| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1 | /* | 
 | 2 |  *  Driver for SiS7019 Audio Accelerator | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 2004-2007, David Dillow | 
 | 5 |  *  Written by David Dillow <dave@thedillows.org> | 
 | 6 |  *  Inspired by the Trident 4D-WaveDX/NX driver. | 
 | 7 |  * | 
 | 8 |  *  All rights reserved. | 
 | 9 |  * | 
 | 10 |  *  This program is free software; you can redistribute it and/or modify | 
 | 11 |  *  it under the terms of the GNU General Public License as published by | 
 | 12 |  *  the Free Software Foundation, version 2. | 
 | 13 |  * | 
 | 14 |  *  This program is distributed in the hope that it will be useful, | 
 | 15 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 16 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 17 |  *  GNU General Public License for more details. | 
 | 18 |  * | 
 | 19 |  *  You should have received a copy of the GNU General Public License | 
 | 20 |  *  along with this program; if not, write to the Free Software | 
 | 21 |  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
 | 22 |  */ | 
 | 23 |  | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 24 | #include <linux/init.h> | 
 | 25 | #include <linux/pci.h> | 
 | 26 | #include <linux/time.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 27 | #include <linux/slab.h> | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 28 | #include <linux/moduleparam.h> | 
 | 29 | #include <linux/interrupt.h> | 
 | 30 | #include <linux/delay.h> | 
 | 31 | #include <sound/core.h> | 
 | 32 | #include <sound/ac97_codec.h> | 
 | 33 | #include <sound/initval.h> | 
 | 34 | #include "sis7019.h" | 
 | 35 |  | 
 | 36 | MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); | 
 | 37 | MODULE_DESCRIPTION("SiS7019"); | 
 | 38 | MODULE_LICENSE("GPL"); | 
 | 39 | MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); | 
 | 40 |  | 
 | 41 | static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */ | 
 | 42 | static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */ | 
 | 43 | static int enable = 1; | 
 | 44 |  | 
 | 45 | module_param(index, int, 0444); | 
 | 46 | MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); | 
 | 47 | module_param(id, charp, 0444); | 
 | 48 | MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); | 
 | 49 | module_param(enable, bool, 0444); | 
 | 50 | MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); | 
 | 51 |  | 
| Alexey Dobriyan | cebe41d | 2010-02-06 00:21:03 +0200 | [diff] [blame] | 52 | static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 53 | 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, | 
 | 54 | 	{ 0, } | 
 | 55 | }; | 
 | 56 |  | 
 | 57 | MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); | 
 | 58 |  | 
 | 59 | /* There are three timing modes for the voices. | 
 | 60 |  * | 
 | 61 |  * For both playback and capture, when the buffer is one or two periods long, | 
 | 62 |  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt | 
 | 63 |  * to let us know when the periods have ended. | 
 | 64 |  * | 
 | 65 |  * When performing playback with more than two periods per buffer, we set | 
 | 66 |  * the "Stop Sample Offset" and tell the hardware to interrupt us when we | 
 | 67 |  * reach it. We then update the offset and continue on until we are | 
 | 68 |  * interrupted for the next period. | 
 | 69 |  * | 
 | 70 |  * Capture channels do not have a SSO, so we allocate a playback channel to | 
 | 71 |  * use as a timer for the capture periods. We use the SSO on the playback | 
 | 72 |  * channel to clock out virtual periods, and adjust the virtual period length | 
 | 73 |  * to maintain synchronization. This algorithm came from the Trident driver. | 
 | 74 |  * | 
 | 75 |  * FIXME: It'd be nice to make use of some of the synth features in the | 
 | 76 |  * hardware, but a woeful lack of documentation is a significant roadblock. | 
 | 77 |  */ | 
 | 78 | struct voice { | 
 | 79 | 	u16 flags; | 
 | 80 | #define 	VOICE_IN_USE		1 | 
 | 81 | #define 	VOICE_CAPTURE		2 | 
 | 82 | #define 	VOICE_SSO_TIMING	4 | 
 | 83 | #define 	VOICE_SYNC_TIMING	8 | 
 | 84 | 	u16 sync_cso; | 
 | 85 | 	u16 period_size; | 
 | 86 | 	u16 buffer_size; | 
 | 87 | 	u16 sync_period_size; | 
 | 88 | 	u16 sync_buffer_size; | 
 | 89 | 	u32 sso; | 
 | 90 | 	u32 vperiod; | 
 | 91 | 	struct snd_pcm_substream *substream; | 
 | 92 | 	struct voice *timing; | 
 | 93 | 	void __iomem *ctrl_base; | 
 | 94 | 	void __iomem *wave_base; | 
 | 95 | 	void __iomem *sync_base; | 
 | 96 | 	int num; | 
 | 97 | }; | 
 | 98 |  | 
 | 99 | /* We need four pages to store our wave parameters during a suspend. If | 
 | 100 |  * we're not doing power management, we still need to allocate a page | 
 | 101 |  * for the silence buffer. | 
 | 102 |  */ | 
 | 103 | #ifdef CONFIG_PM | 
 | 104 | #define SIS_SUSPEND_PAGES	4 | 
 | 105 | #else | 
 | 106 | #define SIS_SUSPEND_PAGES	1 | 
 | 107 | #endif | 
 | 108 |  | 
 | 109 | struct sis7019 { | 
 | 110 | 	unsigned long ioport; | 
 | 111 | 	void __iomem *ioaddr; | 
 | 112 | 	int irq; | 
 | 113 | 	int codecs_present; | 
 | 114 |  | 
 | 115 | 	struct pci_dev *pci; | 
 | 116 | 	struct snd_pcm *pcm; | 
 | 117 | 	struct snd_card *card; | 
 | 118 | 	struct snd_ac97 *ac97[3]; | 
 | 119 |  | 
 | 120 | 	/* Protect against more than one thread hitting the AC97 | 
 | 121 | 	 * registers (in a more polite manner than pounding the hardware | 
 | 122 | 	 * semaphore) | 
 | 123 | 	 */ | 
 | 124 | 	struct mutex ac97_mutex; | 
 | 125 |  | 
 | 126 | 	/* voice_lock protects allocation/freeing of the voice descriptions | 
 | 127 | 	 */ | 
 | 128 | 	spinlock_t voice_lock; | 
 | 129 |  | 
 | 130 | 	struct voice voices[64]; | 
 | 131 | 	struct voice capture_voice; | 
 | 132 |  | 
 | 133 | 	/* Allocate pages to store the internal wave state during | 
 | 134 | 	 * suspends. When we're operating, this can be used as a silence | 
 | 135 | 	 * buffer for a timing channel. | 
 | 136 | 	 */ | 
 | 137 | 	void *suspend_state[SIS_SUSPEND_PAGES]; | 
 | 138 |  | 
 | 139 | 	int silence_users; | 
 | 140 | 	dma_addr_t silence_dma_addr; | 
 | 141 | }; | 
 | 142 |  | 
 | 143 | #define SIS_PRIMARY_CODEC_PRESENT	0x0001 | 
 | 144 | #define SIS_SECONDARY_CODEC_PRESENT	0x0002 | 
 | 145 | #define SIS_TERTIARY_CODEC_PRESENT	0x0004 | 
 | 146 |  | 
 | 147 | /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a | 
 | 148 |  * documented range of 8-0xfff8 samples. Given that they are 0-based, | 
 | 149 |  * that places our period/buffer range at 9-0xfff9 samples. That makes the | 
 | 150 |  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and | 
 | 151 |  * max samples / min samples gives us the max periods in a buffer. | 
 | 152 |  * | 
 | 153 |  * We'll add a constraint upon open that limits the period and buffer sample | 
 | 154 |  * size to values that are legal for the hardware. | 
 | 155 |  */ | 
 | 156 | static struct snd_pcm_hardware sis_playback_hw_info = { | 
 | 157 | 	.info = (SNDRV_PCM_INFO_MMAP | | 
 | 158 | 		 SNDRV_PCM_INFO_MMAP_VALID | | 
 | 159 | 		 SNDRV_PCM_INFO_INTERLEAVED | | 
 | 160 | 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
 | 161 | 		 SNDRV_PCM_INFO_SYNC_START | | 
 | 162 | 		 SNDRV_PCM_INFO_RESUME), | 
 | 163 | 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | 
 | 164 | 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | 
 | 165 | 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, | 
 | 166 | 	.rate_min = 4000, | 
 | 167 | 	.rate_max = 48000, | 
 | 168 | 	.channels_min = 1, | 
 | 169 | 	.channels_max = 2, | 
 | 170 | 	.buffer_bytes_max = (0xfff9 * 4), | 
 | 171 | 	.period_bytes_min = 9, | 
 | 172 | 	.period_bytes_max = (0xfff9 * 4), | 
 | 173 | 	.periods_min = 1, | 
 | 174 | 	.periods_max = (0xfff9 / 9), | 
 | 175 | }; | 
 | 176 |  | 
 | 177 | static struct snd_pcm_hardware sis_capture_hw_info = { | 
 | 178 | 	.info = (SNDRV_PCM_INFO_MMAP | | 
 | 179 | 		 SNDRV_PCM_INFO_MMAP_VALID | | 
 | 180 | 		 SNDRV_PCM_INFO_INTERLEAVED | | 
 | 181 | 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | | 
 | 182 | 		 SNDRV_PCM_INFO_SYNC_START | | 
 | 183 | 		 SNDRV_PCM_INFO_RESUME), | 
 | 184 | 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | | 
 | 185 | 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), | 
 | 186 | 	.rates = SNDRV_PCM_RATE_48000, | 
 | 187 | 	.rate_min = 4000, | 
 | 188 | 	.rate_max = 48000, | 
 | 189 | 	.channels_min = 1, | 
 | 190 | 	.channels_max = 2, | 
 | 191 | 	.buffer_bytes_max = (0xfff9 * 4), | 
 | 192 | 	.period_bytes_min = 9, | 
 | 193 | 	.period_bytes_max = (0xfff9 * 4), | 
 | 194 | 	.periods_min = 1, | 
 | 195 | 	.periods_max = (0xfff9 / 9), | 
 | 196 | }; | 
 | 197 |  | 
 | 198 | static void sis_update_sso(struct voice *voice, u16 period) | 
 | 199 | { | 
 | 200 | 	void __iomem *base = voice->ctrl_base; | 
 | 201 |  | 
 | 202 | 	voice->sso += period; | 
 | 203 | 	if (voice->sso >= voice->buffer_size) | 
 | 204 | 		voice->sso -= voice->buffer_size; | 
 | 205 |  | 
 | 206 | 	/* Enforce the documented hardware minimum offset */ | 
 | 207 | 	if (voice->sso < 8) | 
 | 208 | 		voice->sso = 8; | 
 | 209 |  | 
 | 210 | 	/* The SSO is in the upper 16 bits of the register. */ | 
 | 211 | 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); | 
 | 212 | } | 
 | 213 |  | 
 | 214 | static void sis_update_voice(struct voice *voice) | 
 | 215 | { | 
 | 216 | 	if (voice->flags & VOICE_SSO_TIMING) { | 
 | 217 | 		sis_update_sso(voice, voice->period_size); | 
 | 218 | 	} else if (voice->flags & VOICE_SYNC_TIMING) { | 
 | 219 | 		int sync; | 
 | 220 |  | 
 | 221 | 		/* If we've not hit the end of the virtual period, update | 
 | 222 | 		 * our records and keep going. | 
 | 223 | 		 */ | 
 | 224 | 		if (voice->vperiod > voice->period_size) { | 
 | 225 | 			voice->vperiod -= voice->period_size; | 
 | 226 | 			if (voice->vperiod < voice->period_size) | 
 | 227 | 				sis_update_sso(voice, voice->vperiod); | 
 | 228 | 			else | 
 | 229 | 				sis_update_sso(voice, voice->period_size); | 
 | 230 | 			return; | 
 | 231 | 		} | 
 | 232 |  | 
 | 233 | 		/* Calculate our relative offset between the target and | 
 | 234 | 		 * the actual CSO value. Since we're operating in a loop, | 
 | 235 | 		 * if the value is more than half way around, we can | 
 | 236 | 		 * consider ourselves wrapped. | 
 | 237 | 		 */ | 
 | 238 | 		sync = voice->sync_cso; | 
 | 239 | 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); | 
 | 240 | 		if (sync > (voice->sync_buffer_size / 2)) | 
 | 241 | 			sync -= voice->sync_buffer_size; | 
 | 242 |  | 
 | 243 | 		/* If sync is positive, then we interrupted too early, and | 
 | 244 | 		 * we'll need to come back in a few samples and try again. | 
 | 245 | 		 * There's a minimum wait, as it takes some time for the DMA | 
 | 246 | 		 * engine to startup, etc... | 
 | 247 | 		 */ | 
 | 248 | 		if (sync > 0) { | 
 | 249 | 			if (sync < 16) | 
 | 250 | 				sync = 16; | 
 | 251 | 			sis_update_sso(voice, sync); | 
 | 252 | 			return; | 
 | 253 | 		} | 
 | 254 |  | 
 | 255 | 		/* Ok, we interrupted right on time, or (hopefully) just | 
 | 256 | 		 * a bit late. We'll adjst our next waiting period based | 
 | 257 | 		 * on how close we got. | 
 | 258 | 		 * | 
 | 259 | 		 * We need to stay just behind the actual channel to ensure | 
 | 260 | 		 * it really is past a period when we get our interrupt -- | 
 | 261 | 		 * otherwise we'll fall into the early code above and have | 
 | 262 | 		 * a minimum wait time, which makes us quite late here, | 
 | 263 | 		 * eating into the user's time to refresh the buffer, esp. | 
 | 264 | 		 * if using small periods. | 
 | 265 | 		 * | 
 | 266 | 		 * If we're less than 9 samples behind, we're on target. | 
 | 267 | 		 */ | 
 | 268 | 		if (sync > -9) | 
 | 269 | 			voice->vperiod = voice->sync_period_size + 1; | 
 | 270 | 		else | 
 | 271 | 			voice->vperiod = voice->sync_period_size - 4; | 
 | 272 |  | 
 | 273 | 		if (voice->vperiod < voice->buffer_size) { | 
 | 274 | 			sis_update_sso(voice, voice->vperiod); | 
 | 275 | 			voice->vperiod = 0; | 
 | 276 | 		} else | 
 | 277 | 			sis_update_sso(voice, voice->period_size); | 
 | 278 |  | 
 | 279 | 		sync = voice->sync_cso + voice->sync_period_size; | 
 | 280 | 		if (sync >= voice->sync_buffer_size) | 
 | 281 | 			sync -= voice->sync_buffer_size; | 
 | 282 | 		voice->sync_cso = sync; | 
 | 283 | 	} | 
 | 284 |  | 
 | 285 | 	snd_pcm_period_elapsed(voice->substream); | 
 | 286 | } | 
 | 287 |  | 
 | 288 | static void sis_voice_irq(u32 status, struct voice *voice) | 
 | 289 | { | 
 | 290 | 	int bit; | 
 | 291 |  | 
 | 292 | 	while (status) { | 
 | 293 | 		bit = __ffs(status); | 
 | 294 | 		status >>= bit + 1; | 
 | 295 | 		voice += bit; | 
 | 296 | 		sis_update_voice(voice); | 
 | 297 | 		voice++; | 
 | 298 | 	} | 
 | 299 | } | 
 | 300 |  | 
 | 301 | static irqreturn_t sis_interrupt(int irq, void *dev) | 
 | 302 | { | 
 | 303 | 	struct sis7019 *sis = dev; | 
 | 304 | 	unsigned long io = sis->ioport; | 
 | 305 | 	struct voice *voice; | 
 | 306 | 	u32 intr, status; | 
 | 307 |  | 
 | 308 | 	/* We only use the DMA interrupts, and we don't enable any other | 
 | 309 | 	 * source of interrupts. But, it is possible to see an interupt | 
 | 310 | 	 * status that didn't actually interrupt us, so eliminate anything | 
 | 311 | 	 * we're not expecting to avoid falsely claiming an IRQ, and an | 
 | 312 | 	 * ensuing endless loop. | 
 | 313 | 	 */ | 
 | 314 | 	intr = inl(io + SIS_GISR); | 
 | 315 | 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | 
 | 316 | 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | 
 | 317 | 	if (!intr) | 
 | 318 | 		return IRQ_NONE; | 
 | 319 |  | 
 | 320 | 	do { | 
 | 321 | 		status = inl(io + SIS_PISR_A); | 
 | 322 | 		if (status) { | 
 | 323 | 			sis_voice_irq(status, sis->voices); | 
 | 324 | 			outl(status, io + SIS_PISR_A); | 
 | 325 | 		} | 
 | 326 |  | 
 | 327 | 		status = inl(io + SIS_PISR_B); | 
 | 328 | 		if (status) { | 
 | 329 | 			sis_voice_irq(status, &sis->voices[32]); | 
 | 330 | 			outl(status, io + SIS_PISR_B); | 
 | 331 | 		} | 
 | 332 |  | 
 | 333 | 		status = inl(io + SIS_RISR); | 
 | 334 | 		if (status) { | 
 | 335 | 			voice = &sis->capture_voice; | 
 | 336 | 			if (!voice->timing) | 
 | 337 | 				snd_pcm_period_elapsed(voice->substream); | 
 | 338 |  | 
 | 339 | 			outl(status, io + SIS_RISR); | 
 | 340 | 		} | 
 | 341 |  | 
 | 342 | 		outl(intr, io + SIS_GISR); | 
 | 343 | 		intr = inl(io + SIS_GISR); | 
 | 344 | 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | | 
 | 345 | 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; | 
 | 346 | 	} while (intr); | 
 | 347 |  | 
 | 348 | 	return IRQ_HANDLED; | 
 | 349 | } | 
 | 350 |  | 
 | 351 | static u32 sis_rate_to_delta(unsigned int rate) | 
 | 352 | { | 
 | 353 | 	u32 delta; | 
 | 354 |  | 
 | 355 | 	/* This was copied from the trident driver, but it seems its gotten | 
 | 356 | 	 * around a bit... nevertheless, it works well. | 
 | 357 | 	 * | 
 | 358 | 	 * We special case 44100 and 8000 since rounding with the equation | 
 | 359 | 	 * does not give us an accurate enough value. For 11025 and 22050 | 
 | 360 | 	 * the equation gives us the best answer. All other frequencies will | 
 | 361 | 	 * also use the equation. JDW | 
 | 362 | 	 */ | 
 | 363 | 	if (rate == 44100) | 
 | 364 | 		delta = 0xeb3; | 
 | 365 | 	else if (rate == 8000) | 
 | 366 | 		delta = 0x2ab; | 
 | 367 | 	else if (rate == 48000) | 
 | 368 | 		delta = 0x1000; | 
 | 369 | 	else | 
 | 370 | 		delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; | 
 | 371 | 	return delta; | 
 | 372 | } | 
 | 373 |  | 
 | 374 | static void __sis_map_silence(struct sis7019 *sis) | 
 | 375 | { | 
 | 376 | 	/* Helper function: must hold sis->voice_lock on entry */ | 
 | 377 | 	if (!sis->silence_users) | 
 | 378 | 		sis->silence_dma_addr = pci_map_single(sis->pci, | 
 | 379 | 						sis->suspend_state[0], | 
 | 380 | 						4096, PCI_DMA_TODEVICE); | 
 | 381 | 	sis->silence_users++; | 
 | 382 | } | 
 | 383 |  | 
 | 384 | static void __sis_unmap_silence(struct sis7019 *sis) | 
 | 385 | { | 
 | 386 | 	/* Helper function: must hold sis->voice_lock on entry */ | 
 | 387 | 	sis->silence_users--; | 
 | 388 | 	if (!sis->silence_users) | 
 | 389 | 		pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, | 
 | 390 | 					PCI_DMA_TODEVICE); | 
 | 391 | } | 
 | 392 |  | 
 | 393 | static void sis_free_voice(struct sis7019 *sis, struct voice *voice) | 
 | 394 | { | 
 | 395 | 	unsigned long flags; | 
 | 396 |  | 
 | 397 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 398 | 	if (voice->timing) { | 
 | 399 | 		__sis_unmap_silence(sis); | 
 | 400 | 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | | 
 | 401 | 						VOICE_SYNC_TIMING); | 
 | 402 | 		voice->timing = NULL; | 
 | 403 | 	} | 
 | 404 | 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); | 
 | 405 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | 406 | } | 
 | 407 |  | 
 | 408 | static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) | 
 | 409 | { | 
 | 410 | 	/* Must hold the voice_lock on entry */ | 
 | 411 | 	struct voice *voice; | 
 | 412 | 	int i; | 
 | 413 |  | 
 | 414 | 	for (i = 0; i < 64; i++) { | 
 | 415 | 		voice = &sis->voices[i]; | 
 | 416 | 		if (voice->flags & VOICE_IN_USE) | 
 | 417 | 			continue; | 
 | 418 | 		voice->flags |= VOICE_IN_USE; | 
 | 419 | 		goto found_one; | 
 | 420 | 	} | 
 | 421 | 	voice = NULL; | 
 | 422 |  | 
 | 423 | found_one: | 
 | 424 | 	return voice; | 
 | 425 | } | 
 | 426 |  | 
 | 427 | static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) | 
 | 428 | { | 
 | 429 | 	struct voice *voice; | 
 | 430 | 	unsigned long flags; | 
 | 431 |  | 
 | 432 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 433 | 	voice = __sis_alloc_playback_voice(sis); | 
 | 434 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | 435 |  | 
 | 436 | 	return voice; | 
 | 437 | } | 
 | 438 |  | 
 | 439 | static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, | 
 | 440 | 					struct snd_pcm_hw_params *hw_params) | 
 | 441 | { | 
 | 442 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 443 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 444 | 	struct voice *voice = runtime->private_data; | 
 | 445 | 	unsigned int period_size, buffer_size; | 
 | 446 | 	unsigned long flags; | 
 | 447 | 	int needed; | 
 | 448 |  | 
 | 449 | 	/* If there are one or two periods per buffer, we don't need a | 
 | 450 | 	 * timing voice, as we can use the capture channel's interrupts | 
 | 451 | 	 * to clock out the periods. | 
 | 452 | 	 */ | 
 | 453 | 	period_size = params_period_size(hw_params); | 
 | 454 | 	buffer_size = params_buffer_size(hw_params); | 
 | 455 | 	needed = (period_size != buffer_size && | 
 | 456 | 			period_size != (buffer_size / 2)); | 
 | 457 |  | 
 | 458 | 	if (needed && !voice->timing) { | 
 | 459 | 		spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 460 | 		voice->timing = __sis_alloc_playback_voice(sis); | 
 | 461 | 		if (voice->timing) | 
 | 462 | 			__sis_map_silence(sis); | 
 | 463 | 		spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | 464 | 		if (!voice->timing) | 
 | 465 | 			return -ENOMEM; | 
 | 466 | 		voice->timing->substream = substream; | 
 | 467 | 	} else if (!needed && voice->timing) { | 
 | 468 | 		sis_free_voice(sis, voice); | 
 | 469 | 		voice->timing = NULL; | 
 | 470 | 	} | 
 | 471 |  | 
 | 472 | 	return 0; | 
 | 473 | } | 
 | 474 |  | 
 | 475 | static int sis_playback_open(struct snd_pcm_substream *substream) | 
 | 476 | { | 
 | 477 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 478 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 479 | 	struct voice *voice; | 
 | 480 |  | 
 | 481 | 	voice = sis_alloc_playback_voice(sis); | 
 | 482 | 	if (!voice) | 
 | 483 | 		return -EAGAIN; | 
 | 484 |  | 
 | 485 | 	voice->substream = substream; | 
 | 486 | 	runtime->private_data = voice; | 
 | 487 | 	runtime->hw = sis_playback_hw_info; | 
 | 488 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 489 | 						9, 0xfff9); | 
 | 490 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 491 | 						9, 0xfff9); | 
 | 492 | 	snd_pcm_set_sync(substream); | 
 | 493 | 	return 0; | 
 | 494 | } | 
 | 495 |  | 
 | 496 | static int sis_substream_close(struct snd_pcm_substream *substream) | 
 | 497 | { | 
 | 498 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 499 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 500 | 	struct voice *voice = runtime->private_data; | 
 | 501 |  | 
 | 502 | 	sis_free_voice(sis, voice); | 
 | 503 | 	return 0; | 
 | 504 | } | 
 | 505 |  | 
 | 506 | static int sis_playback_hw_params(struct snd_pcm_substream *substream, | 
 | 507 | 					struct snd_pcm_hw_params *hw_params) | 
 | 508 | { | 
 | 509 | 	return snd_pcm_lib_malloc_pages(substream, | 
 | 510 | 					params_buffer_bytes(hw_params)); | 
 | 511 | } | 
 | 512 |  | 
 | 513 | static int sis_hw_free(struct snd_pcm_substream *substream) | 
 | 514 | { | 
 | 515 | 	return snd_pcm_lib_free_pages(substream); | 
 | 516 | } | 
 | 517 |  | 
 | 518 | static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) | 
 | 519 | { | 
 | 520 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 521 | 	struct voice *voice = runtime->private_data; | 
 | 522 | 	void __iomem *ctrl_base = voice->ctrl_base; | 
 | 523 | 	void __iomem *wave_base = voice->wave_base; | 
 | 524 | 	u32 format, dma_addr, control, sso_eso, delta, reg; | 
 | 525 | 	u16 leo; | 
 | 526 |  | 
 | 527 | 	/* We rely on the PCM core to ensure that the parameters for this | 
 | 528 | 	 * substream do not change on us while we're programming the HW. | 
 | 529 | 	 */ | 
 | 530 | 	format = 0; | 
 | 531 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 532 | 		format |= SIS_PLAY_DMA_FORMAT_8BIT; | 
 | 533 | 	if (!snd_pcm_format_signed(runtime->format)) | 
 | 534 | 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; | 
 | 535 | 	if (runtime->channels == 1) | 
 | 536 | 		format |= SIS_PLAY_DMA_FORMAT_MONO; | 
 | 537 |  | 
 | 538 | 	/* The baseline setup is for a single period per buffer, and | 
 | 539 | 	 * we add bells and whistles as needed from there. | 
 | 540 | 	 */ | 
 | 541 | 	dma_addr = runtime->dma_addr; | 
 | 542 | 	leo = runtime->buffer_size - 1; | 
 | 543 | 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; | 
 | 544 | 	sso_eso = leo; | 
 | 545 |  | 
 | 546 | 	if (runtime->period_size == (runtime->buffer_size / 2)) { | 
 | 547 | 		control |= SIS_PLAY_DMA_INTR_AT_MLP; | 
 | 548 | 	} else if (runtime->period_size != runtime->buffer_size) { | 
 | 549 | 		voice->flags |= VOICE_SSO_TIMING; | 
 | 550 | 		voice->sso = runtime->period_size - 1; | 
 | 551 | 		voice->period_size = runtime->period_size; | 
 | 552 | 		voice->buffer_size = runtime->buffer_size; | 
 | 553 |  | 
 | 554 | 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO; | 
 | 555 | 		control |= SIS_PLAY_DMA_INTR_AT_SSO; | 
 | 556 | 		sso_eso |= (runtime->period_size - 1) << 16; | 
 | 557 | 	} | 
 | 558 |  | 
 | 559 | 	delta = sis_rate_to_delta(runtime->rate); | 
 | 560 |  | 
 | 561 | 	/* Ok, we're ready to go, set up the channel. | 
 | 562 | 	 */ | 
 | 563 | 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 564 | 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); | 
 | 565 | 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); | 
 | 566 | 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); | 
 | 567 |  | 
 | 568 | 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | 
 | 569 | 		writel(0, wave_base + reg); | 
 | 570 |  | 
 | 571 | 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | 
 | 572 | 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | 
 | 573 | 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | 
 | 574 | 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | 
 | 575 | 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | 
 | 576 | 			wave_base + SIS_WAVE_CHANNEL_CONTROL); | 
 | 577 |  | 
 | 578 | 	/* Force PCI writes to post. */ | 
 | 579 | 	readl(ctrl_base); | 
 | 580 |  | 
 | 581 | 	return 0; | 
 | 582 | } | 
 | 583 |  | 
 | 584 | static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) | 
 | 585 | { | 
 | 586 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 587 | 	unsigned long io = sis->ioport; | 
 | 588 | 	struct snd_pcm_substream *s; | 
 | 589 | 	struct voice *voice; | 
 | 590 | 	void *chip; | 
 | 591 | 	int starting; | 
 | 592 | 	u32 record = 0; | 
 | 593 | 	u32 play[2] = { 0, 0 }; | 
 | 594 |  | 
 | 595 | 	/* No locks needed, as the PCM core will hold the locks on the | 
 | 596 | 	 * substreams, and the HW will only start/stop the indicated voices | 
 | 597 | 	 * without changing the state of the others. | 
 | 598 | 	 */ | 
 | 599 | 	switch (cmd) { | 
 | 600 | 	case SNDRV_PCM_TRIGGER_START: | 
 | 601 | 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: | 
 | 602 | 	case SNDRV_PCM_TRIGGER_RESUME: | 
 | 603 | 		starting = 1; | 
 | 604 | 		break; | 
 | 605 | 	case SNDRV_PCM_TRIGGER_STOP: | 
 | 606 | 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH: | 
 | 607 | 	case SNDRV_PCM_TRIGGER_SUSPEND: | 
 | 608 | 		starting = 0; | 
 | 609 | 		break; | 
 | 610 | 	default: | 
 | 611 | 		return -EINVAL; | 
 | 612 | 	} | 
 | 613 |  | 
 | 614 | 	snd_pcm_group_for_each_entry(s, substream) { | 
 | 615 | 		/* Make sure it is for us... */ | 
 | 616 | 		chip = snd_pcm_substream_chip(s); | 
 | 617 | 		if (chip != sis) | 
 | 618 | 			continue; | 
 | 619 |  | 
 | 620 | 		voice = s->runtime->private_data; | 
 | 621 | 		if (voice->flags & VOICE_CAPTURE) { | 
 | 622 | 			record |= 1 << voice->num; | 
 | 623 | 			voice = voice->timing; | 
 | 624 | 		} | 
 | 625 |  | 
 | 626 | 		/* voice could be NULL if this a recording stream, and it | 
 | 627 | 		 * doesn't have an external timing channel. | 
 | 628 | 		 */ | 
 | 629 | 		if (voice) | 
 | 630 | 			play[voice->num / 32] |= 1 << (voice->num & 0x1f); | 
 | 631 |  | 
 | 632 | 		snd_pcm_trigger_done(s, substream); | 
 | 633 | 	} | 
 | 634 |  | 
 | 635 | 	if (starting) { | 
 | 636 | 		if (record) | 
 | 637 | 			outl(record, io + SIS_RECORD_START_REG); | 
 | 638 | 		if (play[0]) | 
 | 639 | 			outl(play[0], io + SIS_PLAY_START_A_REG); | 
 | 640 | 		if (play[1]) | 
 | 641 | 			outl(play[1], io + SIS_PLAY_START_B_REG); | 
 | 642 | 	} else { | 
 | 643 | 		if (record) | 
 | 644 | 			outl(record, io + SIS_RECORD_STOP_REG); | 
 | 645 | 		if (play[0]) | 
 | 646 | 			outl(play[0], io + SIS_PLAY_STOP_A_REG); | 
 | 647 | 		if (play[1]) | 
 | 648 | 			outl(play[1], io + SIS_PLAY_STOP_B_REG); | 
 | 649 | 	} | 
 | 650 | 	return 0; | 
 | 651 | } | 
 | 652 |  | 
 | 653 | static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) | 
 | 654 | { | 
 | 655 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 656 | 	struct voice *voice = runtime->private_data; | 
 | 657 | 	u32 cso; | 
 | 658 |  | 
 | 659 | 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 660 | 	cso &= 0xffff; | 
 | 661 | 	return cso; | 
 | 662 | } | 
 | 663 |  | 
 | 664 | static int sis_capture_open(struct snd_pcm_substream *substream) | 
 | 665 | { | 
 | 666 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 667 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 668 | 	struct voice *voice = &sis->capture_voice; | 
 | 669 | 	unsigned long flags; | 
 | 670 |  | 
 | 671 | 	/* FIXME: The driver only supports recording from one channel | 
 | 672 | 	 * at the moment, but it could support more. | 
 | 673 | 	 */ | 
 | 674 | 	spin_lock_irqsave(&sis->voice_lock, flags); | 
 | 675 | 	if (voice->flags & VOICE_IN_USE) | 
 | 676 | 		voice = NULL; | 
 | 677 | 	else | 
 | 678 | 		voice->flags |= VOICE_IN_USE; | 
 | 679 | 	spin_unlock_irqrestore(&sis->voice_lock, flags); | 
 | 680 |  | 
 | 681 | 	if (!voice) | 
 | 682 | 		return -EAGAIN; | 
 | 683 |  | 
 | 684 | 	voice->substream = substream; | 
 | 685 | 	runtime->private_data = voice; | 
 | 686 | 	runtime->hw = sis_capture_hw_info; | 
 | 687 | 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; | 
 | 688 | 	snd_pcm_limit_hw_rates(runtime); | 
 | 689 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, | 
 | 690 | 						9, 0xfff9); | 
 | 691 | 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, | 
 | 692 | 						9, 0xfff9); | 
 | 693 | 	snd_pcm_set_sync(substream); | 
 | 694 | 	return 0; | 
 | 695 | } | 
 | 696 |  | 
 | 697 | static int sis_capture_hw_params(struct snd_pcm_substream *substream, | 
 | 698 | 					struct snd_pcm_hw_params *hw_params) | 
 | 699 | { | 
 | 700 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 701 | 	int rc; | 
 | 702 |  | 
 | 703 | 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, | 
 | 704 | 						params_rate(hw_params)); | 
 | 705 | 	if (rc) | 
 | 706 | 		goto out; | 
 | 707 |  | 
 | 708 | 	rc = snd_pcm_lib_malloc_pages(substream, | 
 | 709 | 					params_buffer_bytes(hw_params)); | 
 | 710 | 	if (rc < 0) | 
 | 711 | 		goto out; | 
 | 712 |  | 
 | 713 | 	rc = sis_alloc_timing_voice(substream, hw_params); | 
 | 714 |  | 
 | 715 | out: | 
 | 716 | 	return rc; | 
 | 717 | } | 
 | 718 |  | 
 | 719 | static void sis_prepare_timing_voice(struct voice *voice, | 
 | 720 | 					struct snd_pcm_substream *substream) | 
 | 721 | { | 
 | 722 | 	struct sis7019 *sis = snd_pcm_substream_chip(substream); | 
 | 723 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 724 | 	struct voice *timing = voice->timing; | 
 | 725 | 	void __iomem *play_base = timing->ctrl_base; | 
 | 726 | 	void __iomem *wave_base = timing->wave_base; | 
 | 727 | 	u16 buffer_size, period_size; | 
 | 728 | 	u32 format, control, sso_eso, delta; | 
 | 729 | 	u32 vperiod, sso, reg; | 
 | 730 |  | 
 | 731 | 	/* Set our initial buffer and period as large as we can given a | 
 | 732 | 	 * single page of silence. | 
 | 733 | 	 */ | 
 | 734 | 	buffer_size = 4096 / runtime->channels; | 
 | 735 | 	buffer_size /= snd_pcm_format_size(runtime->format, 1); | 
 | 736 | 	period_size = buffer_size; | 
 | 737 |  | 
 | 738 | 	/* Initially, we want to interrupt just a bit behind the end of | 
 | 739 | 	 * the period we're clocking out. 10 samples seems to give a good | 
 | 740 | 	 * delay. | 
 | 741 | 	 * | 
 | 742 | 	 * We want to spread our interrupts throughout the virtual period, | 
 | 743 | 	 * so that we don't end up with two interrupts back to back at the | 
 | 744 | 	 * end -- this helps minimize the effects of any jitter. Adjust our | 
 | 745 | 	 * clocking period size so that the last period is at least a fourth | 
 | 746 | 	 * of a full period. | 
 | 747 | 	 * | 
 | 748 | 	 * This is all moot if we don't need to use virtual periods. | 
 | 749 | 	 */ | 
 | 750 | 	vperiod = runtime->period_size + 10; | 
 | 751 | 	if (vperiod > period_size) { | 
 | 752 | 		u16 tail = vperiod % period_size; | 
 | 753 | 		u16 quarter_period = period_size / 4; | 
 | 754 |  | 
 | 755 | 		if (tail && tail < quarter_period) { | 
 | 756 | 			u16 loops = vperiod / period_size; | 
 | 757 |  | 
 | 758 | 			tail = quarter_period - tail; | 
 | 759 | 			tail += loops - 1; | 
 | 760 | 			tail /= loops; | 
 | 761 | 			period_size -= tail; | 
 | 762 | 		} | 
 | 763 |  | 
 | 764 | 		sso = period_size - 1; | 
 | 765 | 	} else { | 
 | 766 | 		/* The initial period will fit inside the buffer, so we | 
 | 767 | 		 * don't need to use virtual periods -- disable them. | 
 | 768 | 		 */ | 
 | 769 | 		period_size = runtime->period_size; | 
 | 770 | 		sso = vperiod - 1; | 
 | 771 | 		vperiod = 0; | 
 | 772 | 	} | 
 | 773 |  | 
 | 774 | 	/* The interrupt handler implements the timing syncronization, so | 
 | 775 | 	 * setup its state. | 
 | 776 | 	 */ | 
 | 777 | 	timing->flags |= VOICE_SYNC_TIMING; | 
 | 778 | 	timing->sync_base = voice->ctrl_base; | 
 | 779 | 	timing->sync_cso = runtime->period_size - 1; | 
 | 780 | 	timing->sync_period_size = runtime->period_size; | 
 | 781 | 	timing->sync_buffer_size = runtime->buffer_size; | 
 | 782 | 	timing->period_size = period_size; | 
 | 783 | 	timing->buffer_size = buffer_size; | 
 | 784 | 	timing->sso = sso; | 
 | 785 | 	timing->vperiod = vperiod; | 
 | 786 |  | 
 | 787 | 	/* Using unsigned samples with the all-zero silence buffer | 
 | 788 | 	 * forces the output to the lower rail, killing playback. | 
 | 789 | 	 * So ignore unsigned vs signed -- it doesn't change the timing. | 
 | 790 | 	 */ | 
 | 791 | 	format = 0; | 
 | 792 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 793 | 		format = SIS_CAPTURE_DMA_FORMAT_8BIT; | 
 | 794 | 	if (runtime->channels == 1) | 
 | 795 | 		format |= SIS_CAPTURE_DMA_FORMAT_MONO; | 
 | 796 |  | 
 | 797 | 	control = timing->buffer_size - 1; | 
 | 798 | 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; | 
 | 799 | 	sso_eso = timing->buffer_size - 1; | 
 | 800 | 	sso_eso |= timing->sso << 16; | 
 | 801 |  | 
 | 802 | 	delta = sis_rate_to_delta(runtime->rate); | 
 | 803 |  | 
 | 804 | 	/* We've done the math, now configure the channel. | 
 | 805 | 	 */ | 
 | 806 | 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); | 
 | 807 | 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); | 
 | 808 | 	writel(control, play_base + SIS_PLAY_DMA_CONTROL); | 
 | 809 | 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); | 
 | 810 |  | 
 | 811 | 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) | 
 | 812 | 		writel(0, wave_base + reg); | 
 | 813 |  | 
 | 814 | 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); | 
 | 815 | 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); | 
 | 816 | 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | | 
 | 817 | 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | | 
 | 818 | 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, | 
 | 819 | 			wave_base + SIS_WAVE_CHANNEL_CONTROL); | 
 | 820 | } | 
 | 821 |  | 
 | 822 | static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) | 
 | 823 | { | 
 | 824 | 	struct snd_pcm_runtime *runtime = substream->runtime; | 
 | 825 | 	struct voice *voice = runtime->private_data; | 
 | 826 | 	void __iomem *rec_base = voice->ctrl_base; | 
 | 827 | 	u32 format, dma_addr, control; | 
 | 828 | 	u16 leo; | 
 | 829 |  | 
 | 830 | 	/* We rely on the PCM core to ensure that the parameters for this | 
 | 831 | 	 * substream do not change on us while we're programming the HW. | 
 | 832 | 	 */ | 
 | 833 | 	format = 0; | 
 | 834 | 	if (snd_pcm_format_width(runtime->format) == 8) | 
 | 835 | 		format = SIS_CAPTURE_DMA_FORMAT_8BIT; | 
 | 836 | 	if (!snd_pcm_format_signed(runtime->format)) | 
 | 837 | 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; | 
 | 838 | 	if (runtime->channels == 1) | 
 | 839 | 		format |= SIS_CAPTURE_DMA_FORMAT_MONO; | 
 | 840 |  | 
 | 841 | 	dma_addr = runtime->dma_addr; | 
 | 842 | 	leo = runtime->buffer_size - 1; | 
 | 843 | 	control = leo | SIS_CAPTURE_DMA_LOOP; | 
 | 844 |  | 
 | 845 | 	/* If we've got more than two periods per buffer, then we have | 
 | 846 | 	 * use a timing voice to clock out the periods. Otherwise, we can | 
 | 847 | 	 * use the capture channel's interrupts. | 
 | 848 | 	 */ | 
 | 849 | 	if (voice->timing) { | 
 | 850 | 		sis_prepare_timing_voice(voice, substream); | 
 | 851 | 	} else { | 
 | 852 | 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO; | 
 | 853 | 		if (runtime->period_size != runtime->buffer_size) | 
 | 854 | 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP; | 
 | 855 | 	} | 
 | 856 |  | 
 | 857 | 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); | 
 | 858 | 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); | 
 | 859 | 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); | 
 | 860 |  | 
 | 861 | 	/* Force the writes to post. */ | 
 | 862 | 	readl(rec_base); | 
 | 863 |  | 
 | 864 | 	return 0; | 
 | 865 | } | 
 | 866 |  | 
 | 867 | static struct snd_pcm_ops sis_playback_ops = { | 
 | 868 | 	.open = sis_playback_open, | 
 | 869 | 	.close = sis_substream_close, | 
 | 870 | 	.ioctl = snd_pcm_lib_ioctl, | 
 | 871 | 	.hw_params = sis_playback_hw_params, | 
 | 872 | 	.hw_free = sis_hw_free, | 
 | 873 | 	.prepare = sis_pcm_playback_prepare, | 
 | 874 | 	.trigger = sis_pcm_trigger, | 
 | 875 | 	.pointer = sis_pcm_pointer, | 
 | 876 | }; | 
 | 877 |  | 
 | 878 | static struct snd_pcm_ops sis_capture_ops = { | 
 | 879 | 	.open = sis_capture_open, | 
 | 880 | 	.close = sis_substream_close, | 
 | 881 | 	.ioctl = snd_pcm_lib_ioctl, | 
 | 882 | 	.hw_params = sis_capture_hw_params, | 
 | 883 | 	.hw_free = sis_hw_free, | 
 | 884 | 	.prepare = sis_pcm_capture_prepare, | 
 | 885 | 	.trigger = sis_pcm_trigger, | 
 | 886 | 	.pointer = sis_pcm_pointer, | 
 | 887 | }; | 
 | 888 |  | 
 | 889 | static int __devinit sis_pcm_create(struct sis7019 *sis) | 
 | 890 | { | 
 | 891 | 	struct snd_pcm *pcm; | 
 | 892 | 	int rc; | 
 | 893 |  | 
 | 894 | 	/* We have 64 voices, and the driver currently records from | 
 | 895 | 	 * only one channel, though that could change in the future. | 
 | 896 | 	 */ | 
 | 897 | 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); | 
 | 898 | 	if (rc) | 
 | 899 | 		return rc; | 
 | 900 |  | 
 | 901 | 	pcm->private_data = sis; | 
 | 902 | 	strcpy(pcm->name, "SiS7019"); | 
 | 903 | 	sis->pcm = pcm; | 
 | 904 |  | 
 | 905 | 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); | 
 | 906 | 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); | 
 | 907 |  | 
 | 908 | 	/* Try to preallocate some memory, but it's not the end of the | 
 | 909 | 	 * world if this fails. | 
 | 910 | 	 */ | 
 | 911 | 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, | 
 | 912 | 				snd_dma_pci_data(sis->pci), 64*1024, 128*1024); | 
 | 913 |  | 
 | 914 | 	return 0; | 
 | 915 | } | 
 | 916 |  | 
 | 917 | static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) | 
 | 918 | { | 
 | 919 | 	unsigned long io = sis->ioport; | 
 | 920 | 	unsigned short val = 0xffff; | 
 | 921 | 	u16 status; | 
 | 922 | 	u16 rdy; | 
 | 923 | 	int count; | 
| Tobias Klauser | 3f76d98 | 2008-04-21 22:25:51 +0000 | [diff] [blame] | 924 | 	static const u16 codec_ready[3] = { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 925 | 		SIS_AC97_STATUS_CODEC_READY, | 
 | 926 | 		SIS_AC97_STATUS_CODEC2_READY, | 
 | 927 | 		SIS_AC97_STATUS_CODEC3_READY, | 
 | 928 | 	}; | 
 | 929 |  | 
 | 930 | 	rdy = codec_ready[codec]; | 
 | 931 |  | 
 | 932 |  | 
 | 933 | 	/* Get the AC97 semaphore -- software first, so we don't spin | 
 | 934 | 	 * pounding out IO reads on the hardware semaphore... | 
 | 935 | 	 */ | 
 | 936 | 	mutex_lock(&sis->ac97_mutex); | 
 | 937 |  | 
 | 938 | 	count = 0xffff; | 
 | 939 | 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | 
 | 940 | 		udelay(1); | 
 | 941 |  | 
 | 942 | 	if (!count) | 
 | 943 | 		goto timeout; | 
 | 944 |  | 
 | 945 | 	/* ... and wait for any outstanding commands to complete ... | 
 | 946 | 	 */ | 
 | 947 | 	count = 0xffff; | 
 | 948 | 	do { | 
 | 949 | 		status = inw(io + SIS_AC97_STATUS); | 
 | 950 | 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) | 
 | 951 | 			break; | 
 | 952 |  | 
 | 953 | 		udelay(1); | 
 | 954 | 	} while (--count); | 
 | 955 |  | 
 | 956 | 	if (!count) | 
 | 957 | 		goto timeout_sema; | 
 | 958 |  | 
 | 959 | 	/* ... before sending our command and waiting for it to finish ... | 
 | 960 | 	 */ | 
 | 961 | 	outl(cmd, io + SIS_AC97_CMD); | 
 | 962 | 	udelay(10); | 
 | 963 |  | 
 | 964 | 	count = 0xffff; | 
 | 965 | 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | 
 | 966 | 		udelay(1); | 
 | 967 |  | 
 | 968 | 	/* ... and reading the results (if any). | 
 | 969 | 	 */ | 
 | 970 | 	val = inl(io + SIS_AC97_CMD) >> 16; | 
 | 971 |  | 
 | 972 | timeout_sema: | 
 | 973 | 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | 
 | 974 | timeout: | 
 | 975 | 	mutex_unlock(&sis->ac97_mutex); | 
 | 976 |  | 
 | 977 | 	if (!count) { | 
 | 978 | 		printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", | 
 | 979 | 					codec, cmd); | 
 | 980 | 	} | 
 | 981 |  | 
 | 982 | 	return val; | 
 | 983 | } | 
 | 984 |  | 
 | 985 | static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, | 
 | 986 | 				unsigned short val) | 
 | 987 | { | 
| Tobias Klauser | 3f76d98 | 2008-04-21 22:25:51 +0000 | [diff] [blame] | 988 | 	static const u32 cmd[3] = { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 989 | 		SIS_AC97_CMD_CODEC_WRITE, | 
 | 990 | 		SIS_AC97_CMD_CODEC2_WRITE, | 
 | 991 | 		SIS_AC97_CMD_CODEC3_WRITE, | 
 | 992 | 	}; | 
 | 993 | 	sis_ac97_rw(ac97->private_data, ac97->num, | 
 | 994 | 			(val << 16) | (reg << 8) | cmd[ac97->num]); | 
 | 995 | } | 
 | 996 |  | 
 | 997 | static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) | 
 | 998 | { | 
| Tobias Klauser | 3f76d98 | 2008-04-21 22:25:51 +0000 | [diff] [blame] | 999 | 	static const u32 cmd[3] = { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1000 | 		SIS_AC97_CMD_CODEC_READ, | 
 | 1001 | 		SIS_AC97_CMD_CODEC2_READ, | 
 | 1002 | 		SIS_AC97_CMD_CODEC3_READ, | 
 | 1003 | 	}; | 
 | 1004 | 	return sis_ac97_rw(ac97->private_data, ac97->num, | 
 | 1005 | 					(reg << 8) | cmd[ac97->num]); | 
 | 1006 | } | 
 | 1007 |  | 
 | 1008 | static int __devinit sis_mixer_create(struct sis7019 *sis) | 
 | 1009 | { | 
 | 1010 | 	struct snd_ac97_bus *bus; | 
 | 1011 | 	struct snd_ac97_template ac97; | 
 | 1012 | 	static struct snd_ac97_bus_ops ops = { | 
 | 1013 | 		.write = sis_ac97_write, | 
 | 1014 | 		.read = sis_ac97_read, | 
 | 1015 | 	}; | 
 | 1016 | 	int rc; | 
 | 1017 |  | 
 | 1018 | 	memset(&ac97, 0, sizeof(ac97)); | 
 | 1019 | 	ac97.private_data = sis; | 
 | 1020 |  | 
 | 1021 | 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); | 
 | 1022 | 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 1023 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); | 
 | 1024 | 	ac97.num = 1; | 
 | 1025 | 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) | 
 | 1026 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); | 
 | 1027 | 	ac97.num = 2; | 
 | 1028 | 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) | 
 | 1029 | 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); | 
 | 1030 |  | 
 | 1031 | 	/* If we return an error here, then snd_card_free() should | 
 | 1032 | 	 * free up any ac97 codecs that got created, as well as the bus. | 
 | 1033 | 	 */ | 
 | 1034 | 	return rc; | 
 | 1035 | } | 
 | 1036 |  | 
 | 1037 | static void sis_free_suspend(struct sis7019 *sis) | 
 | 1038 | { | 
 | 1039 | 	int i; | 
 | 1040 |  | 
 | 1041 | 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) | 
 | 1042 | 		kfree(sis->suspend_state[i]); | 
 | 1043 | } | 
 | 1044 |  | 
 | 1045 | static int sis_chip_free(struct sis7019 *sis) | 
 | 1046 | { | 
 | 1047 | 	/* Reset the chip, and disable all interrputs. | 
 | 1048 | 	 */ | 
 | 1049 | 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); | 
 | 1050 | 	udelay(10); | 
 | 1051 | 	outl(0, sis->ioport + SIS_GCR); | 
 | 1052 | 	outl(0, sis->ioport + SIS_GIER); | 
 | 1053 |  | 
 | 1054 | 	/* Now, free everything we allocated. | 
 | 1055 | 	 */ | 
 | 1056 | 	if (sis->irq >= 0) | 
 | 1057 | 		free_irq(sis->irq, sis); | 
 | 1058 |  | 
 | 1059 | 	if (sis->ioaddr) | 
 | 1060 | 		iounmap(sis->ioaddr); | 
 | 1061 |  | 
 | 1062 | 	pci_release_regions(sis->pci); | 
 | 1063 | 	pci_disable_device(sis->pci); | 
 | 1064 |  | 
 | 1065 | 	sis_free_suspend(sis); | 
 | 1066 | 	return 0; | 
 | 1067 | } | 
 | 1068 |  | 
 | 1069 | static int sis_dev_free(struct snd_device *dev) | 
 | 1070 | { | 
 | 1071 | 	struct sis7019 *sis = dev->device_data; | 
 | 1072 | 	return sis_chip_free(sis); | 
 | 1073 | } | 
 | 1074 |  | 
 | 1075 | static int sis_chip_init(struct sis7019 *sis) | 
 | 1076 | { | 
 | 1077 | 	unsigned long io = sis->ioport; | 
 | 1078 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 1079 | 	u16 status; | 
 | 1080 | 	int count; | 
 | 1081 | 	int i; | 
 | 1082 |  | 
 | 1083 | 	/* Reset the audio controller | 
 | 1084 | 	 */ | 
 | 1085 | 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); | 
 | 1086 | 	udelay(10); | 
 | 1087 | 	outl(0, io + SIS_GCR); | 
 | 1088 |  | 
 | 1089 | 	/* Get the AC-link semaphore, and reset the codecs | 
 | 1090 | 	 */ | 
 | 1091 | 	count = 0xffff; | 
 | 1092 | 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) | 
 | 1093 | 		udelay(1); | 
 | 1094 |  | 
 | 1095 | 	if (!count) | 
 | 1096 | 		return -EIO; | 
 | 1097 |  | 
 | 1098 | 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); | 
 | 1099 | 	udelay(10); | 
 | 1100 |  | 
 | 1101 | 	count = 0xffff; | 
 | 1102 | 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) | 
 | 1103 | 		udelay(1); | 
 | 1104 |  | 
 | 1105 | 	/* Now that we've finished the reset, find out what's attached. | 
 | 1106 | 	 */ | 
 | 1107 | 	status = inl(io + SIS_AC97_STATUS); | 
 | 1108 | 	if (status & SIS_AC97_STATUS_CODEC_READY) | 
 | 1109 | 		sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; | 
 | 1110 | 	if (status & SIS_AC97_STATUS_CODEC2_READY) | 
 | 1111 | 		sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; | 
 | 1112 | 	if (status & SIS_AC97_STATUS_CODEC3_READY) | 
 | 1113 | 		sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; | 
 | 1114 |  | 
 | 1115 | 	/* All done, let go of the semaphore, and check for errors | 
 | 1116 | 	 */ | 
 | 1117 | 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); | 
 | 1118 | 	if (!sis->codecs_present || !count) | 
 | 1119 | 		return -EIO; | 
 | 1120 |  | 
 | 1121 | 	/* Let the hardware know that the audio driver is alive, | 
 | 1122 | 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and | 
 | 1123 | 	 * record channels. We're going to want to use Variable Rate Audio | 
 | 1124 | 	 * for recording, to avoid needlessly resampling from 48kHZ. | 
 | 1125 | 	 */ | 
 | 1126 | 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); | 
 | 1127 | 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | | 
 | 1128 | 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | | 
 | 1129 | 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE | | 
 | 1130 | 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); | 
 | 1131 |  | 
 | 1132 | 	/* All AC97 PCM slots should be sourced from sub-mixer 0. | 
 | 1133 | 	 */ | 
 | 1134 | 	outl(0, io + SIS_AC97_PSR); | 
 | 1135 |  | 
 | 1136 | 	/* There is only one valid DMA setup for a PCI environment. | 
 | 1137 | 	 */ | 
 | 1138 | 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); | 
 | 1139 |  | 
 | 1140 | 	/* Reset the syncronization groups for all of the channels | 
 | 1141 | 	 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. | 
 | 1142 | 	 * we'll need to change how we handle these. Until then, we just | 
 | 1143 | 	 * assign sub-mixer 0 to all playback channels, and avoid any | 
 | 1144 | 	 * attenuation on the audio. | 
 | 1145 | 	 */ | 
 | 1146 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_A); | 
 | 1147 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_B); | 
 | 1148 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_C); | 
 | 1149 | 	outl(0, io + SIS_PLAY_SYNC_GROUP_D); | 
 | 1150 | 	outl(0, io + SIS_MIXER_SYNC_GROUP); | 
 | 1151 |  | 
 | 1152 | 	for (i = 0; i < 64; i++) { | 
 | 1153 | 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); | 
 | 1154 | 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | | 
 | 1155 | 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); | 
 | 1156 | 	} | 
 | 1157 |  | 
 | 1158 | 	/* Don't attenuate any audio set for the wave amplifier. | 
 | 1159 | 	 * | 
 | 1160 | 	 * FIXME: Maximum attenuation is set for the music amp, which will | 
 | 1161 | 	 * need to change if we start using the synth engine. | 
 | 1162 | 	 */ | 
 | 1163 | 	outl(0xffff0000, io + SIS_WEVCR); | 
 | 1164 |  | 
 | 1165 | 	/* Ensure that the wave engine is in normal operating mode. | 
 | 1166 | 	 */ | 
 | 1167 | 	outl(0, io + SIS_WECCR); | 
 | 1168 |  | 
 | 1169 | 	/* Go ahead and enable the DMA interrupts. They won't go live | 
 | 1170 | 	 * until we start a channel. | 
 | 1171 | 	 */ | 
 | 1172 | 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | | 
 | 1173 | 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); | 
 | 1174 |  | 
 | 1175 | 	return 0; | 
 | 1176 | } | 
 | 1177 |  | 
 | 1178 | #ifdef CONFIG_PM | 
 | 1179 | static int sis_suspend(struct pci_dev *pci, pm_message_t state) | 
 | 1180 | { | 
 | 1181 | 	struct snd_card *card = pci_get_drvdata(pci); | 
 | 1182 | 	struct sis7019 *sis = card->private_data; | 
 | 1183 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 1184 | 	int i; | 
 | 1185 |  | 
 | 1186 | 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); | 
 | 1187 | 	snd_pcm_suspend_all(sis->pcm); | 
 | 1188 | 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 1189 | 		snd_ac97_suspend(sis->ac97[0]); | 
 | 1190 | 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | 
 | 1191 | 		snd_ac97_suspend(sis->ac97[1]); | 
 | 1192 | 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | 
 | 1193 | 		snd_ac97_suspend(sis->ac97[2]); | 
 | 1194 |  | 
 | 1195 | 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent. | 
 | 1196 | 	 */ | 
 | 1197 | 	if (sis->irq >= 0) { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1198 | 		free_irq(sis->irq, sis); | 
 | 1199 | 		sis->irq = -1; | 
 | 1200 | 	} | 
 | 1201 |  | 
 | 1202 | 	/* Save the internal state away | 
 | 1203 | 	 */ | 
 | 1204 | 	for (i = 0; i < 4; i++) { | 
 | 1205 | 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); | 
 | 1206 | 		ioaddr += 4096; | 
 | 1207 | 	} | 
 | 1208 |  | 
 | 1209 | 	pci_disable_device(pci); | 
 | 1210 | 	pci_save_state(pci); | 
 | 1211 | 	pci_set_power_state(pci, pci_choose_state(pci, state)); | 
 | 1212 | 	return 0; | 
 | 1213 | } | 
 | 1214 |  | 
 | 1215 | static int sis_resume(struct pci_dev *pci) | 
 | 1216 | { | 
 | 1217 | 	struct snd_card *card = pci_get_drvdata(pci); | 
 | 1218 | 	struct sis7019 *sis = card->private_data; | 
 | 1219 | 	void __iomem *ioaddr = sis->ioaddr; | 
 | 1220 | 	int i; | 
 | 1221 |  | 
 | 1222 | 	pci_set_power_state(pci, PCI_D0); | 
 | 1223 | 	pci_restore_state(pci); | 
 | 1224 |  | 
 | 1225 | 	if (pci_enable_device(pci) < 0) { | 
 | 1226 | 		printk(KERN_ERR "sis7019: unable to re-enable device\n"); | 
 | 1227 | 		goto error; | 
 | 1228 | 	} | 
 | 1229 |  | 
 | 1230 | 	if (sis_chip_init(sis)) { | 
 | 1231 | 		printk(KERN_ERR "sis7019: unable to re-init controller\n"); | 
 | 1232 | 		goto error; | 
 | 1233 | 	} | 
 | 1234 |  | 
 | 1235 | 	if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, | 
 | 1236 | 				card->shortname, sis)) { | 
 | 1237 | 		printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); | 
 | 1238 | 		goto error; | 
 | 1239 | 	} | 
 | 1240 |  | 
 | 1241 | 	/* Restore saved state, then clear out the page we use for the | 
 | 1242 | 	 * silence buffer. | 
 | 1243 | 	 */ | 
 | 1244 | 	for (i = 0; i < 4; i++) { | 
 | 1245 | 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096); | 
 | 1246 | 		ioaddr += 4096; | 
 | 1247 | 	} | 
 | 1248 |  | 
 | 1249 | 	memset(sis->suspend_state[0], 0, 4096); | 
 | 1250 |  | 
 | 1251 | 	sis->irq = pci->irq; | 
 | 1252 | 	pci_set_master(pci); | 
 | 1253 |  | 
 | 1254 | 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) | 
 | 1255 | 		snd_ac97_resume(sis->ac97[0]); | 
 | 1256 | 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) | 
 | 1257 | 		snd_ac97_resume(sis->ac97[1]); | 
 | 1258 | 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) | 
 | 1259 | 		snd_ac97_resume(sis->ac97[2]); | 
 | 1260 |  | 
 | 1261 | 	snd_power_change_state(card, SNDRV_CTL_POWER_D0); | 
 | 1262 | 	return 0; | 
 | 1263 |  | 
 | 1264 | error: | 
 | 1265 | 	snd_card_disconnect(card); | 
 | 1266 | 	return -EIO; | 
 | 1267 | } | 
 | 1268 | #endif /* CONFIG_PM */ | 
 | 1269 |  | 
 | 1270 | static int sis_alloc_suspend(struct sis7019 *sis) | 
 | 1271 | { | 
 | 1272 | 	int i; | 
 | 1273 |  | 
 | 1274 | 	/* We need 16K to store the internal wave engine state during a | 
 | 1275 | 	 * suspend, but we don't need it to be contiguous, so play nice | 
 | 1276 | 	 * with the memory system. We'll also use this area for a silence | 
 | 1277 | 	 * buffer. | 
 | 1278 | 	 */ | 
 | 1279 | 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) { | 
 | 1280 | 		sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); | 
 | 1281 | 		if (!sis->suspend_state[i]) | 
 | 1282 | 			return -ENOMEM; | 
 | 1283 | 	} | 
 | 1284 | 	memset(sis->suspend_state[0], 0, 4096); | 
 | 1285 |  | 
 | 1286 | 	return 0; | 
 | 1287 | } | 
 | 1288 |  | 
 | 1289 | static int __devinit sis_chip_create(struct snd_card *card, | 
 | 1290 | 					struct pci_dev *pci) | 
 | 1291 | { | 
 | 1292 | 	struct sis7019 *sis = card->private_data; | 
 | 1293 | 	struct voice *voice; | 
 | 1294 | 	static struct snd_device_ops ops = { | 
 | 1295 | 		.dev_free = sis_dev_free, | 
 | 1296 | 	}; | 
 | 1297 | 	int rc; | 
 | 1298 | 	int i; | 
 | 1299 |  | 
 | 1300 | 	rc = pci_enable_device(pci); | 
 | 1301 | 	if (rc) | 
 | 1302 | 		goto error_out; | 
 | 1303 |  | 
| Yang Hongyang | 28b7679 | 2009-04-06 19:01:17 -0700 | [diff] [blame] | 1304 | 	if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) { | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1305 | 		printk(KERN_ERR "sis7019: architecture does not support " | 
 | 1306 | 					"30-bit PCI busmaster DMA"); | 
 | 1307 | 		goto error_out_enabled; | 
 | 1308 | 	} | 
 | 1309 |  | 
 | 1310 | 	memset(sis, 0, sizeof(*sis)); | 
 | 1311 | 	mutex_init(&sis->ac97_mutex); | 
 | 1312 | 	spin_lock_init(&sis->voice_lock); | 
 | 1313 | 	sis->card = card; | 
 | 1314 | 	sis->pci = pci; | 
 | 1315 | 	sis->irq = -1; | 
 | 1316 | 	sis->ioport = pci_resource_start(pci, 0); | 
 | 1317 |  | 
 | 1318 | 	rc = pci_request_regions(pci, "SiS7019"); | 
 | 1319 | 	if (rc) { | 
 | 1320 | 		printk(KERN_ERR "sis7019: unable request regions\n"); | 
 | 1321 | 		goto error_out_enabled; | 
 | 1322 | 	} | 
 | 1323 |  | 
 | 1324 | 	rc = -EIO; | 
 | 1325 | 	sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); | 
 | 1326 | 	if (!sis->ioaddr) { | 
 | 1327 | 		printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); | 
 | 1328 | 		goto error_out_cleanup; | 
 | 1329 | 	} | 
 | 1330 |  | 
 | 1331 | 	rc = sis_alloc_suspend(sis); | 
 | 1332 | 	if (rc < 0) { | 
 | 1333 | 		printk(KERN_ERR "sis7019: unable to allocate state storage\n"); | 
 | 1334 | 		goto error_out_cleanup; | 
 | 1335 | 	} | 
 | 1336 |  | 
 | 1337 | 	rc = sis_chip_init(sis); | 
 | 1338 | 	if (rc) | 
 | 1339 | 		goto error_out_cleanup; | 
 | 1340 |  | 
 | 1341 | 	if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, | 
 | 1342 | 				card->shortname, sis)) { | 
 | 1343 | 		printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); | 
 | 1344 | 		goto error_out_cleanup; | 
 | 1345 | 	} | 
 | 1346 |  | 
 | 1347 | 	sis->irq = pci->irq; | 
 | 1348 | 	pci_set_master(pci); | 
 | 1349 |  | 
 | 1350 | 	for (i = 0; i < 64; i++) { | 
 | 1351 | 		voice = &sis->voices[i]; | 
 | 1352 | 		voice->num = i; | 
 | 1353 | 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); | 
 | 1354 | 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); | 
 | 1355 | 	} | 
 | 1356 |  | 
 | 1357 | 	voice = &sis->capture_voice; | 
 | 1358 | 	voice->flags = VOICE_CAPTURE; | 
 | 1359 | 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; | 
 | 1360 | 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); | 
 | 1361 |  | 
 | 1362 | 	rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); | 
 | 1363 | 	if (rc) | 
 | 1364 | 		goto error_out_cleanup; | 
 | 1365 |  | 
 | 1366 | 	snd_card_set_dev(card, &pci->dev); | 
 | 1367 |  | 
 | 1368 | 	return 0; | 
 | 1369 |  | 
 | 1370 | error_out_cleanup: | 
 | 1371 | 	sis_chip_free(sis); | 
 | 1372 |  | 
 | 1373 | error_out_enabled: | 
 | 1374 | 	pci_disable_device(pci); | 
 | 1375 |  | 
 | 1376 | error_out: | 
 | 1377 | 	return rc; | 
 | 1378 | } | 
 | 1379 |  | 
 | 1380 | static int __devinit snd_sis7019_probe(struct pci_dev *pci, | 
 | 1381 | 					const struct pci_device_id *pci_id) | 
 | 1382 | { | 
 | 1383 | 	struct snd_card *card; | 
 | 1384 | 	struct sis7019 *sis; | 
 | 1385 | 	int rc; | 
 | 1386 |  | 
 | 1387 | 	rc = -ENOENT; | 
 | 1388 | 	if (!enable) | 
 | 1389 | 		goto error_out; | 
 | 1390 |  | 
| Takashi Iwai | e58de7b | 2008-12-28 16:44:30 +0100 | [diff] [blame] | 1391 | 	rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card); | 
 | 1392 | 	if (rc < 0) | 
| David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1393 | 		goto error_out; | 
 | 1394 |  | 
 | 1395 | 	strcpy(card->driver, "SiS7019"); | 
 | 1396 | 	strcpy(card->shortname, "SiS7019"); | 
 | 1397 | 	rc = sis_chip_create(card, pci); | 
 | 1398 | 	if (rc) | 
 | 1399 | 		goto card_error_out; | 
 | 1400 |  | 
 | 1401 | 	sis = card->private_data; | 
 | 1402 |  | 
 | 1403 | 	rc = sis_mixer_create(sis); | 
 | 1404 | 	if (rc) | 
 | 1405 | 		goto card_error_out; | 
 | 1406 |  | 
 | 1407 | 	rc = sis_pcm_create(sis); | 
 | 1408 | 	if (rc) | 
 | 1409 | 		goto card_error_out; | 
 | 1410 |  | 
 | 1411 | 	snprintf(card->longname, sizeof(card->longname), | 
 | 1412 | 			"%s Audio Accelerator with %s at 0x%lx, irq %d", | 
 | 1413 | 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]), | 
 | 1414 | 			sis->ioport, sis->irq); | 
 | 1415 |  | 
 | 1416 | 	rc = snd_card_register(card); | 
 | 1417 | 	if (rc) | 
 | 1418 | 		goto card_error_out; | 
 | 1419 |  | 
 | 1420 | 	pci_set_drvdata(pci, card); | 
 | 1421 | 	return 0; | 
 | 1422 |  | 
 | 1423 | card_error_out: | 
 | 1424 | 	snd_card_free(card); | 
 | 1425 |  | 
 | 1426 | error_out: | 
 | 1427 | 	return rc; | 
 | 1428 | } | 
 | 1429 |  | 
 | 1430 | static void __devexit snd_sis7019_remove(struct pci_dev *pci) | 
 | 1431 | { | 
 | 1432 | 	snd_card_free(pci_get_drvdata(pci)); | 
 | 1433 | 	pci_set_drvdata(pci, NULL); | 
 | 1434 | } | 
 | 1435 |  | 
 | 1436 | static struct pci_driver sis7019_driver = { | 
 | 1437 | 	.name = "SiS7019", | 
 | 1438 | 	.id_table = snd_sis7019_ids, | 
 | 1439 | 	.probe = snd_sis7019_probe, | 
 | 1440 | 	.remove = __devexit_p(snd_sis7019_remove), | 
 | 1441 |  | 
 | 1442 | #ifdef CONFIG_PM | 
 | 1443 | 	.suspend = sis_suspend, | 
 | 1444 | 	.resume = sis_resume, | 
 | 1445 | #endif | 
 | 1446 | }; | 
 | 1447 |  | 
 | 1448 | static int __init sis7019_init(void) | 
 | 1449 | { | 
 | 1450 | 	return pci_register_driver(&sis7019_driver); | 
 | 1451 | } | 
 | 1452 |  | 
 | 1453 | static void __exit sis7019_exit(void) | 
 | 1454 | { | 
 | 1455 | 	pci_unregister_driver(&sis7019_driver); | 
 | 1456 | } | 
 | 1457 |  | 
 | 1458 | module_init(sis7019_init); | 
 | 1459 | module_exit(sis7019_exit); |