| Auke Kok | 9d5c824 | 2008-01-24 02:22:38 -0800 | [diff] [blame] | 1 | /******************************************************************************* | 
|  | 2 |  | 
|  | 3 | Intel(R) Gigabit Ethernet Linux driver | 
|  | 4 | Copyright(c) 2007 Intel Corporation. | 
|  | 5 |  | 
|  | 6 | This program is free software; you can redistribute it and/or modify it | 
|  | 7 | under the terms and conditions of the GNU General Public License, | 
|  | 8 | version 2, as published by the Free Software Foundation. | 
|  | 9 |  | 
|  | 10 | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 12 | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 13 | more details. | 
|  | 14 |  | 
|  | 15 | You should have received a copy of the GNU General Public License along with | 
|  | 16 | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | 18 |  | 
|  | 19 | The full GNU General Public License is included in this distribution in | 
|  | 20 | the file called "COPYING". | 
|  | 21 |  | 
|  | 22 | Contact Information: | 
|  | 23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | 24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | 25 |  | 
|  | 26 | *******************************************************************************/ | 
|  | 27 |  | 
|  | 28 | #include <linux/if_ether.h> | 
|  | 29 | #include <linux/delay.h> | 
|  | 30 | #include <linux/pci.h> | 
|  | 31 | #include <linux/netdevice.h> | 
|  | 32 |  | 
|  | 33 | #include "e1000_mac.h" | 
|  | 34 |  | 
|  | 35 | #include "igb.h" | 
|  | 36 |  | 
|  | 37 | static s32 igb_set_default_fc(struct e1000_hw *hw); | 
|  | 38 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | 
|  | 39 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); | 
|  | 40 |  | 
|  | 41 | /** | 
|  | 42 | *  e1000_remove_device - Free device specific structure | 
|  | 43 | *  @hw: pointer to the HW structure | 
|  | 44 | * | 
|  | 45 | *  If a device specific structure was allocated, this function will | 
|  | 46 | *  free it. | 
|  | 47 | **/ | 
|  | 48 | void igb_remove_device(struct e1000_hw *hw) | 
|  | 49 | { | 
|  | 50 | /* Freeing the dev_spec member of e1000_hw structure */ | 
|  | 51 | kfree(hw->dev_spec); | 
|  | 52 | } | 
|  | 53 |  | 
|  | 54 | static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) | 
|  | 55 | { | 
|  | 56 | struct igb_adapter *adapter = hw->back; | 
|  | 57 |  | 
|  | 58 | pci_read_config_word(adapter->pdev, reg, value); | 
|  | 59 | } | 
|  | 60 |  | 
|  | 61 | static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | 
|  | 62 | { | 
|  | 63 | struct igb_adapter *adapter = hw->back; | 
|  | 64 | u16 cap_offset; | 
|  | 65 |  | 
|  | 66 | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | 67 | if (!cap_offset) | 
|  | 68 | return -E1000_ERR_CONFIG; | 
|  | 69 |  | 
|  | 70 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | 
|  | 71 |  | 
|  | 72 | return 0; | 
|  | 73 | } | 
|  | 74 |  | 
|  | 75 | /** | 
|  | 76 | *  e1000_get_bus_info_pcie - Get PCIe bus information | 
|  | 77 | *  @hw: pointer to the HW structure | 
|  | 78 | * | 
|  | 79 | *  Determines and stores the system bus information for a particular | 
|  | 80 | *  network interface.  The following bus information is determined and stored: | 
|  | 81 | *  bus speed, bus width, type (PCIe), and PCIe function. | 
|  | 82 | **/ | 
|  | 83 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | 
|  | 84 | { | 
|  | 85 | struct e1000_bus_info *bus = &hw->bus; | 
|  | 86 | s32 ret_val; | 
|  | 87 | u32 status; | 
|  | 88 | u16 pcie_link_status, pci_header_type; | 
|  | 89 |  | 
|  | 90 | bus->type = e1000_bus_type_pci_express; | 
|  | 91 | bus->speed = e1000_bus_speed_2500; | 
|  | 92 |  | 
|  | 93 | ret_val = igb_read_pcie_cap_reg(hw, | 
|  | 94 | PCIE_LINK_STATUS, | 
|  | 95 | &pcie_link_status); | 
|  | 96 | if (ret_val) | 
|  | 97 | bus->width = e1000_bus_width_unknown; | 
|  | 98 | else | 
|  | 99 | bus->width = (enum e1000_bus_width)((pcie_link_status & | 
|  | 100 | PCIE_LINK_WIDTH_MASK) >> | 
|  | 101 | PCIE_LINK_WIDTH_SHIFT); | 
|  | 102 |  | 
|  | 103 | igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); | 
|  | 104 | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | 
|  | 105 | status = rd32(E1000_STATUS); | 
|  | 106 | bus->func = (status & E1000_STATUS_FUNC_MASK) | 
|  | 107 | >> E1000_STATUS_FUNC_SHIFT; | 
|  | 108 | } else { | 
|  | 109 | bus->func = 0; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | return 0; | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | /** | 
|  | 116 | *  e1000_clear_vfta - Clear VLAN filter table | 
|  | 117 | *  @hw: pointer to the HW structure | 
|  | 118 | * | 
|  | 119 | *  Clears the register array which contains the VLAN filter table by | 
|  | 120 | *  setting all the values to 0. | 
|  | 121 | **/ | 
|  | 122 | void igb_clear_vfta(struct e1000_hw *hw) | 
|  | 123 | { | 
|  | 124 | u32 offset; | 
|  | 125 |  | 
|  | 126 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | 127 | array_wr32(E1000_VFTA, offset, 0); | 
|  | 128 | wrfl(); | 
|  | 129 | } | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | /** | 
|  | 133 | *  e1000_write_vfta - Write value to VLAN filter table | 
|  | 134 | *  @hw: pointer to the HW structure | 
|  | 135 | *  @offset: register offset in VLAN filter table | 
|  | 136 | *  @value: register value written to VLAN filter table | 
|  | 137 | * | 
|  | 138 | *  Writes value at the given offset in the register array which stores | 
|  | 139 | *  the VLAN filter table. | 
|  | 140 | **/ | 
|  | 141 | void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | 142 | { | 
|  | 143 | array_wr32(E1000_VFTA, offset, value); | 
|  | 144 | wrfl(); | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | /** | 
|  | 148 | *  e1000_init_rx_addrs - Initialize receive address's | 
|  | 149 | *  @hw: pointer to the HW structure | 
|  | 150 | *  @rar_count: receive address registers | 
|  | 151 | * | 
|  | 152 | *  Setups the receive address registers by setting the base receive address | 
|  | 153 | *  register to the devices MAC address and clearing all the other receive | 
|  | 154 | *  address registers to 0. | 
|  | 155 | **/ | 
|  | 156 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | 
|  | 157 | { | 
|  | 158 | u32 i; | 
|  | 159 |  | 
|  | 160 | /* Setup the receive address */ | 
|  | 161 | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | 
|  | 162 |  | 
|  | 163 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | 
|  | 164 |  | 
|  | 165 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | 
|  | 166 | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | 
|  | 167 | for (i = 1; i < rar_count; i++) { | 
|  | 168 | array_wr32(E1000_RA, (i << 1), 0); | 
|  | 169 | wrfl(); | 
|  | 170 | array_wr32(E1000_RA, ((i << 1) + 1), 0); | 
|  | 171 | wrfl(); | 
|  | 172 | } | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | /** | 
|  | 176 | *  e1000_check_alt_mac_addr - Check for alternate MAC addr | 
|  | 177 | *  @hw: pointer to the HW structure | 
|  | 178 | * | 
|  | 179 | *  Checks the nvm for an alternate MAC address.  An alternate MAC address | 
|  | 180 | *  can be setup by pre-boot software and must be treated like a permanent | 
|  | 181 | *  address and must override the actual permanent MAC address.  If an | 
|  | 182 | *  alternate MAC address is fopund it is saved in the hw struct and | 
|  | 183 | *  prgrammed into RAR0 and the cuntion returns success, otherwise the | 
|  | 184 | *  fucntion returns an error. | 
|  | 185 | **/ | 
|  | 186 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | 
|  | 187 | { | 
|  | 188 | u32 i; | 
|  | 189 | s32 ret_val = 0; | 
|  | 190 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | 
|  | 191 | u8 alt_mac_addr[ETH_ALEN]; | 
|  | 192 |  | 
|  | 193 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | 
|  | 194 | &nvm_alt_mac_addr_offset); | 
|  | 195 | if (ret_val) { | 
|  | 196 | hw_dbg(hw, "NVM Read Error\n"); | 
|  | 197 | goto out; | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | 
|  | 201 | ret_val = -(E1000_NOT_IMPLEMENTED); | 
|  | 202 | goto out; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | if (hw->bus.func == E1000_FUNC_1) | 
|  | 206 | nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16); | 
|  | 207 |  | 
|  | 208 | for (i = 0; i < ETH_ALEN; i += 2) { | 
|  | 209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | 
|  | 210 | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); | 
|  | 211 | if (ret_val) { | 
|  | 212 | hw_dbg(hw, "NVM Read Error\n"); | 
|  | 213 | goto out; | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | 
|  | 217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | /* if multicast bit is set, the alternate address will not be used */ | 
|  | 221 | if (alt_mac_addr[0] & 0x01) { | 
|  | 222 | ret_val = -(E1000_NOT_IMPLEMENTED); | 
|  | 223 | goto out; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | for (i = 0; i < ETH_ALEN; i++) | 
|  | 227 | hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; | 
|  | 228 |  | 
|  | 229 | hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); | 
|  | 230 |  | 
|  | 231 | out: | 
|  | 232 | return ret_val; | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | /** | 
|  | 236 | *  e1000_rar_set - Set receive address register | 
|  | 237 | *  @hw: pointer to the HW structure | 
|  | 238 | *  @addr: pointer to the receive address | 
|  | 239 | *  @index: receive address array register | 
|  | 240 | * | 
|  | 241 | *  Sets the receive address array register at index to the address passed | 
|  | 242 | *  in by addr. | 
|  | 243 | **/ | 
|  | 244 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | 245 | { | 
|  | 246 | u32 rar_low, rar_high; | 
|  | 247 |  | 
|  | 248 | /* | 
|  | 249 | * HW expects these in little endian so we reverse the byte order | 
|  | 250 | * from network order (big endian) to little endian | 
|  | 251 | */ | 
|  | 252 | rar_low = ((u32) addr[0] | | 
|  | 253 | ((u32) addr[1] << 8) | | 
|  | 254 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | 
|  | 255 |  | 
|  | 256 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | 
|  | 257 |  | 
|  | 258 | if (!hw->mac.disable_av) | 
|  | 259 | rar_high |= E1000_RAH_AV; | 
|  | 260 |  | 
|  | 261 | array_wr32(E1000_RA, (index << 1), rar_low); | 
|  | 262 | array_wr32(E1000_RA, ((index << 1) + 1), rar_high); | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | /** | 
|  | 266 | *  e1000_mta_set - Set multicast filter table address | 
|  | 267 | *  @hw: pointer to the HW structure | 
|  | 268 | *  @hash_value: determines the MTA register and bit to set | 
|  | 269 | * | 
|  | 270 | *  The multicast table address is a register array of 32-bit registers. | 
|  | 271 | *  The hash_value is used to determine what register the bit is in, the | 
|  | 272 | *  current value is read, the new bit is OR'd in and the new value is | 
|  | 273 | *  written back into the register. | 
|  | 274 | **/ | 
|  | 275 | static void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | 
|  | 276 | { | 
|  | 277 | u32 hash_bit, hash_reg, mta; | 
|  | 278 |  | 
|  | 279 | /* | 
|  | 280 | * The MTA is a register array of 32-bit registers. It is | 
|  | 281 | * treated like an array of (32*mta_reg_count) bits.  We want to | 
|  | 282 | * set bit BitArray[hash_value]. So we figure out what register | 
|  | 283 | * the bit is in, read it, OR in the new bit, then write | 
|  | 284 | * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a | 
|  | 285 | * mask to bits 31:5 of the hash value which gives us the | 
|  | 286 | * register we're modifying.  The hash bit within that register | 
|  | 287 | * is determined by the lower 5 bits of the hash value. | 
|  | 288 | */ | 
|  | 289 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
|  | 290 | hash_bit = hash_value & 0x1F; | 
|  | 291 |  | 
|  | 292 | mta = array_rd32(E1000_MTA, hash_reg); | 
|  | 293 |  | 
|  | 294 | mta |= (1 << hash_bit); | 
|  | 295 |  | 
|  | 296 | array_wr32(E1000_MTA, hash_reg, mta); | 
|  | 297 | wrfl(); | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | /** | 
|  | 301 | *  e1000_update_mc_addr_list - Update Multicast addresses | 
|  | 302 | *  @hw: pointer to the HW structure | 
|  | 303 | *  @mc_addr_list: array of multicast addresses to program | 
|  | 304 | *  @mc_addr_count: number of multicast addresses to program | 
|  | 305 | *  @rar_used_count: the first RAR register free to program | 
|  | 306 | *  @rar_count: total number of supported Receive Address Registers | 
|  | 307 | * | 
|  | 308 | *  Updates the Receive Address Registers and Multicast Table Array. | 
|  | 309 | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|  | 310 | *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
|  | 311 | *  unless there are workarounds that change this. | 
|  | 312 | **/ | 
|  | 313 | void igb_update_mc_addr_list(struct e1000_hw *hw, | 
|  | 314 | u8 *mc_addr_list, u32 mc_addr_count, | 
|  | 315 | u32 rar_used_count, u32 rar_count) | 
|  | 316 | { | 
|  | 317 | u32 hash_value; | 
|  | 318 | u32 i; | 
|  | 319 |  | 
|  | 320 | /* | 
|  | 321 | * Load the first set of multicast addresses into the exact | 
|  | 322 | * filters (RAR).  If there are not enough to fill the RAR | 
|  | 323 | * array, clear the filters. | 
|  | 324 | */ | 
|  | 325 | for (i = rar_used_count; i < rar_count; i++) { | 
|  | 326 | if (mc_addr_count) { | 
|  | 327 | hw->mac.ops.rar_set(hw, mc_addr_list, i); | 
|  | 328 | mc_addr_count--; | 
|  | 329 | mc_addr_list += ETH_ALEN; | 
|  | 330 | } else { | 
|  | 331 | array_wr32(E1000_RA, i << 1, 0); | 
|  | 332 | wrfl(); | 
|  | 333 | array_wr32(E1000_RA, (i << 1) + 1, 0); | 
|  | 334 | wrfl(); | 
|  | 335 | } | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | /* Clear the old settings from the MTA */ | 
|  | 339 | hw_dbg(hw, "Clearing MTA\n"); | 
|  | 340 | for (i = 0; i < hw->mac.mta_reg_count; i++) { | 
|  | 341 | array_wr32(E1000_MTA, i, 0); | 
|  | 342 | wrfl(); | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | /* Load any remaining multicast addresses into the hash table. */ | 
|  | 346 | for (; mc_addr_count > 0; mc_addr_count--) { | 
|  | 347 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | 
|  | 348 | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | 
|  | 349 | igb_mta_set(hw, hash_value); | 
|  | 350 | mc_addr_list += ETH_ALEN; | 
|  | 351 | } | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | /** | 
|  | 355 | *  e1000_hash_mc_addr - Generate a multicast hash value | 
|  | 356 | *  @hw: pointer to the HW structure | 
|  | 357 | *  @mc_addr: pointer to a multicast address | 
|  | 358 | * | 
|  | 359 | *  Generates a multicast address hash value which is used to determine | 
|  | 360 | *  the multicast filter table array address and new table value.  See | 
|  | 361 | *  igb_mta_set() | 
|  | 362 | **/ | 
|  | 363 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|  | 364 | { | 
|  | 365 | u32 hash_value, hash_mask; | 
|  | 366 | u8 bit_shift = 0; | 
|  | 367 |  | 
|  | 368 | /* Register count multiplied by bits per register */ | 
|  | 369 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | 
|  | 370 |  | 
|  | 371 | /* | 
|  | 372 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | 
|  | 373 | * where 0xFF would still fall within the hash mask. | 
|  | 374 | */ | 
|  | 375 | while (hash_mask >> bit_shift != 0xFF) | 
|  | 376 | bit_shift++; | 
|  | 377 |  | 
|  | 378 | /* | 
|  | 379 | * The portion of the address that is used for the hash table | 
|  | 380 | * is determined by the mc_filter_type setting. | 
|  | 381 | * The algorithm is such that there is a total of 8 bits of shifting. | 
|  | 382 | * The bit_shift for a mc_filter_type of 0 represents the number of | 
|  | 383 | * left-shifts where the MSB of mc_addr[5] would still fall within | 
|  | 384 | * the hash_mask.  Case 0 does this exactly.  Since there are a total | 
|  | 385 | * of 8 bits of shifting, then mc_addr[4] will shift right the | 
|  | 386 | * remaining number of bits. Thus 8 - bit_shift.  The rest of the | 
|  | 387 | * cases are a variation of this algorithm...essentially raising the | 
|  | 388 | * number of bits to shift mc_addr[5] left, while still keeping the | 
|  | 389 | * 8-bit shifting total. | 
|  | 390 | * | 
|  | 391 | * For example, given the following Destination MAC Address and an | 
|  | 392 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | 
|  | 393 | * we can see that the bit_shift for case 0 is 4.  These are the hash | 
|  | 394 | * values resulting from each mc_filter_type... | 
|  | 395 | * [0] [1] [2] [3] [4] [5] | 
|  | 396 | * 01  AA  00  12  34  56 | 
|  | 397 | * LSB                 MSB | 
|  | 398 | * | 
|  | 399 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | 
|  | 400 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | 
|  | 401 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | 
|  | 402 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | 
|  | 403 | */ | 
|  | 404 | switch (hw->mac.mc_filter_type) { | 
|  | 405 | default: | 
|  | 406 | case 0: | 
|  | 407 | break; | 
|  | 408 | case 1: | 
|  | 409 | bit_shift += 1; | 
|  | 410 | break; | 
|  | 411 | case 2: | 
|  | 412 | bit_shift += 2; | 
|  | 413 | break; | 
|  | 414 | case 3: | 
|  | 415 | bit_shift += 4; | 
|  | 416 | break; | 
|  | 417 | } | 
|  | 418 |  | 
|  | 419 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | 
|  | 420 | (((u16) mc_addr[5]) << bit_shift))); | 
|  | 421 |  | 
|  | 422 | return hash_value; | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | /** | 
|  | 426 | *  e1000_clear_hw_cntrs_base - Clear base hardware counters | 
|  | 427 | *  @hw: pointer to the HW structure | 
|  | 428 | * | 
|  | 429 | *  Clears the base hardware counters by reading the counter registers. | 
|  | 430 | **/ | 
|  | 431 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | 
|  | 432 | { | 
|  | 433 | u32 temp; | 
|  | 434 |  | 
|  | 435 | temp = rd32(E1000_CRCERRS); | 
|  | 436 | temp = rd32(E1000_SYMERRS); | 
|  | 437 | temp = rd32(E1000_MPC); | 
|  | 438 | temp = rd32(E1000_SCC); | 
|  | 439 | temp = rd32(E1000_ECOL); | 
|  | 440 | temp = rd32(E1000_MCC); | 
|  | 441 | temp = rd32(E1000_LATECOL); | 
|  | 442 | temp = rd32(E1000_COLC); | 
|  | 443 | temp = rd32(E1000_DC); | 
|  | 444 | temp = rd32(E1000_SEC); | 
|  | 445 | temp = rd32(E1000_RLEC); | 
|  | 446 | temp = rd32(E1000_XONRXC); | 
|  | 447 | temp = rd32(E1000_XONTXC); | 
|  | 448 | temp = rd32(E1000_XOFFRXC); | 
|  | 449 | temp = rd32(E1000_XOFFTXC); | 
|  | 450 | temp = rd32(E1000_FCRUC); | 
|  | 451 | temp = rd32(E1000_GPRC); | 
|  | 452 | temp = rd32(E1000_BPRC); | 
|  | 453 | temp = rd32(E1000_MPRC); | 
|  | 454 | temp = rd32(E1000_GPTC); | 
|  | 455 | temp = rd32(E1000_GORCL); | 
|  | 456 | temp = rd32(E1000_GORCH); | 
|  | 457 | temp = rd32(E1000_GOTCL); | 
|  | 458 | temp = rd32(E1000_GOTCH); | 
|  | 459 | temp = rd32(E1000_RNBC); | 
|  | 460 | temp = rd32(E1000_RUC); | 
|  | 461 | temp = rd32(E1000_RFC); | 
|  | 462 | temp = rd32(E1000_ROC); | 
|  | 463 | temp = rd32(E1000_RJC); | 
|  | 464 | temp = rd32(E1000_TORL); | 
|  | 465 | temp = rd32(E1000_TORH); | 
|  | 466 | temp = rd32(E1000_TOTL); | 
|  | 467 | temp = rd32(E1000_TOTH); | 
|  | 468 | temp = rd32(E1000_TPR); | 
|  | 469 | temp = rd32(E1000_TPT); | 
|  | 470 | temp = rd32(E1000_MPTC); | 
|  | 471 | temp = rd32(E1000_BPTC); | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | /** | 
|  | 475 | *  e1000_check_for_copper_link - Check for link (Copper) | 
|  | 476 | *  @hw: pointer to the HW structure | 
|  | 477 | * | 
|  | 478 | *  Checks to see of the link status of the hardware has changed.  If a | 
|  | 479 | *  change in link status has been detected, then we read the PHY registers | 
|  | 480 | *  to get the current speed/duplex if link exists. | 
|  | 481 | **/ | 
|  | 482 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | 
|  | 483 | { | 
|  | 484 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 485 | s32 ret_val; | 
|  | 486 | bool link; | 
|  | 487 |  | 
|  | 488 | /* | 
|  | 489 | * We only want to go out to the PHY registers to see if Auto-Neg | 
|  | 490 | * has completed and/or if our link status has changed.  The | 
|  | 491 | * get_link_status flag is set upon receiving a Link Status | 
|  | 492 | * Change or Rx Sequence Error interrupt. | 
|  | 493 | */ | 
|  | 494 | if (!mac->get_link_status) { | 
|  | 495 | ret_val = 0; | 
|  | 496 | goto out; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* | 
|  | 500 | * First we want to see if the MII Status Register reports | 
|  | 501 | * link.  If so, then we want to get the current speed/duplex | 
|  | 502 | * of the PHY. | 
|  | 503 | */ | 
|  | 504 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | 
|  | 505 | if (ret_val) | 
|  | 506 | goto out; | 
|  | 507 |  | 
|  | 508 | if (!link) | 
|  | 509 | goto out; /* No link detected */ | 
|  | 510 |  | 
|  | 511 | mac->get_link_status = false; | 
|  | 512 |  | 
|  | 513 | /* | 
|  | 514 | * Check if there was DownShift, must be checked | 
|  | 515 | * immediately after link-up | 
|  | 516 | */ | 
|  | 517 | igb_check_downshift(hw); | 
|  | 518 |  | 
|  | 519 | /* | 
|  | 520 | * If we are forcing speed/duplex, then we simply return since | 
|  | 521 | * we have already determined whether we have link or not. | 
|  | 522 | */ | 
|  | 523 | if (!mac->autoneg) { | 
|  | 524 | ret_val = -E1000_ERR_CONFIG; | 
|  | 525 | goto out; | 
|  | 526 | } | 
|  | 527 |  | 
|  | 528 | /* | 
|  | 529 | * Auto-Neg is enabled.  Auto Speed Detection takes care | 
|  | 530 | * of MAC speed/duplex configuration.  So we only need to | 
|  | 531 | * configure Collision Distance in the MAC. | 
|  | 532 | */ | 
|  | 533 | igb_config_collision_dist(hw); | 
|  | 534 |  | 
|  | 535 | /* | 
|  | 536 | * Configure Flow Control now that Auto-Neg has completed. | 
|  | 537 | * First, we need to restore the desired flow control | 
|  | 538 | * settings because we may have had to re-autoneg with a | 
|  | 539 | * different link partner. | 
|  | 540 | */ | 
|  | 541 | ret_val = igb_config_fc_after_link_up(hw); | 
|  | 542 | if (ret_val) | 
|  | 543 | hw_dbg(hw, "Error configuring flow control\n"); | 
|  | 544 |  | 
|  | 545 | out: | 
|  | 546 | return ret_val; | 
|  | 547 | } | 
|  | 548 |  | 
|  | 549 | /** | 
|  | 550 | *  e1000_setup_link - Setup flow control and link settings | 
|  | 551 | *  @hw: pointer to the HW structure | 
|  | 552 | * | 
|  | 553 | *  Determines which flow control settings to use, then configures flow | 
|  | 554 | *  control.  Calls the appropriate media-specific link configuration | 
|  | 555 | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | 556 | *  should be established.  Assumes the hardware has previously been reset | 
|  | 557 | *  and the transmitter and receiver are not enabled. | 
|  | 558 | **/ | 
|  | 559 | s32 igb_setup_link(struct e1000_hw *hw) | 
|  | 560 | { | 
|  | 561 | s32 ret_val = 0; | 
|  | 562 |  | 
|  | 563 | /* | 
|  | 564 | * In the case of the phy reset being blocked, we already have a link. | 
|  | 565 | * We do not need to set it up again. | 
|  | 566 | */ | 
|  | 567 | if (igb_check_reset_block(hw)) | 
|  | 568 | goto out; | 
|  | 569 |  | 
|  | 570 | ret_val = igb_set_default_fc(hw); | 
|  | 571 | if (ret_val) | 
|  | 572 | goto out; | 
|  | 573 |  | 
|  | 574 | /* | 
|  | 575 | * We want to save off the original Flow Control configuration just | 
|  | 576 | * in case we get disconnected and then reconnected into a different | 
|  | 577 | * hub or switch with different Flow Control capabilities. | 
|  | 578 | */ | 
|  | 579 | hw->fc.original_type = hw->fc.type; | 
|  | 580 |  | 
|  | 581 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type); | 
|  | 582 |  | 
|  | 583 | /* Call the necessary media_type subroutine to configure the link. */ | 
|  | 584 | ret_val = hw->mac.ops.setup_physical_interface(hw); | 
|  | 585 | if (ret_val) | 
|  | 586 | goto out; | 
|  | 587 |  | 
|  | 588 | /* | 
|  | 589 | * Initialize the flow control address, type, and PAUSE timer | 
|  | 590 | * registers to their default values.  This is done even if flow | 
|  | 591 | * control is disabled, because it does not hurt anything to | 
|  | 592 | * initialize these registers. | 
|  | 593 | */ | 
|  | 594 | hw_dbg(hw, | 
|  | 595 | "Initializing the Flow Control address, type and timer regs\n"); | 
|  | 596 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | 
|  | 597 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | 598 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  | 599 |  | 
|  | 600 | wr32(E1000_FCTTV, hw->fc.pause_time); | 
|  | 601 |  | 
|  | 602 | ret_val = igb_set_fc_watermarks(hw); | 
|  | 603 |  | 
|  | 604 | out: | 
|  | 605 | return ret_val; | 
|  | 606 | } | 
|  | 607 |  | 
|  | 608 | /** | 
|  | 609 | *  e1000_config_collision_dist - Configure collision distance | 
|  | 610 | *  @hw: pointer to the HW structure | 
|  | 611 | * | 
|  | 612 | *  Configures the collision distance to the default value and is used | 
|  | 613 | *  during link setup. Currently no func pointer exists and all | 
|  | 614 | *  implementations are handled in the generic version of this function. | 
|  | 615 | **/ | 
|  | 616 | void igb_config_collision_dist(struct e1000_hw *hw) | 
|  | 617 | { | 
|  | 618 | u32 tctl; | 
|  | 619 |  | 
|  | 620 | tctl = rd32(E1000_TCTL); | 
|  | 621 |  | 
|  | 622 | tctl &= ~E1000_TCTL_COLD; | 
|  | 623 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|  | 624 |  | 
|  | 625 | wr32(E1000_TCTL, tctl); | 
|  | 626 | wrfl(); | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | /** | 
|  | 630 | *  e1000_set_fc_watermarks - Set flow control high/low watermarks | 
|  | 631 | *  @hw: pointer to the HW structure | 
|  | 632 | * | 
|  | 633 | *  Sets the flow control high/low threshold (watermark) registers.  If | 
|  | 634 | *  flow control XON frame transmission is enabled, then set XON frame | 
|  | 635 | *  tansmission as well. | 
|  | 636 | **/ | 
|  | 637 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | 
|  | 638 | { | 
|  | 639 | s32 ret_val = 0; | 
|  | 640 | u32 fcrtl = 0, fcrth = 0; | 
|  | 641 |  | 
|  | 642 | /* | 
|  | 643 | * Set the flow control receive threshold registers.  Normally, | 
|  | 644 | * these registers will be set to a default threshold that may be | 
|  | 645 | * adjusted later by the driver's runtime code.  However, if the | 
|  | 646 | * ability to transmit pause frames is not enabled, then these | 
|  | 647 | * registers will be set to 0. | 
|  | 648 | */ | 
|  | 649 | if (hw->fc.type & e1000_fc_tx_pause) { | 
|  | 650 | /* | 
|  | 651 | * We need to set up the Receive Threshold high and low water | 
|  | 652 | * marks as well as (optionally) enabling the transmission of | 
|  | 653 | * XON frames. | 
|  | 654 | */ | 
|  | 655 | fcrtl = hw->fc.low_water; | 
|  | 656 | if (hw->fc.send_xon) | 
|  | 657 | fcrtl |= E1000_FCRTL_XONE; | 
|  | 658 |  | 
|  | 659 | fcrth = hw->fc.high_water; | 
|  | 660 | } | 
|  | 661 | wr32(E1000_FCRTL, fcrtl); | 
|  | 662 | wr32(E1000_FCRTH, fcrth); | 
|  | 663 |  | 
|  | 664 | return ret_val; | 
|  | 665 | } | 
|  | 666 |  | 
|  | 667 | /** | 
|  | 668 | *  e1000_set_default_fc - Set flow control default values | 
|  | 669 | *  @hw: pointer to the HW structure | 
|  | 670 | * | 
|  | 671 | *  Read the EEPROM for the default values for flow control and store the | 
|  | 672 | *  values. | 
|  | 673 | **/ | 
|  | 674 | static s32 igb_set_default_fc(struct e1000_hw *hw) | 
|  | 675 | { | 
|  | 676 | s32 ret_val = 0; | 
|  | 677 | u16 nvm_data; | 
|  | 678 |  | 
|  | 679 | /* | 
|  | 680 | * Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | 681 | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | 682 | * a bit that determines whether the HW defaults to enabling or | 
|  | 683 | * disabling auto-negotiation, and the direction of the | 
|  | 684 | * SW defined pins. If there is no SW over-ride of the flow | 
|  | 685 | * control setting, then the variable hw->fc will | 
|  | 686 | * be initialized based on a value in the EEPROM. | 
|  | 687 | */ | 
|  | 688 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, | 
|  | 689 | &nvm_data); | 
|  | 690 |  | 
|  | 691 | if (ret_val) { | 
|  | 692 | hw_dbg(hw, "NVM Read Error\n"); | 
|  | 693 | goto out; | 
|  | 694 | } | 
|  | 695 |  | 
|  | 696 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | 
|  | 697 | hw->fc.type = e1000_fc_none; | 
|  | 698 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | 
|  | 699 | NVM_WORD0F_ASM_DIR) | 
|  | 700 | hw->fc.type = e1000_fc_tx_pause; | 
|  | 701 | else | 
|  | 702 | hw->fc.type = e1000_fc_full; | 
|  | 703 |  | 
|  | 704 | out: | 
|  | 705 | return ret_val; | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | /** | 
|  | 709 | *  e1000_force_mac_fc - Force the MAC's flow control settings | 
|  | 710 | *  @hw: pointer to the HW structure | 
|  | 711 | * | 
|  | 712 | *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the | 
|  | 713 | *  device control register to reflect the adapter settings.  TFCE and RFCE | 
|  | 714 | *  need to be explicitly set by software when a copper PHY is used because | 
|  | 715 | *  autonegotiation is managed by the PHY rather than the MAC.  Software must | 
|  | 716 | *  also configure these bits when link is forced on a fiber connection. | 
|  | 717 | **/ | 
|  | 718 | s32 igb_force_mac_fc(struct e1000_hw *hw) | 
|  | 719 | { | 
|  | 720 | u32 ctrl; | 
|  | 721 | s32 ret_val = 0; | 
|  | 722 |  | 
|  | 723 | ctrl = rd32(E1000_CTRL); | 
|  | 724 |  | 
|  | 725 | /* | 
|  | 726 | * Because we didn't get link via the internal auto-negotiation | 
|  | 727 | * mechanism (we either forced link or we got link via PHY | 
|  | 728 | * auto-neg), we have to manually enable/disable transmit an | 
|  | 729 | * receive flow control. | 
|  | 730 | * | 
|  | 731 | * The "Case" statement below enables/disable flow control | 
|  | 732 | * according to the "hw->fc.type" parameter. | 
|  | 733 | * | 
|  | 734 | * The possible values of the "fc" parameter are: | 
|  | 735 | *      0:  Flow control is completely disabled | 
|  | 736 | *      1:  Rx flow control is enabled (we can receive pause | 
|  | 737 | *          frames but not send pause frames). | 
|  | 738 | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | 739 | *          frames but we do not receive pause frames). | 
|  | 740 | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | 741 | *  other:  No other values should be possible at this point. | 
|  | 742 | */ | 
|  | 743 | hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type); | 
|  | 744 |  | 
|  | 745 | switch (hw->fc.type) { | 
|  | 746 | case e1000_fc_none: | 
|  | 747 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | 748 | break; | 
|  | 749 | case e1000_fc_rx_pause: | 
|  | 750 | ctrl &= (~E1000_CTRL_TFCE); | 
|  | 751 | ctrl |= E1000_CTRL_RFCE; | 
|  | 752 | break; | 
|  | 753 | case e1000_fc_tx_pause: | 
|  | 754 | ctrl &= (~E1000_CTRL_RFCE); | 
|  | 755 | ctrl |= E1000_CTRL_TFCE; | 
|  | 756 | break; | 
|  | 757 | case e1000_fc_full: | 
|  | 758 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | 759 | break; | 
|  | 760 | default: | 
|  | 761 | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | 762 | ret_val = -E1000_ERR_CONFIG; | 
|  | 763 | goto out; | 
|  | 764 | } | 
|  | 765 |  | 
|  | 766 | wr32(E1000_CTRL, ctrl); | 
|  | 767 |  | 
|  | 768 | out: | 
|  | 769 | return ret_val; | 
|  | 770 | } | 
|  | 771 |  | 
|  | 772 | /** | 
|  | 773 | *  e1000_config_fc_after_link_up - Configures flow control after link | 
|  | 774 | *  @hw: pointer to the HW structure | 
|  | 775 | * | 
|  | 776 | *  Checks the status of auto-negotiation after link up to ensure that the | 
|  | 777 | *  speed and duplex were not forced.  If the link needed to be forced, then | 
|  | 778 | *  flow control needs to be forced also.  If auto-negotiation is enabled | 
|  | 779 | *  and did not fail, then we configure flow control based on our link | 
|  | 780 | *  partner. | 
|  | 781 | **/ | 
|  | 782 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | 783 | { | 
|  | 784 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 785 | s32 ret_val = 0; | 
|  | 786 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | 
|  | 787 | u16 speed, duplex; | 
|  | 788 |  | 
|  | 789 | /* | 
|  | 790 | * Check for the case where we have fiber media and auto-neg failed | 
|  | 791 | * so we had to force link.  In this case, we need to force the | 
|  | 792 | * configuration of the MAC to match the "fc" parameter. | 
|  | 793 | */ | 
|  | 794 | if (mac->autoneg_failed) { | 
|  | 795 | if (hw->phy.media_type == e1000_media_type_fiber || | 
|  | 796 | hw->phy.media_type == e1000_media_type_internal_serdes) | 
|  | 797 | ret_val = igb_force_mac_fc(hw); | 
|  | 798 | } else { | 
|  | 799 | if (hw->phy.media_type == e1000_media_type_copper) | 
|  | 800 | ret_val = igb_force_mac_fc(hw); | 
|  | 801 | } | 
|  | 802 |  | 
|  | 803 | if (ret_val) { | 
|  | 804 | hw_dbg(hw, "Error forcing flow control settings\n"); | 
|  | 805 | goto out; | 
|  | 806 | } | 
|  | 807 |  | 
|  | 808 | /* | 
|  | 809 | * Check for the case where we have copper media and auto-neg is | 
|  | 810 | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | 811 | * has completed, and if so, how the PHY and link partner has | 
|  | 812 | * flow control configured. | 
|  | 813 | */ | 
|  | 814 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | 
|  | 815 | /* | 
|  | 816 | * Read the MII Status Register and check to see if AutoNeg | 
|  | 817 | * has completed.  We read this twice because this reg has | 
|  | 818 | * some "sticky" (latched) bits. | 
|  | 819 | */ | 
|  | 820 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | 
|  | 821 | &mii_status_reg); | 
|  | 822 | if (ret_val) | 
|  | 823 | goto out; | 
|  | 824 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | 
|  | 825 | &mii_status_reg); | 
|  | 826 | if (ret_val) | 
|  | 827 | goto out; | 
|  | 828 |  | 
|  | 829 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | 
|  | 830 | hw_dbg(hw, "Copper PHY and Auto Neg " | 
|  | 831 | "has not completed.\n"); | 
|  | 832 | goto out; | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | /* | 
|  | 836 | * The AutoNeg process has completed, so we now need to | 
|  | 837 | * read both the Auto Negotiation Advertisement | 
|  | 838 | * Register (Address 4) and the Auto_Negotiation Base | 
|  | 839 | * Page Ability Register (Address 5) to determine how | 
|  | 840 | * flow control was negotiated. | 
|  | 841 | */ | 
|  | 842 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|  | 843 | &mii_nway_adv_reg); | 
|  | 844 | if (ret_val) | 
|  | 845 | goto out; | 
|  | 846 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY, | 
|  | 847 | &mii_nway_lp_ability_reg); | 
|  | 848 | if (ret_val) | 
|  | 849 | goto out; | 
|  | 850 |  | 
|  | 851 | /* | 
|  | 852 | * Two bits in the Auto Negotiation Advertisement Register | 
|  | 853 | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | 854 | * Page Ability Register (Address 5) determine flow control | 
|  | 855 | * for both the PHY and the link partner.  The following | 
|  | 856 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | 857 | * 1999, describes these PAUSE resolution bits and how flow | 
|  | 858 | * control is determined based upon these settings. | 
|  | 859 | * NOTE:  DC = Don't Care | 
|  | 860 | * | 
|  | 861 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 862 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | 863 | *-------|---------|-------|---------|-------------------- | 
|  | 864 | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|  | 865 | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|  | 866 | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|  | 867 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | 868 | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|  | 869 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | 870 | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|  | 871 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | 872 | * | 
|  | 873 | * Are both PAUSE bits set to 1?  If so, this implies | 
|  | 874 | * Symmetric Flow Control is enabled at both ends.  The | 
|  | 875 | * ASM_DIR bits are irrelevant per the spec. | 
|  | 876 | * | 
|  | 877 | * For Symmetric Flow Control: | 
|  | 878 | * | 
|  | 879 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 880 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 881 | *-------|---------|-------|---------|-------------------- | 
|  | 882 | *   1   |   DC    |   1   |   DC    | E1000_fc_full | 
|  | 883 | * | 
|  | 884 | */ | 
|  | 885 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 886 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | 887 | /* | 
|  | 888 | * Now we need to check if the user selected RX ONLY | 
|  | 889 | * of pause frames.  In this case, we had to advertise | 
|  | 890 | * FULL flow control because we could not advertise RX | 
|  | 891 | * ONLY. Hence, we must now check to see if we need to | 
|  | 892 | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | 893 | */ | 
|  | 894 | if (hw->fc.original_type == e1000_fc_full) { | 
|  | 895 | hw->fc.type = e1000_fc_full; | 
|  | 896 | hw_dbg(hw, "Flow Control = FULL.\r\n"); | 
|  | 897 | } else { | 
|  | 898 | hw->fc.type = e1000_fc_rx_pause; | 
|  | 899 | hw_dbg(hw, "Flow Control = " | 
|  | 900 | "RX PAUSE frames only.\r\n"); | 
|  | 901 | } | 
|  | 902 | } | 
|  | 903 | /* | 
|  | 904 | * For receiving PAUSE frames ONLY. | 
|  | 905 | * | 
|  | 906 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 907 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 908 | *-------|---------|-------|---------|-------------------- | 
|  | 909 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | 910 | */ | 
|  | 911 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 912 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | 913 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | 914 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | 915 | hw->fc.type = e1000_fc_tx_pause; | 
|  | 916 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); | 
|  | 917 | } | 
|  | 918 | /* | 
|  | 919 | * For transmitting PAUSE frames ONLY. | 
|  | 920 | * | 
|  | 921 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 922 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 923 | *-------|---------|-------|---------|-------------------- | 
|  | 924 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | 925 | */ | 
|  | 926 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 927 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | 928 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | 929 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | 930 | hw->fc.type = e1000_fc_rx_pause; | 
|  | 931 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | 
|  | 932 | } | 
|  | 933 | /* | 
|  | 934 | * Per the IEEE spec, at this point flow control should be | 
|  | 935 | * disabled.  However, we want to consider that we could | 
|  | 936 | * be connected to a legacy switch that doesn't advertise | 
|  | 937 | * desired flow control, but can be forced on the link | 
|  | 938 | * partner.  So if we advertised no flow control, that is | 
|  | 939 | * what we will resolve to.  If we advertised some kind of | 
|  | 940 | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | 941 | * and the link partner advertised none, we will configure | 
|  | 942 | * ourselves to enable Rx Flow Control only.  We can do | 
|  | 943 | * this safely for two reasons:  If the link partner really | 
|  | 944 | * didn't want flow control enabled, and we enable Rx, no | 
|  | 945 | * harm done since we won't be receiving any PAUSE frames | 
|  | 946 | * anyway.  If the intent on the link partner was to have | 
|  | 947 | * flow control enabled, then by us enabling RX only, we | 
|  | 948 | * can at least receive pause frames and process them. | 
|  | 949 | * This is a good idea because in most cases, since we are | 
|  | 950 | * predominantly a server NIC, more times than not we will | 
|  | 951 | * be asked to delay transmission of packets than asking | 
|  | 952 | * our link partner to pause transmission of frames. | 
|  | 953 | */ | 
|  | 954 | else if ((hw->fc.original_type == e1000_fc_none || | 
|  | 955 | hw->fc.original_type == e1000_fc_tx_pause) || | 
|  | 956 | hw->fc.strict_ieee) { | 
|  | 957 | hw->fc.type = e1000_fc_none; | 
|  | 958 | hw_dbg(hw, "Flow Control = NONE.\r\n"); | 
|  | 959 | } else { | 
|  | 960 | hw->fc.type = e1000_fc_rx_pause; | 
|  | 961 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | /* | 
|  | 965 | * Now we need to do one last check...  If we auto- | 
|  | 966 | * negotiated to HALF DUPLEX, flow control should not be | 
|  | 967 | * enabled per IEEE 802.3 spec. | 
|  | 968 | */ | 
|  | 969 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | 
|  | 970 | if (ret_val) { | 
|  | 971 | hw_dbg(hw, "Error getting link speed and duplex\n"); | 
|  | 972 | goto out; | 
|  | 973 | } | 
|  | 974 |  | 
|  | 975 | if (duplex == HALF_DUPLEX) | 
|  | 976 | hw->fc.type = e1000_fc_none; | 
|  | 977 |  | 
|  | 978 | /* | 
|  | 979 | * Now we call a subroutine to actually force the MAC | 
|  | 980 | * controller to use the correct flow control settings. | 
|  | 981 | */ | 
|  | 982 | ret_val = igb_force_mac_fc(hw); | 
|  | 983 | if (ret_val) { | 
|  | 984 | hw_dbg(hw, "Error forcing flow control settings\n"); | 
|  | 985 | goto out; | 
|  | 986 | } | 
|  | 987 | } | 
|  | 988 |  | 
|  | 989 | out: | 
|  | 990 | return ret_val; | 
|  | 991 | } | 
|  | 992 |  | 
|  | 993 | /** | 
|  | 994 | *  e1000_get_speed_and_duplex_copper - Retreive current speed/duplex | 
|  | 995 | *  @hw: pointer to the HW structure | 
|  | 996 | *  @speed: stores the current speed | 
|  | 997 | *  @duplex: stores the current duplex | 
|  | 998 | * | 
|  | 999 | *  Read the status register for the current speed/duplex and store the current | 
|  | 1000 | *  speed and duplex for copper connections. | 
|  | 1001 | **/ | 
|  | 1002 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | 
|  | 1003 | u16 *duplex) | 
|  | 1004 | { | 
|  | 1005 | u32 status; | 
|  | 1006 |  | 
|  | 1007 | status = rd32(E1000_STATUS); | 
|  | 1008 | if (status & E1000_STATUS_SPEED_1000) { | 
|  | 1009 | *speed = SPEED_1000; | 
|  | 1010 | hw_dbg(hw, "1000 Mbs, "); | 
|  | 1011 | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | 1012 | *speed = SPEED_100; | 
|  | 1013 | hw_dbg(hw, "100 Mbs, "); | 
|  | 1014 | } else { | 
|  | 1015 | *speed = SPEED_10; | 
|  | 1016 | hw_dbg(hw, "10 Mbs, "); | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | if (status & E1000_STATUS_FD) { | 
|  | 1020 | *duplex = FULL_DUPLEX; | 
|  | 1021 | hw_dbg(hw, "Full Duplex\n"); | 
|  | 1022 | } else { | 
|  | 1023 | *duplex = HALF_DUPLEX; | 
|  | 1024 | hw_dbg(hw, "Half Duplex\n"); | 
|  | 1025 | } | 
|  | 1026 |  | 
|  | 1027 | return 0; | 
|  | 1028 | } | 
|  | 1029 |  | 
|  | 1030 | /** | 
|  | 1031 | *  e1000_get_hw_semaphore - Acquire hardware semaphore | 
|  | 1032 | *  @hw: pointer to the HW structure | 
|  | 1033 | * | 
|  | 1034 | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | 1035 | **/ | 
|  | 1036 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | 
|  | 1037 | { | 
|  | 1038 | u32 swsm; | 
|  | 1039 | s32 ret_val = 0; | 
|  | 1040 | s32 timeout = hw->nvm.word_size + 1; | 
|  | 1041 | s32 i = 0; | 
|  | 1042 |  | 
|  | 1043 | /* Get the SW semaphore */ | 
|  | 1044 | while (i < timeout) { | 
|  | 1045 | swsm = rd32(E1000_SWSM); | 
|  | 1046 | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | 1047 | break; | 
|  | 1048 |  | 
|  | 1049 | udelay(50); | 
|  | 1050 | i++; | 
|  | 1051 | } | 
|  | 1052 |  | 
|  | 1053 | if (i == timeout) { | 
|  | 1054 | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | 
|  | 1055 | ret_val = -E1000_ERR_NVM; | 
|  | 1056 | goto out; | 
|  | 1057 | } | 
|  | 1058 |  | 
|  | 1059 | /* Get the FW semaphore. */ | 
|  | 1060 | for (i = 0; i < timeout; i++) { | 
|  | 1061 | swsm = rd32(E1000_SWSM); | 
|  | 1062 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  | 1063 |  | 
|  | 1064 | /* Semaphore acquired if bit latched */ | 
|  | 1065 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | 
|  | 1066 | break; | 
|  | 1067 |  | 
|  | 1068 | udelay(50); | 
|  | 1069 | } | 
|  | 1070 |  | 
|  | 1071 | if (i == timeout) { | 
|  | 1072 | /* Release semaphores */ | 
|  | 1073 | igb_put_hw_semaphore(hw); | 
|  | 1074 | hw_dbg(hw, "Driver can't access the NVM\n"); | 
|  | 1075 | ret_val = -E1000_ERR_NVM; | 
|  | 1076 | goto out; | 
|  | 1077 | } | 
|  | 1078 |  | 
|  | 1079 | out: | 
|  | 1080 | return ret_val; | 
|  | 1081 | } | 
|  | 1082 |  | 
|  | 1083 | /** | 
|  | 1084 | *  e1000_put_hw_semaphore - Release hardware semaphore | 
|  | 1085 | *  @hw: pointer to the HW structure | 
|  | 1086 | * | 
|  | 1087 | *  Release hardware semaphore used to access the PHY or NVM | 
|  | 1088 | **/ | 
|  | 1089 | void igb_put_hw_semaphore(struct e1000_hw *hw) | 
|  | 1090 | { | 
|  | 1091 | u32 swsm; | 
|  | 1092 |  | 
|  | 1093 | swsm = rd32(E1000_SWSM); | 
|  | 1094 |  | 
|  | 1095 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  | 1096 |  | 
|  | 1097 | wr32(E1000_SWSM, swsm); | 
|  | 1098 | } | 
|  | 1099 |  | 
|  | 1100 | /** | 
|  | 1101 | *  e1000_get_auto_rd_done - Check for auto read completion | 
|  | 1102 | *  @hw: pointer to the HW structure | 
|  | 1103 | * | 
|  | 1104 | *  Check EEPROM for Auto Read done bit. | 
|  | 1105 | **/ | 
|  | 1106 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | 
|  | 1107 | { | 
|  | 1108 | s32 i = 0; | 
|  | 1109 | s32 ret_val = 0; | 
|  | 1110 |  | 
|  | 1111 |  | 
|  | 1112 | while (i < AUTO_READ_DONE_TIMEOUT) { | 
|  | 1113 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | 
|  | 1114 | break; | 
|  | 1115 | msleep(1); | 
|  | 1116 | i++; | 
|  | 1117 | } | 
|  | 1118 |  | 
|  | 1119 | if (i == AUTO_READ_DONE_TIMEOUT) { | 
|  | 1120 | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | 
|  | 1121 | ret_val = -E1000_ERR_RESET; | 
|  | 1122 | goto out; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | out: | 
|  | 1126 | return ret_val; | 
|  | 1127 | } | 
|  | 1128 |  | 
|  | 1129 | /** | 
|  | 1130 | *  e1000_valid_led_default - Verify a valid default LED config | 
|  | 1131 | *  @hw: pointer to the HW structure | 
|  | 1132 | *  @data: pointer to the NVM (EEPROM) | 
|  | 1133 | * | 
|  | 1134 | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | 1135 | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | 1136 | **/ | 
|  | 1137 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | 
|  | 1138 | { | 
|  | 1139 | s32 ret_val; | 
|  | 1140 |  | 
|  | 1141 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | 1142 | if (ret_val) { | 
|  | 1143 | hw_dbg(hw, "NVM Read Error\n"); | 
|  | 1144 | goto out; | 
|  | 1145 | } | 
|  | 1146 |  | 
|  | 1147 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
|  | 1148 | *data = ID_LED_DEFAULT; | 
|  | 1149 |  | 
|  | 1150 | out: | 
|  | 1151 | return ret_val; | 
|  | 1152 | } | 
|  | 1153 |  | 
|  | 1154 | /** | 
|  | 1155 | *  e1000_id_led_init - | 
|  | 1156 | *  @hw: pointer to the HW structure | 
|  | 1157 | * | 
|  | 1158 | **/ | 
|  | 1159 | s32 igb_id_led_init(struct e1000_hw *hw) | 
|  | 1160 | { | 
|  | 1161 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 1162 | s32 ret_val; | 
|  | 1163 | const u32 ledctl_mask = 0x000000FF; | 
|  | 1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | 1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | 1166 | u16 data, i, temp; | 
|  | 1167 | const u16 led_mask = 0x0F; | 
|  | 1168 |  | 
|  | 1169 | ret_val = igb_valid_led_default(hw, &data); | 
|  | 1170 | if (ret_val) | 
|  | 1171 | goto out; | 
|  | 1172 |  | 
|  | 1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | 
|  | 1174 | mac->ledctl_mode1 = mac->ledctl_default; | 
|  | 1175 | mac->ledctl_mode2 = mac->ledctl_default; | 
|  | 1176 |  | 
|  | 1177 | for (i = 0; i < 4; i++) { | 
|  | 1178 | temp = (data >> (i << 2)) & led_mask; | 
|  | 1179 | switch (temp) { | 
|  | 1180 | case ID_LED_ON1_DEF2: | 
|  | 1181 | case ID_LED_ON1_ON2: | 
|  | 1182 | case ID_LED_ON1_OFF2: | 
|  | 1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | 1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | 1185 | break; | 
|  | 1186 | case ID_LED_OFF1_DEF2: | 
|  | 1187 | case ID_LED_OFF1_ON2: | 
|  | 1188 | case ID_LED_OFF1_OFF2: | 
|  | 1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | 1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | 1191 | break; | 
|  | 1192 | default: | 
|  | 1193 | /* Do nothing */ | 
|  | 1194 | break; | 
|  | 1195 | } | 
|  | 1196 | switch (temp) { | 
|  | 1197 | case ID_LED_DEF1_ON2: | 
|  | 1198 | case ID_LED_ON1_ON2: | 
|  | 1199 | case ID_LED_OFF1_ON2: | 
|  | 1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | 1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | 1202 | break; | 
|  | 1203 | case ID_LED_DEF1_OFF2: | 
|  | 1204 | case ID_LED_ON1_OFF2: | 
|  | 1205 | case ID_LED_OFF1_OFF2: | 
|  | 1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | 1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | 1208 | break; | 
|  | 1209 | default: | 
|  | 1210 | /* Do nothing */ | 
|  | 1211 | break; | 
|  | 1212 | } | 
|  | 1213 | } | 
|  | 1214 |  | 
|  | 1215 | out: | 
|  | 1216 | return ret_val; | 
|  | 1217 | } | 
|  | 1218 |  | 
|  | 1219 | /** | 
|  | 1220 | *  e1000_cleanup_led - Set LED config to default operation | 
|  | 1221 | *  @hw: pointer to the HW structure | 
|  | 1222 | * | 
|  | 1223 | *  Remove the current LED configuration and set the LED configuration | 
|  | 1224 | *  to the default value, saved from the EEPROM. | 
|  | 1225 | **/ | 
|  | 1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | 
|  | 1227 | { | 
|  | 1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | 
|  | 1229 | return 0; | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | /** | 
|  | 1233 | *  e1000_blink_led - Blink LED | 
|  | 1234 | *  @hw: pointer to the HW structure | 
|  | 1235 | * | 
|  | 1236 | *  Blink the led's which are set to be on. | 
|  | 1237 | **/ | 
|  | 1238 | s32 igb_blink_led(struct e1000_hw *hw) | 
|  | 1239 | { | 
|  | 1240 | u32 ledctl_blink = 0; | 
|  | 1241 | u32 i; | 
|  | 1242 |  | 
|  | 1243 | if (hw->phy.media_type == e1000_media_type_fiber) { | 
|  | 1244 | /* always blink LED0 for PCI-E fiber */ | 
|  | 1245 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
|  | 1246 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | 1247 | } else { | 
|  | 1248 | /* | 
|  | 1249 | * set the blink bit for each LED that's "on" (0x0E) | 
|  | 1250 | * in ledctl_mode2 | 
|  | 1251 | */ | 
|  | 1252 | ledctl_blink = hw->mac.ledctl_mode2; | 
|  | 1253 | for (i = 0; i < 4; i++) | 
|  | 1254 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | 
|  | 1255 | E1000_LEDCTL_MODE_LED_ON) | 
|  | 1256 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | 
|  | 1257 | (i * 8)); | 
|  | 1258 | } | 
|  | 1259 |  | 
|  | 1260 | wr32(E1000_LEDCTL, ledctl_blink); | 
|  | 1261 |  | 
|  | 1262 | return 0; | 
|  | 1263 | } | 
|  | 1264 |  | 
|  | 1265 | /** | 
|  | 1266 | *  e1000_led_off - Turn LED off | 
|  | 1267 | *  @hw: pointer to the HW structure | 
|  | 1268 | * | 
|  | 1269 | *  Turn LED off. | 
|  | 1270 | **/ | 
|  | 1271 | s32 igb_led_off(struct e1000_hw *hw) | 
|  | 1272 | { | 
|  | 1273 | u32 ctrl; | 
|  | 1274 |  | 
|  | 1275 | switch (hw->phy.media_type) { | 
|  | 1276 | case e1000_media_type_fiber: | 
|  | 1277 | ctrl = rd32(E1000_CTRL); | 
|  | 1278 | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | 1279 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 1280 | wr32(E1000_CTRL, ctrl); | 
|  | 1281 | break; | 
|  | 1282 | case e1000_media_type_copper: | 
|  | 1283 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | 
|  | 1284 | break; | 
|  | 1285 | default: | 
|  | 1286 | break; | 
|  | 1287 | } | 
|  | 1288 |  | 
|  | 1289 | return 0; | 
|  | 1290 | } | 
|  | 1291 |  | 
|  | 1292 | /** | 
|  | 1293 | *  e1000_disable_pcie_master - Disables PCI-express master access | 
|  | 1294 | *  @hw: pointer to the HW structure | 
|  | 1295 | * | 
|  | 1296 | *  Returns 0 (0) if successful, else returns -10 | 
|  | 1297 | *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | 
|  | 1298 | *  the master requests to be disabled. | 
|  | 1299 | * | 
|  | 1300 | *  Disables PCI-Express master access and verifies there are no pending | 
|  | 1301 | *  requests. | 
|  | 1302 | **/ | 
|  | 1303 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | 
|  | 1304 | { | 
|  | 1305 | u32 ctrl; | 
|  | 1306 | s32 timeout = MASTER_DISABLE_TIMEOUT; | 
|  | 1307 | s32 ret_val = 0; | 
|  | 1308 |  | 
|  | 1309 | if (hw->bus.type != e1000_bus_type_pci_express) | 
|  | 1310 | goto out; | 
|  | 1311 |  | 
|  | 1312 | ctrl = rd32(E1000_CTRL); | 
|  | 1313 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | 1314 | wr32(E1000_CTRL, ctrl); | 
|  | 1315 |  | 
|  | 1316 | while (timeout) { | 
|  | 1317 | if (!(rd32(E1000_STATUS) & | 
|  | 1318 | E1000_STATUS_GIO_MASTER_ENABLE)) | 
|  | 1319 | break; | 
|  | 1320 | udelay(100); | 
|  | 1321 | timeout--; | 
|  | 1322 | } | 
|  | 1323 |  | 
|  | 1324 | if (!timeout) { | 
|  | 1325 | hw_dbg(hw, "Master requests are pending.\n"); | 
|  | 1326 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|  | 1327 | goto out; | 
|  | 1328 | } | 
|  | 1329 |  | 
|  | 1330 | out: | 
|  | 1331 | return ret_val; | 
|  | 1332 | } | 
|  | 1333 |  | 
|  | 1334 | /** | 
|  | 1335 | *  e1000_reset_adaptive - Reset Adaptive Interframe Spacing | 
|  | 1336 | *  @hw: pointer to the HW structure | 
|  | 1337 | * | 
|  | 1338 | *  Reset the Adaptive Interframe Spacing throttle to default values. | 
|  | 1339 | **/ | 
|  | 1340 | void igb_reset_adaptive(struct e1000_hw *hw) | 
|  | 1341 | { | 
|  | 1342 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 1343 |  | 
|  | 1344 | if (!mac->adaptive_ifs) { | 
|  | 1345 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | 
|  | 1346 | goto out; | 
|  | 1347 | } | 
|  | 1348 |  | 
|  | 1349 | if (!mac->ifs_params_forced) { | 
|  | 1350 | mac->current_ifs_val = 0; | 
|  | 1351 | mac->ifs_min_val = IFS_MIN; | 
|  | 1352 | mac->ifs_max_val = IFS_MAX; | 
|  | 1353 | mac->ifs_step_size = IFS_STEP; | 
|  | 1354 | mac->ifs_ratio = IFS_RATIO; | 
|  | 1355 | } | 
|  | 1356 |  | 
|  | 1357 | mac->in_ifs_mode = false; | 
|  | 1358 | wr32(E1000_AIT, 0); | 
|  | 1359 | out: | 
|  | 1360 | return; | 
|  | 1361 | } | 
|  | 1362 |  | 
|  | 1363 | /** | 
|  | 1364 | *  e1000_update_adaptive - Update Adaptive Interframe Spacing | 
|  | 1365 | *  @hw: pointer to the HW structure | 
|  | 1366 | * | 
|  | 1367 | *  Update the Adaptive Interframe Spacing Throttle value based on the | 
|  | 1368 | *  time between transmitted packets and time between collisions. | 
|  | 1369 | **/ | 
|  | 1370 | void igb_update_adaptive(struct e1000_hw *hw) | 
|  | 1371 | { | 
|  | 1372 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 1373 |  | 
|  | 1374 | if (!mac->adaptive_ifs) { | 
|  | 1375 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | 
|  | 1376 | goto out; | 
|  | 1377 | } | 
|  | 1378 |  | 
|  | 1379 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | 
|  | 1380 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | 1381 | mac->in_ifs_mode = true; | 
|  | 1382 | if (mac->current_ifs_val < mac->ifs_max_val) { | 
|  | 1383 | if (!mac->current_ifs_val) | 
|  | 1384 | mac->current_ifs_val = mac->ifs_min_val; | 
|  | 1385 | else | 
|  | 1386 | mac->current_ifs_val += | 
|  | 1387 | mac->ifs_step_size; | 
|  | 1388 | wr32(E1000_AIT, | 
|  | 1389 | mac->current_ifs_val); | 
|  | 1390 | } | 
|  | 1391 | } | 
|  | 1392 | } else { | 
|  | 1393 | if (mac->in_ifs_mode && | 
|  | 1394 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | 1395 | mac->current_ifs_val = 0; | 
|  | 1396 | mac->in_ifs_mode = false; | 
|  | 1397 | wr32(E1000_AIT, 0); | 
|  | 1398 | } | 
|  | 1399 | } | 
|  | 1400 | out: | 
|  | 1401 | return; | 
|  | 1402 | } | 
|  | 1403 |  | 
|  | 1404 | /** | 
|  | 1405 | *  e1000_validate_mdi_setting - Verify MDI/MDIx settings | 
|  | 1406 | *  @hw: pointer to the HW structure | 
|  | 1407 | * | 
|  | 1408 | *  Verify that when not using auto-negotitation that MDI/MDIx is correctly | 
|  | 1409 | *  set, which is forced to MDI mode only. | 
|  | 1410 | **/ | 
|  | 1411 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | 
|  | 1412 | { | 
|  | 1413 | s32 ret_val = 0; | 
|  | 1414 |  | 
|  | 1415 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | 
|  | 1416 | hw_dbg(hw, "Invalid MDI setting detected\n"); | 
|  | 1417 | hw->phy.mdix = 1; | 
|  | 1418 | ret_val = -E1000_ERR_CONFIG; | 
|  | 1419 | goto out; | 
|  | 1420 | } | 
|  | 1421 |  | 
|  | 1422 | out: | 
|  | 1423 | return ret_val; | 
|  | 1424 | } | 
|  | 1425 |  | 
|  | 1426 | /** | 
|  | 1427 | *  e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register | 
|  | 1428 | *  @hw: pointer to the HW structure | 
|  | 1429 | *  @reg: 32bit register offset such as E1000_SCTL | 
|  | 1430 | *  @offset: register offset to write to | 
|  | 1431 | *  @data: data to write at register offset | 
|  | 1432 | * | 
|  | 1433 | *  Writes an address/data control type register.  There are several of these | 
|  | 1434 | *  and they all have the format address << 8 | data and bit 31 is polled for | 
|  | 1435 | *  completion. | 
|  | 1436 | **/ | 
|  | 1437 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | 
|  | 1438 | u32 offset, u8 data) | 
|  | 1439 | { | 
|  | 1440 | u32 i, regvalue = 0; | 
|  | 1441 | s32 ret_val = 0; | 
|  | 1442 |  | 
|  | 1443 | /* Set up the address and data */ | 
|  | 1444 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | 
|  | 1445 | wr32(reg, regvalue); | 
|  | 1446 |  | 
|  | 1447 | /* Poll the ready bit to see if the MDI read completed */ | 
|  | 1448 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | 
|  | 1449 | udelay(5); | 
|  | 1450 | regvalue = rd32(reg); | 
|  | 1451 | if (regvalue & E1000_GEN_CTL_READY) | 
|  | 1452 | break; | 
|  | 1453 | } | 
|  | 1454 | if (!(regvalue & E1000_GEN_CTL_READY)) { | 
|  | 1455 | hw_dbg(hw, "Reg %08x did not indicate ready\n", reg); | 
|  | 1456 | ret_val = -E1000_ERR_PHY; | 
|  | 1457 | goto out; | 
|  | 1458 | } | 
|  | 1459 |  | 
|  | 1460 | out: | 
|  | 1461 | return ret_val; | 
|  | 1462 | } | 
|  | 1463 |  | 
|  | 1464 | /** | 
|  | 1465 | *  e1000_enable_mng_pass_thru - Enable processing of ARP's | 
|  | 1466 | *  @hw: pointer to the HW structure | 
|  | 1467 | * | 
|  | 1468 | *  Verifies the hardware needs to allow ARPs to be processed by the host. | 
|  | 1469 | **/ | 
|  | 1470 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | 1471 | { | 
|  | 1472 | u32 manc; | 
|  | 1473 | u32 fwsm, factps; | 
|  | 1474 | bool ret_val = false; | 
|  | 1475 |  | 
|  | 1476 | if (!hw->mac.asf_firmware_present) | 
|  | 1477 | goto out; | 
|  | 1478 |  | 
|  | 1479 | manc = rd32(E1000_MANC); | 
|  | 1480 |  | 
|  | 1481 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | 1482 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | 1483 | goto out; | 
|  | 1484 |  | 
|  | 1485 | if (hw->mac.arc_subsystem_valid) { | 
|  | 1486 | fwsm = rd32(E1000_FWSM); | 
|  | 1487 | factps = rd32(E1000_FACTPS); | 
|  | 1488 |  | 
|  | 1489 | if (!(factps & E1000_FACTPS_MNGCG) && | 
|  | 1490 | ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | 1491 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | 
|  | 1492 | ret_val = true; | 
|  | 1493 | goto out; | 
|  | 1494 | } | 
|  | 1495 | } else { | 
|  | 1496 | if ((manc & E1000_MANC_SMBUS_EN) && | 
|  | 1497 | !(manc & E1000_MANC_ASF_EN)) { | 
|  | 1498 | ret_val = true; | 
|  | 1499 | goto out; | 
|  | 1500 | } | 
|  | 1501 | } | 
|  | 1502 |  | 
|  | 1503 | out: | 
|  | 1504 | return ret_val; | 
|  | 1505 | } |