| Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 1 | /* | 
 | 2 |  * Memory arbiter functions. Allocates bandwidth through the | 
 | 3 |  * arbiter and sets up arbiter breakpoints. | 
 | 4 |  * | 
 | 5 |  * The algorithm first assigns slots to the clients that has specified | 
| Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 6 |  * bandwidth (e.g. ethernet) and then the remaining slots are divided | 
| Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 7 |  * on all the active clients. | 
 | 8 |  * | 
 | 9 |  * Copyright (c) 2004-2007 Axis Communications AB. | 
 | 10 |  * | 
 | 11 |  * The artpec-3 has two arbiters. The memory hierarchy looks like this: | 
 | 12 |  * | 
 | 13 |  * | 
 | 14 |  * CPU DMAs | 
 | 15 |  *  |   | | 
 | 16 |  *  |   | | 
 | 17 |  * --------------    ------------------ | 
 | 18 |  * | foo arbiter|----| Internal memory| | 
 | 19 |  * --------------    ------------------ | 
 | 20 |  *      | | 
 | 21 |  * -------------- | 
 | 22 |  * | L2 cache   | | 
 | 23 |  * -------------- | 
 | 24 |  *             | | 
 | 25 |  * h264 etc    | | 
 | 26 |  *    |        | | 
 | 27 |  *    |        | | 
 | 28 |  * -------------- | 
 | 29 |  * | bar arbiter| | 
 | 30 |  * -------------- | 
 | 31 |  *       | | 
 | 32 |  * --------- | 
 | 33 |  * | SDRAM | | 
 | 34 |  * --------- | 
 | 35 |  * | 
 | 36 |  */ | 
 | 37 |  | 
 | 38 | #include <hwregs/reg_map.h> | 
 | 39 | #include <hwregs/reg_rdwr.h> | 
 | 40 | #include <hwregs/marb_foo_defs.h> | 
 | 41 | #include <hwregs/marb_bar_defs.h> | 
 | 42 | #include <arbiter.h> | 
 | 43 | #include <hwregs/intr_vect.h> | 
 | 44 | #include <linux/interrupt.h> | 
 | 45 | #include <linux/irq.h> | 
 | 46 | #include <linux/signal.h> | 
 | 47 | #include <linux/errno.h> | 
 | 48 | #include <linux/spinlock.h> | 
 | 49 | #include <asm/io.h> | 
 | 50 | #include <asm/irq_regs.h> | 
 | 51 |  | 
 | 52 | #define D(x) | 
 | 53 |  | 
 | 54 | struct crisv32_watch_entry { | 
 | 55 |   unsigned long instance; | 
 | 56 |   watch_callback *cb; | 
 | 57 |   unsigned long start; | 
 | 58 |   unsigned long end; | 
 | 59 |   int used; | 
 | 60 | }; | 
 | 61 |  | 
 | 62 | #define NUMBER_OF_BP 4 | 
 | 63 | #define SDRAM_BANDWIDTH 400000000 | 
 | 64 | #define INTMEM_BANDWIDTH 400000000 | 
 | 65 | #define NBR_OF_SLOTS 64 | 
 | 66 | #define NBR_OF_REGIONS 2 | 
 | 67 | #define NBR_OF_CLIENTS 15 | 
 | 68 | #define ARBITERS 2 | 
 | 69 | #define UNASSIGNED 100 | 
 | 70 |  | 
 | 71 | struct arbiter { | 
 | 72 |   unsigned long instance; | 
 | 73 |   int nbr_regions; | 
 | 74 |   int nbr_clients; | 
 | 75 |   int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; | 
 | 76 |   int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; | 
 | 77 | }; | 
 | 78 |  | 
 | 79 | static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] = | 
 | 80 | { | 
 | 81 |   { | 
 | 82 |   {regi_marb_foo_bp0}, | 
 | 83 |   {regi_marb_foo_bp1}, | 
 | 84 |   {regi_marb_foo_bp2}, | 
 | 85 |   {regi_marb_foo_bp3} | 
 | 86 |   }, | 
 | 87 |   { | 
 | 88 |   {regi_marb_bar_bp0}, | 
 | 89 |   {regi_marb_bar_bp1}, | 
 | 90 |   {regi_marb_bar_bp2}, | 
 | 91 |   {regi_marb_bar_bp3} | 
 | 92 |   } | 
 | 93 | }; | 
 | 94 |  | 
 | 95 | struct arbiter arbiters[ARBITERS] = | 
 | 96 | { | 
 | 97 |   { /* L2 cache arbiter */ | 
 | 98 |     .instance = regi_marb_foo, | 
 | 99 |     .nbr_regions = 2, | 
 | 100 |     .nbr_clients = 15 | 
 | 101 |   }, | 
 | 102 |   { /* DDR2 arbiter */ | 
 | 103 |     .instance = regi_marb_bar, | 
 | 104 |     .nbr_regions = 1, | 
 | 105 |     .nbr_clients = 9 | 
 | 106 |   } | 
 | 107 | }; | 
 | 108 |  | 
 | 109 | static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH}; | 
 | 110 |  | 
 | 111 | DEFINE_SPINLOCK(arbiter_lock); | 
 | 112 |  | 
 | 113 | static irqreturn_t | 
 | 114 | crisv32_foo_arbiter_irq(int irq, void *dev_id); | 
 | 115 | static irqreturn_t | 
 | 116 | crisv32_bar_arbiter_irq(int irq, void *dev_id); | 
 | 117 |  | 
 | 118 | /* | 
 | 119 |  * "I'm the arbiter, I know the score. | 
 | 120 |  *  From square one I'll be watching all 64." | 
 | 121 |  * (memory arbiter slots, that is) | 
 | 122 |  * | 
 | 123 |  *  Or in other words: | 
 | 124 |  * Program the memory arbiter slots for "region" according to what's | 
 | 125 |  * in requested_slots[] and active_clients[], while minimizing | 
 | 126 |  * latency. A caller may pass a non-zero positive amount for | 
 | 127 |  * "unused_slots", which must then be the unallocated, remaining | 
 | 128 |  * number of slots, free to hand out to any client. | 
 | 129 |  */ | 
 | 130 |  | 
 | 131 | static void crisv32_arbiter_config(int arbiter, int region, int unused_slots) | 
 | 132 | { | 
 | 133 | 	int slot; | 
 | 134 | 	int client; | 
 | 135 | 	int interval = 0; | 
 | 136 |  | 
 | 137 | 	/* | 
 | 138 | 	 * This vector corresponds to the hardware arbiter slots (see | 
 | 139 | 	 * the hardware documentation for semantics). We initialize | 
 | 140 | 	 * each slot with a suitable sentinel value outside the valid | 
 | 141 | 	 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with | 
 | 142 | 	 * client indexes. Then it's fed to the hardware. | 
 | 143 | 	 */ | 
 | 144 | 	s8 val[NBR_OF_SLOTS]; | 
 | 145 |  | 
 | 146 | 	for (slot = 0; slot < NBR_OF_SLOTS; slot++) | 
 | 147 | 	    val[slot] = -1; | 
 | 148 |  | 
 | 149 | 	for (client = 0; client < arbiters[arbiter].nbr_clients; client++) { | 
 | 150 | 	    int pos; | 
 | 151 | 	    /* Allocate the requested non-zero number of slots, but | 
 | 152 | 	     * also give clients with zero-requests one slot each | 
 | 153 | 	     * while stocks last. We do the latter here, in client | 
 | 154 | 	     * order. This makes sure zero-request clients are the | 
 | 155 | 	     * first to get to any spare slots, else those slots | 
 | 156 | 	     * could, when bandwidth is allocated close to the limit, | 
 | 157 | 	     * all be allocated to low-index non-zero-request clients | 
 | 158 | 	     * in the default-fill loop below. Another positive but | 
 | 159 | 	     * secondary effect is a somewhat better spread of the | 
 | 160 | 	     * zero-bandwidth clients in the vector, avoiding some of | 
 | 161 | 	     * the latency that could otherwise be caused by the | 
 | 162 | 	     * partitioning of non-zero-bandwidth clients at low | 
 | 163 | 	     * indexes and zero-bandwidth clients at high | 
 | 164 | 	     * indexes. (Note that this spreading can only affect the | 
 | 165 | 	     * unallocated bandwidth.)  All the above only matters for | 
 | 166 | 	     * memory-intensive situations, of course. | 
 | 167 | 	     */ | 
 | 168 | 	    if (!arbiters[arbiter].requested_slots[region][client]) { | 
 | 169 | 		/* | 
 | 170 | 		 * Skip inactive clients. Also skip zero-slot | 
 | 171 | 		 * allocations in this pass when there are no known | 
 | 172 | 		 * free slots. | 
 | 173 | 		 */ | 
 | 174 | 		if (!arbiters[arbiter].active_clients[region][client] || | 
 | 175 | 				unused_slots <= 0) | 
 | 176 | 			continue; | 
 | 177 |  | 
 | 178 | 		unused_slots--; | 
 | 179 |  | 
 | 180 | 		/* Only allocate one slot for this client. */ | 
 | 181 | 		interval = NBR_OF_SLOTS; | 
 | 182 | 	    } else | 
 | 183 | 		interval = NBR_OF_SLOTS / | 
 | 184 | 			arbiters[arbiter].requested_slots[region][client]; | 
 | 185 |  | 
 | 186 | 	    pos = 0; | 
 | 187 | 	    while (pos < NBR_OF_SLOTS) { | 
 | 188 | 		if (val[pos] >= 0) | 
 | 189 | 		   pos++; | 
 | 190 | 		else { | 
 | 191 | 			val[pos] = client; | 
 | 192 | 			pos += interval; | 
 | 193 | 		} | 
 | 194 | 	    } | 
 | 195 | 	} | 
 | 196 |  | 
 | 197 | 	client = 0; | 
 | 198 | 	for (slot = 0; slot < NBR_OF_SLOTS; slot++) { | 
 | 199 | 		/* | 
 | 200 | 		 * Allocate remaining slots in round-robin | 
 | 201 | 		 * client-number order for active clients. For this | 
 | 202 | 		 * pass, we ignore requested bandwidth and previous | 
 | 203 | 		 * allocations. | 
 | 204 | 		 */ | 
 | 205 | 		if (val[slot] < 0) { | 
 | 206 | 			int first = client; | 
 | 207 | 			while (!arbiters[arbiter].active_clients[region][client]) { | 
 | 208 | 				client = (client + 1) % | 
 | 209 | 					arbiters[arbiter].nbr_clients; | 
 | 210 | 				if (client == first) | 
 | 211 | 				   break; | 
 | 212 | 			} | 
 | 213 | 			val[slot] = client; | 
 | 214 | 			client = (client + 1) % arbiters[arbiter].nbr_clients; | 
 | 215 | 		} | 
 | 216 | 		if (arbiter == 0) { | 
 | 217 | 			if (region == EXT_REGION) | 
 | 218 | 				REG_WR_INT_VECT(marb_foo, regi_marb_foo, | 
 | 219 | 					rw_l2_slots, slot, val[slot]); | 
 | 220 | 			else if (region == INT_REGION) | 
 | 221 | 				REG_WR_INT_VECT(marb_foo, regi_marb_foo, | 
 | 222 | 					rw_intm_slots, slot, val[slot]); | 
 | 223 | 		} else { | 
 | 224 | 			REG_WR_INT_VECT(marb_bar, regi_marb_bar, | 
 | 225 | 				rw_ddr2_slots, slot, val[slot]); | 
 | 226 | 		} | 
 | 227 | 	} | 
 | 228 | } | 
 | 229 |  | 
 | 230 | extern char _stext, _etext; | 
 | 231 |  | 
 | 232 | static void crisv32_arbiter_init(void) | 
 | 233 | { | 
 | 234 | 	static int initialized; | 
 | 235 |  | 
 | 236 | 	if (initialized) | 
 | 237 | 		return; | 
 | 238 |  | 
 | 239 | 	initialized = 1; | 
 | 240 |  | 
 | 241 | 	/* | 
 | 242 | 	 * CPU caches are always set to active, but with zero | 
 | 243 | 	 * bandwidth allocated. It should be ok to allocate zero | 
 | 244 | 	 * bandwidth for the caches, because DMA for other channels | 
 | 245 | 	 * will supposedly finish, once their programmed amount is | 
 | 246 | 	 * done, and then the caches will get access according to the | 
 | 247 | 	 * "fixed scheme" for unclaimed slots. Though, if for some | 
 | 248 | 	 * use-case somewhere, there's a maximum CPU latency for | 
 | 249 | 	 * e.g. some interrupt, we have to start allocating specific | 
 | 250 | 	 * bandwidth for the CPU caches too. | 
 | 251 | 	 */ | 
 | 252 | 	arbiters[0].active_clients[EXT_REGION][11] = 1; | 
 | 253 | 	arbiters[0].active_clients[EXT_REGION][12] = 1; | 
 | 254 | 	crisv32_arbiter_config(0, EXT_REGION, 0); | 
 | 255 | 	crisv32_arbiter_config(0, INT_REGION, 0); | 
 | 256 | 	crisv32_arbiter_config(1, EXT_REGION, 0); | 
 | 257 |  | 
 | 258 | 	if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq, | 
 | 259 | 			IRQF_DISABLED, "arbiter", NULL)) | 
 | 260 | 		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); | 
 | 261 |  | 
 | 262 | 	if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq, | 
 | 263 | 			IRQF_DISABLED, "arbiter", NULL)) | 
 | 264 | 		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); | 
 | 265 |  | 
 | 266 | #ifndef CONFIG_ETRAX_KGDB | 
 | 267 | 	/* Global watch for writes to kernel text segment. */ | 
 | 268 | 	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext, | 
 | 269 | 		MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients), | 
 | 270 | 			      arbiter_all_write, NULL); | 
 | 271 | #endif | 
 | 272 |  | 
 | 273 | 	/* Set up max burst sizes by default */ | 
 | 274 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3); | 
 | 275 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3); | 
 | 276 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3); | 
 | 277 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3); | 
 | 278 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3); | 
 | 279 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3); | 
 | 280 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3); | 
 | 281 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3); | 
 | 282 | 	REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3); | 
 | 283 | } | 
 | 284 |  | 
| Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 285 | int crisv32_arbiter_allocate_bandwidth(int client, int region, | 
| Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 286 | 				      unsigned long bandwidth) | 
 | 287 | { | 
 | 288 | 	int i; | 
 | 289 | 	int total_assigned = 0; | 
 | 290 | 	int total_clients = 0; | 
 | 291 | 	int req; | 
 | 292 | 	int arbiter = 0; | 
 | 293 |  | 
 | 294 | 	crisv32_arbiter_init(); | 
 | 295 |  | 
 | 296 | 	if (client & 0xffff0000) { | 
 | 297 | 		arbiter = 1; | 
 | 298 | 		client >>= 16; | 
 | 299 | 	} | 
 | 300 |  | 
 | 301 | 	for (i = 0; i < arbiters[arbiter].nbr_clients; i++) { | 
 | 302 | 		total_assigned += arbiters[arbiter].requested_slots[region][i]; | 
 | 303 | 		total_clients += arbiters[arbiter].active_clients[region][i]; | 
 | 304 | 	} | 
 | 305 |  | 
 | 306 | 	/* Avoid division by 0 for 0-bandwidth requests. */ | 
 | 307 | 	req = bandwidth == 0 | 
 | 308 | 		? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); | 
 | 309 |  | 
 | 310 | 	/* | 
 | 311 | 	 * We make sure that there are enough slots only for non-zero | 
 | 312 | 	 * requests. Requesting 0 bandwidth *may* allocate slots, | 
 | 313 | 	 * though if all bandwidth is allocated, such a client won't | 
 | 314 | 	 * get any and will have to rely on getting memory access | 
 | 315 | 	 * according to the fixed scheme that's the default when one | 
 | 316 | 	 * of the slot-allocated clients doesn't claim their slot. | 
 | 317 | 	 */ | 
 | 318 | 	if (total_assigned + req > NBR_OF_SLOTS) | 
 | 319 | 	   return -ENOMEM; | 
 | 320 |  | 
 | 321 | 	arbiters[arbiter].active_clients[region][client] = 1; | 
 | 322 | 	arbiters[arbiter].requested_slots[region][client] = req; | 
 | 323 | 	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); | 
 | 324 |  | 
 | 325 | 	/* Propagate allocation from foo to bar */ | 
 | 326 | 	if (arbiter == 0) | 
| Jesper Nilsson | eb09047 | 2008-02-08 10:44:05 +0100 | [diff] [blame] | 327 | 		crisv32_arbiter_allocate_bandwidth(8 << 16, | 
| Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame] | 328 | 			EXT_REGION, bandwidth); | 
 | 329 | 	return 0; | 
 | 330 | } | 
 | 331 |  | 
 | 332 | /* | 
 | 333 |  * Main entry for bandwidth deallocation. | 
 | 334 |  * | 
 | 335 |  * Strictly speaking, for a somewhat constant set of clients where | 
 | 336 |  * each client gets a constant bandwidth and is just enabled or | 
 | 337 |  * disabled (somewhat dynamically), no action is necessary here to | 
 | 338 |  * avoid starvation for non-zero-allocation clients, as the allocated | 
 | 339 |  * slots will just be unused. However, handing out those unused slots | 
 | 340 |  * to active clients avoids needless latency if the "fixed scheme" | 
 | 341 |  * would give unclaimed slots to an eager low-index client. | 
 | 342 |  */ | 
 | 343 |  | 
 | 344 | void crisv32_arbiter_deallocate_bandwidth(int client, int region) | 
 | 345 | { | 
 | 346 | 	int i; | 
 | 347 | 	int total_assigned = 0; | 
 | 348 | 	int arbiter = 0; | 
 | 349 |  | 
 | 350 | 	if (client & 0xffff0000) | 
 | 351 | 		arbiter = 1; | 
 | 352 |  | 
 | 353 | 	arbiters[arbiter].requested_slots[region][client] = 0; | 
 | 354 | 	arbiters[arbiter].active_clients[region][client] = 0; | 
 | 355 |  | 
 | 356 | 	for (i = 0; i < arbiters[arbiter].nbr_clients; i++) | 
 | 357 | 		total_assigned += arbiters[arbiter].requested_slots[region][i]; | 
 | 358 |  | 
 | 359 | 	crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned); | 
 | 360 | } | 
 | 361 |  | 
 | 362 | int crisv32_arbiter_watch(unsigned long start, unsigned long size, | 
 | 363 | 			  unsigned long clients, unsigned long accesses, | 
 | 364 | 			  watch_callback *cb) | 
 | 365 | { | 
 | 366 | 	int i; | 
 | 367 | 	int arbiter; | 
 | 368 | 	int used[2]; | 
 | 369 | 	int ret = 0; | 
 | 370 |  | 
 | 371 | 	crisv32_arbiter_init(); | 
 | 372 |  | 
 | 373 | 	if (start > 0x80000000) { | 
 | 374 | 		printk(KERN_ERR "Arbiter: %lX doesn't look like a " | 
 | 375 | 			"physical address", start); | 
 | 376 | 		return -EFAULT; | 
 | 377 | 	} | 
 | 378 |  | 
 | 379 | 	spin_lock(&arbiter_lock); | 
 | 380 |  | 
 | 381 | 	if (clients & 0xffff) | 
 | 382 | 		used[0] = 1; | 
 | 383 | 	if (clients & 0xffff0000) | 
 | 384 | 		used[1] = 1; | 
 | 385 |  | 
 | 386 | 	for (arbiter = 0; arbiter < ARBITERS; arbiter++) { | 
 | 387 | 		if (!used[arbiter]) | 
 | 388 | 			continue; | 
 | 389 |  | 
 | 390 | 		for (i = 0; i < NUMBER_OF_BP; i++) { | 
 | 391 | 			if (!watches[arbiter][i].used) { | 
 | 392 | 				unsigned intr_mask; | 
 | 393 | 				if (arbiter) | 
 | 394 | 					intr_mask = REG_RD_INT(marb_bar, | 
 | 395 | 						regi_marb_bar, rw_intr_mask); | 
 | 396 | 				else | 
 | 397 | 					intr_mask = REG_RD_INT(marb_foo, | 
 | 398 | 						regi_marb_foo, rw_intr_mask); | 
 | 399 |  | 
 | 400 | 				watches[arbiter][i].used = 1; | 
 | 401 | 				watches[arbiter][i].start = start; | 
 | 402 | 				watches[arbiter][i].end = start + size; | 
 | 403 | 				watches[arbiter][i].cb = cb; | 
 | 404 |  | 
 | 405 | 				ret |= (i + 1) << (arbiter + 8); | 
 | 406 | 				if (arbiter) { | 
 | 407 | 					REG_WR_INT(marb_bar_bp, | 
 | 408 | 						watches[arbiter][i].instance, | 
 | 409 | 						rw_first_addr, | 
 | 410 | 						watches[arbiter][i].start); | 
 | 411 | 					REG_WR_INT(marb_bar_bp, | 
 | 412 | 						watches[arbiter][i].instance, | 
 | 413 | 						rw_last_addr, | 
 | 414 | 						watches[arbiter][i].end); | 
 | 415 | 					REG_WR_INT(marb_bar_bp, | 
 | 416 | 						watches[arbiter][i].instance, | 
 | 417 | 						rw_op, accesses); | 
 | 418 | 					REG_WR_INT(marb_bar_bp, | 
 | 419 | 						watches[arbiter][i].instance, | 
 | 420 | 						rw_clients, | 
 | 421 | 						clients & 0xffff); | 
 | 422 | 				} else { | 
 | 423 | 					REG_WR_INT(marb_foo_bp, | 
 | 424 | 						watches[arbiter][i].instance, | 
 | 425 | 						rw_first_addr, | 
 | 426 | 						watches[arbiter][i].start); | 
 | 427 | 					REG_WR_INT(marb_foo_bp, | 
 | 428 | 						watches[arbiter][i].instance, | 
 | 429 | 						rw_last_addr, | 
 | 430 | 						watches[arbiter][i].end); | 
 | 431 | 					REG_WR_INT(marb_foo_bp, | 
 | 432 | 						watches[arbiter][i].instance, | 
 | 433 | 						rw_op, accesses); | 
 | 434 | 					REG_WR_INT(marb_foo_bp, | 
 | 435 | 						watches[arbiter][i].instance, | 
 | 436 | 						rw_clients, clients >> 16); | 
 | 437 | 				} | 
 | 438 |  | 
 | 439 | 				if (i == 0) | 
 | 440 | 					intr_mask |= 1; | 
 | 441 | 				else if (i == 1) | 
 | 442 | 					intr_mask |= 2; | 
 | 443 | 				else if (i == 2) | 
 | 444 | 					intr_mask |= 4; | 
 | 445 | 				else if (i == 3) | 
 | 446 | 					intr_mask |= 8; | 
 | 447 |  | 
 | 448 | 				if (arbiter) | 
 | 449 | 					REG_WR_INT(marb_bar, regi_marb_bar, | 
 | 450 | 						rw_intr_mask, intr_mask); | 
 | 451 | 				else | 
 | 452 | 					REG_WR_INT(marb_foo, regi_marb_foo, | 
 | 453 | 						rw_intr_mask, intr_mask); | 
 | 454 |  | 
 | 455 | 				spin_unlock(&arbiter_lock); | 
 | 456 |  | 
 | 457 | 				break; | 
 | 458 | 			} | 
 | 459 | 		} | 
 | 460 | 	} | 
 | 461 | 	spin_unlock(&arbiter_lock); | 
 | 462 | 	if (ret) | 
 | 463 | 		return ret; | 
 | 464 | 	else | 
 | 465 | 		return -ENOMEM; | 
 | 466 | } | 
 | 467 |  | 
 | 468 | int crisv32_arbiter_unwatch(int id) | 
 | 469 | { | 
 | 470 | 	int arbiter; | 
 | 471 | 	int intr_mask; | 
 | 472 |  | 
 | 473 | 	crisv32_arbiter_init(); | 
 | 474 |  | 
 | 475 | 	spin_lock(&arbiter_lock); | 
 | 476 |  | 
 | 477 | 	for (arbiter = 0; arbiter < ARBITERS; arbiter++) { | 
 | 478 | 		int id2; | 
 | 479 |  | 
 | 480 | 		if (arbiter) | 
 | 481 | 			intr_mask = REG_RD_INT(marb_bar, regi_marb_bar, | 
 | 482 | 				rw_intr_mask); | 
 | 483 | 		else | 
 | 484 | 			intr_mask = REG_RD_INT(marb_foo, regi_marb_foo, | 
 | 485 | 				rw_intr_mask); | 
 | 486 |  | 
 | 487 | 		id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8); | 
 | 488 | 		if (id2 == 0) | 
 | 489 | 			continue; | 
 | 490 | 		id2--; | 
 | 491 | 		if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) { | 
 | 492 | 			spin_unlock(&arbiter_lock); | 
 | 493 | 			return -EINVAL; | 
 | 494 | 		} | 
 | 495 |  | 
 | 496 | 		memset(&watches[arbiter][id2], 0, | 
 | 497 | 			sizeof(struct crisv32_watch_entry)); | 
 | 498 |  | 
 | 499 | 		if (id2 == 0) | 
 | 500 | 			intr_mask &= ~1; | 
 | 501 | 		else if (id2 == 1) | 
 | 502 | 			intr_mask &= ~2; | 
 | 503 | 		else if (id2 == 2) | 
 | 504 | 			intr_mask &= ~4; | 
 | 505 | 		else if (id2 == 3) | 
 | 506 | 			intr_mask &= ~8; | 
 | 507 |  | 
 | 508 | 		if (arbiter) | 
 | 509 | 			REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask, | 
 | 510 | 				intr_mask); | 
 | 511 | 		else | 
 | 512 | 			REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask, | 
 | 513 | 				intr_mask); | 
 | 514 | 	} | 
 | 515 |  | 
 | 516 | 	spin_unlock(&arbiter_lock); | 
 | 517 | 	return 0; | 
 | 518 | } | 
 | 519 |  | 
 | 520 | extern void show_registers(struct pt_regs *regs); | 
 | 521 |  | 
 | 522 |  | 
 | 523 | static irqreturn_t | 
 | 524 | crisv32_foo_arbiter_irq(int irq, void *dev_id) | 
 | 525 | { | 
 | 526 | 	reg_marb_foo_r_masked_intr masked_intr = | 
 | 527 | 		REG_RD(marb_foo, regi_marb_foo, r_masked_intr); | 
 | 528 | 	reg_marb_foo_bp_r_brk_clients r_clients; | 
 | 529 | 	reg_marb_foo_bp_r_brk_addr r_addr; | 
 | 530 | 	reg_marb_foo_bp_r_brk_op r_op; | 
 | 531 | 	reg_marb_foo_bp_r_brk_first_client r_first; | 
 | 532 | 	reg_marb_foo_bp_r_brk_size r_size; | 
 | 533 | 	reg_marb_foo_bp_rw_ack ack = {0}; | 
 | 534 | 	reg_marb_foo_rw_ack_intr ack_intr = { | 
 | 535 | 		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 | 
 | 536 | 	}; | 
 | 537 | 	struct crisv32_watch_entry *watch; | 
 | 538 | 	unsigned arbiter = (unsigned)dev_id; | 
 | 539 |  | 
 | 540 | 	masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr); | 
 | 541 |  | 
 | 542 | 	if (masked_intr.bp0) | 
 | 543 | 		watch = &watches[arbiter][0]; | 
 | 544 | 	else if (masked_intr.bp1) | 
 | 545 | 		watch = &watches[arbiter][1]; | 
 | 546 | 	else if (masked_intr.bp2) | 
 | 547 | 		watch = &watches[arbiter][2]; | 
 | 548 | 	else if (masked_intr.bp3) | 
 | 549 | 		watch = &watches[arbiter][3]; | 
 | 550 | 	else | 
 | 551 | 		return IRQ_NONE; | 
 | 552 |  | 
 | 553 | 	/* Retrieve all useful information and print it. */ | 
 | 554 | 	r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients); | 
 | 555 | 	r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr); | 
 | 556 | 	r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op); | 
 | 557 | 	r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client); | 
 | 558 | 	r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size); | 
 | 559 |  | 
 | 560 | 	printk(KERN_DEBUG "Arbiter IRQ\n"); | 
 | 561 | 	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", | 
 | 562 | 	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients), | 
 | 563 | 	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr), | 
 | 564 | 	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op), | 
 | 565 | 	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first), | 
 | 566 | 	       REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size)); | 
 | 567 |  | 
 | 568 | 	REG_WR(marb_foo_bp, watch->instance, rw_ack, ack); | 
 | 569 | 	REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr); | 
 | 570 |  | 
 | 571 | 	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()); | 
 | 572 |  | 
 | 573 | 	if (watch->cb) | 
 | 574 | 		watch->cb(); | 
 | 575 |  | 
 | 576 | 	return IRQ_HANDLED; | 
 | 577 | } | 
 | 578 |  | 
 | 579 | static irqreturn_t | 
 | 580 | crisv32_bar_arbiter_irq(int irq, void *dev_id) | 
 | 581 | { | 
 | 582 | 	reg_marb_bar_r_masked_intr masked_intr = | 
 | 583 | 		REG_RD(marb_bar, regi_marb_bar, r_masked_intr); | 
 | 584 | 	reg_marb_bar_bp_r_brk_clients r_clients; | 
 | 585 | 	reg_marb_bar_bp_r_brk_addr r_addr; | 
 | 586 | 	reg_marb_bar_bp_r_brk_op r_op; | 
 | 587 | 	reg_marb_bar_bp_r_brk_first_client r_first; | 
 | 588 | 	reg_marb_bar_bp_r_brk_size r_size; | 
 | 589 | 	reg_marb_bar_bp_rw_ack ack = {0}; | 
 | 590 | 	reg_marb_bar_rw_ack_intr ack_intr = { | 
 | 591 | 		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 | 
 | 592 | 	}; | 
 | 593 | 	struct crisv32_watch_entry *watch; | 
 | 594 | 	unsigned arbiter = (unsigned)dev_id; | 
 | 595 |  | 
 | 596 | 	masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr); | 
 | 597 |  | 
 | 598 | 	if (masked_intr.bp0) | 
 | 599 | 		watch = &watches[arbiter][0]; | 
 | 600 | 	else if (masked_intr.bp1) | 
 | 601 | 		watch = &watches[arbiter][1]; | 
 | 602 | 	else if (masked_intr.bp2) | 
 | 603 | 		watch = &watches[arbiter][2]; | 
 | 604 | 	else if (masked_intr.bp3) | 
 | 605 | 		watch = &watches[arbiter][3]; | 
 | 606 | 	else | 
 | 607 | 		return IRQ_NONE; | 
 | 608 |  | 
 | 609 | 	/* Retrieve all useful information and print it. */ | 
 | 610 | 	r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients); | 
 | 611 | 	r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr); | 
 | 612 | 	r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op); | 
 | 613 | 	r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client); | 
 | 614 | 	r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size); | 
 | 615 |  | 
 | 616 | 	printk(KERN_DEBUG "Arbiter IRQ\n"); | 
 | 617 | 	printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n", | 
 | 618 | 	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients), | 
 | 619 | 	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr), | 
 | 620 | 	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op), | 
 | 621 | 	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first), | 
 | 622 | 	       REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size)); | 
 | 623 |  | 
 | 624 | 	REG_WR(marb_bar_bp, watch->instance, rw_ack, ack); | 
 | 625 | 	REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr); | 
 | 626 |  | 
 | 627 | 	printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()->erp); | 
 | 628 |  | 
 | 629 | 	if (watch->cb) | 
 | 630 | 		watch->cb(); | 
 | 631 |  | 
 | 632 | 	return IRQ_HANDLED; | 
 | 633 | } | 
 | 634 |  |