| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * lib/prio_tree.c - priority search tree | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | 
|  | 5 | * | 
|  | 6 | * This file is released under the GPL v2. | 
|  | 7 | * | 
|  | 8 | * Based on the radix priority search tree proposed by Edward M. McCreight | 
|  | 9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | 
|  | 10 | * | 
|  | 11 | * 02Feb2004	Initial version | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/init.h> | 
|  | 15 | #include <linux/mm.h> | 
|  | 16 | #include <linux/prio_tree.h> | 
|  | 17 |  | 
|  | 18 | /* | 
|  | 19 | * A clever mix of heap and radix trees forms a radix priority search tree (PST) | 
|  | 20 | * which is useful for storing intervals, e.g, we can consider a vma as a closed | 
|  | 21 | * interval of file pages [offset_begin, offset_end], and store all vmas that | 
|  | 22 | * map a file in a PST. Then, using the PST, we can answer a stabbing query, | 
|  | 23 | * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | 
|  | 24 | * given input interval X (a set of consecutive file pages), in "O(log n + m)" | 
|  | 25 | * time where 'log n' is the height of the PST, and 'm' is the number of stored | 
|  | 26 | * intervals (vmas) that overlap (map) with the input interval X (the set of | 
|  | 27 | * consecutive file pages). | 
|  | 28 | * | 
|  | 29 | * In our implementation, we store closed intervals of the form [radix_index, | 
|  | 30 | * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | 
|  | 31 | * is designed for storing intervals with unique radix indices, i.e., each | 
|  | 32 | * interval have different radix_index. However, this limitation can be easily | 
|  | 33 | * overcome by using the size, i.e., heap_index - radix_index, as part of the | 
|  | 34 | * index, so we index the tree using [(radix_index,size), heap_index]. | 
|  | 35 | * | 
|  | 36 | * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | 
|  | 37 | * machine, the maximum height of a PST can be 64. We can use a balanced version | 
|  | 38 | * of the priority search tree to optimize the tree height, but the balanced | 
|  | 39 | * tree proposed by McCreight is too complex and memory-hungry for our purpose. | 
|  | 40 | */ | 
|  | 41 |  | 
|  | 42 | /* | 
|  | 43 | * The following macros are used for implementing prio_tree for i_mmap | 
|  | 44 | */ | 
|  | 45 |  | 
|  | 46 | #define RADIX_INDEX(vma)  ((vma)->vm_pgoff) | 
|  | 47 | #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | 
|  | 48 | /* avoid overflow */ | 
|  | 49 | #define HEAP_INDEX(vma)	  ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | 
|  | 50 |  | 
|  | 51 |  | 
|  | 52 | static void get_index(const struct prio_tree_root *root, | 
|  | 53 | const struct prio_tree_node *node, | 
|  | 54 | unsigned long *radix, unsigned long *heap) | 
|  | 55 | { | 
|  | 56 | if (root->raw) { | 
|  | 57 | struct vm_area_struct *vma = prio_tree_entry( | 
|  | 58 | node, struct vm_area_struct, shared.prio_tree_node); | 
|  | 59 |  | 
|  | 60 | *radix = RADIX_INDEX(vma); | 
|  | 61 | *heap = HEAP_INDEX(vma); | 
|  | 62 | } | 
|  | 63 | else { | 
|  | 64 | *radix = node->start; | 
|  | 65 | *heap = node->last; | 
|  | 66 | } | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | 
|  | 70 |  | 
|  | 71 | void __init prio_tree_init(void) | 
|  | 72 | { | 
|  | 73 | unsigned int i; | 
|  | 74 |  | 
|  | 75 | for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | 
|  | 76 | index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | 
|  | 77 | index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | 
|  | 78 | } | 
|  | 79 |  | 
|  | 80 | /* | 
|  | 81 | * Maximum heap_index that can be stored in a PST with index_bits bits | 
|  | 82 | */ | 
|  | 83 | static inline unsigned long prio_tree_maxindex(unsigned int bits) | 
|  | 84 | { | 
|  | 85 | return index_bits_to_maxindex[bits - 1]; | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | /* | 
|  | 89 | * Extend a priority search tree so that it can store a node with heap_index | 
|  | 90 | * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | 
|  | 91 | * However, this function is used rarely and the common case performance is | 
|  | 92 | * not bad. | 
|  | 93 | */ | 
|  | 94 | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | 
|  | 95 | struct prio_tree_node *node, unsigned long max_heap_index) | 
|  | 96 | { | 
|  | 97 | struct prio_tree_node *first = NULL, *prev, *last = NULL; | 
|  | 98 |  | 
|  | 99 | if (max_heap_index > prio_tree_maxindex(root->index_bits)) | 
|  | 100 | root->index_bits++; | 
|  | 101 |  | 
|  | 102 | while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | 
|  | 103 | root->index_bits++; | 
|  | 104 |  | 
|  | 105 | if (prio_tree_empty(root)) | 
|  | 106 | continue; | 
|  | 107 |  | 
|  | 108 | if (first == NULL) { | 
|  | 109 | first = root->prio_tree_node; | 
|  | 110 | prio_tree_remove(root, root->prio_tree_node); | 
|  | 111 | INIT_PRIO_TREE_NODE(first); | 
|  | 112 | last = first; | 
|  | 113 | } else { | 
|  | 114 | prev = last; | 
|  | 115 | last = root->prio_tree_node; | 
|  | 116 | prio_tree_remove(root, root->prio_tree_node); | 
|  | 117 | INIT_PRIO_TREE_NODE(last); | 
|  | 118 | prev->left = last; | 
|  | 119 | last->parent = prev; | 
|  | 120 | } | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | INIT_PRIO_TREE_NODE(node); | 
|  | 124 |  | 
|  | 125 | if (first) { | 
|  | 126 | node->left = first; | 
|  | 127 | first->parent = node; | 
|  | 128 | } else | 
|  | 129 | last = node; | 
|  | 130 |  | 
|  | 131 | if (!prio_tree_empty(root)) { | 
|  | 132 | last->left = root->prio_tree_node; | 
|  | 133 | last->left->parent = last; | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | root->prio_tree_node = node; | 
|  | 137 | return node; | 
|  | 138 | } | 
|  | 139 |  | 
|  | 140 | /* | 
|  | 141 | * Replace a prio_tree_node with a new node and return the old node | 
|  | 142 | */ | 
|  | 143 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | 
|  | 144 | struct prio_tree_node *old, struct prio_tree_node *node) | 
|  | 145 | { | 
|  | 146 | INIT_PRIO_TREE_NODE(node); | 
|  | 147 |  | 
|  | 148 | if (prio_tree_root(old)) { | 
|  | 149 | BUG_ON(root->prio_tree_node != old); | 
|  | 150 | /* | 
|  | 151 | * We can reduce root->index_bits here. However, it is complex | 
|  | 152 | * and does not help much to improve performance (IMO). | 
|  | 153 | */ | 
|  | 154 | node->parent = node; | 
|  | 155 | root->prio_tree_node = node; | 
|  | 156 | } else { | 
|  | 157 | node->parent = old->parent; | 
|  | 158 | if (old->parent->left == old) | 
|  | 159 | old->parent->left = node; | 
|  | 160 | else | 
|  | 161 | old->parent->right = node; | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | if (!prio_tree_left_empty(old)) { | 
|  | 165 | node->left = old->left; | 
|  | 166 | old->left->parent = node; | 
|  | 167 | } | 
|  | 168 |  | 
|  | 169 | if (!prio_tree_right_empty(old)) { | 
|  | 170 | node->right = old->right; | 
|  | 171 | old->right->parent = node; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | return old; | 
|  | 175 | } | 
|  | 176 |  | 
|  | 177 | /* | 
|  | 178 | * Insert a prio_tree_node @node into a radix priority search tree @root. The | 
|  | 179 | * algorithm typically takes O(log n) time where 'log n' is the number of bits | 
|  | 180 | * required to represent the maximum heap_index. In the worst case, the algo | 
|  | 181 | * can take O((log n)^2) - check prio_tree_expand. | 
|  | 182 | * | 
|  | 183 | * If a prior node with same radix_index and heap_index is already found in | 
|  | 184 | * the tree, then returns the address of the prior node. Otherwise, inserts | 
|  | 185 | * @node into the tree and returns @node. | 
|  | 186 | */ | 
|  | 187 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | 
|  | 188 | struct prio_tree_node *node) | 
|  | 189 | { | 
|  | 190 | struct prio_tree_node *cur, *res = node; | 
|  | 191 | unsigned long radix_index, heap_index; | 
|  | 192 | unsigned long r_index, h_index, index, mask; | 
|  | 193 | int size_flag = 0; | 
|  | 194 |  | 
|  | 195 | get_index(root, node, &radix_index, &heap_index); | 
|  | 196 |  | 
|  | 197 | if (prio_tree_empty(root) || | 
|  | 198 | heap_index > prio_tree_maxindex(root->index_bits)) | 
|  | 199 | return prio_tree_expand(root, node, heap_index); | 
|  | 200 |  | 
|  | 201 | cur = root->prio_tree_node; | 
|  | 202 | mask = 1UL << (root->index_bits - 1); | 
|  | 203 |  | 
|  | 204 | while (mask) { | 
|  | 205 | get_index(root, cur, &r_index, &h_index); | 
|  | 206 |  | 
|  | 207 | if (r_index == radix_index && h_index == heap_index) | 
|  | 208 | return cur; | 
|  | 209 |  | 
|  | 210 | if (h_index < heap_index || | 
|  | 211 | (h_index == heap_index && r_index > radix_index)) { | 
|  | 212 | struct prio_tree_node *tmp = node; | 
|  | 213 | node = prio_tree_replace(root, cur, node); | 
|  | 214 | cur = tmp; | 
|  | 215 | /* swap indices */ | 
|  | 216 | index = r_index; | 
|  | 217 | r_index = radix_index; | 
|  | 218 | radix_index = index; | 
|  | 219 | index = h_index; | 
|  | 220 | h_index = heap_index; | 
|  | 221 | heap_index = index; | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | if (size_flag) | 
|  | 225 | index = heap_index - radix_index; | 
|  | 226 | else | 
|  | 227 | index = radix_index; | 
|  | 228 |  | 
|  | 229 | if (index & mask) { | 
|  | 230 | if (prio_tree_right_empty(cur)) { | 
|  | 231 | INIT_PRIO_TREE_NODE(node); | 
|  | 232 | cur->right = node; | 
|  | 233 | node->parent = cur; | 
|  | 234 | return res; | 
|  | 235 | } else | 
|  | 236 | cur = cur->right; | 
|  | 237 | } else { | 
|  | 238 | if (prio_tree_left_empty(cur)) { | 
|  | 239 | INIT_PRIO_TREE_NODE(node); | 
|  | 240 | cur->left = node; | 
|  | 241 | node->parent = cur; | 
|  | 242 | return res; | 
|  | 243 | } else | 
|  | 244 | cur = cur->left; | 
|  | 245 | } | 
|  | 246 |  | 
|  | 247 | mask >>= 1; | 
|  | 248 |  | 
|  | 249 | if (!mask) { | 
|  | 250 | mask = 1UL << (BITS_PER_LONG - 1); | 
|  | 251 | size_flag = 1; | 
|  | 252 | } | 
|  | 253 | } | 
|  | 254 | /* Should not reach here */ | 
|  | 255 | BUG(); | 
|  | 256 | return NULL; | 
|  | 257 | } | 
|  | 258 |  | 
|  | 259 | /* | 
|  | 260 | * Remove a prio_tree_node @node from a radix priority search tree @root. The | 
|  | 261 | * algorithm takes O(log n) time where 'log n' is the number of bits required | 
|  | 262 | * to represent the maximum heap_index. | 
|  | 263 | */ | 
|  | 264 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | 
|  | 265 | { | 
|  | 266 | struct prio_tree_node *cur; | 
|  | 267 | unsigned long r_index, h_index_right, h_index_left; | 
|  | 268 |  | 
|  | 269 | cur = node; | 
|  | 270 |  | 
|  | 271 | while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | 
|  | 272 | if (!prio_tree_left_empty(cur)) | 
|  | 273 | get_index(root, cur->left, &r_index, &h_index_left); | 
|  | 274 | else { | 
|  | 275 | cur = cur->right; | 
|  | 276 | continue; | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | if (!prio_tree_right_empty(cur)) | 
|  | 280 | get_index(root, cur->right, &r_index, &h_index_right); | 
|  | 281 | else { | 
|  | 282 | cur = cur->left; | 
|  | 283 | continue; | 
|  | 284 | } | 
|  | 285 |  | 
|  | 286 | /* both h_index_left and h_index_right cannot be 0 */ | 
|  | 287 | if (h_index_left >= h_index_right) | 
|  | 288 | cur = cur->left; | 
|  | 289 | else | 
|  | 290 | cur = cur->right; | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | if (prio_tree_root(cur)) { | 
|  | 294 | BUG_ON(root->prio_tree_node != cur); | 
|  | 295 | __INIT_PRIO_TREE_ROOT(root, root->raw); | 
|  | 296 | return; | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | if (cur->parent->right == cur) | 
|  | 300 | cur->parent->right = cur->parent; | 
|  | 301 | else | 
|  | 302 | cur->parent->left = cur->parent; | 
|  | 303 |  | 
|  | 304 | while (cur != node) | 
|  | 305 | cur = prio_tree_replace(root, cur->parent, cur); | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | /* | 
|  | 309 | * Following functions help to enumerate all prio_tree_nodes in the tree that | 
|  | 310 | * overlap with the input interval X [radix_index, heap_index]. The enumeration | 
|  | 311 | * takes O(log n + m) time where 'log n' is the height of the tree (which is | 
|  | 312 | * proportional to # of bits required to represent the maximum heap_index) and | 
|  | 313 | * 'm' is the number of prio_tree_nodes that overlap the interval X. | 
|  | 314 | */ | 
|  | 315 |  | 
|  | 316 | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | 
|  | 317 | unsigned long *r_index, unsigned long *h_index) | 
|  | 318 | { | 
|  | 319 | if (prio_tree_left_empty(iter->cur)) | 
|  | 320 | return NULL; | 
|  | 321 |  | 
|  | 322 | get_index(iter->root, iter->cur->left, r_index, h_index); | 
|  | 323 |  | 
|  | 324 | if (iter->r_index <= *h_index) { | 
|  | 325 | iter->cur = iter->cur->left; | 
|  | 326 | iter->mask >>= 1; | 
|  | 327 | if (iter->mask) { | 
|  | 328 | if (iter->size_level) | 
|  | 329 | iter->size_level++; | 
|  | 330 | } else { | 
|  | 331 | if (iter->size_level) { | 
|  | 332 | BUG_ON(!prio_tree_left_empty(iter->cur)); | 
|  | 333 | BUG_ON(!prio_tree_right_empty(iter->cur)); | 
|  | 334 | iter->size_level++; | 
|  | 335 | iter->mask = ULONG_MAX; | 
|  | 336 | } else { | 
|  | 337 | iter->size_level = 1; | 
|  | 338 | iter->mask = 1UL << (BITS_PER_LONG - 1); | 
|  | 339 | } | 
|  | 340 | } | 
|  | 341 | return iter->cur; | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | return NULL; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | 
|  | 348 | unsigned long *r_index, unsigned long *h_index) | 
|  | 349 | { | 
|  | 350 | unsigned long value; | 
|  | 351 |  | 
|  | 352 | if (prio_tree_right_empty(iter->cur)) | 
|  | 353 | return NULL; | 
|  | 354 |  | 
|  | 355 | if (iter->size_level) | 
|  | 356 | value = iter->value; | 
|  | 357 | else | 
|  | 358 | value = iter->value | iter->mask; | 
|  | 359 |  | 
|  | 360 | if (iter->h_index < value) | 
|  | 361 | return NULL; | 
|  | 362 |  | 
|  | 363 | get_index(iter->root, iter->cur->right, r_index, h_index); | 
|  | 364 |  | 
|  | 365 | if (iter->r_index <= *h_index) { | 
|  | 366 | iter->cur = iter->cur->right; | 
|  | 367 | iter->mask >>= 1; | 
|  | 368 | iter->value = value; | 
|  | 369 | if (iter->mask) { | 
|  | 370 | if (iter->size_level) | 
|  | 371 | iter->size_level++; | 
|  | 372 | } else { | 
|  | 373 | if (iter->size_level) { | 
|  | 374 | BUG_ON(!prio_tree_left_empty(iter->cur)); | 
|  | 375 | BUG_ON(!prio_tree_right_empty(iter->cur)); | 
|  | 376 | iter->size_level++; | 
|  | 377 | iter->mask = ULONG_MAX; | 
|  | 378 | } else { | 
|  | 379 | iter->size_level = 1; | 
|  | 380 | iter->mask = 1UL << (BITS_PER_LONG - 1); | 
|  | 381 | } | 
|  | 382 | } | 
|  | 383 | return iter->cur; | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | return NULL; | 
|  | 387 | } | 
|  | 388 |  | 
|  | 389 | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | 
|  | 390 | { | 
|  | 391 | iter->cur = iter->cur->parent; | 
|  | 392 | if (iter->mask == ULONG_MAX) | 
|  | 393 | iter->mask = 1UL; | 
|  | 394 | else if (iter->size_level == 1) | 
|  | 395 | iter->mask = 1UL; | 
|  | 396 | else | 
|  | 397 | iter->mask <<= 1; | 
|  | 398 | if (iter->size_level) | 
|  | 399 | iter->size_level--; | 
|  | 400 | if (!iter->size_level && (iter->value & iter->mask)) | 
|  | 401 | iter->value ^= iter->mask; | 
|  | 402 | return iter->cur; | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | static inline int overlap(struct prio_tree_iter *iter, | 
|  | 406 | unsigned long r_index, unsigned long h_index) | 
|  | 407 | { | 
|  | 408 | return iter->h_index >= r_index && iter->r_index <= h_index; | 
|  | 409 | } | 
|  | 410 |  | 
|  | 411 | /* | 
|  | 412 | * prio_tree_first: | 
|  | 413 | * | 
|  | 414 | * Get the first prio_tree_node that overlaps with the interval [radix_index, | 
|  | 415 | * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | 
|  | 416 | * traversal of the tree. | 
|  | 417 | */ | 
|  | 418 | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | 
|  | 419 | { | 
|  | 420 | struct prio_tree_root *root; | 
|  | 421 | unsigned long r_index, h_index; | 
|  | 422 |  | 
|  | 423 | INIT_PRIO_TREE_ITER(iter); | 
|  | 424 |  | 
|  | 425 | root = iter->root; | 
|  | 426 | if (prio_tree_empty(root)) | 
|  | 427 | return NULL; | 
|  | 428 |  | 
|  | 429 | get_index(root, root->prio_tree_node, &r_index, &h_index); | 
|  | 430 |  | 
|  | 431 | if (iter->r_index > h_index) | 
|  | 432 | return NULL; | 
|  | 433 |  | 
|  | 434 | iter->mask = 1UL << (root->index_bits - 1); | 
|  | 435 | iter->cur = root->prio_tree_node; | 
|  | 436 |  | 
|  | 437 | while (1) { | 
|  | 438 | if (overlap(iter, r_index, h_index)) | 
|  | 439 | return iter->cur; | 
|  | 440 |  | 
|  | 441 | if (prio_tree_left(iter, &r_index, &h_index)) | 
|  | 442 | continue; | 
|  | 443 |  | 
|  | 444 | if (prio_tree_right(iter, &r_index, &h_index)) | 
|  | 445 | continue; | 
|  | 446 |  | 
|  | 447 | break; | 
|  | 448 | } | 
|  | 449 | return NULL; | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | /* | 
|  | 453 | * prio_tree_next: | 
|  | 454 | * | 
|  | 455 | * Get the next prio_tree_node that overlaps with the input interval in iter | 
|  | 456 | */ | 
|  | 457 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | 
|  | 458 | { | 
|  | 459 | unsigned long r_index, h_index; | 
|  | 460 |  | 
|  | 461 | if (iter->cur == NULL) | 
|  | 462 | return prio_tree_first(iter); | 
|  | 463 |  | 
|  | 464 | repeat: | 
|  | 465 | while (prio_tree_left(iter, &r_index, &h_index)) | 
|  | 466 | if (overlap(iter, r_index, h_index)) | 
|  | 467 | return iter->cur; | 
|  | 468 |  | 
|  | 469 | while (!prio_tree_right(iter, &r_index, &h_index)) { | 
|  | 470 | while (!prio_tree_root(iter->cur) && | 
|  | 471 | iter->cur->parent->right == iter->cur) | 
|  | 472 | prio_tree_parent(iter); | 
|  | 473 |  | 
|  | 474 | if (prio_tree_root(iter->cur)) | 
|  | 475 | return NULL; | 
|  | 476 |  | 
|  | 477 | prio_tree_parent(iter); | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 | if (overlap(iter, r_index, h_index)) | 
|  | 481 | return iter->cur; | 
|  | 482 |  | 
|  | 483 | goto repeat; | 
|  | 484 | } |