| Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 1 | /* | 
| Divy Le Ray | 1d68e93 | 2007-01-30 19:44:35 -0800 | [diff] [blame] | 2 |  * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved. | 
| Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 3 |  * | 
 | 4 |  * This software is available to you under a choice of one of two | 
 | 5 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 | 6 |  * General Public License (GPL) Version 2, available from the file | 
 | 7 |  * COPYING in the main directory of this source tree, or the | 
 | 8 |  * OpenIB.org BSD license below: | 
 | 9 |  * | 
 | 10 |  *     Redistribution and use in source and binary forms, with or | 
 | 11 |  *     without modification, are permitted provided that the following | 
 | 12 |  *     conditions are met: | 
 | 13 |  * | 
 | 14 |  *      - Redistributions of source code must retain the above | 
 | 15 |  *        copyright notice, this list of conditions and the following | 
 | 16 |  *        disclaimer. | 
 | 17 |  * | 
 | 18 |  *      - Redistributions in binary form must reproduce the above | 
 | 19 |  *        copyright notice, this list of conditions and the following | 
 | 20 |  *        disclaimer in the documentation and/or other materials | 
 | 21 |  *        provided with the distribution. | 
 | 22 |  * | 
 | 23 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | 24 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 | 25 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | 26 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 | 27 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 | 28 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 | 29 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | 30 |  * SOFTWARE. | 
 | 31 |  */ | 
 | 32 | #include <linux/skbuff.h> | 
 | 33 | #include <linux/netdevice.h> | 
 | 34 | #include <linux/if.h> | 
 | 35 | #include <linux/if_vlan.h> | 
 | 36 | #include <linux/jhash.h> | 
 | 37 | #include <net/neighbour.h> | 
 | 38 | #include "common.h" | 
 | 39 | #include "t3cdev.h" | 
 | 40 | #include "cxgb3_defs.h" | 
 | 41 | #include "l2t.h" | 
 | 42 | #include "t3_cpl.h" | 
 | 43 | #include "firmware_exports.h" | 
 | 44 |  | 
 | 45 | #define VLAN_NONE 0xfff | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * Module locking notes:  There is a RW lock protecting the L2 table as a | 
 | 49 |  * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen | 
 | 50 |  * under the protection of the table lock, individual entry changes happen | 
 | 51 |  * while holding that entry's spinlock.  The table lock nests outside the | 
 | 52 |  * entry locks.  Allocations of new entries take the table lock as writers so | 
 | 53 |  * no other lookups can happen while allocating new entries.  Entry updates | 
 | 54 |  * take the table lock as readers so multiple entries can be updated in | 
 | 55 |  * parallel.  An L2T entry can be dropped by decrementing its reference count | 
 | 56 |  * and therefore can happen in parallel with entry allocation but no entry | 
 | 57 |  * can change state or increment its ref count during allocation as both of | 
 | 58 |  * these perform lookups. | 
 | 59 |  */ | 
 | 60 |  | 
 | 61 | static inline unsigned int vlan_prio(const struct l2t_entry *e) | 
 | 62 | { | 
 | 63 | 	return e->vlan >> 13; | 
 | 64 | } | 
 | 65 |  | 
 | 66 | static inline unsigned int arp_hash(u32 key, int ifindex, | 
 | 67 | 				    const struct l2t_data *d) | 
 | 68 | { | 
 | 69 | 	return jhash_2words(key, ifindex, 0) & (d->nentries - 1); | 
 | 70 | } | 
 | 71 |  | 
 | 72 | static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n) | 
 | 73 | { | 
 | 74 | 	neigh_hold(n); | 
 | 75 | 	if (e->neigh) | 
 | 76 | 		neigh_release(e->neigh); | 
 | 77 | 	e->neigh = n; | 
 | 78 | } | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * Set up an L2T entry and send any packets waiting in the arp queue.  The | 
 | 82 |  * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the | 
 | 83 |  * entry locked. | 
 | 84 |  */ | 
 | 85 | static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb, | 
 | 86 | 				  struct l2t_entry *e) | 
 | 87 | { | 
 | 88 | 	struct cpl_l2t_write_req *req; | 
 | 89 |  | 
 | 90 | 	if (!skb) { | 
 | 91 | 		skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | 
 | 92 | 		if (!skb) | 
 | 93 | 			return -ENOMEM; | 
 | 94 | 	} | 
 | 95 |  | 
 | 96 | 	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); | 
 | 97 | 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | 
 | 98 | 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); | 
 | 99 | 	req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | | 
 | 100 | 			    V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) | | 
 | 101 | 			    V_L2T_W_PRIO(vlan_prio(e))); | 
 | 102 | 	memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); | 
 | 103 | 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); | 
 | 104 | 	skb->priority = CPL_PRIORITY_CONTROL; | 
 | 105 | 	cxgb3_ofld_send(dev, skb); | 
 | 106 | 	while (e->arpq_head) { | 
 | 107 | 		skb = e->arpq_head; | 
 | 108 | 		e->arpq_head = skb->next; | 
 | 109 | 		skb->next = NULL; | 
 | 110 | 		cxgb3_ofld_send(dev, skb); | 
 | 111 | 	} | 
 | 112 | 	e->arpq_tail = NULL; | 
 | 113 | 	e->state = L2T_STATE_VALID; | 
 | 114 |  | 
 | 115 | 	return 0; | 
 | 116 | } | 
 | 117 |  | 
 | 118 | /* | 
 | 119 |  * Add a packet to the an L2T entry's queue of packets awaiting resolution. | 
 | 120 |  * Must be called with the entry's lock held. | 
 | 121 |  */ | 
 | 122 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) | 
 | 123 | { | 
 | 124 | 	skb->next = NULL; | 
 | 125 | 	if (e->arpq_head) | 
 | 126 | 		e->arpq_tail->next = skb; | 
 | 127 | 	else | 
 | 128 | 		e->arpq_head = skb; | 
 | 129 | 	e->arpq_tail = skb; | 
 | 130 | } | 
 | 131 |  | 
 | 132 | int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, | 
 | 133 | 		     struct l2t_entry *e) | 
 | 134 | { | 
 | 135 | again: | 
 | 136 | 	switch (e->state) { | 
 | 137 | 	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */ | 
 | 138 | 		neigh_event_send(e->neigh, NULL); | 
 | 139 | 		spin_lock_bh(&e->lock); | 
 | 140 | 		if (e->state == L2T_STATE_STALE) | 
 | 141 | 			e->state = L2T_STATE_VALID; | 
 | 142 | 		spin_unlock_bh(&e->lock); | 
 | 143 | 	case L2T_STATE_VALID:	/* fast-path, send the packet on */ | 
 | 144 | 		return cxgb3_ofld_send(dev, skb); | 
 | 145 | 	case L2T_STATE_RESOLVING: | 
 | 146 | 		spin_lock_bh(&e->lock); | 
 | 147 | 		if (e->state != L2T_STATE_RESOLVING) { | 
 | 148 | 			/* ARP already completed */ | 
 | 149 | 			spin_unlock_bh(&e->lock); | 
 | 150 | 			goto again; | 
 | 151 | 		} | 
 | 152 | 		arpq_enqueue(e, skb); | 
 | 153 | 		spin_unlock_bh(&e->lock); | 
 | 154 |  | 
 | 155 | 		/* | 
 | 156 | 		 * Only the first packet added to the arpq should kick off | 
 | 157 | 		 * resolution.  However, because the alloc_skb below can fail, | 
 | 158 | 		 * we allow each packet added to the arpq to retry resolution | 
 | 159 | 		 * as a way of recovering from transient memory exhaustion. | 
 | 160 | 		 * A better way would be to use a work request to retry L2T | 
 | 161 | 		 * entries when there's no memory. | 
 | 162 | 		 */ | 
 | 163 | 		if (!neigh_event_send(e->neigh, NULL)) { | 
 | 164 | 			skb = alloc_skb(sizeof(struct cpl_l2t_write_req), | 
 | 165 | 					GFP_ATOMIC); | 
 | 166 | 			if (!skb) | 
 | 167 | 				break; | 
 | 168 |  | 
 | 169 | 			spin_lock_bh(&e->lock); | 
 | 170 | 			if (e->arpq_head) | 
 | 171 | 				setup_l2e_send_pending(dev, skb, e); | 
 | 172 | 			else	/* we lost the race */ | 
 | 173 | 				__kfree_skb(skb); | 
 | 174 | 			spin_unlock_bh(&e->lock); | 
 | 175 | 		} | 
 | 176 | 	} | 
 | 177 | 	return 0; | 
 | 178 | } | 
 | 179 |  | 
 | 180 | EXPORT_SYMBOL(t3_l2t_send_slow); | 
 | 181 |  | 
 | 182 | void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e) | 
 | 183 | { | 
 | 184 | again: | 
 | 185 | 	switch (e->state) { | 
 | 186 | 	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */ | 
 | 187 | 		neigh_event_send(e->neigh, NULL); | 
 | 188 | 		spin_lock_bh(&e->lock); | 
 | 189 | 		if (e->state == L2T_STATE_STALE) { | 
 | 190 | 			e->state = L2T_STATE_VALID; | 
 | 191 | 		} | 
 | 192 | 		spin_unlock_bh(&e->lock); | 
 | 193 | 		return; | 
 | 194 | 	case L2T_STATE_VALID:	/* fast-path, send the packet on */ | 
 | 195 | 		return; | 
 | 196 | 	case L2T_STATE_RESOLVING: | 
 | 197 | 		spin_lock_bh(&e->lock); | 
 | 198 | 		if (e->state != L2T_STATE_RESOLVING) { | 
 | 199 | 			/* ARP already completed */ | 
 | 200 | 			spin_unlock_bh(&e->lock); | 
 | 201 | 			goto again; | 
 | 202 | 		} | 
 | 203 | 		spin_unlock_bh(&e->lock); | 
 | 204 |  | 
 | 205 | 		/* | 
 | 206 | 		 * Only the first packet added to the arpq should kick off | 
 | 207 | 		 * resolution.  However, because the alloc_skb below can fail, | 
 | 208 | 		 * we allow each packet added to the arpq to retry resolution | 
 | 209 | 		 * as a way of recovering from transient memory exhaustion. | 
 | 210 | 		 * A better way would be to use a work request to retry L2T | 
 | 211 | 		 * entries when there's no memory. | 
 | 212 | 		 */ | 
 | 213 | 		neigh_event_send(e->neigh, NULL); | 
 | 214 | 	} | 
 | 215 | 	return; | 
 | 216 | } | 
 | 217 |  | 
 | 218 | EXPORT_SYMBOL(t3_l2t_send_event); | 
 | 219 |  | 
 | 220 | /* | 
 | 221 |  * Allocate a free L2T entry.  Must be called with l2t_data.lock held. | 
 | 222 |  */ | 
 | 223 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) | 
 | 224 | { | 
 | 225 | 	struct l2t_entry *end, *e, **p; | 
 | 226 |  | 
 | 227 | 	if (!atomic_read(&d->nfree)) | 
 | 228 | 		return NULL; | 
 | 229 |  | 
 | 230 | 	/* there's definitely a free entry */ | 
 | 231 | 	for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) | 
 | 232 | 		if (atomic_read(&e->refcnt) == 0) | 
 | 233 | 			goto found; | 
 | 234 |  | 
 | 235 | 	for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ; | 
 | 236 | found: | 
 | 237 | 	d->rover = e + 1; | 
 | 238 | 	atomic_dec(&d->nfree); | 
 | 239 |  | 
 | 240 | 	/* | 
 | 241 | 	 * The entry we found may be an inactive entry that is | 
 | 242 | 	 * presently in the hash table.  We need to remove it. | 
 | 243 | 	 */ | 
 | 244 | 	if (e->state != L2T_STATE_UNUSED) { | 
 | 245 | 		int hash = arp_hash(e->addr, e->ifindex, d); | 
 | 246 |  | 
 | 247 | 		for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) | 
 | 248 | 			if (*p == e) { | 
 | 249 | 				*p = e->next; | 
 | 250 | 				break; | 
 | 251 | 			} | 
 | 252 | 		e->state = L2T_STATE_UNUSED; | 
 | 253 | 	} | 
 | 254 | 	return e; | 
 | 255 | } | 
 | 256 |  | 
 | 257 | /* | 
 | 258 |  * Called when an L2T entry has no more users.  The entry is left in the hash | 
 | 259 |  * table since it is likely to be reused but we also bump nfree to indicate | 
 | 260 |  * that the entry can be reallocated for a different neighbor.  We also drop | 
 | 261 |  * the existing neighbor reference in case the neighbor is going away and is | 
 | 262 |  * waiting on our reference. | 
 | 263 |  * | 
 | 264 |  * Because entries can be reallocated to other neighbors once their ref count | 
 | 265 |  * drops to 0 we need to take the entry's lock to avoid races with a new | 
 | 266 |  * incarnation. | 
 | 267 |  */ | 
 | 268 | void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e) | 
 | 269 | { | 
 | 270 | 	spin_lock_bh(&e->lock); | 
 | 271 | 	if (atomic_read(&e->refcnt) == 0) {	/* hasn't been recycled */ | 
 | 272 | 		if (e->neigh) { | 
 | 273 | 			neigh_release(e->neigh); | 
 | 274 | 			e->neigh = NULL; | 
 | 275 | 		} | 
 | 276 | 	} | 
 | 277 | 	spin_unlock_bh(&e->lock); | 
 | 278 | 	atomic_inc(&d->nfree); | 
 | 279 | } | 
 | 280 |  | 
 | 281 | EXPORT_SYMBOL(t3_l2e_free); | 
 | 282 |  | 
 | 283 | /* | 
 | 284 |  * Update an L2T entry that was previously used for the same next hop as neigh. | 
 | 285 |  * Must be called with softirqs disabled. | 
 | 286 |  */ | 
 | 287 | static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) | 
 | 288 | { | 
 | 289 | 	unsigned int nud_state; | 
 | 290 |  | 
 | 291 | 	spin_lock(&e->lock);	/* avoid race with t3_l2t_free */ | 
 | 292 |  | 
 | 293 | 	if (neigh != e->neigh) | 
 | 294 | 		neigh_replace(e, neigh); | 
 | 295 | 	nud_state = neigh->nud_state; | 
 | 296 | 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || | 
 | 297 | 	    !(nud_state & NUD_VALID)) | 
 | 298 | 		e->state = L2T_STATE_RESOLVING; | 
 | 299 | 	else if (nud_state & NUD_CONNECTED) | 
 | 300 | 		e->state = L2T_STATE_VALID; | 
 | 301 | 	else | 
 | 302 | 		e->state = L2T_STATE_STALE; | 
 | 303 | 	spin_unlock(&e->lock); | 
 | 304 | } | 
 | 305 |  | 
 | 306 | struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh, | 
 | 307 | 			     struct net_device *dev) | 
 | 308 | { | 
 | 309 | 	struct l2t_entry *e; | 
 | 310 | 	struct l2t_data *d = L2DATA(cdev); | 
 | 311 | 	u32 addr = *(u32 *) neigh->primary_key; | 
 | 312 | 	int ifidx = neigh->dev->ifindex; | 
 | 313 | 	int hash = arp_hash(addr, ifidx, d); | 
 | 314 | 	struct port_info *p = netdev_priv(dev); | 
 | 315 | 	int smt_idx = p->port_id; | 
 | 316 |  | 
 | 317 | 	write_lock_bh(&d->lock); | 
 | 318 | 	for (e = d->l2tab[hash].first; e; e = e->next) | 
 | 319 | 		if (e->addr == addr && e->ifindex == ifidx && | 
 | 320 | 		    e->smt_idx == smt_idx) { | 
 | 321 | 			l2t_hold(d, e); | 
 | 322 | 			if (atomic_read(&e->refcnt) == 1) | 
 | 323 | 				reuse_entry(e, neigh); | 
 | 324 | 			goto done; | 
 | 325 | 		} | 
 | 326 |  | 
 | 327 | 	/* Need to allocate a new entry */ | 
 | 328 | 	e = alloc_l2e(d); | 
 | 329 | 	if (e) { | 
 | 330 | 		spin_lock(&e->lock);	/* avoid race with t3_l2t_free */ | 
 | 331 | 		e->next = d->l2tab[hash].first; | 
 | 332 | 		d->l2tab[hash].first = e; | 
 | 333 | 		e->state = L2T_STATE_RESOLVING; | 
 | 334 | 		e->addr = addr; | 
 | 335 | 		e->ifindex = ifidx; | 
 | 336 | 		e->smt_idx = smt_idx; | 
 | 337 | 		atomic_set(&e->refcnt, 1); | 
 | 338 | 		neigh_replace(e, neigh); | 
 | 339 | 		if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) | 
| Patrick McHardy | 9dfebcc | 2008-01-21 00:26:07 -0800 | [diff] [blame] | 340 | 			e->vlan = vlan_dev_info(neigh->dev)->vlan_id; | 
| Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 341 | 		else | 
 | 342 | 			e->vlan = VLAN_NONE; | 
 | 343 | 		spin_unlock(&e->lock); | 
 | 344 | 	} | 
 | 345 | done: | 
 | 346 | 	write_unlock_bh(&d->lock); | 
 | 347 | 	return e; | 
 | 348 | } | 
 | 349 |  | 
 | 350 | EXPORT_SYMBOL(t3_l2t_get); | 
 | 351 |  | 
 | 352 | /* | 
 | 353 |  * Called when address resolution fails for an L2T entry to handle packets | 
 | 354 |  * on the arpq head.  If a packet specifies a failure handler it is invoked, | 
 | 355 |  * otherwise the packets is sent to the offload device. | 
 | 356 |  * | 
 | 357 |  * XXX: maybe we should abandon the latter behavior and just require a failure | 
 | 358 |  * handler. | 
 | 359 |  */ | 
 | 360 | static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff *arpq) | 
 | 361 | { | 
 | 362 | 	while (arpq) { | 
 | 363 | 		struct sk_buff *skb = arpq; | 
 | 364 | 		struct l2t_skb_cb *cb = L2T_SKB_CB(skb); | 
 | 365 |  | 
 | 366 | 		arpq = skb->next; | 
 | 367 | 		skb->next = NULL; | 
 | 368 | 		if (cb->arp_failure_handler) | 
 | 369 | 			cb->arp_failure_handler(dev, skb); | 
 | 370 | 		else | 
 | 371 | 			cxgb3_ofld_send(dev, skb); | 
 | 372 | 	} | 
 | 373 | } | 
 | 374 |  | 
 | 375 | /* | 
 | 376 |  * Called when the host's ARP layer makes a change to some entry that is | 
 | 377 |  * loaded into the HW L2 table. | 
 | 378 |  */ | 
 | 379 | void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh) | 
 | 380 | { | 
 | 381 | 	struct l2t_entry *e; | 
 | 382 | 	struct sk_buff *arpq = NULL; | 
 | 383 | 	struct l2t_data *d = L2DATA(dev); | 
 | 384 | 	u32 addr = *(u32 *) neigh->primary_key; | 
 | 385 | 	int ifidx = neigh->dev->ifindex; | 
 | 386 | 	int hash = arp_hash(addr, ifidx, d); | 
 | 387 |  | 
 | 388 | 	read_lock_bh(&d->lock); | 
 | 389 | 	for (e = d->l2tab[hash].first; e; e = e->next) | 
 | 390 | 		if (e->addr == addr && e->ifindex == ifidx) { | 
 | 391 | 			spin_lock(&e->lock); | 
 | 392 | 			goto found; | 
 | 393 | 		} | 
 | 394 | 	read_unlock_bh(&d->lock); | 
 | 395 | 	return; | 
 | 396 |  | 
 | 397 | found: | 
 | 398 | 	read_unlock(&d->lock); | 
 | 399 | 	if (atomic_read(&e->refcnt)) { | 
 | 400 | 		if (neigh != e->neigh) | 
 | 401 | 			neigh_replace(e, neigh); | 
 | 402 |  | 
 | 403 | 		if (e->state == L2T_STATE_RESOLVING) { | 
 | 404 | 			if (neigh->nud_state & NUD_FAILED) { | 
 | 405 | 				arpq = e->arpq_head; | 
 | 406 | 				e->arpq_head = e->arpq_tail = NULL; | 
| Steve Wise | 4eb61e0 | 2008-02-06 12:05:19 -0600 | [diff] [blame] | 407 | 			} else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE)) | 
| Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 408 | 				setup_l2e_send_pending(dev, NULL, e); | 
 | 409 | 		} else { | 
| YOSHIFUJI Hideaki | 8082c37 | 2008-03-04 14:55:03 +0900 | [diff] [blame] | 410 | 			e->state = neigh->nud_state & NUD_CONNECTED ? | 
| Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame] | 411 | 			    L2T_STATE_VALID : L2T_STATE_STALE; | 
 | 412 | 			if (memcmp(e->dmac, neigh->ha, 6)) | 
 | 413 | 				setup_l2e_send_pending(dev, NULL, e); | 
 | 414 | 		} | 
 | 415 | 	} | 
 | 416 | 	spin_unlock_bh(&e->lock); | 
 | 417 |  | 
 | 418 | 	if (arpq) | 
 | 419 | 		handle_failed_resolution(dev, arpq); | 
 | 420 | } | 
 | 421 |  | 
 | 422 | struct l2t_data *t3_init_l2t(unsigned int l2t_capacity) | 
 | 423 | { | 
 | 424 | 	struct l2t_data *d; | 
 | 425 | 	int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); | 
 | 426 |  | 
 | 427 | 	d = cxgb_alloc_mem(size); | 
 | 428 | 	if (!d) | 
 | 429 | 		return NULL; | 
 | 430 |  | 
 | 431 | 	d->nentries = l2t_capacity; | 
 | 432 | 	d->rover = &d->l2tab[1];	/* entry 0 is not used */ | 
 | 433 | 	atomic_set(&d->nfree, l2t_capacity - 1); | 
 | 434 | 	rwlock_init(&d->lock); | 
 | 435 |  | 
 | 436 | 	for (i = 0; i < l2t_capacity; ++i) { | 
 | 437 | 		d->l2tab[i].idx = i; | 
 | 438 | 		d->l2tab[i].state = L2T_STATE_UNUSED; | 
 | 439 | 		spin_lock_init(&d->l2tab[i].lock); | 
 | 440 | 		atomic_set(&d->l2tab[i].refcnt, 0); | 
 | 441 | 	} | 
 | 442 | 	return d; | 
 | 443 | } | 
 | 444 |  | 
 | 445 | void t3_free_l2t(struct l2t_data *d) | 
 | 446 | { | 
 | 447 | 	cxgb_free_mem(d); | 
 | 448 | } | 
 | 449 |  |