set_cpu;
1187 }
1188
1189 for_each_domain(this_cpu, sd) {
1190 if (cpu_isset(cpu, sd->span)) {
1191 schedstat_inc(sd, ttwu_wake_remote);
1192 this_sd = sd;
1193 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194 }
1195 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196
Nick Piggin78979862005-06-25 14:57:13 -07001197 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198 goto out_set_cpu;
1199
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 /*
Nick Piggin78979862005-06-25 14:57:13 -07001201 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 */
Nick Piggin78979862005-06-25 14:57:13 -07001203 if (this_sd) {
1204 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206
Nick Piggina3f21bc2005-06-25 14:57:15 -07001207 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1208
Nick Piggin78979862005-06-25 14:57:13 -07001209 load = source_load(cpu, idx);
1210 this_load = target_load(this_cpu, idx);
1211
Nick Piggin78979862005-06-25 14:57:13 -07001212 new_cpu = this_cpu; /* Wake to this CPU if we can */
1213
Nick Piggina3f21bc2005-06-25 14:57:15 -07001214 if (this_sd->flags & SD_WAKE_AFFINE) {
1215 unsigned long tl = this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001217 * If sync wakeup then subtract the (maximum possible)
1218 * effect of the currently running task from the load
1219 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001221 if (sync)
1222 tl -= SCHED_LOAD_SCALE;
1223
1224 if ((tl <= load &&
1225 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1226 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1227 /*
1228 * This domain has SD_WAKE_AFFINE and
1229 * p is cache cold in this domain, and
1230 * there is no bad imbalance.
1231 */
1232 schedstat_inc(this_sd, ttwu_move_affine);
1233 goto out_set_cpu;
1234 }
1235 }
1236
1237 /*
1238 * Start passive balancing when half the imbalance_pct
1239 * limit is reached.
1240 */
1241 if (this_sd->flags & SD_WAKE_BALANCE) {
1242 if (imbalance*this_load <= 100*load) {
1243 schedstat_inc(this_sd, ttwu_move_balance);
1244 goto out_set_cpu;
1245 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001246 }
1247 }
1248
1249 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1250out_set_cpu:
1251 new_cpu = wake_idle(new_cpu, p);
1252 if (new_cpu != cpu) {
1253 set_task_cpu(p, new_cpu);
1254 task_rq_unlock(rq, &flags);
1255 /* might preempt at this point */
1256 rq = task_rq_lock(p, &flags);
1257 old_state = p->state;
1258 if (!(old_state & state))
1259 goto out;
1260 if (p->array)
1261 goto out_running;
1262
1263 this_cpu = smp_processor_id();
1264 cpu = task_cpu(p);
1265 }
1266
1267out_activate:
1268#endif /* CONFIG_SMP */
1269 if (old_state == TASK_UNINTERRUPTIBLE) {
1270 rq->nr_uninterruptible--;
1271 /*
1272 * Tasks on involuntary sleep don't earn
1273 * sleep_avg beyond just interactive state.
1274 */
1275 p->activated = -1;
1276 }
1277
1278 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001279 * Tasks that have marked their sleep as noninteractive get
1280 * woken up without updating their sleep average. (i.e. their
1281 * sleep is handled in a priority-neutral manner, no priority
1282 * boost and no penalty.)
1283 */
1284 if (old_state & TASK_NONINTERACTIVE)
1285 __activate_task(p, rq);
1286 else
1287 activate_task(p, rq, cpu == this_cpu);
1288 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 * Sync wakeups (i.e. those types of wakeups where the waker
1290 * has indicated that it will leave the CPU in short order)
1291 * don't trigger a preemption, if the woken up task will run on
1292 * this cpu. (in this case the 'I will reschedule' promise of
1293 * the waker guarantees that the freshly woken up task is going
1294 * to be considered on this CPU.)
1295 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 if (!sync || cpu != this_cpu) {
1297 if (TASK_PREEMPTS_CURR(p, rq))
1298 resched_task(rq->curr);
1299 }
1300 success = 1;
1301
1302out_running:
1303 p->state = TASK_RUNNING;
1304out:
1305 task_rq_unlock(rq, &flags);
1306
1307 return success;
1308}
1309
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001310int fastcall wake_up_process(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311{
1312 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1313 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1314}
1315
1316EXPORT_SYMBOL(wake_up_process);
1317
1318int fastcall wake_up_state(task_t *p, unsigned int state)
1319{
1320 return try_to_wake_up(p, state, 0);
1321}
1322
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323/*
1324 * Perform scheduler related setup for a newly forked process p.
1325 * p is forked by current.
1326 */
Nick Piggin476d1392005-06-25 14:57:29 -07001327void fastcall sched_fork(task_t *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328{
Nick Piggin476d1392005-06-25 14:57:29 -07001329 int cpu = get_cpu();
1330
1331#ifdef CONFIG_SMP
1332 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1333#endif
1334 set_task_cpu(p, cpu);
1335
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336 /*
1337 * We mark the process as running here, but have not actually
1338 * inserted it onto the runqueue yet. This guarantees that
1339 * nobody will actually run it, and a signal or other external
1340 * event cannot wake it up and insert it on the runqueue either.
1341 */
1342 p->state = TASK_RUNNING;
1343 INIT_LIST_HEAD(&p->run_list);
1344 p->array = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001345#ifdef CONFIG_SCHEDSTATS
1346 memset(&p->sched_info, 0, sizeof(p->sched_info));
1347#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001348#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001349 p->oncpu = 0;
1350#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001352 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001353 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354#endif
1355 /*
1356 * Share the timeslice between parent and child, thus the
1357 * total amount of pending timeslices in the system doesn't change,
1358 * resulting in more scheduling fairness.
1359 */
1360 local_irq_disable();
1361 p->time_slice = (current->time_slice + 1) >> 1;
1362 /*
1363 * The remainder of the first timeslice might be recovered by
1364 * the parent if the child exits early enough.
1365 */
1366 p->first_time_slice = 1;
1367 current->time_slice >>= 1;
1368 p->timestamp = sched_clock();
1369 if (unlikely(!current->time_slice)) {
1370 /*
1371 * This case is rare, it happens when the parent has only
1372 * a single jiffy left from its timeslice. Taking the
1373 * runqueue lock is not a problem.
1374 */
1375 current->time_slice = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376 scheduler_tick();
Nick Piggin476d1392005-06-25 14:57:29 -07001377 }
1378 local_irq_enable();
1379 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380}
1381
1382/*
1383 * wake_up_new_task - wake up a newly created task for the first time.
1384 *
1385 * This function will do some initial scheduler statistics housekeeping
1386 * that must be done for every newly created context, then puts the task
1387 * on the runqueue and wakes it.
1388 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001389void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390{
1391 unsigned long flags;
1392 int this_cpu, cpu;
1393 runqueue_t *rq, *this_rq;
1394
1395 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001397 this_cpu = smp_processor_id();
1398 cpu = task_cpu(p);
1399
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400 /*
1401 * We decrease the sleep average of forking parents
1402 * and children as well, to keep max-interactive tasks
1403 * from forking tasks that are max-interactive. The parent
1404 * (current) is done further down, under its lock.
1405 */
1406 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1407 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1408
1409 p->prio = effective_prio(p);
1410
1411 if (likely(cpu == this_cpu)) {
1412 if (!(clone_flags & CLONE_VM)) {
1413 /*
1414 * The VM isn't cloned, so we're in a good position to
1415 * do child-runs-first in anticipation of an exec. This
1416 * usually avoids a lot of COW overhead.
1417 */
1418 if (unlikely(!current->array))
1419 __activate_task(p, rq);
1420 else {
1421 p->prio = current->prio;
1422 list_add_tail(&p->run_list, &current->run_list);
1423 p->array = current->array;
1424 p->array->nr_active++;
Nick Piggina2000572006-02-10 01:51:02 -08001425 rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 }
1427 set_need_resched();
1428 } else
1429 /* Run child last */
1430 __activate_task(p, rq);
1431 /*
1432 * We skip the following code due to cpu == this_cpu
1433 *
1434 * task_rq_unlock(rq, &flags);
1435 * this_rq = task_rq_lock(current, &flags);
1436 */
1437 this_rq = rq;
1438 } else {
1439 this_rq = cpu_rq(this_cpu);
1440
1441 /*
1442 * Not the local CPU - must adjust timestamp. This should
1443 * get optimised away in the !CONFIG_SMP case.
1444 */
1445 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1446 + rq->timestamp_last_tick;
1447 __activate_task(p, rq);
1448 if (TASK_PREEMPTS_CURR(p, rq))
1449 resched_task(rq->curr);
1450
1451 /*
1452 * Parent and child are on different CPUs, now get the
1453 * parent runqueue to update the parent's ->sleep_avg:
1454 */
1455 task_rq_unlock(rq, &flags);
1456 this_rq = task_rq_lock(current, &flags);
1457 }
1458 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1459 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1460 task_rq_unlock(this_rq, &flags);
1461}
1462
1463/*
1464 * Potentially available exiting-child timeslices are
1465 * retrieved here - this way the parent does not get
1466 * penalized for creating too many threads.
1467 *
1468 * (this cannot be used to 'generate' timeslices
1469 * artificially, because any timeslice recovered here
1470 * was given away by the parent in the first place.)
1471 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001472void fastcall sched_exit(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473{
1474 unsigned long flags;
1475 runqueue_t *rq;
1476
1477 /*
1478 * If the child was a (relative-) CPU hog then decrease
1479 * the sleep_avg of the parent as well.
1480 */
1481 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001482 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001483 p->parent->time_slice += p->time_slice;
1484 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1485 p->parent->time_slice = task_timeslice(p);
1486 }
1487 if (p->sleep_avg < p->parent->sleep_avg)
1488 p->parent->sleep_avg = p->parent->sleep_avg /
1489 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1490 (EXIT_WEIGHT + 1);
1491 task_rq_unlock(rq, &flags);
1492}
1493
1494/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001495 * prepare_task_switch - prepare to switch tasks
1496 * @rq: the runqueue preparing to switch
1497 * @next: the task we are going to switch to.
1498 *
1499 * This is called with the rq lock held and interrupts off. It must
1500 * be paired with a subsequent finish_task_switch after the context
1501 * switch.
1502 *
1503 * prepare_task_switch sets up locking and calls architecture specific
1504 * hooks.
1505 */
1506static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1507{
1508 prepare_lock_switch(rq, next);
1509 prepare_arch_switch(next);
1510}
1511
1512/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001513 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001514 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001515 * @prev: the thread we just switched away from.
1516 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001517 * finish_task_switch must be called after the context switch, paired
1518 * with a prepare_task_switch call before the context switch.
1519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1520 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 *
1522 * Note that we may have delayed dropping an mm in context_switch(). If
1523 * so, we finish that here outside of the runqueue lock. (Doing it
1524 * with the lock held can cause deadlocks; see schedule() for
1525 * details.)
1526 */
Nick Piggin4866cde2005-06-25 14:57:23 -07001527static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528 __releases(rq->lock)
1529{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001530 struct mm_struct *mm = rq->prev_mm;
1531 unsigned long prev_task_flags;
1532
1533 rq->prev_mm = NULL;
1534
1535 /*
1536 * A task struct has one reference for the use as "current".
1537 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1538 * calls schedule one last time. The schedule call will never return,
1539 * and the scheduled task must drop that reference.
1540 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1541 * still held, otherwise prev could be scheduled on another cpu, die
1542 * there before we look at prev->state, and then the reference would
1543 * be dropped twice.
1544 * Manfred Spraul <manfred@colorfullife.com>
1545 */
1546 prev_task_flags = prev->flags;
Nick Piggin4866cde2005-06-25 14:57:23 -07001547 finish_arch_switch(prev);
1548 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 if (mm)
1550 mmdrop(mm);
bibo maoc6fd91f2006-03-26 01:38:20 -08001551 if (unlikely(prev_task_flags & PF_DEAD)) {
1552 /*
1553 * Remove function-return probe instances associated with this
1554 * task and put them back on the free list.
1555 */
1556 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001558 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559}
1560
1561/**
1562 * schedule_tail - first thing a freshly forked thread must call.
1563 * @prev: the thread we just switched away from.
1564 */
1565asmlinkage void schedule_tail(task_t *prev)
1566 __releases(rq->lock)
1567{
Nick Piggin4866cde2005-06-25 14:57:23 -07001568 runqueue_t *rq = this_rq();
1569 finish_task_switch(rq, prev);
1570#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1571 /* In this case, finish_task_switch does not reenable preemption */
1572 preempt_enable();
1573#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 if (current->set_child_tid)
1575 put_user(current->pid, current->set_child_tid);
1576}
1577
1578/*
1579 * context_switch - switch to the new MM and the new
1580 * thread's register state.
1581 */
1582static inline
1583task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1584{
1585 struct mm_struct *mm = next->mm;
1586 struct mm_struct *oldmm = prev->active_mm;
1587
1588 if (unlikely(!mm)) {
1589 next->active_mm = oldmm;
1590 atomic_inc(&oldmm->mm_count);
1591 enter_lazy_tlb(oldmm, next);
1592 } else
1593 switch_mm(oldmm, mm, next);
1594
1595 if (unlikely(!prev->mm)) {
1596 prev->active_mm = NULL;
1597 WARN_ON(rq->prev_mm);
1598 rq->prev_mm = oldmm;
1599 }
1600
1601 /* Here we just switch the register state and the stack. */
1602 switch_to(prev, next, prev);
1603
1604 return prev;
1605}
1606
1607/*
1608 * nr_running, nr_uninterruptible and nr_context_switches:
1609 *
1610 * externally visible scheduler statistics: current number of runnable
1611 * threads, current number of uninterruptible-sleeping threads, total
1612 * number of context switches performed since bootup.
1613 */
1614unsigned long nr_running(void)
1615{
1616 unsigned long i, sum = 0;
1617
1618 for_each_online_cpu(i)
1619 sum += cpu_rq(i)->nr_running;
1620
1621 return sum;
1622}
1623
1624unsigned long nr_uninterruptible(void)
1625{
1626 unsigned long i, sum = 0;
1627
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001628 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629 sum += cpu_rq(i)->nr_uninterruptible;
1630
1631 /*
1632 * Since we read the counters lockless, it might be slightly
1633 * inaccurate. Do not allow it to go below zero though:
1634 */
1635 if (unlikely((long)sum < 0))
1636 sum = 0;
1637
1638 return sum;
1639}
1640
1641unsigned long long nr_context_switches(void)
1642{
1643 unsigned long long i, sum = 0;
1644
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001645 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646 sum += cpu_rq(i)->nr_switches;
1647
1648 return sum;
1649}
1650
1651unsigned long nr_iowait(void)
1652{
1653 unsigned long i, sum = 0;
1654
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001655 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1657
1658 return sum;
1659}
1660
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001661unsigned long nr_active(void)
1662{
1663 unsigned long i, running = 0, uninterruptible = 0;
1664
1665 for_each_online_cpu(i) {
1666 running += cpu_rq(i)->nr_running;
1667 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1668 }
1669
1670 if (unlikely((long)uninterruptible < 0))
1671 uninterruptible = 0;
1672
1673 return running + uninterruptible;
1674}
1675
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676#ifdef CONFIG_SMP
1677
1678/*
1679 * double_rq_lock - safely lock two runqueues
1680 *
Anton Blancharde9028b02006-03-23 02:59:20 -08001681 * We must take them in cpu order to match code in
1682 * dependent_sleeper and wake_dependent_sleeper.
1683 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 * Note this does not disable interrupts like task_rq_lock,
1685 * you need to do so manually before calling.
1686 */
1687static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1688 __acquires(rq1->lock)
1689 __acquires(rq2->lock)
1690{
1691 if (rq1 == rq2) {
1692 spin_lock(&rq1->lock);
1693 __acquire(rq2->lock); /* Fake it out ;) */
1694 } else {
Anton Blancharde9028b02006-03-23 02:59:20 -08001695 if (rq1->cpu < rq2->cpu) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001696 spin_lock(&rq1->lock);
1697 spin_lock(&rq2->lock);
1698 } else {
1699 spin_lock(&rq2->lock);
1700 spin_lock(&rq1->lock);
1701 }
1702 }
1703}
1704
1705/*
1706 * double_rq_unlock - safely unlock two runqueues
1707 *
1708 * Note this does not restore interrupts like task_rq_unlock,
1709 * you need to do so manually after calling.
1710 */
1711static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1712 __releases(rq1->lock)
1713 __releases(rq2->lock)
1714{
1715 spin_unlock(&rq1->lock);
1716 if (rq1 != rq2)
1717 spin_unlock(&rq2->lock);
1718 else
1719 __release(rq2->lock);
1720}
1721
1722/*
1723 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1724 */
1725static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1729{
1730 if (unlikely(!spin_trylock(&busiest->lock))) {
Anton Blancharde9028b02006-03-23 02:59:20 -08001731 if (busiest->cpu < this_rq->cpu) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 spin_unlock(&this_rq->lock);
1733 spin_lock(&busiest->lock);
1734 spin_lock(&this_rq->lock);
1735 } else
1736 spin_lock(&busiest->lock);
1737 }
1738}
1739
1740/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741 * If dest_cpu is allowed for this process, migrate the task to it.
1742 * This is accomplished by forcing the cpu_allowed mask to only
1743 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1744 * the cpu_allowed mask is restored.
1745 */
1746static void sched_migrate_task(task_t *p, int dest_cpu)
1747{
1748 migration_req_t req;
1749 runqueue_t *rq;
1750 unsigned long flags;
1751
1752 rq = task_rq_lock(p, &flags);
1753 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1754 || unlikely(cpu_is_offline(dest_cpu)))
1755 goto out;
1756
1757 /* force the process onto the specified CPU */
1758 if (migrate_task(p, dest_cpu, &req)) {
1759 /* Need to wait for migration thread (might exit: take ref). */
1760 struct task_struct *mt = rq->migration_thread;
1761 get_task_struct(mt);
1762 task_rq_unlock(rq, &flags);
1763 wake_up_process(mt);
1764 put_task_struct(mt);
1765 wait_for_completion(&req.done);
1766 return;
1767 }
1768out:
1769 task_rq_unlock(rq, &flags);
1770}
1771
1772/*
Nick Piggin476d1392005-06-25 14:57:29 -07001773 * sched_exec - execve() is a valuable balancing opportunity, because at
1774 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 */
1776void sched_exec(void)
1777{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001779 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07001781 if (new_cpu != this_cpu)
1782 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783}
1784
1785/*
1786 * pull_task - move a task from a remote runqueue to the local runqueue.
1787 * Both runqueues must be locked.
1788 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001789static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1791 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1792{
1793 dequeue_task(p, src_array);
Nick Piggina2000572006-02-10 01:51:02 -08001794 src_rq->nr_running--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 set_task_cpu(p, this_cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001796 this_rq->nr_running++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 enqueue_task(p, this_array);
1798 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1799 + this_rq->timestamp_last_tick;
1800 /*
1801 * Note that idle threads have a prio of MAX_PRIO, for this test
1802 * to be always true for them.
1803 */
1804 if (TASK_PREEMPTS_CURR(p, this_rq))
1805 resched_task(this_rq->curr);
1806}
1807
1808/*
1809 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1810 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08001811static
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001813 struct sched_domain *sd, enum idle_type idle,
1814 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815{
1816 /*
1817 * We do not migrate tasks that are:
1818 * 1) running (obviously), or
1819 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1820 * 3) are cache-hot on their current CPU.
1821 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 if (!cpu_isset(this_cpu, p->cpus_allowed))
1823 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07001824 *all_pinned = 0;
1825
1826 if (task_running(rq, p))
1827 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828
1829 /*
1830 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07001831 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832 * 2) too many balance attempts have failed.
1833 */
1834
Nick Piggincafb20c2005-06-25 14:57:17 -07001835 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 return 1;
1837
1838 if (task_hot(p, rq->timestamp_last_tick, sd))
Nick Piggin81026792005-06-25 14:57:07 -07001839 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 return 1;
1841}
1842
1843/*
1844 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1845 * as part of a balancing operation within "domain". Returns the number of
1846 * tasks moved.
1847 *
1848 * Called with both runqueues locked.
1849 */
1850static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1851 unsigned long max_nr_move, struct sched_domain *sd,
Nick Piggin81026792005-06-25 14:57:07 -07001852 enum idle_type idle, int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853{
1854 prio_array_t *array, *dst_array;
1855 struct list_head *head, *curr;
Nick Piggin81026792005-06-25 14:57:07 -07001856 int idx, pulled = 0, pinned = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857 task_t *tmp;
1858
Nick Piggin81026792005-06-25 14:57:07 -07001859 if (max_nr_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860 goto out;
1861
Nick Piggin81026792005-06-25 14:57:07 -07001862 pinned = 1;
1863
Linus Torvalds1da177e2005-04-16 15:20:36 -07001864 /*
1865 * We first consider expired tasks. Those will likely not be
1866 * executed in the near future, and they are most likely to
1867 * be cache-cold, thus switching CPUs has the least effect
1868 * on them.
1869 */
1870 if (busiest->expired->nr_active) {
1871 array = busiest->expired;
1872 dst_array = this_rq->expired;
1873 } else {
1874 array = busiest->active;
1875 dst_array = this_rq->active;
1876 }
1877
1878new_array:
1879 /* Start searching at priority 0: */
1880 idx = 0;
1881skip_bitmap:
1882 if (!idx)
1883 idx = sched_find_first_bit(array->bitmap);
1884 else
1885 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1886 if (idx >= MAX_PRIO) {
1887 if (array == busiest->expired && busiest->active->nr_active) {
1888 array = busiest->active;
1889 dst_array = this_rq->active;
1890 goto new_array;
1891 }
1892 goto out;
1893 }
1894
1895 head = array->queue + idx;
1896 curr = head->prev;
1897skip_queue:
1898 tmp = list_entry(curr, task_t, run_list);
1899
1900 curr = curr->prev;
1901
Nick Piggin81026792005-06-25 14:57:07 -07001902 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 if (curr != head)
1904 goto skip_queue;
1905 idx++;
1906 goto skip_bitmap;
1907 }
1908
1909#ifdef CONFIG_SCHEDSTATS
1910 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1911 schedstat_inc(sd, lb_hot_gained[idle]);
1912#endif
1913
1914 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1915 pulled++;
1916
1917 /* We only want to steal up to the prescribed number of tasks. */
1918 if (pulled < max_nr_move) {
1919 if (curr != head)
1920 goto skip_queue;
1921 idx++;
1922 goto skip_bitmap;
1923 }
1924out:
1925 /*
1926 * Right now, this is the only place pull_task() is called,
1927 * so we can safely collect pull_task() stats here rather than
1928 * inside pull_task().
1929 */
1930 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07001931
1932 if (all_pinned)
1933 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 return pulled;
1935}
1936
1937/*
1938 * find_busiest_group finds and returns the busiest CPU group within the
1939 * domain. It calculates and returns the number of tasks which should be
1940 * moved to restore balance via the imbalance parameter.
1941 */
1942static struct sched_group *
1943find_busiest_group(struct sched_domain *sd, int this_cpu,
Nick Piggin5969fe02005-09-10 00:26:19 -07001944 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945{
1946 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1947 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07001948 unsigned long max_pull;
Nick Piggin78979862005-06-25 14:57:13 -07001949 int load_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950
1951 max_load = this_load = total_load = total_pwr = 0;
Nick Piggin78979862005-06-25 14:57:13 -07001952 if (idle == NOT_IDLE)
1953 load_idx = sd->busy_idx;
1954 else if (idle == NEWLY_IDLE)
1955 load_idx = sd->newidle_idx;
1956 else
1957 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958
1959 do {
1960 unsigned long load;
1961 int local_group;
1962 int i;
1963
1964 local_group = cpu_isset(this_cpu, group->cpumask);
1965
1966 /* Tally up the load of all CPUs in the group */
1967 avg_load = 0;
1968
1969 for_each_cpu_mask(i, group->cpumask) {
Nick Piggin5969fe02005-09-10 00:26:19 -07001970 if (*sd_idle && !idle_cpu(i))
1971 *sd_idle = 0;
1972
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973 /* Bias balancing toward cpus of our domain */
1974 if (local_group)
Nick Piggina2000572006-02-10 01:51:02 -08001975 load = target_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 else
Nick Piggina2000572006-02-10 01:51:02 -08001977 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978
1979 avg_load += load;
1980 }
1981
1982 total_load += avg_load;
1983 total_pwr += group->cpu_power;
1984
1985 /* Adjust by relative CPU power of the group */
1986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1987
1988 if (local_group) {
1989 this_load = avg_load;
1990 this = group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 } else if (avg_load > max_load) {
1992 max_load = avg_load;
1993 busiest = group;
1994 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001995 group = group->next;
1996 } while (group != sd->groups);
1997
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07001998 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 goto out_balanced;
2000
2001 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2002
2003 if (this_load >= avg_load ||
2004 100*max_load <= sd->imbalance_pct*this_load)
2005 goto out_balanced;
2006
2007 /*
2008 * We're trying to get all the cpus to the average_load, so we don't
2009 * want to push ourselves above the average load, nor do we wish to
2010 * reduce the max loaded cpu below the average load, as either of these
2011 * actions would just result in more rebalancing later, and ping-pong
2012 * tasks around. Thus we look for the minimum possible imbalance.
2013 * Negative imbalances (*we* are more loaded than anyone else) will
2014 * be counted as no imbalance for these purposes -- we can't fix that
2015 * by pulling tasks to us. Be careful of negative numbers as they'll
2016 * appear as very large values with unsigned longs.
2017 */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002018
2019 /* Don't want to pull so many tasks that a group would go idle */
2020 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2021
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002023 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024 (avg_load - this_load) * this->cpu_power)
2025 / SCHED_LOAD_SCALE;
2026
2027 if (*imbalance < SCHED_LOAD_SCALE) {
2028 unsigned long pwr_now = 0, pwr_move = 0;
2029 unsigned long tmp;
2030
2031 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2032 *imbalance = 1;
2033 return busiest;
2034 }
2035
2036 /*
2037 * OK, we don't have enough imbalance to justify moving tasks,
2038 * however we may be able to increase total CPU power used by
2039 * moving them.
2040 */
2041
2042 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2043 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2044 pwr_now /= SCHED_LOAD_SCALE;
2045
2046 /* Amount of load we'd subtract */
2047 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2048 if (max_load > tmp)
2049 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2050 max_load - tmp);
2051
2052 /* Amount of load we'd add */
2053 if (max_load*busiest->cpu_power <
2054 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2055 tmp = max_load*busiest->cpu_power/this->cpu_power;
2056 else
2057 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2058 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2059 pwr_move /= SCHED_LOAD_SCALE;
2060
2061 /* Move if we gain throughput */
2062 if (pwr_move <= pwr_now)
2063 goto out_balanced;
2064
2065 *imbalance = 1;
2066 return busiest;
2067 }
2068
2069 /* Get rid of the scaling factor, rounding down as we divide */
2070 *imbalance = *imbalance / SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071 return busiest;
2072
2073out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074
2075 *imbalance = 0;
2076 return NULL;
2077}
2078
2079/*
2080 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2081 */
Con Kolivasb9104722005-11-08 21:38:55 -08002082static runqueue_t *find_busiest_queue(struct sched_group *group,
2083 enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084{
2085 unsigned long load, max_load = 0;
2086 runqueue_t *busiest = NULL;
2087 int i;
2088
2089 for_each_cpu_mask(i, group->cpumask) {
Nick Piggina2000572006-02-10 01:51:02 -08002090 load = source_load(i, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002091
2092 if (load > max_load) {
2093 max_load = load;
2094 busiest = cpu_rq(i);
2095 }
2096 }
2097
2098 return busiest;
2099}
2100
2101/*
Nick Piggin77391d72005-06-25 14:57:30 -07002102 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2103 * so long as it is large enough.
2104 */
2105#define MAX_PINNED_INTERVAL 512
2106
2107/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2109 * tasks if there is an imbalance.
2110 *
2111 * Called with this_rq unlocked.
2112 */
2113static int load_balance(int this_cpu, runqueue_t *this_rq,
2114 struct sched_domain *sd, enum idle_type idle)
2115{
2116 struct sched_group *group;
2117 runqueue_t *busiest;
2118 unsigned long imbalance;
Nick Piggin77391d72005-06-25 14:57:30 -07002119 int nr_moved, all_pinned = 0;
Nick Piggin81026792005-06-25 14:57:07 -07002120 int active_balance = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002121 int sd_idle = 0;
2122
2123 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2124 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 schedstat_inc(sd, lb_cnt[idle]);
2127
Nick Piggin5969fe02005-09-10 00:26:19 -07002128 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129 if (!group) {
2130 schedstat_inc(sd, lb_nobusyg[idle]);
2131 goto out_balanced;
2132 }
2133
Con Kolivasb9104722005-11-08 21:38:55 -08002134 busiest = find_busiest_queue(group, idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135 if (!busiest) {
2136 schedstat_inc(sd, lb_nobusyq[idle]);
2137 goto out_balanced;
2138 }
2139
Nick Piggindb935db2005-06-25 14:57:11 -07002140 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141
2142 schedstat_add(sd, lb_imbalance[idle], imbalance);
2143
2144 nr_moved = 0;
2145 if (busiest->nr_running > 1) {
2146 /*
2147 * Attempt to move tasks. If find_busiest_group has found
2148 * an imbalance but busiest->nr_running <= 1, the group is
2149 * still unbalanced. nr_moved simply stays zero, so it is
2150 * correctly treated as an imbalance.
2151 */
Nick Piggine17224b2005-09-10 00:26:18 -07002152 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002154 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002155 double_rq_unlock(this_rq, busiest);
Nick Piggin81026792005-06-25 14:57:07 -07002156
2157 /* All tasks on this runqueue were pinned by CPU affinity */
2158 if (unlikely(all_pinned))
2159 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 }
Nick Piggin81026792005-06-25 14:57:07 -07002161
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162 if (!nr_moved) {
2163 schedstat_inc(sd, lb_failed[idle]);
2164 sd->nr_balance_failed++;
2165
2166 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167
2168 spin_lock(&busiest->lock);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002169
2170 /* don't kick the migration_thread, if the curr
2171 * task on busiest cpu can't be moved to this_cpu
2172 */
2173 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2174 spin_unlock(&busiest->lock);
2175 all_pinned = 1;
2176 goto out_one_pinned;
2177 }
2178
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 if (!busiest->active_balance) {
2180 busiest->active_balance = 1;
2181 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002182 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183 }
2184 spin_unlock(&busiest->lock);
Nick Piggin81026792005-06-25 14:57:07 -07002185 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 wake_up_process(busiest->migration_thread);
2187
2188 /*
2189 * We've kicked active balancing, reset the failure
2190 * counter.
2191 */
Nick Piggin39507452005-06-25 14:57:09 -07002192 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193 }
Nick Piggin81026792005-06-25 14:57:07 -07002194 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002195 sd->nr_balance_failed = 0;
2196
Nick Piggin81026792005-06-25 14:57:07 -07002197 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002198 /* We were unbalanced, so reset the balancing interval */
2199 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002200 } else {
2201 /*
2202 * If we've begun active balancing, start to back off. This
2203 * case may not be covered by the all_pinned logic if there
2204 * is only 1 task on the busy runqueue (because we don't call
2205 * move_tasks).
2206 */
2207 if (sd->balance_interval < sd->max_interval)
2208 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002209 }
2210
Nick Piggin5969fe02005-09-10 00:26:19 -07002211 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2212 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 return nr_moved;
2214
2215out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 schedstat_inc(sd, lb_balanced[idle]);
2217
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002218 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002219
2220out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002222 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2223 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 sd->balance_interval *= 2;
2225
Nick Piggin5969fe02005-09-10 00:26:19 -07002226 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2227 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 return 0;
2229}
2230
2231/*
2232 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2233 * tasks if there is an imbalance.
2234 *
2235 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2236 * this_rq is locked.
2237 */
2238static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2239 struct sched_domain *sd)
2240{
2241 struct sched_group *group;
2242 runqueue_t *busiest = NULL;
2243 unsigned long imbalance;
2244 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002245 int sd_idle = 0;
2246
2247 if (sd->flags & SD_SHARE_CPUPOWER)
2248 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249
2250 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002251 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002254 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 }
2256
Con Kolivasb9104722005-11-08 21:38:55 -08002257 busiest = find_busiest_queue(group, NEWLY_IDLE);
Nick Piggindb935db2005-06-25 14:57:11 -07002258 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002260 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 }
2262
Nick Piggindb935db2005-06-25 14:57:11 -07002263 BUG_ON(busiest == this_rq);
2264
Linus Torvalds1da177e2005-04-16 15:20:36 -07002265 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002266
2267 nr_moved = 0;
2268 if (busiest->nr_running > 1) {
2269 /* Attempt to move tasks */
2270 double_lock_balance(this_rq, busiest);
2271 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Nick Piggin81026792005-06-25 14:57:07 -07002272 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002273 spin_unlock(&busiest->lock);
2274 }
2275
Nick Piggin5969fe02005-09-10 00:26:19 -07002276 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002278 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2279 return -1;
2280 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002281 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002284
2285out_balanced:
2286 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Nick Piggin5969fe02005-09-10 00:26:19 -07002287 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2288 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002289 sd->nr_balance_failed = 0;
2290 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291}
2292
2293/*
2294 * idle_balance is called by schedule() if this_cpu is about to become
2295 * idle. Attempts to pull tasks from other CPUs.
2296 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002297static void idle_balance(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002298{
2299 struct sched_domain *sd;
2300
2301 for_each_domain(this_cpu, sd) {
2302 if (sd->flags & SD_BALANCE_NEWIDLE) {
2303 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2304 /* We've pulled tasks over so stop searching */
2305 break;
2306 }
2307 }
2308 }
2309}
2310
2311/*
2312 * active_load_balance is run by migration threads. It pushes running tasks
2313 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2314 * running on each physical CPU where possible, and avoids physical /
2315 * logical imbalances.
2316 *
2317 * Called with busiest_rq locked.
2318 */
2319static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2320{
2321 struct sched_domain *sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 runqueue_t *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002323 int target_cpu = busiest_rq->push_cpu;
2324
2325 if (busiest_rq->nr_running <= 1)
2326 /* no task to move */
2327 return;
2328
2329 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330
2331 /*
Nick Piggin39507452005-06-25 14:57:09 -07002332 * This condition is "impossible", if it occurs
2333 * we need to fix it. Originally reported by
2334 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 */
Nick Piggin39507452005-06-25 14:57:09 -07002336 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337
Nick Piggin39507452005-06-25 14:57:09 -07002338 /* move a task from busiest_rq to target_rq */
2339 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002340
Nick Piggin39507452005-06-25 14:57:09 -07002341 /* Search for an sd spanning us and the target CPU. */
2342 for_each_domain(target_cpu, sd)
2343 if ((sd->flags & SD_LOAD_BALANCE) &&
2344 cpu_isset(busiest_cpu, sd->span))
2345 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346
Nick Piggin39507452005-06-25 14:57:09 -07002347 if (unlikely(sd == NULL))
2348 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002349
Nick Piggin39507452005-06-25 14:57:09 -07002350 schedstat_inc(sd, alb_cnt);
2351
2352 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2353 schedstat_inc(sd, alb_pushed);
2354 else
2355 schedstat_inc(sd, alb_failed);
2356out:
2357 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358}
2359
2360/*
2361 * rebalance_tick will get called every timer tick, on every CPU.
2362 *
2363 * It checks each scheduling domain to see if it is due to be balanced,
2364 * and initiates a balancing operation if so.
2365 *
2366 * Balancing parameters are set up in arch_init_sched_domains.
2367 */
2368
2369/* Don't have all balancing operations going off at once */
2370#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2371
2372static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2373 enum idle_type idle)
2374{
2375 unsigned long old_load, this_load;
2376 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2377 struct sched_domain *sd;
Nick Piggin78979862005-06-25 14:57:13 -07002378 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
Nick Piggin78979862005-06-25 14:57:13 -07002381 /* Update our load */
2382 for (i = 0; i < 3; i++) {
2383 unsigned long new_load = this_load;
2384 int scale = 1 << i;
2385 old_load = this_rq->cpu_load[i];
2386 /*
2387 * Round up the averaging division if load is increasing. This
2388 * prevents us from getting stuck on 9 if the load is 10, for
2389 * example.
2390 */
2391 if (new_load > old_load)
2392 new_load += scale-1;
2393 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2394 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395
2396 for_each_domain(this_cpu, sd) {
2397 unsigned long interval;
2398
2399 if (!(sd->flags & SD_LOAD_BALANCE))
2400 continue;
2401
2402 interval = sd->balance_interval;
2403 if (idle != SCHED_IDLE)
2404 interval *= sd->busy_factor;
2405
2406 /* scale ms to jiffies */
2407 interval = msecs_to_jiffies(interval);
2408 if (unlikely(!interval))
2409 interval = 1;
2410
2411 if (j - sd->last_balance >= interval) {
2412 if (load_balance(this_cpu, this_rq, sd, idle)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002413 /*
2414 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002415 * longer idle, or one of our SMT siblings is
2416 * not idle.
2417 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 idle = NOT_IDLE;
2419 }
2420 sd->last_balance += interval;
2421 }
2422 }
2423}
2424#else
2425/*
2426 * on UP we do not need to balance between CPUs:
2427 */
2428static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2429{
2430}
2431static inline void idle_balance(int cpu, runqueue_t *rq)
2432{
2433}
2434#endif
2435
2436static inline int wake_priority_sleeper(runqueue_t *rq)
2437{
2438 int ret = 0;
2439#ifdef CONFIG_SCHED_SMT
2440 spin_lock(&rq->lock);
2441 /*
2442 * If an SMT sibling task has been put to sleep for priority
2443 * reasons reschedule the idle task to see if it can now run.
2444 */
2445 if (rq->nr_running) {
2446 resched_task(rq->idle);
2447 ret = 1;
2448 }
2449 spin_unlock(&rq->lock);
2450#endif
2451 return ret;
2452}
2453
2454DEFINE_PER_CPU(struct kernel_stat, kstat);
2455
2456EXPORT_PER_CPU_SYMBOL(kstat);
2457
2458/*
2459 * This is called on clock ticks and on context switches.
2460 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2461 */
2462static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2463 unsigned long long now)
2464{
2465 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2466 p->sched_time += now - last;
2467}
2468
2469/*
2470 * Return current->sched_time plus any more ns on the sched_clock
2471 * that have not yet been banked.
2472 */
2473unsigned long long current_sched_time(const task_t *tsk)
2474{
2475 unsigned long long ns;
2476 unsigned long flags;
2477 local_irq_save(flags);
2478 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2479 ns = tsk->sched_time + (sched_clock() - ns);
2480 local_irq_restore(flags);
2481 return ns;
2482}
2483
2484/*
2485 * We place interactive tasks back into the active array, if possible.
2486 *
2487 * To guarantee that this does not starve expired tasks we ignore the
2488 * interactivity of a task if the first expired task had to wait more
2489 * than a 'reasonable' amount of time. This deadline timeout is
2490 * load-dependent, as the frequency of array switched decreases with
2491 * increasing number of running tasks. We also ignore the interactivity
2492 * if a better static_prio task has expired:
2493 */
2494#define EXPIRED_STARVING(rq) \
2495 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2496 (jiffies - (rq)->expired_timestamp >= \
2497 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2498 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2499
2500/*
2501 * Account user cpu time to a process.
2502 * @p: the process that the cpu time gets accounted to
2503 * @hardirq_offset: the offset to subtract from hardirq_count()
2504 * @cputime: the cpu time spent in user space since the last update
2505 */
2506void account_user_time(struct task_struct *p, cputime_t cputime)
2507{
2508 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2509 cputime64_t tmp;
2510
2511 p->utime = cputime_add(p->utime, cputime);
2512
2513 /* Add user time to cpustat. */
2514 tmp = cputime_to_cputime64(cputime);
2515 if (TASK_NICE(p) > 0)
2516 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2517 else
2518 cpustat->user = cputime64_add(cpustat->user, tmp);
2519}
2520
2521/*
2522 * Account system cpu time to a process.
2523 * @p: the process that the cpu time gets accounted to
2524 * @hardirq_offset: the offset to subtract from hardirq_count()
2525 * @cputime: the cpu time spent in kernel space since the last update
2526 */
2527void account_system_time(struct task_struct *p, int hardirq_offset,
2528 cputime_t cputime)
2529{
2530 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2531 runqueue_t *rq = this_rq();
2532 cputime64_t tmp;
2533
2534 p->stime = cputime_add(p->stime, cputime);
2535
2536 /* Add system time to cpustat. */
2537 tmp = cputime_to_cputime64(cputime);
2538 if (hardirq_count() - hardirq_offset)
2539 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2540 else if (softirq_count())
2541 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2542 else if (p != rq->idle)
2543 cpustat->system = cputime64_add(cpustat->system, tmp);
2544 else if (atomic_read(&rq->nr_iowait) > 0)
2545 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2546 else
2547 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2548 /* Account for system time used */
2549 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550}
2551
2552/*
2553 * Account for involuntary wait time.
2554 * @p: the process from which the cpu time has been stolen
2555 * @steal: the cpu time spent in involuntary wait
2556 */
2557void account_steal_time(struct task_struct *p, cputime_t steal)
2558{
2559 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2560 cputime64_t tmp = cputime_to_cputime64(steal);
2561 runqueue_t *rq = this_rq();
2562
2563 if (p == rq->idle) {
2564 p->stime = cputime_add(p->stime, steal);
2565 if (atomic_read(&rq->nr_iowait) > 0)
2566 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2567 else
2568 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2569 } else
2570 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2571}
2572
2573/*
2574 * This function gets called by the timer code, with HZ frequency.
2575 * We call it with interrupts disabled.
2576 *
2577 * It also gets called by the fork code, when changing the parent's
2578 * timeslices.
2579 */
2580void scheduler_tick(void)
2581{
2582 int cpu = smp_processor_id();
2583 runqueue_t *rq = this_rq();
2584 task_t *p = current;
2585 unsigned long long now = sched_clock();
2586
2587 update_cpu_clock(p, rq, now);
2588
2589 rq->timestamp_last_tick = now;
2590
2591 if (p == rq->idle) {
2592 if (wake_priority_sleeper(rq))
2593 goto out;
2594 rebalance_tick(cpu, rq, SCHED_IDLE);
2595 return;
2596 }
2597
2598 /* Task might have expired already, but not scheduled off yet */
2599 if (p->array != rq->active) {
2600 set_tsk_need_resched(p);
2601 goto out;
2602 }
2603 spin_lock(&rq->lock);
2604 /*
2605 * The task was running during this tick - update the
2606 * time slice counter. Note: we do not update a thread's
2607 * priority until it either goes to sleep or uses up its
2608 * timeslice. This makes it possible for interactive tasks
2609 * to use up their timeslices at their highest priority levels.
2610 */
2611 if (rt_task(p)) {
2612 /*
2613 * RR tasks need a special form of timeslice management.
2614 * FIFO tasks have no timeslices.
2615 */
2616 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2617 p->time_slice = task_timeslice(p);
2618 p->first_time_slice = 0;
2619 set_tsk_need_resched(p);
2620
2621 /* put it at the end of the queue: */
2622 requeue_task(p, rq->active);
2623 }
2624 goto out_unlock;
2625 }
2626 if (!--p->time_slice) {
2627 dequeue_task(p, rq->active);
2628 set_tsk_need_resched(p);
2629 p->prio = effective_prio(p);
2630 p->time_slice = task_timeslice(p);
2631 p->first_time_slice = 0;
2632
2633 if (!rq->expired_timestamp)
2634 rq->expired_timestamp = jiffies;
2635 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2636 enqueue_task(p, rq->expired);
2637 if (p->static_prio < rq->best_expired_prio)
2638 rq->best_expired_prio = p->static_prio;
2639 } else
2640 enqueue_task(p, rq->active);
2641 } else {
2642 /*
2643 * Prevent a too long timeslice allowing a task to monopolize
2644 * the CPU. We do this by splitting up the timeslice into
2645 * smaller pieces.
2646 *
2647 * Note: this does not mean the task's timeslices expire or
2648 * get lost in any way, they just might be preempted by
2649 * another task of equal priority. (one with higher
2650 * priority would have preempted this task already.) We
2651 * requeue this task to the end of the list on this priority
2652 * level, which is in essence a round-robin of tasks with
2653 * equal priority.
2654 *
2655 * This only applies to tasks in the interactive
2656 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2657 */
2658 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2659 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2660 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2661 (p->array == rq->active)) {
2662
2663 requeue_task(p, rq->active);
2664 set_tsk_need_resched(p);
2665 }
2666 }
2667out_unlock:
2668 spin_unlock(&rq->lock);
2669out:
2670 rebalance_tick(cpu, rq, NOT_IDLE);
2671}
2672
2673#ifdef CONFIG_SCHED_SMT
Con Kolivasfc38ed72005-09-10 00:26:08 -07002674static inline void wakeup_busy_runqueue(runqueue_t *rq)
2675{
2676 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2677 if (rq->curr == rq->idle && rq->nr_running)
2678 resched_task(rq->idle);
2679}
2680
Arjan van de Ven858119e2006-01-14 13:20:43 -08002681static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002683 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 cpumask_t sibling_map;
2685 int i;
2686
Nick Piggin41c7ce92005-06-25 14:57:24 -07002687 for_each_domain(this_cpu, tmp)
2688 if (tmp->flags & SD_SHARE_CPUPOWER)
2689 sd = tmp;
2690
2691 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692 return;
2693
2694 /*
2695 * Unlock the current runqueue because we have to lock in
2696 * CPU order to avoid deadlocks. Caller knows that we might
2697 * unlock. We keep IRQs disabled.
2698 */
2699 spin_unlock(&this_rq->lock);
2700
2701 sibling_map = sd->span;
2702
2703 for_each_cpu_mask(i, sibling_map)
2704 spin_lock(&cpu_rq(i)->lock);
2705 /*
2706 * We clear this CPU from the mask. This both simplifies the
2707 * inner loop and keps this_rq locked when we exit:
2708 */
2709 cpu_clear(this_cpu, sibling_map);
2710
2711 for_each_cpu_mask(i, sibling_map) {
2712 runqueue_t *smt_rq = cpu_rq(i);
2713
Con Kolivasfc38ed72005-09-10 00:26:08 -07002714 wakeup_busy_runqueue(smt_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 }
2716
2717 for_each_cpu_mask(i, sibling_map)
2718 spin_unlock(&cpu_rq(i)->lock);
2719 /*
2720 * We exit with this_cpu's rq still held and IRQs
2721 * still disabled:
2722 */
2723}
2724
Ingo Molnar67f9a612005-09-10 00:26:16 -07002725/*
2726 * number of 'lost' timeslices this task wont be able to fully
2727 * utilize, if another task runs on a sibling. This models the
2728 * slowdown effect of other tasks running on siblings:
2729 */
2730static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2731{
2732 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2733}
2734
Arjan van de Ven858119e2006-01-14 13:20:43 -08002735static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736{
Nick Piggin41c7ce92005-06-25 14:57:24 -07002737 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 cpumask_t sibling_map;
2739 prio_array_t *array;
2740 int ret = 0, i;
2741 task_t *p;
2742
Nick Piggin41c7ce92005-06-25 14:57:24 -07002743 for_each_domain(this_cpu, tmp)
2744 if (tmp->flags & SD_SHARE_CPUPOWER)
2745 sd = tmp;
2746
2747 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748 return 0;
2749
2750 /*
2751 * The same locking rules and details apply as for
2752 * wake_sleeping_dependent():
2753 */
2754 spin_unlock(&this_rq->lock);
2755 sibling_map = sd->span;
2756 for_each_cpu_mask(i, sibling_map)
2757 spin_lock(&cpu_rq(i)->lock);
2758 cpu_clear(this_cpu, sibling_map);
2759
2760 /*
2761 * Establish next task to be run - it might have gone away because
2762 * we released the runqueue lock above:
2763 */
2764 if (!this_rq->nr_running)
2765 goto out_unlock;
2766 array = this_rq->active;
2767 if (!array->nr_active)
2768 array = this_rq->expired;
2769 BUG_ON(!array->nr_active);
2770
2771 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2772 task_t, run_list);
2773
2774 for_each_cpu_mask(i, sibling_map) {
2775 runqueue_t *smt_rq = cpu_rq(i);
2776 task_t *smt_curr = smt_rq->curr;
2777
Con Kolivasfc38ed72005-09-10 00:26:08 -07002778 /* Kernel threads do not participate in dependent sleeping */
2779 if (!p->mm || !smt_curr->mm || rt_task(p))
2780 goto check_smt_task;
2781
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782 /*
2783 * If a user task with lower static priority than the
2784 * running task on the SMT sibling is trying to schedule,
2785 * delay it till there is proportionately less timeslice
2786 * left of the sibling task to prevent a lower priority
2787 * task from using an unfair proportion of the
2788 * physical cpu's resources. -ck
2789 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002790 if (rt_task(smt_curr)) {
2791 /*
2792 * With real time tasks we run non-rt tasks only
2793 * per_cpu_gain% of the time.
2794 */
2795 if ((jiffies % DEF_TIMESLICE) >
2796 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2797 ret = 1;
2798 } else
Ingo Molnar67f9a612005-09-10 00:26:16 -07002799 if (smt_curr->static_prio < p->static_prio &&
2800 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2801 smt_slice(smt_curr, sd) > task_timeslice(p))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002802 ret = 1;
2803
2804check_smt_task:
2805 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2806 rt_task(smt_curr))
2807 continue;
2808 if (!p->mm) {
2809 wakeup_busy_runqueue(smt_rq);
2810 continue;
2811 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812
2813 /*
Con Kolivasfc38ed72005-09-10 00:26:08 -07002814 * Reschedule a lower priority task on the SMT sibling for
2815 * it to be put to sleep, or wake it up if it has been put to
2816 * sleep for priority reasons to see if it should run now.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07002818 if (rt_task(p)) {
2819 if ((jiffies % DEF_TIMESLICE) >
2820 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2821 resched_task(smt_curr);
2822 } else {
Ingo Molnar67f9a612005-09-10 00:26:16 -07002823 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2824 smt_slice(p, sd) > task_timeslice(smt_curr))
Con Kolivasfc38ed72005-09-10 00:26:08 -07002825 resched_task(smt_curr);
2826 else
2827 wakeup_busy_runqueue(smt_rq);
2828 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829 }
2830out_unlock:
2831 for_each_cpu_mask(i, sibling_map)
2832 spin_unlock(&cpu_rq(i)->lock);
2833 return ret;
2834}
2835#else
2836static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2837{
2838}
2839
2840static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2841{
2842 return 0;
2843}
2844#endif
2845
2846#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2847
2848void fastcall add_preempt_count(int val)
2849{
2850 /*
2851 * Underflow?
2852 */
Jesper Juhlbe5b4fb2005-06-23 00:09:09 -07002853 BUG_ON((preempt_count() < 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854 preempt_count() += val;
2855 /*
2856 * Spinlock count overflowing soon?
2857 */
2858 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2859}
2860EXPORT_SYMBOL(add_preempt_count);
2861
2862void fastcall sub_preempt_count(int val)
2863{
2864 /*
2865 * Underflow?
2866 */
2867 BUG_ON(val > preempt_count());
2868 /*
2869 * Is the spinlock portion underflowing?
2870 */
2871 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2872 preempt_count() -= val;
2873}
2874EXPORT_SYMBOL(sub_preempt_count);
2875
2876#endif
2877
2878/*
2879 * schedule() is the main scheduler function.
2880 */
2881asmlinkage void __sched schedule(void)
2882{
2883 long *switch_count;
2884 task_t *prev, *next;
2885 runqueue_t *rq;
2886 prio_array_t *array;
2887 struct list_head *queue;
2888 unsigned long long now;
2889 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07002890 int cpu, idx, new_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002891
2892 /*
2893 * Test if we are atomic. Since do_exit() needs to call into
2894 * schedule() atomically, we ignore that path for now.
2895 * Otherwise, whine if we are scheduling when we should not be.
2896 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08002897 if (unlikely(in_atomic() && !current->exit_state)) {
2898 printk(KERN_ERR "BUG: scheduling while atomic: "
2899 "%s/0x%08x/%d\n",
2900 current->comm, preempt_count(), current->pid);
2901 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902 }
2903 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2904
2905need_resched:
2906 preempt_disable();
2907 prev = current;
2908 release_kernel_lock(prev);
2909need_resched_nonpreemptible:
2910 rq = this_rq();
2911
2912 /*
2913 * The idle thread is not allowed to schedule!
2914 * Remove this check after it has been exercised a bit.
2915 */
2916 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2917 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2918 dump_stack();
2919 }
2920
2921 schedstat_inc(rq, sched_cnt);
2922 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07002923 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07002925 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002926 run_time = 0;
2927 } else
2928 run_time = NS_MAX_SLEEP_AVG;
2929
2930 /*
2931 * Tasks charged proportionately less run_time at high sleep_avg to
2932 * delay them losing their interactive status
2933 */
2934 run_time /= (CURRENT_BONUS(prev) ? : 1);
2935
2936 spin_lock_irq(&rq->lock);
2937
2938 if (unlikely(prev->flags & PF_DEAD))
2939 prev->state = EXIT_DEAD;
2940
2941 switch_count = &prev->nivcsw;
2942 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2943 switch_count = &prev->nvcsw;
2944 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2945 unlikely(signal_pending(prev))))
2946 prev->state = TASK_RUNNING;
2947 else {
2948 if (prev->state == TASK_UNINTERRUPTIBLE)
2949 rq->nr_uninterruptible++;
2950 deactivate_task(prev, rq);
2951 }
2952 }
2953
2954 cpu = smp_processor_id();
2955 if (unlikely(!rq->nr_running)) {
2956go_idle:
2957 idle_balance(cpu, rq);
2958 if (!rq->nr_running) {
2959 next = rq->idle;
2960 rq->expired_timestamp = 0;
2961 wake_sleeping_dependent(cpu, rq);
2962 /*
2963 * wake_sleeping_dependent() might have released
2964 * the runqueue, so break out if we got new
2965 * tasks meanwhile:
2966 */
2967 if (!rq->nr_running)
2968 goto switch_tasks;
2969 }
2970 } else {
2971 if (dependent_sleeper(cpu, rq)) {
2972 next = rq->idle;
2973 goto switch_tasks;
2974 }
2975 /*
2976 * dependent_sleeper() releases and reacquires the runqueue
2977 * lock, hence go into the idle loop if the rq went
2978 * empty meanwhile:
2979 */
2980 if (unlikely(!rq->nr_running))
2981 goto go_idle;
2982 }
2983
2984 array = rq->active;
2985 if (unlikely(!array->nr_active)) {
2986 /*
2987 * Switch the active and expired arrays.
2988 */
2989 schedstat_inc(rq, sched_switch);
2990 rq->active = rq->expired;
2991 rq->expired = array;
2992 array = rq->active;
2993 rq->expired_timestamp = 0;
2994 rq->best_expired_prio = MAX_PRIO;
2995 }
2996
2997 idx = sched_find_first_bit(array->bitmap);
2998 queue = array->queue + idx;
2999 next = list_entry(queue->next, task_t, run_list);
3000
3001 if (!rt_task(next) && next->activated > 0) {
3002 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003003 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003004 delta = 0;
3005
3006 if (next->activated == 1)
3007 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3008
3009 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003010 new_prio = recalc_task_prio(next, next->timestamp + delta);
3011
3012 if (unlikely(next->prio != new_prio)) {
3013 dequeue_task(next, array);
3014 next->prio = new_prio;
3015 enqueue_task(next, array);
3016 } else
3017 requeue_task(next, array);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018 }
3019 next->activated = 0;
3020switch_tasks:
3021 if (next == rq->idle)
3022 schedstat_inc(rq, sched_goidle);
3023 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003024 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003025 clear_tsk_need_resched(prev);
3026 rcu_qsctr_inc(task_cpu(prev));
3027
3028 update_cpu_clock(prev, rq, now);
3029
3030 prev->sleep_avg -= run_time;
3031 if ((long)prev->sleep_avg <= 0)
3032 prev->sleep_avg = 0;
3033 prev->timestamp = prev->last_ran = now;
3034
3035 sched_info_switch(prev, next);
3036 if (likely(prev != next)) {
3037 next->timestamp = now;
3038 rq->nr_switches++;
3039 rq->curr = next;
3040 ++*switch_count;
3041
Nick Piggin4866cde2005-06-25 14:57:23 -07003042 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003043 prev = context_switch(rq, prev, next);
3044 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003045 /*
3046 * this_rq must be evaluated again because prev may have moved
3047 * CPUs since it called schedule(), thus the 'rq' on its stack
3048 * frame will be invalid.
3049 */
3050 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051 } else
3052 spin_unlock_irq(&rq->lock);
3053
3054 prev = current;
3055 if (unlikely(reacquire_kernel_lock(prev) < 0))
3056 goto need_resched_nonpreemptible;
3057 preempt_enable_no_resched();
3058 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3059 goto need_resched;
3060}
3061
3062EXPORT_SYMBOL(schedule);
3063
3064#ifdef CONFIG_PREEMPT
3065/*
3066 * this is is the entry point to schedule() from in-kernel preemption
3067 * off of preempt_enable. Kernel preemptions off return from interrupt
3068 * occur there and call schedule directly.
3069 */
3070asmlinkage void __sched preempt_schedule(void)
3071{
3072 struct thread_info *ti = current_thread_info();
3073#ifdef CONFIG_PREEMPT_BKL
3074 struct task_struct *task = current;
3075 int saved_lock_depth;
3076#endif
3077 /*
3078 * If there is a non-zero preempt_count or interrupts are disabled,
3079 * we do not want to preempt the current task. Just return..
3080 */
3081 if (unlikely(ti->preempt_count || irqs_disabled()))
3082 return;
3083
3084need_resched:
3085 add_preempt_count(PREEMPT_ACTIVE);
3086 /*
3087 * We keep the big kernel semaphore locked, but we
3088 * clear ->lock_depth so that schedule() doesnt
3089 * auto-release the semaphore:
3090 */
3091#ifdef CONFIG_PREEMPT_BKL
3092 saved_lock_depth = task->lock_depth;
3093 task->lock_depth = -1;
3094#endif
3095 schedule();
3096#ifdef CONFIG_PREEMPT_BKL
3097 task->lock_depth = saved_lock_depth;
3098#endif
3099 sub_preempt_count(PREEMPT_ACTIVE);
3100
3101 /* we could miss a preemption opportunity between schedule and now */
3102 barrier();
3103 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3104 goto need_resched;
3105}
3106
3107EXPORT_SYMBOL(preempt_schedule);
3108
3109/*
3110 * this is is the entry point to schedule() from kernel preemption
3111 * off of irq context.
3112 * Note, that this is called and return with irqs disabled. This will
3113 * protect us against recursive calling from irq.
3114 */
3115asmlinkage void __sched preempt_schedule_irq(void)
3116{
3117 struct thread_info *ti = current_thread_info();
3118#ifdef CONFIG_PREEMPT_BKL
3119 struct task_struct *task = current;
3120 int saved_lock_depth;
3121#endif
3122 /* Catch callers which need to be fixed*/
3123 BUG_ON(ti->preempt_count || !irqs_disabled());
3124
3125need_resched:
3126 add_preempt_count(PREEMPT_ACTIVE);
3127 /*
3128 * We keep the big kernel semaphore locked, but we
3129 * clear ->lock_depth so that schedule() doesnt
3130 * auto-release the semaphore:
3131 */
3132#ifdef CONFIG_PREEMPT_BKL
3133 saved_lock_depth = task->lock_depth;
3134 task->lock_depth = -1;
3135#endif
3136 local_irq_enable();
3137 schedule();
3138 local_irq_disable();
3139#ifdef CONFIG_PREEMPT_BKL
3140 task->lock_depth = saved_lock_depth;
3141#endif
3142 sub_preempt_count(PREEMPT_ACTIVE);
3143
3144 /* we could miss a preemption opportunity between schedule and now */
3145 barrier();
3146 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3147 goto need_resched;
3148}
3149
3150#endif /* CONFIG_PREEMPT */
3151
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003152int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3153 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003154{
Benjamin LaHaisec43dc2f2005-06-23 00:10:27 -07003155 task_t *p = curr->private;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003156 return try_to_wake_up(p, mode, sync);
3157}
3158
3159EXPORT_SYMBOL(default_wake_function);
3160
3161/*
3162 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3163 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3164 * number) then we wake all the non-exclusive tasks and one exclusive task.
3165 *
3166 * There are circumstances in which we can try to wake a task which has already
3167 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3168 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3169 */
3170static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3171 int nr_exclusive, int sync, void *key)
3172{
3173 struct list_head *tmp, *next;
3174
3175 list_for_each_safe(tmp, next, &q->task_list) {
3176 wait_queue_t *curr;
3177 unsigned flags;
3178 curr = list_entry(tmp, wait_queue_t, task_list);
3179 flags = curr->flags;
3180 if (curr->func(curr, mode, sync, key) &&
3181 (flags & WQ_FLAG_EXCLUSIVE) &&
3182 !--nr_exclusive)
3183 break;
3184 }
3185}
3186
3187/**
3188 * __wake_up - wake up threads blocked on a waitqueue.
3189 * @q: the waitqueue
3190 * @mode: which threads
3191 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003192 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003193 */
3194void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003195 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003196{
3197 unsigned long flags;
3198
3199 spin_lock_irqsave(&q->lock, flags);
3200 __wake_up_common(q, mode, nr_exclusive, 0, key);
3201 spin_unlock_irqrestore(&q->lock, flags);
3202}
3203
3204EXPORT_SYMBOL(__wake_up);
3205
3206/*
3207 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3208 */
3209void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3210{
3211 __wake_up_common(q, mode, 1, 0, NULL);
3212}
3213
3214/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003215 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003216 * @q: the waitqueue
3217 * @mode: which threads
3218 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3219 *
3220 * The sync wakeup differs that the waker knows that it will schedule
3221 * away soon, so while the target thread will be woken up, it will not
3222 * be migrated to another CPU - ie. the two threads are 'synchronized'
3223 * with each other. This can prevent needless bouncing between CPUs.
3224 *
3225 * On UP it can prevent extra preemption.
3226 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003227void fastcall
3228__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229{
3230 unsigned long flags;
3231 int sync = 1;
3232
3233 if (unlikely(!q))
3234 return;
3235
3236 if (unlikely(!nr_exclusive))
3237 sync = 0;
3238
3239 spin_lock_irqsave(&q->lock, flags);
3240 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3241 spin_unlock_irqrestore(&q->lock, flags);
3242}
3243EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3244
3245void fastcall complete(struct completion *x)
3246{
3247 unsigned long flags;
3248
3249 spin_lock_irqsave(&x->wait.lock, flags);
3250 x->done++;
3251 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3252 1, 0, NULL);
3253 spin_unlock_irqrestore(&x->wait.lock, flags);
3254}
3255EXPORT_SYMBOL(complete);
3256
3257void fastcall complete_all(struct completion *x)
3258{
3259 unsigned long flags;
3260
3261 spin_lock_irqsave(&x->wait.lock, flags);
3262 x->done += UINT_MAX/2;
3263 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3264 0, 0, NULL);
3265 spin_unlock_irqrestore(&x->wait.lock, flags);
3266}
3267EXPORT_SYMBOL(complete_all);
3268
3269void fastcall __sched wait_for_completion(struct completion *x)
3270{
3271 might_sleep();
3272 spin_lock_irq(&x->wait.lock);
3273 if (!x->done) {
3274 DECLARE_WAITQUEUE(wait, current);
3275
3276 wait.flags |= WQ_FLAG_EXCLUSIVE;
3277 __add_wait_queue_tail(&x->wait, &wait);
3278 do {
3279 __set_current_state(TASK_UNINTERRUPTIBLE);
3280 spin_unlock_irq(&x->wait.lock);
3281 schedule();
3282 spin_lock_irq(&x->wait.lock);
3283 } while (!x->done);
3284 __remove_wait_queue(&x->wait, &wait);
3285 }
3286 x->done--;
3287 spin_unlock_irq(&x->wait.lock);
3288}
3289EXPORT_SYMBOL(wait_for_completion);
3290
3291unsigned long fastcall __sched
3292wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3293{
3294 might_sleep();
3295
3296 spin_lock_irq(&x->wait.lock);
3297 if (!x->done) {
3298 DECLARE_WAITQUEUE(wait, current);
3299
3300 wait.flags |= WQ_FLAG_EXCLUSIVE;
3301 __add_wait_queue_tail(&x->wait, &wait);
3302 do {
3303 __set_current_state(TASK_UNINTERRUPTIBLE);
3304 spin_unlock_irq(&x->wait.lock);
3305 timeout = schedule_timeout(timeout);
3306 spin_lock_irq(&x->wait.lock);
3307 if (!timeout) {
3308 __remove_wait_queue(&x->wait, &wait);
3309 goto out;
3310 }
3311 } while (!x->done);
3312 __remove_wait_queue(&x->wait, &wait);
3313 }
3314 x->done--;
3315out:
3316 spin_unlock_irq(&x->wait.lock);
3317 return timeout;
3318}
3319EXPORT_SYMBOL(wait_for_completion_timeout);
3320
3321int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3322{
3323 int ret = 0;
3324
3325 might_sleep();
3326
3327 spin_lock_irq(&x->wait.lock);
3328 if (!x->done) {
3329 DECLARE_WAITQUEUE(wait, current);
3330
3331 wait.flags |= WQ_FLAG_EXCLUSIVE;
3332 __add_wait_queue_tail(&x->wait, &wait);
3333 do {
3334 if (signal_pending(current)) {
3335 ret = -ERESTARTSYS;
3336 __remove_wait_queue(&x->wait, &wait);
3337 goto out;
3338 }
3339 __set_current_state(TASK_INTERRUPTIBLE);
3340 spin_unlock_irq(&x->wait.lock);
3341 schedule();
3342 spin_lock_irq(&x->wait.lock);
3343 } while (!x->done);
3344 __remove_wait_queue(&x->wait, &wait);
3345 }
3346 x->done--;
3347out:
3348 spin_unlock_irq(&x->wait.lock);
3349
3350 return ret;
3351}
3352EXPORT_SYMBOL(wait_for_completion_interruptible);
3353
3354unsigned long fastcall __sched
3355wait_for_completion_interruptible_timeout(struct completion *x,
3356 unsigned long timeout)
3357{
3358 might_sleep();
3359
3360 spin_lock_irq(&x->wait.lock);
3361 if (!x->done) {
3362 DECLARE_WAITQUEUE(wait, current);
3363
3364 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365 __add_wait_queue_tail(&x->wait, &wait);
3366 do {
3367 if (signal_pending(current)) {
3368 timeout = -ERESTARTSYS;
3369 __remove_wait_queue(&x->wait, &wait);
3370 goto out;
3371 }
3372 __set_current_state(TASK_INTERRUPTIBLE);
3373 spin_unlock_irq(&x->wait.lock);
3374 timeout = schedule_timeout(timeout);
3375 spin_lock_irq(&x->wait.lock);
3376 if (!timeout) {
3377 __remove_wait_queue(&x->wait, &wait);
3378 goto out;
3379 }
3380 } while (!x->done);
3381 __remove_wait_queue(&x->wait, &wait);
3382 }
3383 x->done--;
3384out:
3385 spin_unlock_irq(&x->wait.lock);
3386 return timeout;
3387}
3388EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3389
3390
3391#define SLEEP_ON_VAR \
3392 unsigned long flags; \
3393 wait_queue_t wait; \
3394 init_waitqueue_entry(&wait, current);
3395
3396#define SLEEP_ON_HEAD \
3397 spin_lock_irqsave(&q->lock,flags); \
3398 __add_wait_queue(q, &wait); \
3399 spin_unlock(&q->lock);
3400
3401#define SLEEP_ON_TAIL \
3402 spin_lock_irq(&q->lock); \
3403 __remove_wait_queue(q, &wait); \
3404 spin_unlock_irqrestore(&q->lock, flags);
3405
3406void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3407{
3408 SLEEP_ON_VAR
3409
3410 current->state = TASK_INTERRUPTIBLE;
3411
3412 SLEEP_ON_HEAD
3413 schedule();
3414 SLEEP_ON_TAIL
3415}
3416
3417EXPORT_SYMBOL(interruptible_sleep_on);
3418
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003419long fastcall __sched
3420interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003421{
3422 SLEEP_ON_VAR
3423
3424 current->state = TASK_INTERRUPTIBLE;
3425
3426 SLEEP_ON_HEAD
3427 timeout = schedule_timeout(timeout);
3428 SLEEP_ON_TAIL
3429
3430 return timeout;
3431}
3432
3433EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3434
3435void fastcall __sched sleep_on(wait_queue_head_t *q)
3436{
3437 SLEEP_ON_VAR
3438
3439 current->state = TASK_UNINTERRUPTIBLE;
3440
3441 SLEEP_ON_HEAD
3442 schedule();
3443 SLEEP_ON_TAIL
3444}
3445
3446EXPORT_SYMBOL(sleep_on);
3447
3448long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3449{
3450 SLEEP_ON_VAR
3451
3452 current->state = TASK_UNINTERRUPTIBLE;
3453
3454 SLEEP_ON_HEAD
3455 timeout = schedule_timeout(timeout);
3456 SLEEP_ON_TAIL
3457
3458 return timeout;
3459}
3460
3461EXPORT_SYMBOL(sleep_on_timeout);
3462
3463void set_user_nice(task_t *p, long nice)
3464{
3465 unsigned long flags;
3466 prio_array_t *array;
3467 runqueue_t *rq;
3468 int old_prio, new_prio, delta;
3469
3470 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3471 return;
3472 /*
3473 * We have to be careful, if called from sys_setpriority(),
3474 * the task might be in the middle of scheduling on another CPU.
3475 */
3476 rq = task_rq_lock(p, &flags);
3477 /*
3478 * The RT priorities are set via sched_setscheduler(), but we still
3479 * allow the 'normal' nice value to be set - but as expected
3480 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08003481 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003482 */
3483 if (rt_task(p)) {
3484 p->static_prio = NICE_TO_PRIO(nice);
3485 goto out_unlock;
3486 }
3487 array = p->array;
Nick Piggina2000572006-02-10 01:51:02 -08003488 if (array)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489 dequeue_task(p, array);
3490
3491 old_prio = p->prio;
3492 new_prio = NICE_TO_PRIO(nice);
3493 delta = new_prio - old_prio;
3494 p->static_prio = NICE_TO_PRIO(nice);
3495 p->prio += delta;
3496
3497 if (array) {
3498 enqueue_task(p, array);
3499 /*
3500 * If the task increased its priority or is running and
3501 * lowered its priority, then reschedule its CPU:
3502 */
3503 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3504 resched_task(rq->curr);
3505 }
3506out_unlock:
3507 task_rq_unlock(rq, &flags);
3508}
3509
3510EXPORT_SYMBOL(set_user_nice);
3511
Matt Mackalle43379f2005-05-01 08:59:00 -07003512/*
3513 * can_nice - check if a task can reduce its nice value
3514 * @p: task
3515 * @nice: nice value
3516 */
3517int can_nice(const task_t *p, const int nice)
3518{
Matt Mackall024f4742005-08-18 11:24:19 -07003519 /* convert nice value [19,-20] to rlimit style value [1,40] */
3520 int nice_rlim = 20 - nice;
Matt Mackalle43379f2005-05-01 08:59:00 -07003521 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3522 capable(CAP_SYS_NICE));
3523}
3524
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525#ifdef __ARCH_WANT_SYS_NICE
3526
3527/*
3528 * sys_nice - change the priority of the current process.
3529 * @increment: priority increment
3530 *
3531 * sys_setpriority is a more generic, but much slower function that
3532 * does similar things.
3533 */
3534asmlinkage long sys_nice(int increment)
3535{
3536 int retval;
3537 long nice;
3538
3539 /*
3540 * Setpriority might change our priority at the same moment.
3541 * We don't have to worry. Conceptually one call occurs first
3542 * and we have a single winner.
3543 */
Matt Mackalle43379f2005-05-01 08:59:00 -07003544 if (increment < -40)
3545 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003546 if (increment > 40)
3547 increment = 40;
3548
3549 nice = PRIO_TO_NICE(current->static_prio) + increment;
3550 if (nice < -20)
3551 nice = -20;
3552 if (nice > 19)
3553 nice = 19;
3554
Matt Mackalle43379f2005-05-01 08:59:00 -07003555 if (increment < 0 && !can_nice(current, nice))
3556 return -EPERM;
3557
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558 retval = security_task_setnice(current, nice);
3559 if (retval)
3560 return retval;
3561
3562 set_user_nice(current, nice);
3563 return 0;
3564}
3565
3566#endif
3567
3568/**
3569 * task_prio - return the priority value of a given task.
3570 * @p: the task in question.
3571 *
3572 * This is the priority value as seen by users in /proc.
3573 * RT tasks are offset by -200. Normal tasks are centered
3574 * around 0, value goes from -16 to +15.
3575 */
3576int task_prio(const task_t *p)
3577{
3578 return p->prio - MAX_RT_PRIO;
3579}
3580
3581/**
3582 * task_nice - return the nice value of a given task.
3583 * @p: the task in question.
3584 */
3585int task_nice(const task_t *p)
3586{
3587 return TASK_NICE(p);
3588}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003590
3591/**
3592 * idle_cpu - is a given cpu idle currently?
3593 * @cpu: the processor in question.
3594 */
3595int idle_cpu(int cpu)
3596{
3597 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3598}
3599
Linus Torvalds1da177e2005-04-16 15:20:36 -07003600/**
3601 * idle_task - return the idle task for a given cpu.
3602 * @cpu: the processor in question.
3603 */
3604task_t *idle_task(int cpu)
3605{
3606 return cpu_rq(cpu)->idle;
3607}
3608
3609/**
3610 * find_process_by_pid - find a process with a matching PID value.
3611 * @pid: the pid in question.
3612 */
3613static inline task_t *find_process_by_pid(pid_t pid)
3614{
3615 return pid ? find_task_by_pid(pid) : current;
3616}
3617
3618/* Actually do priority change: must hold rq lock. */
3619static void __setscheduler(struct task_struct *p, int policy, int prio)
3620{
3621 BUG_ON(p->array);
3622 p->policy = policy;
3623 p->rt_priority = prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003624 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
Steven Rostedtd46523e2005-07-25 16:28:39 -04003625 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003626 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627 p->prio = p->static_prio;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003628 /*
3629 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3630 */
3631 if (policy == SCHED_BATCH)
3632 p->sleep_avg = 0;
3633 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634}
3635
3636/**
3637 * sched_setscheduler - change the scheduling policy and/or RT priority of
3638 * a thread.
3639 * @p: the task in question.
3640 * @policy: new policy.
3641 * @param: structure containing the new RT priority.
3642 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003643int sched_setscheduler(struct task_struct *p, int policy,
3644 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003645{
3646 int retval;
3647 int oldprio, oldpolicy = -1;
3648 prio_array_t *array;
3649 unsigned long flags;
3650 runqueue_t *rq;
3651
3652recheck:
3653 /* double check policy once rq lock held */
3654 if (policy < 0)
3655 policy = oldpolicy = p->policy;
3656 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08003657 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3658 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003659 /*
3660 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08003661 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3662 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663 */
3664 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003665 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04003666 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003667 return -EINVAL;
Ingo Molnarb0a94992006-01-14 13:20:41 -08003668 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3669 != (param->sched_priority == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670 return -EINVAL;
3671
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003672 /*
3673 * Allow unprivileged RT tasks to decrease priority:
3674 */
3675 if (!capable(CAP_SYS_NICE)) {
Ingo Molnarb0a94992006-01-14 13:20:41 -08003676 /*
3677 * can't change policy, except between SCHED_NORMAL
3678 * and SCHED_BATCH:
3679 */
3680 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3681 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3682 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003683 return -EPERM;
3684 /* can't increase priority */
Ingo Molnarb0a94992006-01-14 13:20:41 -08003685 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
Olivier Croquette37e4ab32005-06-25 14:57:32 -07003686 param->sched_priority > p->rt_priority &&
3687 param->sched_priority >
3688 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3689 return -EPERM;
3690 /* can't change other user's priorities */
3691 if ((current->euid != p->euid) &&
3692 (current->euid != p->uid))
3693 return -EPERM;
3694 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003695
3696 retval = security_task_setscheduler(p, policy, param);
3697 if (retval)
3698 return retval;
3699 /*
3700 * To be able to change p->policy safely, the apropriate
3701 * runqueue lock must be held.
3702 */
3703 rq = task_rq_lock(p, &flags);
3704 /* recheck policy now with rq lock held */
3705 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3706 policy = oldpolicy = -1;
3707 task_rq_unlock(rq, &flags);
3708 goto recheck;
3709 }
3710 array = p->array;
3711 if (array)
3712 deactivate_task(p, rq);
3713 oldprio = p->prio;
3714 __setscheduler(p, policy, param->sched_priority);
3715 if (array) {
3716 __activate_task(p, rq);
3717 /*
3718 * Reschedule if we are currently running on this runqueue and
3719 * our priority decreased, or if we are not currently running on
3720 * this runqueue and our priority is higher than the current's
3721 */
3722 if (task_running(rq, p)) {
3723 if (p->prio > oldprio)
3724 resched_task(rq->curr);
3725 } else if (TASK_PREEMPTS_CURR(p, rq))
3726 resched_task(rq->curr);
3727 }
3728 task_rq_unlock(rq, &flags);
3729 return 0;
3730}
3731EXPORT_SYMBOL_GPL(sched_setscheduler);
3732
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003733static int
3734do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003735{
3736 int retval;
3737 struct sched_param lparam;
3738 struct task_struct *p;
3739
3740 if (!param || pid < 0)
3741 return -EINVAL;
3742 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3743 return -EFAULT;
3744 read_lock_irq(&tasklist_lock);
3745 p = find_process_by_pid(pid);
3746 if (!p) {
3747 read_unlock_irq(&tasklist_lock);
3748 return -ESRCH;
3749 }
3750 retval = sched_setscheduler(p, policy, &lparam);
3751 read_unlock_irq(&tasklist_lock);
3752 return retval;
3753}
3754
3755/**
3756 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3757 * @pid: the pid in question.
3758 * @policy: new policy.
3759 * @param: structure containing the new RT priority.
3760 */
3761asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3762 struct sched_param __user *param)
3763{
Jason Baronc21761f2006-01-18 17:43:03 -08003764 /* negative values for policy are not valid */
3765 if (policy < 0)
3766 return -EINVAL;
3767
Linus Torvalds1da177e2005-04-16 15:20:36 -07003768 return do_sched_setscheduler(pid, policy, param);
3769}
3770
3771/**
3772 * sys_sched_setparam - set/change the RT priority of a thread
3773 * @pid: the pid in question.
3774 * @param: structure containing the new RT priority.
3775 */
3776asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3777{
3778 return do_sched_setscheduler(pid, -1, param);
3779}
3780
3781/**
3782 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3783 * @pid: the pid in question.
3784 */
3785asmlinkage long sys_sched_getscheduler(pid_t pid)
3786{
3787 int retval = -EINVAL;
3788 task_t *p;
3789
3790 if (pid < 0)
3791 goto out_nounlock;
3792
3793 retval = -ESRCH;
3794 read_lock(&tasklist_lock);
3795 p = find_process_by_pid(pid);
3796 if (p) {
3797 retval = security_task_getscheduler(p);
3798 if (!retval)
3799 retval = p->policy;
3800 }
3801 read_unlock(&tasklist_lock);
3802
3803out_nounlock:
3804 return retval;
3805}
3806
3807/**
3808 * sys_sched_getscheduler - get the RT priority of a thread
3809 * @pid: the pid in question.
3810 * @param: structure containing the RT priority.
3811 */
3812asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3813{
3814 struct sched_param lp;
3815 int retval = -EINVAL;
3816 task_t *p;
3817
3818 if (!param || pid < 0)
3819 goto out_nounlock;
3820
3821 read_lock(&tasklist_lock);
3822 p = find_process_by_pid(pid);
3823 retval = -ESRCH;
3824 if (!p)
3825 goto out_unlock;
3826
3827 retval = security_task_getscheduler(p);
3828 if (retval)
3829 goto out_unlock;
3830
3831 lp.sched_priority = p->rt_priority;
3832 read_unlock(&tasklist_lock);
3833
3834 /*
3835 * This one might sleep, we cannot do it with a spinlock held ...
3836 */
3837 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3838
3839out_nounlock:
3840 return retval;
3841
3842out_unlock:
3843 read_unlock(&tasklist_lock);
3844 return retval;
3845}
3846
3847long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3848{
3849 task_t *p;
3850 int retval;
3851 cpumask_t cpus_allowed;
3852
3853 lock_cpu_hotplug();
3854 read_lock(&tasklist_lock);
3855
3856 p = find_process_by_pid(pid);
3857 if (!p) {
3858 read_unlock(&tasklist_lock);
3859 unlock_cpu_hotplug();
3860 return -ESRCH;
3861 }
3862
3863 /*
3864 * It is not safe to call set_cpus_allowed with the
3865 * tasklist_lock held. We will bump the task_struct's
3866 * usage count and then drop tasklist_lock.
3867 */
3868 get_task_struct(p);
3869 read_unlock(&tasklist_lock);
3870
3871 retval = -EPERM;
3872 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3873 !capable(CAP_SYS_NICE))
3874 goto out_unlock;
3875
3876 cpus_allowed = cpuset_cpus_allowed(p);
3877 cpus_and(new_mask, new_mask, cpus_allowed);
3878 retval = set_cpus_allowed(p, new_mask);
3879
3880out_unlock:
3881 put_task_struct(p);
3882 unlock_cpu_hotplug();
3883 return retval;
3884}
3885
3886static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3887 cpumask_t *new_mask)
3888{
3889 if (len < sizeof(cpumask_t)) {
3890 memset(new_mask, 0, sizeof(cpumask_t));
3891 } else if (len > sizeof(cpumask_t)) {
3892 len = sizeof(cpumask_t);
3893 }
3894 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3895}
3896
3897/**
3898 * sys_sched_setaffinity - set the cpu affinity of a process
3899 * @pid: pid of the process
3900 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3901 * @user_mask_ptr: user-space pointer to the new cpu mask
3902 */
3903asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3904 unsigned long __user *user_mask_ptr)
3905{
3906 cpumask_t new_mask;
3907 int retval;
3908
3909 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3910 if (retval)
3911 return retval;
3912
3913 return sched_setaffinity(pid, new_mask);
3914}
3915
3916/*
3917 * Represents all cpu's present in the system
3918 * In systems capable of hotplug, this map could dynamically grow
3919 * as new cpu's are detected in the system via any platform specific
3920 * method, such as ACPI for e.g.
3921 */
3922
Andi Kleen4cef0c62006-01-11 22:44:57 +01003923cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003924EXPORT_SYMBOL(cpu_present_map);
3925
3926#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01003927cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3928cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003929#endif
3930
3931long sched_getaffinity(pid_t pid, cpumask_t *mask)
3932{
3933 int retval;
3934 task_t *p;
3935
3936 lock_cpu_hotplug();
3937 read_lock(&tasklist_lock);
3938
3939 retval = -ESRCH;
3940 p = find_process_by_pid(pid);
3941 if (!p)
3942 goto out_unlock;
3943
3944 retval = 0;
Jack Steiner2f7016d2006-02-01 03:05:18 -08003945 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003946
3947out_unlock:
3948 read_unlock(&tasklist_lock);
3949 unlock_cpu_hotplug();
3950 if (retval)
3951 return retval;
3952
3953 return 0;
3954}
3955
3956/**
3957 * sys_sched_getaffinity - get the cpu affinity of a process
3958 * @pid: pid of the process
3959 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3960 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3961 */
3962asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3963 unsigned long __user *user_mask_ptr)
3964{
3965 int ret;
3966 cpumask_t mask;
3967
3968 if (len < sizeof(cpumask_t))
3969 return -EINVAL;
3970
3971 ret = sched_getaffinity(pid, &mask);
3972 if (ret < 0)
3973 return ret;
3974
3975 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3976 return -EFAULT;
3977
3978 return sizeof(cpumask_t);
3979}
3980
3981/**
3982 * sys_sched_yield - yield the current processor to other threads.
3983 *
3984 * this function yields the current CPU by moving the calling thread
3985 * to the expired array. If there are no other threads running on this
3986 * CPU then this function will return.
3987 */
3988asmlinkage long sys_sched_yield(void)
3989{
3990 runqueue_t *rq = this_rq_lock();
3991 prio_array_t *array = current->array;
3992 prio_array_t *target = rq->expired;
3993
3994 schedstat_inc(rq, yld_cnt);
3995 /*
3996 * We implement yielding by moving the task into the expired
3997 * queue.
3998 *
3999 * (special rule: RT tasks will just roundrobin in the active
4000 * array.)
4001 */
4002 if (rt_task(current))
4003 target = rq->active;
4004
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004005 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 schedstat_inc(rq, yld_act_empty);
4007 if (!rq->expired->nr_active)
4008 schedstat_inc(rq, yld_both_empty);
4009 } else if (!rq->expired->nr_active)
4010 schedstat_inc(rq, yld_exp_empty);
4011
4012 if (array != target) {
4013 dequeue_task(current, array);
4014 enqueue_task(current, target);
4015 } else
4016 /*
4017 * requeue_task is cheaper so perform that if possible.
4018 */
4019 requeue_task(current, array);
4020
4021 /*
4022 * Since we are going to call schedule() anyway, there's
4023 * no need to preempt or enable interrupts:
4024 */
4025 __release(rq->lock);
4026 _raw_spin_unlock(&rq->lock);
4027 preempt_enable_no_resched();
4028
4029 schedule();
4030
4031 return 0;
4032}
4033
4034static inline void __cond_resched(void)
4035{
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004036 /*
4037 * The BKS might be reacquired before we have dropped
4038 * PREEMPT_ACTIVE, which could trigger a second
4039 * cond_resched() call.
4040 */
4041 if (unlikely(preempt_count()))
4042 return;
Linus Torvalds8ba7b0a2006-03-06 17:38:49 -08004043 if (unlikely(system_state != SYSTEM_RUNNING))
4044 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045 do {
4046 add_preempt_count(PREEMPT_ACTIVE);
4047 schedule();
4048 sub_preempt_count(PREEMPT_ACTIVE);
4049 } while (need_resched());
4050}
4051
4052int __sched cond_resched(void)
4053{
4054 if (need_resched()) {
4055 __cond_resched();
4056 return 1;
4057 }
4058 return 0;
4059}
4060
4061EXPORT_SYMBOL(cond_resched);
4062
4063/*
4064 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4065 * call schedule, and on return reacquire the lock.
4066 *
4067 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4068 * operations here to prevent schedule() from being called twice (once via
4069 * spin_unlock(), once by hand).
4070 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004071int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072{
Jan Kara6df3cec2005-06-13 15:52:32 -07004073 int ret = 0;
4074
Linus Torvalds1da177e2005-04-16 15:20:36 -07004075 if (need_lockbreak(lock)) {
4076 spin_unlock(lock);
4077 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004078 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079 spin_lock(lock);
4080 }
4081 if (need_resched()) {
4082 _raw_spin_unlock(lock);
4083 preempt_enable_no_resched();
4084 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004085 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004087 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004088 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004089}
4090
4091EXPORT_SYMBOL(cond_resched_lock);
4092
4093int __sched cond_resched_softirq(void)
4094{
4095 BUG_ON(!in_softirq());
4096
4097 if (need_resched()) {
4098 __local_bh_enable();
4099 __cond_resched();
4100 local_bh_disable();
4101 return 1;
4102 }
4103 return 0;
4104}
4105
4106EXPORT_SYMBOL(cond_resched_softirq);
4107
4108
4109/**
4110 * yield - yield the current processor to other threads.
4111 *
4112 * this is a shortcut for kernel-space yielding - it marks the
4113 * thread runnable and calls sys_sched_yield().
4114 */
4115void __sched yield(void)
4116{
4117 set_current_state(TASK_RUNNING);
4118 sys_sched_yield();
4119}
4120
4121EXPORT_SYMBOL(yield);
4122
4123/*
4124 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4125 * that process accounting knows that this is a task in IO wait state.
4126 *
4127 * But don't do that if it is a deliberate, throttling IO wait (this task
4128 * has set its backing_dev_info: the queue against which it should throttle)
4129 */
4130void __sched io_schedule(void)
4131{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004132 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133
4134 atomic_inc(&rq->nr_iowait);
4135 schedule();
4136 atomic_dec(&rq->nr_iowait);
4137}
4138
4139EXPORT_SYMBOL(io_schedule);
4140
4141long __sched io_schedule_timeout(long timeout)
4142{
Ingo Molnar39c715b2005-06-21 17:14:34 -07004143 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004144 long ret;
4145
4146 atomic_inc(&rq->nr_iowait);
4147 ret = schedule_timeout(timeout);
4148 atomic_dec(&rq->nr_iowait);
4149 return ret;
4150}
4151
4152/**
4153 * sys_sched_get_priority_max - return maximum RT priority.
4154 * @policy: scheduling class.
4155 *
4156 * this syscall returns the maximum rt_priority that can be used
4157 * by a given scheduling class.
4158 */
4159asmlinkage long sys_sched_get_priority_max(int policy)
4160{
4161 int ret = -EINVAL;
4162
4163 switch (policy) {
4164 case SCHED_FIFO:
4165 case SCHED_RR:
4166 ret = MAX_USER_RT_PRIO-1;
4167 break;
4168 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004169 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004170 ret = 0;
4171 break;
4172 }
4173 return ret;
4174}
4175
4176/**
4177 * sys_sched_get_priority_min - return minimum RT priority.
4178 * @policy: scheduling class.
4179 *
4180 * this syscall returns the minimum rt_priority that can be used
4181 * by a given scheduling class.
4182 */
4183asmlinkage long sys_sched_get_priority_min(int policy)
4184{
4185 int ret = -EINVAL;
4186
4187 switch (policy) {
4188 case SCHED_FIFO:
4189 case SCHED_RR:
4190 ret = 1;
4191 break;
4192 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004193 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004194 ret = 0;
4195 }
4196 return ret;
4197}
4198
4199/**
4200 * sys_sched_rr_get_interval - return the default timeslice of a process.
4201 * @pid: pid of the process.
4202 * @interval: userspace pointer to the timeslice value.
4203 *
4204 * this syscall writes the default timeslice value of a given process
4205 * into the user-space timespec buffer. A value of '0' means infinity.
4206 */
4207asmlinkage
4208long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4209{
4210 int retval = -EINVAL;
4211 struct timespec t;
4212 task_t *p;
4213
4214 if (pid < 0)
4215 goto out_nounlock;
4216
4217 retval = -ESRCH;
4218 read_lock(&tasklist_lock);
4219 p = find_process_by_pid(pid);
4220 if (!p)
4221 goto out_unlock;
4222
4223 retval = security_task_getscheduler(p);
4224 if (retval)
4225 goto out_unlock;
4226
4227 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4228 0 : task_timeslice(p), &t);
4229 read_unlock(&tasklist_lock);
4230 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4231out_nounlock:
4232 return retval;
4233out_unlock:
4234 read_unlock(&tasklist_lock);
4235 return retval;
4236}
4237
4238static inline struct task_struct *eldest_child(struct task_struct *p)
4239{
4240 if (list_empty(&p->children)) return NULL;
4241 return list_entry(p->children.next,struct task_struct,sibling);
4242}
4243
4244static inline struct task_struct *older_sibling(struct task_struct *p)
4245{
4246 if (p->sibling.prev==&p->parent->children) return NULL;
4247 return list_entry(p->sibling.prev,struct task_struct,sibling);
4248}
4249
4250static inline struct task_struct *younger_sibling(struct task_struct *p)
4251{
4252 if (p->sibling.next==&p->parent->children) return NULL;
4253 return list_entry(p->sibling.next,struct task_struct,sibling);
4254}
4255
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004256static void show_task(task_t *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257{
4258 task_t *relative;
4259 unsigned state;
4260 unsigned long free = 0;
4261 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4262
4263 printk("%-13.13s ", p->comm);
4264 state = p->state ? __ffs(p->state) + 1 : 0;
4265 if (state < ARRAY_SIZE(stat_nam))
4266 printk(stat_nam[state]);
4267 else
4268 printk("?");
4269#if (BITS_PER_LONG == 32)
4270 if (state == TASK_RUNNING)
4271 printk(" running ");
4272 else
4273 printk(" %08lX ", thread_saved_pc(p));
4274#else
4275 if (state == TASK_RUNNING)
4276 printk(" running task ");
4277 else
4278 printk(" %016lx ", thread_saved_pc(p));
4279#endif
4280#ifdef CONFIG_DEBUG_STACK_USAGE
4281 {
Al Viro10ebffd2005-11-13 16:06:56 -08004282 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004283 while (!*n)
4284 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004285 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286 }
4287#endif
4288 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4289 if ((relative = eldest_child(p)))
4290 printk("%5d ", relative->pid);
4291 else
4292 printk(" ");
4293 if ((relative = younger_sibling(p)))
4294 printk("%7d", relative->pid);
4295 else
4296 printk(" ");
4297 if ((relative = older_sibling(p)))
4298 printk(" %5d", relative->pid);
4299 else
4300 printk(" ");
4301 if (!p->mm)
4302 printk(" (L-TLB)\n");
4303 else
4304 printk(" (NOTLB)\n");
4305
4306 if (state != TASK_RUNNING)
4307 show_stack(p, NULL);
4308}
4309
4310void show_state(void)
4311{
4312 task_t *g, *p;
4313
4314#if (BITS_PER_LONG == 32)
4315 printk("\n"
4316 " sibling\n");
4317 printk(" task PC pid father child younger older\n");
4318#else
4319 printk("\n"
4320 " sibling\n");
4321 printk(" task PC pid father child younger older\n");
4322#endif
4323 read_lock(&tasklist_lock);
4324 do_each_thread(g, p) {
4325 /*
4326 * reset the NMI-timeout, listing all files on a slow
4327 * console might take alot of time:
4328 */
4329 touch_nmi_watchdog();
4330 show_task(p);
4331 } while_each_thread(g, p);
4332
4333 read_unlock(&tasklist_lock);
Ingo Molnarde5097c2006-01-09 15:59:21 -08004334 mutex_debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004335}
4336
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004337/**
4338 * init_idle - set up an idle thread for a given CPU
4339 * @idle: task in question
4340 * @cpu: cpu the idle task belongs to
4341 *
4342 * NOTE: this function does not set the idle thread's NEED_RESCHED
4343 * flag, to make booting more robust.
4344 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345void __devinit init_idle(task_t *idle, int cpu)
4346{
4347 runqueue_t *rq = cpu_rq(cpu);
4348 unsigned long flags;
4349
Ingo Molnar81c29a82006-03-07 21:55:27 -08004350 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004351 idle->sleep_avg = 0;
4352 idle->array = NULL;
4353 idle->prio = MAX_PRIO;
4354 idle->state = TASK_RUNNING;
4355 idle->cpus_allowed = cpumask_of_cpu(cpu);
4356 set_task_cpu(idle, cpu);
4357
4358 spin_lock_irqsave(&rq->lock, flags);
4359 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004360#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4361 idle->oncpu = 1;
4362#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363 spin_unlock_irqrestore(&rq->lock, flags);
4364
4365 /* Set the preempt count _outside_ the spinlocks! */
4366#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004367 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004368#else
Al Viroa1261f52005-11-13 16:06:55 -08004369 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370#endif
4371}
4372
4373/*
4374 * In a system that switches off the HZ timer nohz_cpu_mask
4375 * indicates which cpus entered this state. This is used
4376 * in the rcu update to wait only for active cpus. For system
4377 * which do not switch off the HZ timer nohz_cpu_mask should
4378 * always be CPU_MASK_NONE.
4379 */
4380cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4381
4382#ifdef CONFIG_SMP
4383/*
4384 * This is how migration works:
4385 *
4386 * 1) we queue a migration_req_t structure in the source CPU's
4387 * runqueue and wake up that CPU's migration thread.
4388 * 2) we down() the locked semaphore => thread blocks.
4389 * 3) migration thread wakes up (implicitly it forces the migrated
4390 * thread off the CPU)
4391 * 4) it gets the migration request and checks whether the migrated
4392 * task is still in the wrong runqueue.
4393 * 5) if it's in the wrong runqueue then the migration thread removes
4394 * it and puts it into the right queue.
4395 * 6) migration thread up()s the semaphore.
4396 * 7) we wake up and the migration is done.
4397 */
4398
4399/*
4400 * Change a given task's CPU affinity. Migrate the thread to a
4401 * proper CPU and schedule it away if the CPU it's executing on
4402 * is removed from the allowed bitmask.
4403 *
4404 * NOTE: the caller must have a valid reference to the task, the
4405 * task must not exit() & deallocate itself prematurely. The
4406 * call is not atomic; no spinlocks may be held.
4407 */
4408int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4409{
4410 unsigned long flags;
4411 int ret = 0;
4412 migration_req_t req;
4413 runqueue_t *rq;
4414
4415 rq = task_rq_lock(p, &flags);
4416 if (!cpus_intersects(new_mask, cpu_online_map)) {
4417 ret = -EINVAL;
4418 goto out;
4419 }
4420
4421 p->cpus_allowed = new_mask;
4422 /* Can the task run on the task's current CPU? If so, we're done */
4423 if (cpu_isset(task_cpu(p), new_mask))
4424 goto out;
4425
4426 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4427 /* Need help from migration thread: drop lock and wait. */
4428 task_rq_unlock(rq, &flags);
4429 wake_up_process(rq->migration_thread);
4430 wait_for_completion(&req.done);
4431 tlb_migrate_finish(p->mm);
4432 return 0;
4433 }
4434out:
4435 task_rq_unlock(rq, &flags);
4436 return ret;
4437}
4438
4439EXPORT_SYMBOL_GPL(set_cpus_allowed);
4440
4441/*
4442 * Move (not current) task off this cpu, onto dest cpu. We're doing
4443 * this because either it can't run here any more (set_cpus_allowed()
4444 * away from this CPU, or CPU going down), or because we're
4445 * attempting to rebalance this task on exec (sched_exec).
4446 *
4447 * So we race with normal scheduler movements, but that's OK, as long
4448 * as the task is no longer on this CPU.
4449 */
4450static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4451{
4452 runqueue_t *rq_dest, *rq_src;
4453
4454 if (unlikely(cpu_is_offline(dest_cpu)))
4455 return;
4456
4457 rq_src = cpu_rq(src_cpu);
4458 rq_dest = cpu_rq(dest_cpu);
4459
4460 double_rq_lock(rq_src, rq_dest);
4461 /* Already moved. */
4462 if (task_cpu(p) != src_cpu)
4463 goto out;
4464 /* Affinity changed (again). */
4465 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4466 goto out;
4467
4468 set_task_cpu(p, dest_cpu);
4469 if (p->array) {
4470 /*
4471 * Sync timestamp with rq_dest's before activating.
4472 * The same thing could be achieved by doing this step
4473 * afterwards, and pretending it was a local activate.
4474 * This way is cleaner and logically correct.
4475 */
4476 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4477 + rq_dest->timestamp_last_tick;
4478 deactivate_task(p, rq_src);
4479 activate_task(p, rq_dest, 0);
4480 if (TASK_PREEMPTS_CURR(p, rq_dest))
4481 resched_task(rq_dest->curr);
4482 }
4483
4484out:
4485 double_rq_unlock(rq_src, rq_dest);
4486}
4487
4488/*
4489 * migration_thread - this is a highprio system thread that performs
4490 * thread migration by bumping thread off CPU then 'pushing' onto
4491 * another runqueue.
4492 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004493static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004494{
4495 runqueue_t *rq;
4496 int cpu = (long)data;
4497
4498 rq = cpu_rq(cpu);
4499 BUG_ON(rq->migration_thread != current);
4500
4501 set_current_state(TASK_INTERRUPTIBLE);
4502 while (!kthread_should_stop()) {
4503 struct list_head *head;
4504 migration_req_t *req;
4505
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07004506 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004507
4508 spin_lock_irq(&rq->lock);
4509
4510 if (cpu_is_offline(cpu)) {
4511 spin_unlock_irq(&rq->lock);
4512 goto wait_to_die;
4513 }
4514
4515 if (rq->active_balance) {
4516 active_load_balance(rq, cpu);
4517 rq->active_balance = 0;
4518 }
4519
4520 head = &rq->migration_queue;
4521
4522 if (list_empty(head)) {
4523 spin_unlock_irq(&rq->lock);
4524 schedule();
4525 set_current_state(TASK_INTERRUPTIBLE);
4526 continue;
4527 }
4528 req = list_entry(head->next, migration_req_t, list);
4529 list_del_init(head->next);
4530
Nick Piggin674311d2005-06-25 14:57:27 -07004531 spin_unlock(&rq->lock);
4532 __migrate_task(req->task, cpu, req->dest_cpu);
4533 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004534
4535 complete(&req->done);
4536 }
4537 __set_current_state(TASK_RUNNING);
4538 return 0;
4539
4540wait_to_die:
4541 /* Wait for kthread_stop */
4542 set_current_state(TASK_INTERRUPTIBLE);
4543 while (!kthread_should_stop()) {
4544 schedule();
4545 set_current_state(TASK_INTERRUPTIBLE);
4546 }
4547 __set_current_state(TASK_RUNNING);
4548 return 0;
4549}
4550
4551#ifdef CONFIG_HOTPLUG_CPU
4552/* Figure out where task on dead CPU should go, use force if neccessary. */
4553static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4554{
4555 int dest_cpu;
4556 cpumask_t mask;
4557
4558 /* On same node? */
4559 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4560 cpus_and(mask, mask, tsk->cpus_allowed);
4561 dest_cpu = any_online_cpu(mask);
4562
4563 /* On any allowed CPU? */
4564 if (dest_cpu == NR_CPUS)
4565 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4566
4567 /* No more Mr. Nice Guy. */
4568 if (dest_cpu == NR_CPUS) {
Paul Jacksonb39c4fa2005-05-20 13:59:15 -07004569 cpus_setall(tsk->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004570 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4571
4572 /*
4573 * Don't tell them about moving exiting tasks or
4574 * kernel threads (both mm NULL), since they never
4575 * leave kernel.
4576 */
4577 if (tsk->mm && printk_ratelimit())
4578 printk(KERN_INFO "process %d (%s) no "
4579 "longer affine to cpu%d\n",
4580 tsk->pid, tsk->comm, dead_cpu);
4581 }
4582 __migrate_task(tsk, dead_cpu, dest_cpu);
4583}
4584
4585/*
4586 * While a dead CPU has no uninterruptible tasks queued at this point,
4587 * it might still have a nonzero ->nr_uninterruptible counter, because
4588 * for performance reasons the counter is not stricly tracking tasks to
4589 * their home CPUs. So we just add the counter to another CPU's counter,
4590 * to keep the global sum constant after CPU-down:
4591 */
4592static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4593{
4594 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4595 unsigned long flags;
4596
4597 local_irq_save(flags);
4598 double_rq_lock(rq_src, rq_dest);
4599 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4600 rq_src->nr_uninterruptible = 0;
4601 double_rq_unlock(rq_src, rq_dest);
4602 local_irq_restore(flags);
4603}
4604
4605/* Run through task list and migrate tasks from the dead cpu. */
4606static void migrate_live_tasks(int src_cpu)
4607{
4608 struct task_struct *tsk, *t;
4609
4610 write_lock_irq(&tasklist_lock);
4611
4612 do_each_thread(t, tsk) {
4613 if (tsk == current)
4614 continue;
4615
4616 if (task_cpu(tsk) == src_cpu)
4617 move_task_off_dead_cpu(src_cpu, tsk);
4618 } while_each_thread(t, tsk);
4619
4620 write_unlock_irq(&tasklist_lock);
4621}
4622
4623/* Schedules idle task to be the next runnable task on current CPU.
4624 * It does so by boosting its priority to highest possible and adding it to
4625 * the _front_ of runqueue. Used by CPU offline code.
4626 */
4627void sched_idle_next(void)
4628{
4629 int cpu = smp_processor_id();
4630 runqueue_t *rq = this_rq();
4631 struct task_struct *p = rq->idle;
4632 unsigned long flags;
4633
4634 /* cpu has to be offline */
4635 BUG_ON(cpu_online(cpu));
4636
4637 /* Strictly not necessary since rest of the CPUs are stopped by now
4638 * and interrupts disabled on current cpu.
4639 */
4640 spin_lock_irqsave(&rq->lock, flags);
4641
4642 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4643 /* Add idle task to _front_ of it's priority queue */
4644 __activate_idle_task(p, rq);
4645
4646 spin_unlock_irqrestore(&rq->lock, flags);
4647}
4648
4649/* Ensures that the idle task is using init_mm right before its cpu goes
4650 * offline.
4651 */
4652void idle_task_exit(void)
4653{
4654 struct mm_struct *mm = current->active_mm;
4655
4656 BUG_ON(cpu_online(smp_processor_id()));
4657
4658 if (mm != &init_mm)
4659 switch_mm(mm, &init_mm, current);
4660 mmdrop(mm);
4661}
4662
4663static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4664{
4665 struct runqueue *rq = cpu_rq(dead_cpu);
4666
4667 /* Must be exiting, otherwise would be on tasklist. */
4668 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4669
4670 /* Cannot have done final schedule yet: would have vanished. */
4671 BUG_ON(tsk->flags & PF_DEAD);
4672
4673 get_task_struct(tsk);
4674
4675 /*
4676 * Drop lock around migration; if someone else moves it,
4677 * that's OK. No task can be added to this CPU, so iteration is
4678 * fine.
4679 */
4680 spin_unlock_irq(&rq->lock);
4681 move_task_off_dead_cpu(dead_cpu, tsk);
4682 spin_lock_irq(&rq->lock);
4683
4684 put_task_struct(tsk);
4685}
4686
4687/* release_task() removes task from tasklist, so we won't find dead tasks. */
4688static void migrate_dead_tasks(unsigned int dead_cpu)
4689{
4690 unsigned arr, i;
4691 struct runqueue *rq = cpu_rq(dead_cpu);
4692
4693 for (arr = 0; arr < 2; arr++) {
4694 for (i = 0; i < MAX_PRIO; i++) {
4695 struct list_head *list = &rq->arrays[arr].queue[i];
4696 while (!list_empty(list))
4697 migrate_dead(dead_cpu,
4698 list_entry(list->next, task_t,
4699 run_list));
4700 }
4701 }
4702}
4703#endif /* CONFIG_HOTPLUG_CPU */
4704
4705/*
4706 * migration_call - callback that gets triggered when a CPU is added.
4707 * Here we can start up the necessary migration thread for the new CPU.
4708 */
4709static int migration_call(struct notifier_block *nfb, unsigned long action,
4710 void *hcpu)
4711{
4712 int cpu = (long)hcpu;
4713 struct task_struct *p;
4714 struct runqueue *rq;
4715 unsigned long flags;
4716
4717 switch (action) {
4718 case CPU_UP_PREPARE:
4719 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4720 if (IS_ERR(p))
4721 return NOTIFY_BAD;
4722 p->flags |= PF_NOFREEZE;
4723 kthread_bind(p, cpu);
4724 /* Must be high prio: stop_machine expects to yield to it. */
4725 rq = task_rq_lock(p, &flags);
4726 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4727 task_rq_unlock(rq, &flags);
4728 cpu_rq(cpu)->migration_thread = p;
4729 break;
4730 case CPU_ONLINE:
4731 /* Strictly unneccessary, as first user will wake it. */
4732 wake_up_process(cpu_rq(cpu)->migration_thread);
4733 break;
4734#ifdef CONFIG_HOTPLUG_CPU
4735 case CPU_UP_CANCELED:
4736 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08004737 kthread_bind(cpu_rq(cpu)->migration_thread,
4738 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004739 kthread_stop(cpu_rq(cpu)->migration_thread);
4740 cpu_rq(cpu)->migration_thread = NULL;
4741 break;
4742 case CPU_DEAD:
4743 migrate_live_tasks(cpu);
4744 rq = cpu_rq(cpu);
4745 kthread_stop(rq->migration_thread);
4746 rq->migration_thread = NULL;
4747 /* Idle task back to normal (off runqueue, low prio) */
4748 rq = task_rq_lock(rq->idle, &flags);
4749 deactivate_task(rq->idle, rq);
4750 rq->idle->static_prio = MAX_PRIO;
4751 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4752 migrate_dead_tasks(cpu);
4753 task_rq_unlock(rq, &flags);
4754 migrate_nr_uninterruptible(rq);
4755 BUG_ON(rq->nr_running != 0);
4756
4757 /* No need to migrate the tasks: it was best-effort if
4758 * they didn't do lock_cpu_hotplug(). Just wake up
4759 * the requestors. */
4760 spin_lock_irq(&rq->lock);
4761 while (!list_empty(&rq->migration_queue)) {
4762 migration_req_t *req;
4763 req = list_entry(rq->migration_queue.next,
4764 migration_req_t, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004765 list_del_init(&req->list);
4766 complete(&req->done);
4767 }
4768 spin_unlock_irq(&rq->lock);
4769 break;
4770#endif
4771 }
4772 return NOTIFY_OK;
4773}
4774
4775/* Register at highest priority so that task migration (migrate_all_tasks)
4776 * happens before everything else.
4777 */
4778static struct notifier_block __devinitdata migration_notifier = {
4779 .notifier_call = migration_call,
4780 .priority = 10
4781};
4782
4783int __init migration_init(void)
4784{
4785 void *cpu = (void *)(long)smp_processor_id();
4786 /* Start one for boot CPU. */
4787 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4788 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4789 register_cpu_notifier(&migration_notifier);
4790 return 0;
4791}
4792#endif
4793
4794#ifdef CONFIG_SMP
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004795#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07004796#ifdef SCHED_DOMAIN_DEBUG
4797static void sched_domain_debug(struct sched_domain *sd, int cpu)
4798{
4799 int level = 0;
4800
Nick Piggin41c7ce92005-06-25 14:57:24 -07004801 if (!sd) {
4802 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4803 return;
4804 }
4805
Linus Torvalds1da177e2005-04-16 15:20:36 -07004806 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4807
4808 do {
4809 int i;
4810 char str[NR_CPUS];
4811 struct sched_group *group = sd->groups;
4812 cpumask_t groupmask;
4813
4814 cpumask_scnprintf(str, NR_CPUS, sd->span);
4815 cpus_clear(groupmask);
4816
4817 printk(KERN_DEBUG);
4818 for (i = 0; i < level + 1; i++)
4819 printk(" ");
4820 printk("domain %d: ", level);
4821
4822 if (!(sd->flags & SD_LOAD_BALANCE)) {
4823 printk("does not load-balance\n");
4824 if (sd->parent)
4825 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4826 break;
4827 }
4828
4829 printk("span %s\n", str);
4830
4831 if (!cpu_isset(cpu, sd->span))
4832 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4833 if (!cpu_isset(cpu, group->cpumask))
4834 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4835
4836 printk(KERN_DEBUG);
4837 for (i = 0; i < level + 2; i++)
4838 printk(" ");
4839 printk("groups:");
4840 do {
4841 if (!group) {
4842 printk("\n");
4843 printk(KERN_ERR "ERROR: group is NULL\n");
4844 break;
4845 }
4846
4847 if (!group->cpu_power) {
4848 printk("\n");
4849 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4850 }
4851
4852 if (!cpus_weight(group->cpumask)) {
4853 printk("\n");
4854 printk(KERN_ERR "ERROR: empty group\n");
4855 }
4856
4857 if (cpus_intersects(groupmask, group->cpumask)) {
4858 printk("\n");
4859 printk(KERN_ERR "ERROR: repeated CPUs\n");
4860 }
4861
4862 cpus_or(groupmask, groupmask, group->cpumask);
4863
4864 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4865 printk(" %s", str);
4866
4867 group = group->next;
4868 } while (group != sd->groups);
4869 printk("\n");
4870
4871 if (!cpus_equal(sd->span, groupmask))
4872 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4873
4874 level++;
4875 sd = sd->parent;
4876
4877 if (sd) {
4878 if (!cpus_subset(groupmask, sd->span))
4879 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4880 }
4881
4882 } while (sd);
4883}
4884#else
4885#define sched_domain_debug(sd, cpu) {}
4886#endif
4887
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004888static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07004889{
4890 if (cpus_weight(sd->span) == 1)
4891 return 1;
4892
4893 /* Following flags need at least 2 groups */
4894 if (sd->flags & (SD_LOAD_BALANCE |
4895 SD_BALANCE_NEWIDLE |
4896 SD_BALANCE_FORK |
4897 SD_BALANCE_EXEC)) {
4898 if (sd->groups != sd->groups->next)
4899 return 0;
4900 }
4901
4902 /* Following flags don't use groups */
4903 if (sd->flags & (SD_WAKE_IDLE |
4904 SD_WAKE_AFFINE |
4905 SD_WAKE_BALANCE))
4906 return 0;
4907
4908 return 1;
4909}
4910
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07004911static int sd_parent_degenerate(struct sched_domain *sd,
Suresh Siddha245af2c2005-06-25 14:57:25 -07004912 struct sched_domain *parent)
4913{
4914 unsigned long cflags = sd->flags, pflags = parent->flags;
4915
4916 if (sd_degenerate(parent))
4917 return 1;
4918
4919 if (!cpus_equal(sd->span, parent->span))
4920 return 0;
4921
4922 /* Does parent contain flags not in child? */
4923 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4924 if (cflags & SD_WAKE_AFFINE)
4925 pflags &= ~SD_WAKE_BALANCE;
4926 /* Flags needing groups don't count if only 1 group in parent */
4927 if (parent->groups == parent->groups->next) {
4928 pflags &= ~(SD_LOAD_BALANCE |
4929 SD_BALANCE_NEWIDLE |
4930 SD_BALANCE_FORK |
4931 SD_BALANCE_EXEC);
4932 }
4933 if (~cflags & pflags)
4934 return 0;
4935
4936 return 1;
4937}
4938
Linus Torvalds1da177e2005-04-16 15:20:36 -07004939/*
4940 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4941 * hold the hotplug lock.
4942 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004943static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004944{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004945 runqueue_t *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07004946 struct sched_domain *tmp;
4947
4948 /* Remove the sched domains which do not contribute to scheduling. */
4949 for (tmp = sd; tmp; tmp = tmp->parent) {
4950 struct sched_domain *parent = tmp->parent;
4951 if (!parent)
4952 break;
4953 if (sd_parent_degenerate(tmp, parent))
4954 tmp->parent = parent->parent;
4955 }
4956
4957 if (sd && sd_degenerate(sd))
4958 sd = sd->parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004959
4960 sched_domain_debug(sd, cpu);
4961
Nick Piggin674311d2005-06-25 14:57:27 -07004962 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004963}
4964
4965/* cpus with isolated domains */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004966static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004967
4968/* Setup the mask of cpus configured for isolated domains */
4969static int __init isolated_cpu_setup(char *str)
4970{
4971 int ints[NR_CPUS], i;
4972
4973 str = get_options(str, ARRAY_SIZE(ints), ints);
4974 cpus_clear(cpu_isolated_map);
4975 for (i = 1; i <= ints[0]; i++)
4976 if (ints[i] < NR_CPUS)
4977 cpu_set(ints[i], cpu_isolated_map);
4978 return 1;
4979}
4980
4981__setup ("isolcpus=", isolated_cpu_setup);
4982
4983/*
4984 * init_sched_build_groups takes an array of groups, the cpumask we wish
4985 * to span, and a pointer to a function which identifies what group a CPU
4986 * belongs to. The return value of group_fn must be a valid index into the
4987 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4988 * keep track of groups covered with a cpumask_t).
4989 *
4990 * init_sched_build_groups will build a circular linked list of the groups
4991 * covered by the given span, and will set each group's ->cpumask correctly,
4992 * and ->cpu_power to 0.
4993 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07004994static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4995 int (*group_fn)(int cpu))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004996{
4997 struct sched_group *first = NULL, *last = NULL;
4998 cpumask_t covered = CPU_MASK_NONE;
4999 int i;
5000
5001 for_each_cpu_mask(i, span) {
5002 int group = group_fn(i);
5003 struct sched_group *sg = &groups[group];
5004 int j;
5005
5006 if (cpu_isset(i, covered))
5007 continue;
5008
5009 sg->cpumask = CPU_MASK_NONE;
5010 sg->cpu_power = 0;
5011
5012 for_each_cpu_mask(j, span) {
5013 if (group_fn(j) != group)
5014 continue;
5015
5016 cpu_set(j, covered);
5017 cpu_set(j, sg->cpumask);
5018 }
5019 if (!first)
5020 first = sg;
5021 if (last)
5022 last->next = sg;
5023 last = sg;
5024 }
5025 last->next = first;
5026}
5027
John Hawkes9c1cfda2005-09-06 15:18:14 -07005028#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005029
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005030/*
5031 * Self-tuning task migration cost measurement between source and target CPUs.
5032 *
5033 * This is done by measuring the cost of manipulating buffers of varying
5034 * sizes. For a given buffer-size here are the steps that are taken:
5035 *
5036 * 1) the source CPU reads+dirties a shared buffer
5037 * 2) the target CPU reads+dirties the same shared buffer
5038 *
5039 * We measure how long they take, in the following 4 scenarios:
5040 *
5041 * - source: CPU1, target: CPU2 | cost1
5042 * - source: CPU2, target: CPU1 | cost2
5043 * - source: CPU1, target: CPU1 | cost3
5044 * - source: CPU2, target: CPU2 | cost4
5045 *
5046 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5047 * the cost of migration.
5048 *
5049 * We then start off from a small buffer-size and iterate up to larger
5050 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5051 * doing a maximum search for the cost. (The maximum cost for a migration
5052 * normally occurs when the working set size is around the effective cache
5053 * size.)
5054 */
5055#define SEARCH_SCOPE 2
5056#define MIN_CACHE_SIZE (64*1024U)
5057#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005058#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005059#define SIZE_THRESH 130
5060#define COST_THRESH 130
5061
5062/*
5063 * The migration cost is a function of 'domain distance'. Domain
5064 * distance is the number of steps a CPU has to iterate down its
5065 * domain tree to share a domain with the other CPU. The farther
5066 * two CPUs are from each other, the larger the distance gets.
5067 *
5068 * Note that we use the distance only to cache measurement results,
5069 * the distance value is not used numerically otherwise. When two
5070 * CPUs have the same distance it is assumed that the migration
5071 * cost is the same. (this is a simplification but quite practical)
5072 */
5073#define MAX_DOMAIN_DISTANCE 32
5074
5075static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005076 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5077/*
5078 * Architectures may override the migration cost and thus avoid
5079 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5080 * virtualized hardware:
5081 */
5082#ifdef CONFIG_DEFAULT_MIGRATION_COST
5083 CONFIG_DEFAULT_MIGRATION_COST
5084#else
5085 -1LL
5086#endif
5087};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005088
5089/*
5090 * Allow override of migration cost - in units of microseconds.
5091 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5092 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5093 */
5094static int __init migration_cost_setup(char *str)
5095{
5096 int ints[MAX_DOMAIN_DISTANCE+1], i;
5097
5098 str = get_options(str, ARRAY_SIZE(ints), ints);
5099
5100 printk("#ints: %d\n", ints[0]);
5101 for (i = 1; i <= ints[0]; i++) {
5102 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5103 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5104 }
5105 return 1;
5106}
5107
5108__setup ("migration_cost=", migration_cost_setup);
5109
5110/*
5111 * Global multiplier (divisor) for migration-cutoff values,
5112 * in percentiles. E.g. use a value of 150 to get 1.5 times
5113 * longer cache-hot cutoff times.
5114 *
5115 * (We scale it from 100 to 128 to long long handling easier.)
5116 */
5117
5118#define MIGRATION_FACTOR_SCALE 128
5119
5120static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5121
5122static int __init setup_migration_factor(char *str)
5123{
5124 get_option(&str, &migration_factor);
5125 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5126 return 1;
5127}
5128
5129__setup("migration_factor=", setup_migration_factor);
5130
5131/*
5132 * Estimated distance of two CPUs, measured via the number of domains
5133 * we have to pass for the two CPUs to be in the same span:
5134 */
5135static unsigned long domain_distance(int cpu1, int cpu2)
5136{
5137 unsigned long distance = 0;
5138 struct sched_domain *sd;
5139
5140 for_each_domain(cpu1, sd) {
5141 WARN_ON(!cpu_isset(cpu1, sd->span));
5142 if (cpu_isset(cpu2, sd->span))
5143 return distance;
5144 distance++;
5145 }
5146 if (distance >= MAX_DOMAIN_DISTANCE) {
5147 WARN_ON(1);
5148 distance = MAX_DOMAIN_DISTANCE-1;
5149 }
5150
5151 return distance;
5152}
5153
5154static unsigned int migration_debug;
5155
5156static int __init setup_migration_debug(char *str)
5157{
5158 get_option(&str, &migration_debug);
5159 return 1;
5160}
5161
5162__setup("migration_debug=", setup_migration_debug);
5163
5164/*
5165 * Maximum cache-size that the scheduler should try to measure.
5166 * Architectures with larger caches should tune this up during
5167 * bootup. Gets used in the domain-setup code (i.e. during SMP
5168 * bootup).
5169 */
5170unsigned int max_cache_size;
5171
5172static int __init setup_max_cache_size(char *str)
5173{
5174 get_option(&str, &max_cache_size);
5175 return 1;
5176}
5177
5178__setup("max_cache_size=", setup_max_cache_size);
5179
5180/*
5181 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5182 * is the operation that is timed, so we try to generate unpredictable
5183 * cachemisses that still end up filling the L2 cache:
5184 */
5185static void touch_cache(void *__cache, unsigned long __size)
5186{
5187 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5188 chunk2 = 2*size/3;
5189 unsigned long *cache = __cache;
5190 int i;
5191
5192 for (i = 0; i < size/6; i += 8) {
5193 switch (i % 6) {
5194 case 0: cache[i]++;
5195 case 1: cache[size-1-i]++;
5196 case 2: cache[chunk1-i]++;
5197 case 3: cache[chunk1+i]++;
5198 case 4: cache[chunk2-i]++;
5199 case 5: cache[chunk2+i]++;
5200 }
5201 }
5202}
5203
5204/*
5205 * Measure the cache-cost of one task migration. Returns in units of nsec.
5206 */
5207static unsigned long long measure_one(void *cache, unsigned long size,
5208 int source, int target)
5209{
5210 cpumask_t mask, saved_mask;
5211 unsigned long long t0, t1, t2, t3, cost;
5212
5213 saved_mask = current->cpus_allowed;
5214
5215 /*
5216 * Flush source caches to RAM and invalidate them:
5217 */
5218 sched_cacheflush();
5219
5220 /*
5221 * Migrate to the source CPU:
5222 */
5223 mask = cpumask_of_cpu(source);
5224 set_cpus_allowed(current, mask);
5225 WARN_ON(smp_processor_id() != source);
5226
5227 /*
5228 * Dirty the working set:
5229 */
5230 t0 = sched_clock();
5231 touch_cache(cache, size);
5232 t1 = sched_clock();
5233
5234 /*
5235 * Migrate to the target CPU, dirty the L2 cache and access
5236 * the shared buffer. (which represents the working set
5237 * of a migrated task.)
5238 */
5239 mask = cpumask_of_cpu(target);
5240 set_cpus_allowed(current, mask);
5241 WARN_ON(smp_processor_id() != target);
5242
5243 t2 = sched_clock();
5244 touch_cache(cache, size);
5245 t3 = sched_clock();
5246
5247 cost = t1-t0 + t3-t2;
5248
5249 if (migration_debug >= 2)
5250 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5251 source, target, t1-t0, t1-t0, t3-t2, cost);
5252 /*
5253 * Flush target caches to RAM and invalidate them:
5254 */
5255 sched_cacheflush();
5256
5257 set_cpus_allowed(current, saved_mask);
5258
5259 return cost;
5260}
5261
5262/*
5263 * Measure a series of task migrations and return the average
5264 * result. Since this code runs early during bootup the system
5265 * is 'undisturbed' and the average latency makes sense.
5266 *
5267 * The algorithm in essence auto-detects the relevant cache-size,
5268 * so it will properly detect different cachesizes for different
5269 * cache-hierarchies, depending on how the CPUs are connected.
5270 *
5271 * Architectures can prime the upper limit of the search range via
5272 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5273 */
5274static unsigned long long
5275measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5276{
5277 unsigned long long cost1, cost2;
5278 int i;
5279
5280 /*
5281 * Measure the migration cost of 'size' bytes, over an
5282 * average of 10 runs:
5283 *
5284 * (We perturb the cache size by a small (0..4k)
5285 * value to compensate size/alignment related artifacts.
5286 * We also subtract the cost of the operation done on
5287 * the same CPU.)
5288 */
5289 cost1 = 0;
5290
5291 /*
5292 * dry run, to make sure we start off cache-cold on cpu1,
5293 * and to get any vmalloc pagefaults in advance:
5294 */
5295 measure_one(cache, size, cpu1, cpu2);
5296 for (i = 0; i < ITERATIONS; i++)
5297 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5298
5299 measure_one(cache, size, cpu2, cpu1);
5300 for (i = 0; i < ITERATIONS; i++)
5301 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5302
5303 /*
5304 * (We measure the non-migrating [cached] cost on both
5305 * cpu1 and cpu2, to handle CPUs with different speeds)
5306 */
5307 cost2 = 0;
5308
5309 measure_one(cache, size, cpu1, cpu1);
5310 for (i = 0; i < ITERATIONS; i++)
5311 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5312
5313 measure_one(cache, size, cpu2, cpu2);
5314 for (i = 0; i < ITERATIONS; i++)
5315 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5316
5317 /*
5318 * Get the per-iteration migration cost:
5319 */
5320 do_div(cost1, 2*ITERATIONS);
5321 do_div(cost2, 2*ITERATIONS);
5322
5323 return cost1 - cost2;
5324}
5325
5326static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5327{
5328 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5329 unsigned int max_size, size, size_found = 0;
5330 long long cost = 0, prev_cost;
5331 void *cache;
5332
5333 /*
5334 * Search from max_cache_size*5 down to 64K - the real relevant
5335 * cachesize has to lie somewhere inbetween.
5336 */
5337 if (max_cache_size) {
5338 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5339 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5340 } else {
5341 /*
5342 * Since we have no estimation about the relevant
5343 * search range
5344 */
5345 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5346 size = MIN_CACHE_SIZE;
5347 }
5348
5349 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5350 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5351 return 0;
5352 }
5353
5354 /*
5355 * Allocate the working set:
5356 */
5357 cache = vmalloc(max_size);
5358 if (!cache) {
5359 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5360 return 1000000; // return 1 msec on very small boxen
5361 }
5362
5363 while (size <= max_size) {
5364 prev_cost = cost;
5365 cost = measure_cost(cpu1, cpu2, cache, size);
5366
5367 /*
5368 * Update the max:
5369 */
5370 if (cost > 0) {
5371 if (max_cost < cost) {
5372 max_cost = cost;
5373 size_found = size;
5374 }
5375 }
5376 /*
5377 * Calculate average fluctuation, we use this to prevent
5378 * noise from triggering an early break out of the loop:
5379 */
5380 fluct = abs(cost - prev_cost);
5381 avg_fluct = (avg_fluct + fluct)/2;
5382
5383 if (migration_debug)
5384 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5385 cpu1, cpu2, size,
5386 (long)cost / 1000000,
5387 ((long)cost / 100000) % 10,
5388 (long)max_cost / 1000000,
5389 ((long)max_cost / 100000) % 10,
5390 domain_distance(cpu1, cpu2),
5391 cost, avg_fluct);
5392
5393 /*
5394 * If we iterated at least 20% past the previous maximum,
5395 * and the cost has dropped by more than 20% already,
5396 * (taking fluctuations into account) then we assume to
5397 * have found the maximum and break out of the loop early:
5398 */
5399 if (size_found && (size*100 > size_found*SIZE_THRESH))
5400 if (cost+avg_fluct <= 0 ||
5401 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5402
5403 if (migration_debug)
5404 printk("-> found max.\n");
5405 break;
5406 }
5407 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01005408 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005409 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01005410 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005411 }
5412
5413 if (migration_debug)
5414 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5415 cpu1, cpu2, size_found, max_cost);
5416
5417 vfree(cache);
5418
5419 /*
5420 * A task is considered 'cache cold' if at least 2 times
5421 * the worst-case cost of migration has passed.
5422 *
5423 * (this limit is only listened to if the load-balancing
5424 * situation is 'nice' - if there is a large imbalance we
5425 * ignore it for the sake of CPU utilization and
5426 * processing fairness.)
5427 */
5428 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5429}
5430
5431static void calibrate_migration_costs(const cpumask_t *cpu_map)
5432{
5433 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5434 unsigned long j0, j1, distance, max_distance = 0;
5435 struct sched_domain *sd;
5436
5437 j0 = jiffies;
5438
5439 /*
5440 * First pass - calculate the cacheflush times:
5441 */
5442 for_each_cpu_mask(cpu1, *cpu_map) {
5443 for_each_cpu_mask(cpu2, *cpu_map) {
5444 if (cpu1 == cpu2)
5445 continue;
5446 distance = domain_distance(cpu1, cpu2);
5447 max_distance = max(max_distance, distance);
5448 /*
5449 * No result cached yet?
5450 */
5451 if (migration_cost[distance] == -1LL)
5452 migration_cost[distance] =
5453 measure_migration_cost(cpu1, cpu2);
5454 }
5455 }
5456 /*
5457 * Second pass - update the sched domain hierarchy with
5458 * the new cache-hot-time estimations:
5459 */
5460 for_each_cpu_mask(cpu, *cpu_map) {
5461 distance = 0;
5462 for_each_domain(cpu, sd) {
5463 sd->cache_hot_time = migration_cost[distance];
5464 distance++;
5465 }
5466 }
5467 /*
5468 * Print the matrix:
5469 */
5470 if (migration_debug)
5471 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5472 max_cache_size,
5473#ifdef CONFIG_X86
5474 cpu_khz/1000
5475#else
5476 -1
5477#endif
5478 );
Chuck Ebbertbd576c92006-02-04 23:27:42 -08005479 if (system_state == SYSTEM_BOOTING) {
5480 printk("migration_cost=");
5481 for (distance = 0; distance <= max_distance; distance++) {
5482 if (distance)
5483 printk(",");
5484 printk("%ld", (long)migration_cost[distance] / 1000);
5485 }
5486 printk("\n");
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005487 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005488 j1 = jiffies;
5489 if (migration_debug)
5490 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5491
5492 /*
5493 * Move back to the original CPU. NUMA-Q gets confused
5494 * if we migrate to another quad during bootup.
5495 */
5496 if (raw_smp_processor_id() != orig_cpu) {
5497 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5498 saved_mask = current->cpus_allowed;
5499
5500 set_cpus_allowed(current, mask);
5501 set_cpus_allowed(current, saved_mask);
5502 }
5503}
5504
John Hawkes9c1cfda2005-09-06 15:18:14 -07005505#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005506
John Hawkes9c1cfda2005-09-06 15:18:14 -07005507/**
5508 * find_next_best_node - find the next node to include in a sched_domain
5509 * @node: node whose sched_domain we're building
5510 * @used_nodes: nodes already in the sched_domain
5511 *
5512 * Find the next node to include in a given scheduling domain. Simply
5513 * finds the closest node not already in the @used_nodes map.
5514 *
5515 * Should use nodemask_t.
5516 */
5517static int find_next_best_node(int node, unsigned long *used_nodes)
5518{
5519 int i, n, val, min_val, best_node = 0;
5520
5521 min_val = INT_MAX;
5522
5523 for (i = 0; i < MAX_NUMNODES; i++) {
5524 /* Start at @node */
5525 n = (node + i) % MAX_NUMNODES;
5526
5527 if (!nr_cpus_node(n))
5528 continue;
5529
5530 /* Skip already used nodes */
5531 if (test_bit(n, used_nodes))
5532 continue;
5533
5534 /* Simple min distance search */
5535 val = node_distance(node, n);
5536
5537 if (val < min_val) {
5538 min_val = val;
5539 best_node = n;
5540 }
5541 }
5542
5543 set_bit(best_node, used_nodes);
5544 return best_node;
5545}
5546
5547/**
5548 * sched_domain_node_span - get a cpumask for a node's sched_domain
5549 * @node: node whose cpumask we're constructing
5550 * @size: number of nodes to include in this span
5551 *
5552 * Given a node, construct a good cpumask for its sched_domain to span. It
5553 * should be one that prevents unnecessary balancing, but also spreads tasks
5554 * out optimally.
5555 */
5556static cpumask_t sched_domain_node_span(int node)
5557{
5558 int i;
5559 cpumask_t span, nodemask;
5560 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5561
5562 cpus_clear(span);
5563 bitmap_zero(used_nodes, MAX_NUMNODES);
5564
5565 nodemask = node_to_cpumask(node);
5566 cpus_or(span, span, nodemask);
5567 set_bit(node, used_nodes);
5568
5569 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5570 int next_node = find_next_best_node(node, used_nodes);
5571 nodemask = node_to_cpumask(next_node);
5572 cpus_or(span, span, nodemask);
5573 }
5574
5575 return span;
5576}
5577#endif
5578
5579/*
5580 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5581 * can switch it on easily if needed.
5582 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005583#ifdef CONFIG_SCHED_SMT
5584static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5585static struct sched_group sched_group_cpus[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005586static int cpu_to_cpu_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005587{
5588 return cpu;
5589}
5590#endif
5591
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005592#ifdef CONFIG_SCHED_MC
5593static DEFINE_PER_CPU(struct sched_domain, core_domains);
5594static struct sched_group sched_group_core[NR_CPUS];
5595#endif
5596
5597#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5598static int cpu_to_core_group(int cpu)
5599{
5600 return first_cpu(cpu_sibling_map[cpu]);
5601}
5602#elif defined(CONFIG_SCHED_MC)
5603static int cpu_to_core_group(int cpu)
5604{
5605 return cpu;
5606}
5607#endif
5608
Linus Torvalds1da177e2005-04-16 15:20:36 -07005609static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5610static struct sched_group sched_group_phys[NR_CPUS];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005611static int cpu_to_phys_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005612{
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005613#if defined(CONFIG_SCHED_MC)
5614 cpumask_t mask = cpu_coregroup_map(cpu);
5615 return first_cpu(mask);
5616#elif defined(CONFIG_SCHED_SMT)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005617 return first_cpu(cpu_sibling_map[cpu]);
5618#else
5619 return cpu;
5620#endif
5621}
5622
5623#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005624/*
5625 * The init_sched_build_groups can't handle what we want to do with node
5626 * groups, so roll our own. Now each node has its own list of groups which
5627 * gets dynamically allocated.
5628 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005629static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005630static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005631
5632static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005633static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005634
5635static int cpu_to_allnodes_group(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005636{
5637 return cpu_to_node(cpu);
5638}
Siddha, Suresh B08069032006-03-27 01:15:23 -08005639static void init_numa_sched_groups_power(struct sched_group *group_head)
5640{
5641 struct sched_group *sg = group_head;
5642 int j;
5643
5644 if (!sg)
5645 return;
5646next_sg:
5647 for_each_cpu_mask(j, sg->cpumask) {
5648 struct sched_domain *sd;
5649
5650 sd = &per_cpu(phys_domains, j);
5651 if (j != first_cpu(sd->groups->cpumask)) {
5652 /*
5653 * Only add "power" once for each
5654 * physical package.
5655 */
5656 continue;
5657 }
5658
5659 sg->cpu_power += sd->groups->cpu_power;
5660 }
5661 sg = sg->next;
5662 if (sg != group_head)
5663 goto next_sg;
5664}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005665#endif
5666
Linus Torvalds1da177e2005-04-16 15:20:36 -07005667/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005668 * Build sched domains for a given set of cpus and attach the sched domains
5669 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005670 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005671void build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005672{
5673 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005674#ifdef CONFIG_NUMA
5675 struct sched_group **sched_group_nodes = NULL;
5676 struct sched_group *sched_group_allnodes = NULL;
5677
5678 /*
5679 * Allocate the per-node list of sched groups
5680 */
5681 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5682 GFP_ATOMIC);
5683 if (!sched_group_nodes) {
5684 printk(KERN_WARNING "Can not alloc sched group node list\n");
5685 return;
5686 }
5687 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5688#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005689
5690 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005691 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005692 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005693 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005694 int group;
5695 struct sched_domain *sd = NULL, *p;
5696 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5697
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005698 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005699
5700#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07005701 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005702 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkesd1b55132005-09-06 15:18:14 -07005703 if (!sched_group_allnodes) {
5704 sched_group_allnodes
5705 = kmalloc(sizeof(struct sched_group)
5706 * MAX_NUMNODES,
5707 GFP_KERNEL);
5708 if (!sched_group_allnodes) {
5709 printk(KERN_WARNING
5710 "Can not alloc allnodes sched group\n");
5711 break;
5712 }
5713 sched_group_allnodes_bycpu[i]
5714 = sched_group_allnodes;
5715 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005716 sd = &per_cpu(allnodes_domains, i);
5717 *sd = SD_ALLNODES_INIT;
5718 sd->span = *cpu_map;
5719 group = cpu_to_allnodes_group(i);
5720 sd->groups = &sched_group_allnodes[group];
5721 p = sd;
5722 } else
5723 p = NULL;
5724
Linus Torvalds1da177e2005-04-16 15:20:36 -07005725 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005726 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005727 sd->span = sched_domain_node_span(cpu_to_node(i));
5728 sd->parent = p;
5729 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005730#endif
5731
5732 p = sd;
5733 sd = &per_cpu(phys_domains, i);
5734 group = cpu_to_phys_group(i);
5735 *sd = SD_CPU_INIT;
5736 sd->span = nodemask;
5737 sd->parent = p;
5738 sd->groups = &sched_group_phys[group];
5739
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005740#ifdef CONFIG_SCHED_MC
5741 p = sd;
5742 sd = &per_cpu(core_domains, i);
5743 group = cpu_to_core_group(i);
5744 *sd = SD_MC_INIT;
5745 sd->span = cpu_coregroup_map(i);
5746 cpus_and(sd->span, sd->span, *cpu_map);
5747 sd->parent = p;
5748 sd->groups = &sched_group_core[group];
5749#endif
5750
Linus Torvalds1da177e2005-04-16 15:20:36 -07005751#ifdef CONFIG_SCHED_SMT
5752 p = sd;
5753 sd = &per_cpu(cpu_domains, i);
5754 group = cpu_to_cpu_group(i);
5755 *sd = SD_SIBLING_INIT;
5756 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005757 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005758 sd->parent = p;
5759 sd->groups = &sched_group_cpus[group];
5760#endif
5761 }
5762
5763#ifdef CONFIG_SCHED_SMT
5764 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005765 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005766 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005767 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005768 if (i != first_cpu(this_sibling_map))
5769 continue;
5770
5771 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5772 &cpu_to_cpu_group);
5773 }
5774#endif
5775
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005776#ifdef CONFIG_SCHED_MC
5777 /* Set up multi-core groups */
5778 for_each_cpu_mask(i, *cpu_map) {
5779 cpumask_t this_core_map = cpu_coregroup_map(i);
5780 cpus_and(this_core_map, this_core_map, *cpu_map);
5781 if (i != first_cpu(this_core_map))
5782 continue;
5783 init_sched_build_groups(sched_group_core, this_core_map,
5784 &cpu_to_core_group);
5785 }
5786#endif
5787
5788
Linus Torvalds1da177e2005-04-16 15:20:36 -07005789 /* Set up physical groups */
5790 for (i = 0; i < MAX_NUMNODES; i++) {
5791 cpumask_t nodemask = node_to_cpumask(i);
5792
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005793 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005794 if (cpus_empty(nodemask))
5795 continue;
5796
5797 init_sched_build_groups(sched_group_phys, nodemask,
5798 &cpu_to_phys_group);
5799 }
5800
5801#ifdef CONFIG_NUMA
5802 /* Set up node groups */
John Hawkesd1b55132005-09-06 15:18:14 -07005803 if (sched_group_allnodes)
5804 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5805 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005806
5807 for (i = 0; i < MAX_NUMNODES; i++) {
5808 /* Set up node groups */
5809 struct sched_group *sg, *prev;
5810 cpumask_t nodemask = node_to_cpumask(i);
5811 cpumask_t domainspan;
5812 cpumask_t covered = CPU_MASK_NONE;
5813 int j;
5814
5815 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07005816 if (cpus_empty(nodemask)) {
5817 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005818 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07005819 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07005820
5821 domainspan = sched_domain_node_span(i);
5822 cpus_and(domainspan, domainspan, *cpu_map);
5823
5824 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5825 sched_group_nodes[i] = sg;
5826 for_each_cpu_mask(j, nodemask) {
5827 struct sched_domain *sd;
5828 sd = &per_cpu(node_domains, j);
5829 sd->groups = sg;
5830 if (sd->groups == NULL) {
5831 /* Turn off balancing if we have no groups */
5832 sd->flags = 0;
5833 }
5834 }
5835 if (!sg) {
5836 printk(KERN_WARNING
5837 "Can not alloc domain group for node %d\n", i);
5838 continue;
5839 }
5840 sg->cpu_power = 0;
5841 sg->cpumask = nodemask;
5842 cpus_or(covered, covered, nodemask);
5843 prev = sg;
5844
5845 for (j = 0; j < MAX_NUMNODES; j++) {
5846 cpumask_t tmp, notcovered;
5847 int n = (i + j) % MAX_NUMNODES;
5848
5849 cpus_complement(notcovered, covered);
5850 cpus_and(tmp, notcovered, *cpu_map);
5851 cpus_and(tmp, tmp, domainspan);
5852 if (cpus_empty(tmp))
5853 break;
5854
5855 nodemask = node_to_cpumask(n);
5856 cpus_and(tmp, tmp, nodemask);
5857 if (cpus_empty(tmp))
5858 continue;
5859
5860 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5861 if (!sg) {
5862 printk(KERN_WARNING
5863 "Can not alloc domain group for node %d\n", j);
5864 break;
5865 }
5866 sg->cpu_power = 0;
5867 sg->cpumask = tmp;
5868 cpus_or(covered, covered, tmp);
5869 prev->next = sg;
5870 prev = sg;
5871 }
5872 prev->next = sched_group_nodes[i];
5873 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005874#endif
5875
5876 /* Calculate CPU power for physical packages and nodes */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005877 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005878 int power;
5879 struct sched_domain *sd;
5880#ifdef CONFIG_SCHED_SMT
5881 sd = &per_cpu(cpu_domains, i);
5882 power = SCHED_LOAD_SCALE;
5883 sd->groups->cpu_power = power;
5884#endif
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005885#ifdef CONFIG_SCHED_MC
5886 sd = &per_cpu(core_domains, i);
5887 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5888 * SCHED_LOAD_SCALE / 10;
5889 sd->groups->cpu_power = power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005890
5891 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005892
5893 /*
5894 * This has to be < 2 * SCHED_LOAD_SCALE
5895 * Lets keep it SCHED_LOAD_SCALE, so that
5896 * while calculating NUMA group's cpu_power
5897 * we can simply do
5898 * numa_group->cpu_power += phys_group->cpu_power;
5899 *
5900 * See "only add power once for each physical pkg"
5901 * comment below
5902 */
5903 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5904#else
5905 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005906 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5907 (cpus_weight(sd->groups->cpumask)-1) / 10;
5908 sd->groups->cpu_power = power;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005909#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005910 }
5911
John Hawkes9c1cfda2005-09-06 15:18:14 -07005912#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08005913 for (i = 0; i < MAX_NUMNODES; i++)
5914 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005915
Siddha, Suresh B08069032006-03-27 01:15:23 -08005916 init_numa_sched_groups_power(sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005917#endif
5918
Linus Torvalds1da177e2005-04-16 15:20:36 -07005919 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005920 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005921 struct sched_domain *sd;
5922#ifdef CONFIG_SCHED_SMT
5923 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005924#elif defined(CONFIG_SCHED_MC)
5925 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005926#else
5927 sd = &per_cpu(phys_domains, i);
5928#endif
5929 cpu_attach_domain(sd, i);
5930 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005931 /*
5932 * Tune cache-hot values:
5933 */
5934 calibrate_migration_costs(cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005935}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005936/*
5937 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5938 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005939static void arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005940{
5941 cpumask_t cpu_default_map;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005942
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005943 /*
5944 * Setup mask for cpus without special case scheduling requirements.
5945 * For now this just excludes isolated cpus, but could be used to
5946 * exclude other special cases in the future.
5947 */
5948 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5949
5950 build_sched_domains(&cpu_default_map);
5951}
5952
5953static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005954{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005955#ifdef CONFIG_NUMA
5956 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005957 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005958
John Hawkesd1b55132005-09-06 15:18:14 -07005959 for_each_cpu_mask(cpu, *cpu_map) {
5960 struct sched_group *sched_group_allnodes
5961 = sched_group_allnodes_bycpu[cpu];
5962 struct sched_group **sched_group_nodes
5963 = sched_group_nodes_bycpu[cpu];
5964
5965 if (sched_group_allnodes) {
5966 kfree(sched_group_allnodes);
5967 sched_group_allnodes_bycpu[cpu] = NULL;
5968 }
5969
5970 if (!sched_group_nodes)
John Hawkes9c1cfda2005-09-06 15:18:14 -07005971 continue;
5972
John Hawkesd1b55132005-09-06 15:18:14 -07005973 for (i = 0; i < MAX_NUMNODES; i++) {
5974 cpumask_t nodemask = node_to_cpumask(i);
5975 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5976
5977 cpus_and(nodemask, nodemask, *cpu_map);
5978 if (cpus_empty(nodemask))
5979 continue;
5980
5981 if (sg == NULL)
5982 continue;
5983 sg = sg->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005984next_sg:
John Hawkesd1b55132005-09-06 15:18:14 -07005985 oldsg = sg;
5986 sg = sg->next;
5987 kfree(oldsg);
5988 if (oldsg != sched_group_nodes[i])
5989 goto next_sg;
5990 }
5991 kfree(sched_group_nodes);
5992 sched_group_nodes_bycpu[cpu] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005993 }
5994#endif
5995}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005996
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005997/*
5998 * Detach sched domains from a group of cpus specified in cpu_map
5999 * These cpus will now be attached to the NULL domain
6000 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006001static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006002{
6003 int i;
6004
6005 for_each_cpu_mask(i, *cpu_map)
6006 cpu_attach_domain(NULL, i);
6007 synchronize_sched();
6008 arch_destroy_sched_domains(cpu_map);
6009}
6010
6011/*
6012 * Partition sched domains as specified by the cpumasks below.
6013 * This attaches all cpus from the cpumasks to the NULL domain,
6014 * waits for a RCU quiescent period, recalculates sched
6015 * domain information and then attaches them back to the
6016 * correct sched domains
6017 * Call with hotplug lock held
6018 */
6019void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6020{
6021 cpumask_t change_map;
6022
6023 cpus_and(*partition1, *partition1, cpu_online_map);
6024 cpus_and(*partition2, *partition2, cpu_online_map);
6025 cpus_or(change_map, *partition1, *partition2);
6026
6027 /* Detach sched domains from all of the affected cpus */
6028 detach_destroy_domains(&change_map);
6029 if (!cpus_empty(*partition1))
6030 build_sched_domains(partition1);
6031 if (!cpus_empty(*partition2))
6032 build_sched_domains(partition2);
6033}
6034
Linus Torvalds1da177e2005-04-16 15:20:36 -07006035#ifdef CONFIG_HOTPLUG_CPU
6036/*
6037 * Force a reinitialization of the sched domains hierarchy. The domains
6038 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006039 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006040 * which will prevent rebalancing while the sched domains are recalculated.
6041 */
6042static int update_sched_domains(struct notifier_block *nfb,
6043 unsigned long action, void *hcpu)
6044{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006045 switch (action) {
6046 case CPU_UP_PREPARE:
6047 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006048 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006049 return NOTIFY_OK;
6050
6051 case CPU_UP_CANCELED:
6052 case CPU_DOWN_FAILED:
6053 case CPU_ONLINE:
6054 case CPU_DEAD:
6055 /*
6056 * Fall through and re-initialise the domains.
6057 */
6058 break;
6059 default:
6060 return NOTIFY_DONE;
6061 }
6062
6063 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006064 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006065
6066 return NOTIFY_OK;
6067}
6068#endif
6069
6070void __init sched_init_smp(void)
6071{
6072 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006073 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006074 unlock_cpu_hotplug();
6075 /* XXX: Theoretical race here - CPU may be hotplugged now */
6076 hotcpu_notifier(update_sched_domains, 0);
6077}
6078#else
6079void __init sched_init_smp(void)
6080{
6081}
6082#endif /* CONFIG_SMP */
6083
6084int in_sched_functions(unsigned long addr)
6085{
6086 /* Linker adds these: start and end of __sched functions */
6087 extern char __sched_text_start[], __sched_text_end[];
6088 return in_lock_functions(addr) ||
6089 (addr >= (unsigned long)__sched_text_start
6090 && addr < (unsigned long)__sched_text_end);
6091}
6092
6093void __init sched_init(void)
6094{
6095 runqueue_t *rq;
6096 int i, j, k;
6097
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006098 for_each_possible_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006099 prio_array_t *array;
6100
6101 rq = cpu_rq(i);
6102 spin_lock_init(&rq->lock);
Nick Piggin78979862005-06-25 14:57:13 -07006103 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006104 rq->active = rq->arrays;
6105 rq->expired = rq->arrays + 1;
6106 rq->best_expired_prio = MAX_PRIO;
6107
6108#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006109 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006110 for (j = 1; j < 3; j++)
6111 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006112 rq->active_balance = 0;
6113 rq->push_cpu = 0;
6114 rq->migration_thread = NULL;
6115 INIT_LIST_HEAD(&rq->migration_queue);
Anton Blancharde9028b02006-03-23 02:59:20 -08006116 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006117#endif
6118 atomic_set(&rq->nr_iowait, 0);
6119
6120 for (j = 0; j < 2; j++) {
6121 array = rq->arrays + j;
6122 for (k = 0; k < MAX_PRIO; k++) {
6123 INIT_LIST_HEAD(array->queue + k);
6124 __clear_bit(k, array->bitmap);
6125 }
6126 // delimiter for bitsearch
6127 __set_bit(MAX_PRIO, array->bitmap);
6128 }
6129 }
6130
6131 /*
6132 * The boot idle thread does lazy MMU switching as well:
6133 */
6134 atomic_inc(&init_mm.mm_count);
6135 enter_lazy_tlb(&init_mm, current);
6136
6137 /*
6138 * Make us the idle thread. Technically, schedule() should not be
6139 * called from this thread, however somewhere below it might be,
6140 * but because we are the idle thread, we just pick up running again
6141 * when this runqueue becomes "idle".
6142 */
6143 init_idle(current, smp_processor_id());
6144}
6145
6146#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6147void __might_sleep(char *file, int line)
6148{
6149#if defined(in_atomic)
6150 static unsigned long prev_jiffy; /* ratelimiting */
6151
6152 if ((in_atomic() || irqs_disabled()) &&
6153 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6154 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6155 return;
6156 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006157 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006158 " context at %s:%d\n", file, line);
6159 printk("in_atomic():%d, irqs_disabled():%d\n",
6160 in_atomic(), irqs_disabled());
6161 dump_stack();
6162 }
6163#endif
6164}
6165EXPORT_SYMBOL(__might_sleep);
6166#endif
6167
6168#ifdef CONFIG_MAGIC_SYSRQ
6169void normalize_rt_tasks(void)
6170{
6171 struct task_struct *p;
6172 prio_array_t *array;
6173 unsigned long flags;
6174 runqueue_t *rq;
6175
6176 read_lock_irq(&tasklist_lock);
6177 for_each_process (p) {
6178 if (!rt_task(p))
6179 continue;
6180
6181 rq = task_rq_lock(p, &flags);
6182
6183 array = p->array;
6184 if (array)
6185 deactivate_task(p, task_rq(p));
6186 __setscheduler(p, SCHED_NORMAL, 0);
6187 if (array) {
6188 __activate_task(p, task_rq(p));
6189 resched_task(rq->curr);
6190 }
6191
6192 task_rq_unlock(rq, &flags);
6193 }
6194 read_unlock_irq(&tasklist_lock);
6195}
6196
6197#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006198
6199#ifdef CONFIG_IA64
6200/*
6201 * These functions are only useful for the IA64 MCA handling.
6202 *
6203 * They can only be called when the whole system has been
6204 * stopped - every CPU needs to be quiescent, and no scheduling
6205 * activity can take place. Using them for anything else would
6206 * be a serious bug, and as a result, they aren't even visible
6207 * under any other configuration.
6208 */
6209
6210/**
6211 * curr_task - return the current task for a given cpu.
6212 * @cpu: the processor in question.
6213 *
6214 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6215 */
6216task_t *curr_task(int cpu)
6217{
6218 return cpu_curr(cpu);
6219}
6220
6221/**
6222 * set_curr_task - set the current task for a given cpu.
6223 * @cpu: the processor in question.
6224 * @p: the task pointer to set.
6225 *
6226 * Description: This function must only be used when non-maskable interrupts
6227 * are serviced on a separate stack. It allows the architecture to switch the
6228 * notion of the current task on a cpu in a non-blocking manner. This function
6229 * must be called with all CPU's synchronized, and interrupts disabled, the
6230 * and caller must save the original value of the current task (see
6231 * curr_task() above) and restore that value before reenabling interrupts and
6232 * re-starting the system.
6233 *
6234 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6235 */
6236void set_curr_task(int cpu, task_t *p)
6237{
6238 cpu_curr(cpu) = p;
6239}
6240
6241#endif