| Hong H. Pham | 280ff97 | 2009-06-04 02:10:11 -0700 | [diff] [blame] | 1 | /* cpumap.c: used for optimizing CPU assignment | 
|  | 2 | * | 
|  | 3 | * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com> | 
|  | 4 | */ | 
|  | 5 |  | 
|  | 6 | #include <linux/module.h> | 
|  | 7 | #include <linux/kernel.h> | 
|  | 8 | #include <linux/init.h> | 
|  | 9 | #include <linux/cpumask.h> | 
|  | 10 | #include <linux/spinlock.h> | 
|  | 11 | #include <asm/cpudata.h> | 
|  | 12 | #include "cpumap.h" | 
|  | 13 |  | 
|  | 14 |  | 
|  | 15 | enum { | 
|  | 16 | CPUINFO_LVL_ROOT = 0, | 
|  | 17 | CPUINFO_LVL_NODE, | 
|  | 18 | CPUINFO_LVL_CORE, | 
|  | 19 | CPUINFO_LVL_PROC, | 
|  | 20 | CPUINFO_LVL_MAX, | 
|  | 21 | }; | 
|  | 22 |  | 
|  | 23 | enum { | 
|  | 24 | ROVER_NO_OP              = 0, | 
|  | 25 | /* Increment rover every time level is visited */ | 
|  | 26 | ROVER_INC_ON_VISIT       = 1 << 0, | 
|  | 27 | /* Increment parent's rover every time rover wraps around */ | 
|  | 28 | ROVER_INC_PARENT_ON_LOOP = 1 << 1, | 
|  | 29 | }; | 
|  | 30 |  | 
|  | 31 | struct cpuinfo_node { | 
|  | 32 | int id; | 
|  | 33 | int level; | 
|  | 34 | int num_cpus;    /* Number of CPUs in this hierarchy */ | 
|  | 35 | int parent_index; | 
|  | 36 | int child_start; /* Array index of the first child node */ | 
|  | 37 | int child_end;   /* Array index of the last child node */ | 
|  | 38 | int rover;       /* Child node iterator */ | 
|  | 39 | }; | 
|  | 40 |  | 
|  | 41 | struct cpuinfo_level { | 
|  | 42 | int start_index; /* Index of first node of a level in a cpuinfo tree */ | 
|  | 43 | int end_index;   /* Index of last node of a level in a cpuinfo tree */ | 
|  | 44 | int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */ | 
|  | 45 | }; | 
|  | 46 |  | 
|  | 47 | struct cpuinfo_tree { | 
|  | 48 | int total_nodes; | 
|  | 49 |  | 
|  | 50 | /* Offsets into nodes[] for each level of the tree */ | 
|  | 51 | struct cpuinfo_level level[CPUINFO_LVL_MAX]; | 
|  | 52 | struct cpuinfo_node  nodes[0]; | 
|  | 53 | }; | 
|  | 54 |  | 
|  | 55 |  | 
|  | 56 | static struct cpuinfo_tree *cpuinfo_tree; | 
|  | 57 |  | 
|  | 58 | static u16 cpu_distribution_map[NR_CPUS]; | 
|  | 59 | static DEFINE_SPINLOCK(cpu_map_lock); | 
|  | 60 |  | 
|  | 61 |  | 
|  | 62 | /* Niagara optimized cpuinfo tree traversal. */ | 
|  | 63 | static const int niagara_iterate_method[] = { | 
|  | 64 | [CPUINFO_LVL_ROOT] = ROVER_NO_OP, | 
|  | 65 |  | 
|  | 66 | /* Strands (or virtual CPUs) within a core may not run concurrently | 
|  | 67 | * on the Niagara, as instruction pipeline(s) are shared.  Distribute | 
|  | 68 | * work to strands in different cores first for better concurrency. | 
|  | 69 | * Go to next NUMA node when all cores are used. | 
|  | 70 | */ | 
|  | 71 | [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, | 
|  | 72 |  | 
|  | 73 | /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e. | 
|  | 74 | * a proc_id represents an instruction pipeline.  Distribute work to | 
|  | 75 | * strands in different proc_id groups if the core has multiple | 
|  | 76 | * instruction pipelines (e.g. the Niagara 2/2+ has two). | 
|  | 77 | */ | 
|  | 78 | [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT, | 
|  | 79 |  | 
|  | 80 | /* Pick the next strand in the proc_id group. */ | 
|  | 81 | [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT, | 
|  | 82 | }; | 
|  | 83 |  | 
|  | 84 | /* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA | 
|  | 85 | * nodes. | 
|  | 86 | */ | 
|  | 87 | static const int generic_iterate_method[] = { | 
|  | 88 | [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT, | 
|  | 89 | [CPUINFO_LVL_NODE] = ROVER_NO_OP, | 
|  | 90 | [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP, | 
|  | 91 | [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, | 
|  | 92 | }; | 
|  | 93 |  | 
|  | 94 |  | 
|  | 95 | static int cpuinfo_id(int cpu, int level) | 
|  | 96 | { | 
|  | 97 | int id; | 
|  | 98 |  | 
|  | 99 | switch (level) { | 
|  | 100 | case CPUINFO_LVL_ROOT: | 
|  | 101 | id = 0; | 
|  | 102 | break; | 
|  | 103 | case CPUINFO_LVL_NODE: | 
|  | 104 | id = cpu_to_node(cpu); | 
|  | 105 | break; | 
|  | 106 | case CPUINFO_LVL_CORE: | 
|  | 107 | id = cpu_data(cpu).core_id; | 
|  | 108 | break; | 
|  | 109 | case CPUINFO_LVL_PROC: | 
|  | 110 | id = cpu_data(cpu).proc_id; | 
|  | 111 | break; | 
|  | 112 | default: | 
|  | 113 | id = -EINVAL; | 
|  | 114 | } | 
|  | 115 | return id; | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | /* | 
|  | 119 | * Enumerate the CPU information in __cpu_data to determine the start index, | 
|  | 120 | * end index, and number of nodes for each level in the cpuinfo tree.  The | 
|  | 121 | * total number of cpuinfo nodes required to build the tree is returned. | 
|  | 122 | */ | 
|  | 123 | static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level) | 
|  | 124 | { | 
|  | 125 | int prev_id[CPUINFO_LVL_MAX]; | 
|  | 126 | int i, n, num_nodes; | 
|  | 127 |  | 
|  | 128 | for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) { | 
|  | 129 | struct cpuinfo_level *lv = &tree_level[i]; | 
|  | 130 |  | 
|  | 131 | prev_id[i] = -1; | 
|  | 132 | lv->start_index = lv->end_index = lv->num_nodes = 0; | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | num_nodes = 1; /* Include the root node */ | 
|  | 136 |  | 
|  | 137 | for (i = 0; i < num_possible_cpus(); i++) { | 
|  | 138 | if (!cpu_online(i)) | 
|  | 139 | continue; | 
|  | 140 |  | 
|  | 141 | n = cpuinfo_id(i, CPUINFO_LVL_NODE); | 
|  | 142 | if (n > prev_id[CPUINFO_LVL_NODE]) { | 
|  | 143 | tree_level[CPUINFO_LVL_NODE].num_nodes++; | 
|  | 144 | prev_id[CPUINFO_LVL_NODE] = n; | 
|  | 145 | num_nodes++; | 
|  | 146 | } | 
|  | 147 | n = cpuinfo_id(i, CPUINFO_LVL_CORE); | 
|  | 148 | if (n > prev_id[CPUINFO_LVL_CORE]) { | 
|  | 149 | tree_level[CPUINFO_LVL_CORE].num_nodes++; | 
|  | 150 | prev_id[CPUINFO_LVL_CORE] = n; | 
|  | 151 | num_nodes++; | 
|  | 152 | } | 
|  | 153 | n = cpuinfo_id(i, CPUINFO_LVL_PROC); | 
|  | 154 | if (n > prev_id[CPUINFO_LVL_PROC]) { | 
|  | 155 | tree_level[CPUINFO_LVL_PROC].num_nodes++; | 
|  | 156 | prev_id[CPUINFO_LVL_PROC] = n; | 
|  | 157 | num_nodes++; | 
|  | 158 | } | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | tree_level[CPUINFO_LVL_ROOT].num_nodes = 1; | 
|  | 162 |  | 
|  | 163 | n = tree_level[CPUINFO_LVL_NODE].num_nodes; | 
|  | 164 | tree_level[CPUINFO_LVL_NODE].start_index = 1; | 
|  | 165 | tree_level[CPUINFO_LVL_NODE].end_index   = n; | 
|  | 166 |  | 
|  | 167 | n++; | 
|  | 168 | tree_level[CPUINFO_LVL_CORE].start_index = n; | 
|  | 169 | n += tree_level[CPUINFO_LVL_CORE].num_nodes; | 
|  | 170 | tree_level[CPUINFO_LVL_CORE].end_index   = n - 1; | 
|  | 171 |  | 
|  | 172 | tree_level[CPUINFO_LVL_PROC].start_index = n; | 
|  | 173 | n += tree_level[CPUINFO_LVL_PROC].num_nodes; | 
|  | 174 | tree_level[CPUINFO_LVL_PROC].end_index   = n - 1; | 
|  | 175 |  | 
|  | 176 | return num_nodes; | 
|  | 177 | } | 
|  | 178 |  | 
|  | 179 | /* Build a tree representation of the CPU hierarchy using the per CPU | 
|  | 180 | * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are | 
|  | 181 | * assumed to be sorted in ascending order based on node, core_id, and | 
|  | 182 | * proc_id (in order of significance). | 
|  | 183 | */ | 
|  | 184 | static struct cpuinfo_tree *build_cpuinfo_tree(void) | 
|  | 185 | { | 
|  | 186 | struct cpuinfo_tree *new_tree; | 
|  | 187 | struct cpuinfo_node *node; | 
|  | 188 | struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX]; | 
|  | 189 | int num_cpus[CPUINFO_LVL_MAX]; | 
|  | 190 | int level_rover[CPUINFO_LVL_MAX]; | 
|  | 191 | int prev_id[CPUINFO_LVL_MAX]; | 
|  | 192 | int n, id, cpu, prev_cpu, last_cpu, level; | 
|  | 193 |  | 
|  | 194 | n = enumerate_cpuinfo_nodes(tmp_level); | 
|  | 195 |  | 
|  | 196 | new_tree = kzalloc(sizeof(struct cpuinfo_tree) + | 
|  | 197 | (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC); | 
|  | 198 | if (!new_tree) | 
|  | 199 | return NULL; | 
|  | 200 |  | 
|  | 201 | new_tree->total_nodes = n; | 
|  | 202 | memcpy(&new_tree->level, tmp_level, sizeof(tmp_level)); | 
|  | 203 |  | 
|  | 204 | prev_cpu = cpu = first_cpu(cpu_online_map); | 
|  | 205 |  | 
|  | 206 | /* Initialize all levels in the tree with the first CPU */ | 
|  | 207 | for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) { | 
|  | 208 | n = new_tree->level[level].start_index; | 
|  | 209 |  | 
|  | 210 | level_rover[level] = n; | 
|  | 211 | node = &new_tree->nodes[n]; | 
|  | 212 |  | 
|  | 213 | id = cpuinfo_id(cpu, level); | 
|  | 214 | if (unlikely(id < 0)) { | 
|  | 215 | kfree(new_tree); | 
|  | 216 | return NULL; | 
|  | 217 | } | 
|  | 218 | node->id = id; | 
|  | 219 | node->level = level; | 
|  | 220 | node->num_cpus = 1; | 
|  | 221 |  | 
|  | 222 | node->parent_index = (level > CPUINFO_LVL_ROOT) | 
|  | 223 | ? new_tree->level[level - 1].start_index : -1; | 
|  | 224 |  | 
|  | 225 | node->child_start = node->child_end = node->rover = | 
|  | 226 | (level == CPUINFO_LVL_PROC) | 
|  | 227 | ? cpu : new_tree->level[level + 1].start_index; | 
|  | 228 |  | 
|  | 229 | prev_id[level] = node->id; | 
|  | 230 | num_cpus[level] = 1; | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) { | 
|  | 234 | if (cpu_online(last_cpu)) | 
|  | 235 | break; | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | while (++cpu <= last_cpu) { | 
|  | 239 | if (!cpu_online(cpu)) | 
|  | 240 | continue; | 
|  | 241 |  | 
|  | 242 | for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; | 
|  | 243 | level--) { | 
|  | 244 | id = cpuinfo_id(cpu, level); | 
|  | 245 | if (unlikely(id < 0)) { | 
|  | 246 | kfree(new_tree); | 
|  | 247 | return NULL; | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | if ((id != prev_id[level]) || (cpu == last_cpu)) { | 
|  | 251 | prev_id[level] = id; | 
|  | 252 | node = &new_tree->nodes[level_rover[level]]; | 
|  | 253 | node->num_cpus = num_cpus[level]; | 
|  | 254 | num_cpus[level] = 1; | 
|  | 255 |  | 
|  | 256 | if (cpu == last_cpu) | 
|  | 257 | node->num_cpus++; | 
|  | 258 |  | 
|  | 259 | /* Connect tree node to parent */ | 
|  | 260 | if (level == CPUINFO_LVL_ROOT) | 
|  | 261 | node->parent_index = -1; | 
|  | 262 | else | 
|  | 263 | node->parent_index = | 
|  | 264 | level_rover[level - 1]; | 
|  | 265 |  | 
|  | 266 | if (level == CPUINFO_LVL_PROC) { | 
|  | 267 | node->child_end = | 
|  | 268 | (cpu == last_cpu) ? cpu : prev_cpu; | 
|  | 269 | } else { | 
|  | 270 | node->child_end = | 
|  | 271 | level_rover[level + 1] - 1; | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | /* Initialize the next node in the same level */ | 
|  | 275 | n = ++level_rover[level]; | 
|  | 276 | if (n <= new_tree->level[level].end_index) { | 
|  | 277 | node = &new_tree->nodes[n]; | 
|  | 278 | node->id = id; | 
|  | 279 | node->level = level; | 
|  | 280 |  | 
|  | 281 | /* Connect node to child */ | 
|  | 282 | node->child_start = node->child_end = | 
|  | 283 | node->rover = | 
|  | 284 | (level == CPUINFO_LVL_PROC) | 
|  | 285 | ? cpu : level_rover[level + 1]; | 
|  | 286 | } | 
|  | 287 | } else | 
|  | 288 | num_cpus[level]++; | 
|  | 289 | } | 
|  | 290 | prev_cpu = cpu; | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | return new_tree; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | static void increment_rover(struct cpuinfo_tree *t, int node_index, | 
|  | 297 | int root_index, const int *rover_inc_table) | 
|  | 298 | { | 
|  | 299 | struct cpuinfo_node *node = &t->nodes[node_index]; | 
|  | 300 | int top_level, level; | 
|  | 301 |  | 
|  | 302 | top_level = t->nodes[root_index].level; | 
|  | 303 | for (level = node->level; level >= top_level; level--) { | 
|  | 304 | node->rover++; | 
|  | 305 | if (node->rover <= node->child_end) | 
|  | 306 | return; | 
|  | 307 |  | 
|  | 308 | node->rover = node->child_start; | 
|  | 309 | /* If parent's rover does not need to be adjusted, stop here. */ | 
|  | 310 | if ((level == top_level) || | 
|  | 311 | !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP)) | 
|  | 312 | return; | 
|  | 313 |  | 
|  | 314 | node = &t->nodes[node->parent_index]; | 
|  | 315 | } | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index) | 
|  | 319 | { | 
|  | 320 | const int *rover_inc_table; | 
|  | 321 | int level, new_index, index = root_index; | 
|  | 322 |  | 
|  | 323 | switch (sun4v_chip_type) { | 
|  | 324 | case SUN4V_CHIP_NIAGARA1: | 
|  | 325 | case SUN4V_CHIP_NIAGARA2: | 
|  | 326 | rover_inc_table = niagara_iterate_method; | 
|  | 327 | break; | 
|  | 328 | default: | 
|  | 329 | rover_inc_table = generic_iterate_method; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX; | 
|  | 333 | level++) { | 
|  | 334 | new_index = t->nodes[index].rover; | 
|  | 335 | if (rover_inc_table[level] & ROVER_INC_ON_VISIT) | 
|  | 336 | increment_rover(t, index, root_index, rover_inc_table); | 
|  | 337 |  | 
|  | 338 | index = new_index; | 
|  | 339 | } | 
|  | 340 | return index; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | static void _cpu_map_rebuild(void) | 
|  | 344 | { | 
|  | 345 | int i; | 
|  | 346 |  | 
|  | 347 | if (cpuinfo_tree) { | 
|  | 348 | kfree(cpuinfo_tree); | 
|  | 349 | cpuinfo_tree = NULL; | 
|  | 350 | } | 
|  | 351 |  | 
|  | 352 | cpuinfo_tree = build_cpuinfo_tree(); | 
|  | 353 | if (!cpuinfo_tree) | 
|  | 354 | return; | 
|  | 355 |  | 
|  | 356 | /* Build CPU distribution map that spans all online CPUs.  No need | 
|  | 357 | * to check if the CPU is online, as that is done when the cpuinfo | 
|  | 358 | * tree is being built. | 
|  | 359 | */ | 
|  | 360 | for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++) | 
|  | 361 | cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0); | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | /* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear | 
|  | 365 | * round robin. | 
|  | 366 | */ | 
|  | 367 | static int simple_map_to_cpu(unsigned int index) | 
|  | 368 | { | 
|  | 369 | int i, end, cpu_rover; | 
|  | 370 |  | 
|  | 371 | cpu_rover = 0; | 
|  | 372 | end = index % num_online_cpus(); | 
|  | 373 | for (i = 0; i < num_possible_cpus(); i++) { | 
|  | 374 | if (cpu_online(cpu_rover)) { | 
|  | 375 | if (cpu_rover >= end) | 
|  | 376 | return cpu_rover; | 
|  | 377 |  | 
|  | 378 | cpu_rover++; | 
|  | 379 | } | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | /* Impossible, since num_online_cpus() <= num_possible_cpus() */ | 
|  | 383 | return first_cpu(cpu_online_map); | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | static int _map_to_cpu(unsigned int index) | 
|  | 387 | { | 
|  | 388 | struct cpuinfo_node *root_node; | 
|  | 389 |  | 
|  | 390 | if (unlikely(!cpuinfo_tree)) { | 
|  | 391 | _cpu_map_rebuild(); | 
|  | 392 | if (!cpuinfo_tree) | 
|  | 393 | return simple_map_to_cpu(index); | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | root_node = &cpuinfo_tree->nodes[0]; | 
|  | 397 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 398 | if (unlikely(root_node->num_cpus != num_online_cpus())) { | 
|  | 399 | _cpu_map_rebuild(); | 
|  | 400 | if (!cpuinfo_tree) | 
|  | 401 | return simple_map_to_cpu(index); | 
|  | 402 | } | 
|  | 403 | #endif | 
|  | 404 | return cpu_distribution_map[index % root_node->num_cpus]; | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | int map_to_cpu(unsigned int index) | 
|  | 408 | { | 
|  | 409 | int mapped_cpu; | 
|  | 410 | unsigned long flag; | 
|  | 411 |  | 
|  | 412 | spin_lock_irqsave(&cpu_map_lock, flag); | 
|  | 413 | mapped_cpu = _map_to_cpu(index); | 
|  | 414 |  | 
|  | 415 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 416 | while (unlikely(!cpu_online(mapped_cpu))) | 
|  | 417 | mapped_cpu = _map_to_cpu(index); | 
|  | 418 | #endif | 
|  | 419 | spin_unlock_irqrestore(&cpu_map_lock, flag); | 
|  | 420 | return mapped_cpu; | 
|  | 421 | } | 
|  | 422 | EXPORT_SYMBOL(map_to_cpu); | 
|  | 423 |  | 
|  | 424 | void cpu_map_rebuild(void) | 
|  | 425 | { | 
|  | 426 | unsigned long flag; | 
|  | 427 |  | 
|  | 428 | spin_lock_irqsave(&cpu_map_lock, flag); | 
|  | 429 | _cpu_map_rebuild(); | 
|  | 430 | spin_unlock_irqrestore(&cpu_map_lock, flag); | 
|  | 431 | } |