blob: 677600b302d95fc33fa836e3e12501cdadc77957 [file] [log] [blame]
Joe Perchese9010e22008-03-07 14:21:16 -08001/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*
24 * HW related functions for Atheros Wireless LAN devices.
25 */
26
27#include <linux/pci.h>
28#include <linux/delay.h>
29
30#include "reg.h"
31#include "base.h"
32#include "debug.h"
33
34/*Rate tables*/
35static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
36static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
37static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
38static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
39static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
40
41/*Prototypes*/
42static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
43static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
44static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
45 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
46 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
47 unsigned int, unsigned int);
Jiri Slabyb9887632008-02-15 21:58:52 +010048static int ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
Jiri Slabyfa1c1142007-08-12 17:33:16 +020049 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
50 unsigned int);
Bruno Randolfb47f4072008-03-05 18:35:45 +090051static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *,
52 struct ath5k_tx_status *);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020053static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
54 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
55 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
56 unsigned int, unsigned int);
Bruno Randolfb47f4072008-03-05 18:35:45 +090057static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *,
58 struct ath5k_tx_status *);
59static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *, struct ath5k_desc *,
60 struct ath5k_rx_status *);
61static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *, struct ath5k_desc *,
62 struct ath5k_rx_status *);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020063static int ath5k_hw_get_capabilities(struct ath5k_hw *);
64
65static int ath5k_eeprom_init(struct ath5k_hw *);
66static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
67
68static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
69static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
70
71/*
72 * Enable to overwrite the country code (use "00" for debug)
73 */
74#if 0
75#define COUNTRYCODE "00"
76#endif
77
78/*******************\
79 General Functions
80\*******************/
81
82/*
83 * Functions used internaly
84 */
85
86static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
87{
Joe Perchese9010e22008-03-07 14:21:16 -080088 return turbo ? (usec * 80) : (usec * 40);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020089}
90
91static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
92{
Joe Perchese9010e22008-03-07 14:21:16 -080093 return turbo ? (clock / 80) : (clock / 40);
Jiri Slabyfa1c1142007-08-12 17:33:16 +020094}
95
96/*
97 * Check if a register write has been completed
98 */
99int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
100 bool is_set)
101{
102 int i;
103 u32 data;
104
105 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
106 data = ath5k_hw_reg_read(ah, reg);
Joe Perchese9010e22008-03-07 14:21:16 -0800107 if (is_set && (data & flag))
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200108 break;
109 else if ((data & flag) == val)
110 break;
111 udelay(15);
112 }
113
114 return (i <= 0) ? -EAGAIN : 0;
115}
116
117
118/***************************************\
119 Attach/Detach Functions
120\***************************************/
121
122/*
123 * Check if the device is supported and initialize the needed structs
124 */
125struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
126{
127 struct ath5k_hw *ah;
128 u8 mac[ETH_ALEN];
129 int ret;
130 u32 srev;
131
132 /*If we passed the test malloc a ath5k_hw struct*/
133 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
134 if (ah == NULL) {
135 ret = -ENOMEM;
136 ATH5K_ERR(sc, "out of memory\n");
137 goto err;
138 }
139
140 ah->ah_sc = sc;
141 ah->ah_iobase = sc->iobase;
142
143 /*
144 * HW information
145 */
146
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200147 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
148 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
149 ah->ah_turbo = false;
150 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
151 ah->ah_imr = 0;
152 ah->ah_atim_window = 0;
153 ah->ah_aifs = AR5K_TUNE_AIFS;
154 ah->ah_cw_min = AR5K_TUNE_CWMIN;
155 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
156 ah->ah_software_retry = false;
157 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
158
159 /*
160 * Set the mac revision based on the pci id
161 */
162 ah->ah_version = mac_version;
163
164 /*Fill the ath5k_hw struct with the needed functions*/
165 if (ah->ah_version == AR5K_AR5212)
166 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
167 else if (ah->ah_version == AR5K_AR5211)
168 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
169
170 if (ah->ah_version == AR5K_AR5212) {
171 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
172 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
173 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
174 } else {
175 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
176 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
177 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
178 }
179
180 if (ah->ah_version == AR5K_AR5212)
Bruno Randolf19fd6e52008-03-05 18:35:23 +0900181 ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200182 else if (ah->ah_version <= AR5K_AR5211)
Bruno Randolf19fd6e52008-03-05 18:35:23 +0900183 ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200184
185 /* Bring device out of sleep and reset it's units */
186 ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
187 if (ret)
188 goto err_free;
189
190 /* Get MAC, PHY and RADIO revisions */
191 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
192 ah->ah_mac_srev = srev;
193 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
194 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
195 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
196 0xffffffff;
197 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
198 CHANNEL_5GHZ);
199
200 if (ah->ah_version == AR5K_AR5210)
201 ah->ah_radio_2ghz_revision = 0;
202 else
203 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
204 CHANNEL_2GHZ);
205
206 /* Return on unsuported chips (unsupported eeprom etc) */
207 if(srev >= AR5K_SREV_VER_AR5416){
208 ATH5K_ERR(sc, "Device not yet supported.\n");
209 ret = -ENODEV;
210 goto err_free;
211 }
212
213 /* Identify single chip solutions */
214 if((srev <= AR5K_SREV_VER_AR5414) &&
Nick Kossifidis0af22562008-02-28 14:49:05 -0500215 (srev >= AR5K_SREV_VER_AR2413)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200216 ah->ah_single_chip = true;
217 } else {
218 ah->ah_single_chip = false;
219 }
220
221 /* Single chip radio */
222 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
223 ah->ah_radio_2ghz_revision = 0;
224
225 /* Identify the radio chip*/
226 if (ah->ah_version == AR5K_AR5210) {
227 ah->ah_radio = AR5K_RF5110;
228 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
229 ah->ah_radio = AR5K_RF5111;
Nick Kossifidis0af22562008-02-28 14:49:05 -0500230 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5111;
231 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC0) {
232
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200233 ah->ah_radio = AR5K_RF5112;
Nick Kossifidis0af22562008-02-28 14:49:05 -0500234
235 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
236 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112;
237 } else {
238 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112A;
239 }
240
241 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
242 ah->ah_radio = AR5K_RF2413;
243 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112A;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200244 } else {
Nick Kossifidis0af22562008-02-28 14:49:05 -0500245
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200246 ah->ah_radio = AR5K_RF5413;
Nick Kossifidis0af22562008-02-28 14:49:05 -0500247
248 if (ah->ah_mac_srev <= AR5K_SREV_VER_AR5424 &&
249 ah->ah_mac_srev >= AR5K_SREV_VER_AR2424)
250 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5424;
251 else if (ah->ah_mac_srev >= AR5K_SREV_VER_AR2425)
252 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112;
253 else
254 ah->ah_phy_spending = AR5K_PHY_SPENDING_RF5112A;
255
256
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200257 }
258
259 ah->ah_phy = AR5K_PHY(0);
260
261 /*
262 * Get card capabilities, values, ...
263 */
264
265 ret = ath5k_eeprom_init(ah);
266 if (ret) {
267 ATH5K_ERR(sc, "unable to init EEPROM\n");
268 goto err_free;
269 }
270
271 /* Get misc capabilities */
272 ret = ath5k_hw_get_capabilities(ah);
273 if (ret) {
274 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
275 sc->pdev->device);
276 goto err_free;
277 }
278
279 /* Get MAC address */
280 ret = ath5k_eeprom_read_mac(ah, mac);
281 if (ret) {
282 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
283 sc->pdev->device);
284 goto err_free;
285 }
286
287 ath5k_hw_set_lladdr(ah, mac);
288 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
289 memset(ah->ah_bssid, 0xff, ETH_ALEN);
290 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
291 ath5k_hw_set_opmode(ah);
292
293 ath5k_hw_set_rfgain_opt(ah);
294
295 return ah;
296err_free:
297 kfree(ah);
298err:
299 return ERR_PTR(ret);
300}
301
302/*
303 * Bring up MAC + PHY Chips
304 */
305static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
306{
Nick Kossifidis56c90542008-02-28 16:20:52 -0500307 struct pci_dev *pdev = ah->ah_sc->pdev;
308 u32 turbo, mode, clock, bus_flags;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200309 int ret;
310
311 turbo = 0;
312 mode = 0;
313 clock = 0;
314
315 ATH5K_TRACE(ah->ah_sc);
316
317 /* Wakeup the device */
318 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
319 if (ret) {
320 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
321 return ret;
322 }
323
324 if (ah->ah_version != AR5K_AR5210) {
325 /*
326 * Get channel mode flags
327 */
328
329 if (ah->ah_radio >= AR5K_RF5112) {
330 mode = AR5K_PHY_MODE_RAD_RF5112;
331 clock = AR5K_PHY_PLL_RF5112;
332 } else {
333 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
334 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
335 }
336
337 if (flags & CHANNEL_2GHZ) {
338 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
339 clock |= AR5K_PHY_PLL_44MHZ;
340
341 if (flags & CHANNEL_CCK) {
342 mode |= AR5K_PHY_MODE_MOD_CCK;
343 } else if (flags & CHANNEL_OFDM) {
344 /* XXX Dynamic OFDM/CCK is not supported by the
345 * AR5211 so we set MOD_OFDM for plain g (no
346 * CCK headers) operation. We need to test
347 * this, 5211 might support ofdm-only g after
348 * all, there are also initial register values
349 * in the code for g mode (see initvals.c). */
350 if (ah->ah_version == AR5K_AR5211)
351 mode |= AR5K_PHY_MODE_MOD_OFDM;
352 else
353 mode |= AR5K_PHY_MODE_MOD_DYN;
354 } else {
355 ATH5K_ERR(ah->ah_sc,
356 "invalid radio modulation mode\n");
357 return -EINVAL;
358 }
359 } else if (flags & CHANNEL_5GHZ) {
360 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
361 clock |= AR5K_PHY_PLL_40MHZ;
362
363 if (flags & CHANNEL_OFDM)
364 mode |= AR5K_PHY_MODE_MOD_OFDM;
365 else {
366 ATH5K_ERR(ah->ah_sc,
367 "invalid radio modulation mode\n");
368 return -EINVAL;
369 }
370 } else {
371 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
372 return -EINVAL;
373 }
374
375 if (flags & CHANNEL_TURBO)
376 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
377 } else { /* Reset the device */
378
379 /* ...enable Atheros turbo mode if requested */
380 if (flags & CHANNEL_TURBO)
381 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
382 AR5K_PHY_TURBO);
383 }
384
Nick Kossifidis56c90542008-02-28 16:20:52 -0500385 /* reseting PCI on PCI-E cards results card to hang
386 * and always return 0xffff... so we ingore that flag
387 * for PCI-E cards */
388 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
389
390 /* Reset chipset */
391 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
392 AR5K_RESET_CTL_BASEBAND | bus_flags);
393 if (ret) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200394 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
395 return -EIO;
396 }
397
398 if (ah->ah_version == AR5K_AR5210)
399 udelay(2300);
400
401 /* ...wakeup again!*/
402 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
403 if (ret) {
404 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
405 return ret;
406 }
407
408 /* ...final warm reset */
409 if (ath5k_hw_nic_reset(ah, 0)) {
410 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
411 return -EIO;
412 }
413
414 if (ah->ah_version != AR5K_AR5210) {
415 /* ...set the PHY operating mode */
416 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
417 udelay(300);
418
419 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
420 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
421 }
422
423 return 0;
424}
425
426/*
427 * Get the rate table for a specific operation mode
428 */
429const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
430 unsigned int mode)
431{
432 ATH5K_TRACE(ah->ah_sc);
433
434 if (!test_bit(mode, ah->ah_capabilities.cap_mode))
435 return NULL;
436
437 /* Get rate tables */
438 switch (mode) {
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500439 case AR5K_MODE_11A:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200440 return &ath5k_rt_11a;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500441 case AR5K_MODE_11A_TURBO:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200442 return &ath5k_rt_turbo;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500443 case AR5K_MODE_11B:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200444 return &ath5k_rt_11b;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500445 case AR5K_MODE_11G:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200446 return &ath5k_rt_11g;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500447 case AR5K_MODE_11G_TURBO:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200448 return &ath5k_rt_xr;
449 }
450
451 return NULL;
452}
453
454/*
455 * Free the ath5k_hw struct
456 */
457void ath5k_hw_detach(struct ath5k_hw *ah)
458{
459 ATH5K_TRACE(ah->ah_sc);
460
461 if (ah->ah_rf_banks != NULL)
462 kfree(ah->ah_rf_banks);
463
464 /* assume interrupts are down */
465 kfree(ah);
466}
467
468/****************************\
469 Reset function and helpers
470\****************************/
471
472/**
473 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
474 *
475 * @ah: the &struct ath5k_hw
476 * @channel: the currently set channel upon reset
477 *
478 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
479 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
480 * depending on the bandwidth of the channel.
481 *
482 */
483static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
484 struct ieee80211_channel *channel)
485{
486 /* Get exponent and mantissa and set it */
487 u32 coef_scaled, coef_exp, coef_man,
488 ds_coef_exp, ds_coef_man, clock;
489
490 if (!(ah->ah_version == AR5K_AR5212) ||
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500491 !(channel->hw_value & CHANNEL_OFDM))
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200492 BUG();
493
494 /* Seems there are two PLLs, one for baseband sampling and one
495 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
496 * turbo. */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500497 clock = channel->hw_value & CHANNEL_TURBO ? 80 : 40;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200498 coef_scaled = ((5 * (clock << 24)) / 2) /
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500499 channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200500
501 for (coef_exp = 31; coef_exp > 0; coef_exp--)
502 if ((coef_scaled >> coef_exp) & 0x1)
503 break;
504
505 if (!coef_exp)
506 return -EINVAL;
507
508 coef_exp = 14 - (coef_exp - 24);
509 coef_man = coef_scaled +
510 (1 << (24 - coef_exp - 1));
511 ds_coef_man = coef_man >> (24 - coef_exp);
512 ds_coef_exp = coef_exp - 16;
513
514 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
515 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
516 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
517 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
518
519 return 0;
520}
521
522/**
523 * ath5k_hw_write_rate_duration - set rate duration during hw resets
524 *
525 * @ah: the &struct ath5k_hw
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500526 * @mode: one of enum ath5k_driver_mode
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200527 *
528 * Write the rate duration table for the current mode upon hw reset. This
529 * is a helper for ath5k_hw_reset(). It seems all this is doing is setting
530 * an ACK timeout for the hardware for the current mode for each rate. The
531 * rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
532 * and 11Mbps) have another register for the short preamble ACK timeout
533 * calculation.
534 *
535 */
536static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500537 unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200538{
539 struct ath5k_softc *sc = ah->ah_sc;
540 const struct ath5k_rate_table *rt;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500541 struct ieee80211_rate srate = {};
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200542 unsigned int i;
543
544 /* Get rate table for the current operating mode */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500545 rt = ath5k_hw_get_rate_table(ah, mode);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200546
547 /* Write rate duration table */
548 for (i = 0; i < rt->rate_count; i++) {
549 const struct ath5k_rate *rate, *control_rate;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500550
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200551 u32 reg;
552 u16 tx_time;
553
554 rate = &rt->rates[i];
555 control_rate = &rt->rates[rate->control_rate];
556
557 /* Set ACK timeout */
558 reg = AR5K_RATE_DUR(rate->rate_code);
559
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500560 srate.bitrate = control_rate->rate_kbps/100;
561
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200562 /* An ACK frame consists of 10 bytes. If you add the FCS,
563 * which ieee80211_generic_frame_duration() adds,
564 * its 14 bytes. Note we use the control rate and not the
565 * actual rate for this rate. See mac80211 tx.c
566 * ieee80211_duration() for a brief description of
567 * what rate we should choose to TX ACKs. */
Pavel Roskin38c07b42008-02-26 17:59:14 -0500568 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
569 sc->vif, 10, &srate));
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200570
571 ath5k_hw_reg_write(ah, tx_time, reg);
572
573 if (!HAS_SHPREAMBLE(i))
574 continue;
575
576 /*
577 * We're not distinguishing short preamble here,
578 * This is true, all we'll get is a longer value here
579 * which is not necessarilly bad. We could use
580 * export ieee80211_frame_duration() but that needs to be
581 * fixed first to be properly used by mac802111 drivers:
582 *
583 * - remove erp stuff and let the routine figure ofdm
584 * erp rates
585 * - remove passing argument ieee80211_local as
586 * drivers don't have access to it
587 * - move drivers using ieee80211_generic_frame_duration()
588 * to this
589 */
590 ath5k_hw_reg_write(ah, tx_time,
591 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
592 }
593}
594
595/*
596 * Main reset function
597 */
598int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
599 struct ieee80211_channel *channel, bool change_channel)
600{
601 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
Nick Kossifidis56c90542008-02-28 16:20:52 -0500602 struct pci_dev *pdev = ah->ah_sc->pdev;
603 u32 data, s_seq, s_ant, s_led[3], dma_size;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500604 unsigned int i, mode, freq, ee_mode, ant[2];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200605 int ret;
606
607 ATH5K_TRACE(ah->ah_sc);
608
609 s_seq = 0;
610 s_ant = 0;
611 ee_mode = 0;
612 freq = 0;
613 mode = 0;
614
615 /*
616 * Save some registers before a reset
617 */
618 /*DCU/Antenna selection not available on 5210*/
619 if (ah->ah_version != AR5K_AR5210) {
Joe Perchese9010e22008-03-07 14:21:16 -0800620 if (change_channel) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200621 /* Seq number for queue 0 -do this for all queues ? */
622 s_seq = ath5k_hw_reg_read(ah,
623 AR5K_QUEUE_DFS_SEQNUM(0));
624 /*Default antenna*/
625 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
626 }
627 }
628
629 /*GPIOs*/
630 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
631 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
632 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
633
Joe Perchese9010e22008-03-07 14:21:16 -0800634 if (change_channel && ah->ah_rf_banks != NULL)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200635 ath5k_hw_get_rf_gain(ah);
636
637
638 /*Wakeup the device*/
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500639 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200640 if (ret)
641 return ret;
642
643 /*
644 * Initialize operating mode
645 */
646 ah->ah_op_mode = op_mode;
647
648 /*
649 * 5111/5112 Settings
650 * 5210 only comes with RF5110
651 */
652 if (ah->ah_version != AR5K_AR5210) {
653 if (ah->ah_radio != AR5K_RF5111 &&
654 ah->ah_radio != AR5K_RF5112 &&
Nick Kossifidis903b4742008-02-28 14:50:50 -0500655 ah->ah_radio != AR5K_RF5413 &&
656 ah->ah_radio != AR5K_RF2413) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200657 ATH5K_ERR(ah->ah_sc,
658 "invalid phy radio: %u\n", ah->ah_radio);
659 return -EINVAL;
660 }
661
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500662 switch (channel->hw_value & CHANNEL_MODES) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200663 case CHANNEL_A:
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500664 mode = AR5K_MODE_11A;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200665 freq = AR5K_INI_RFGAIN_5GHZ;
666 ee_mode = AR5K_EEPROM_MODE_11A;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200667 break;
668 case CHANNEL_G:
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500669 mode = AR5K_MODE_11G;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200670 freq = AR5K_INI_RFGAIN_2GHZ;
671 ee_mode = AR5K_EEPROM_MODE_11G;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200672 break;
673 case CHANNEL_B:
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500674 mode = AR5K_MODE_11B;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200675 freq = AR5K_INI_RFGAIN_2GHZ;
676 ee_mode = AR5K_EEPROM_MODE_11B;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200677 break;
678 case CHANNEL_T:
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500679 mode = AR5K_MODE_11A_TURBO;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200680 freq = AR5K_INI_RFGAIN_5GHZ;
681 ee_mode = AR5K_EEPROM_MODE_11A;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200682 break;
683 /*Is this ok on 5211 too ?*/
684 case CHANNEL_TG:
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500685 mode = AR5K_MODE_11G_TURBO;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200686 freq = AR5K_INI_RFGAIN_2GHZ;
687 ee_mode = AR5K_EEPROM_MODE_11G;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200688 break;
689 case CHANNEL_XR:
690 if (ah->ah_version == AR5K_AR5211) {
691 ATH5K_ERR(ah->ah_sc,
692 "XR mode not available on 5211");
693 return -EINVAL;
694 }
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500695 mode = AR5K_MODE_XR;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200696 freq = AR5K_INI_RFGAIN_5GHZ;
697 ee_mode = AR5K_EEPROM_MODE_11A;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200698 break;
699 default:
700 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500701 "invalid channel: %d\n", channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200702 return -EINVAL;
703 }
704
705 /* PHY access enable */
706 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
707
708 }
709
710 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
711 if (ret)
712 return ret;
713
714 /*
715 * 5211/5212 Specific
716 */
717 if (ah->ah_version != AR5K_AR5210) {
718 /*
719 * Write initial RF gain settings
720 * This should work for both 5111/5112
721 */
722 ret = ath5k_hw_rfgain(ah, freq);
723 if (ret)
724 return ret;
725
726 mdelay(1);
727
728 /*
729 * Write some more initial register settings
730 */
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -0500731 if (ah->ah_version == AR5K_AR5212) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200732 ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
733
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500734 if (channel->hw_value == CHANNEL_G)
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -0500735 if (ah->ah_mac_srev < AR5K_SREV_VER_AR2413)
736 ath5k_hw_reg_write(ah, 0x00f80d80,
737 AR5K_PHY(83));
738 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2424)
739 ath5k_hw_reg_write(ah, 0x00380140,
740 AR5K_PHY(83));
741 else if (ah->ah_mac_srev < AR5K_SREV_VER_AR2425)
742 ath5k_hw_reg_write(ah, 0x00fc0ec0,
743 AR5K_PHY(83));
744 else /* 2425 */
745 ath5k_hw_reg_write(ah, 0x00fc0fc0,
746 AR5K_PHY(83));
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200747 else
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -0500748 ath5k_hw_reg_write(ah, 0x00000000,
749 AR5K_PHY(83));
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200750
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200751 ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
752 ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
753 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
754 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
755 }
756
757 /* Fix for first revision of the RF5112 RF chipset */
758 if (ah->ah_radio >= AR5K_RF5112 &&
759 ah->ah_radio_5ghz_revision <
760 AR5K_SREV_RAD_5112A) {
761 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
762 AR5K_PHY_CCKTXCTL);
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500763 if (channel->hw_value & CHANNEL_5GHZ)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200764 data = 0xffb81020;
765 else
766 data = 0xffb80d20;
767 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
768 }
769
770 /*
771 * Set TX power (FIXME)
772 */
773 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
774 if (ret)
775 return ret;
776
Luis R. Rodriguez132127e2008-01-04 02:21:05 -0500777 /* Write rate duration table only on AR5212 and if
778 * virtual interface has already been brought up
779 * XXX: rethink this after new mode changes to
780 * mac80211 are integrated */
781 if (ah->ah_version == AR5K_AR5212 &&
782 ah->ah_sc->vif != NULL)
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500783 ath5k_hw_write_rate_duration(ah, mode);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200784
785 /*
786 * Write RF registers
787 * TODO:Does this work on 5211 (5111) ?
788 */
789 ret = ath5k_hw_rfregs(ah, channel, mode);
790 if (ret)
791 return ret;
792
793 /*
794 * Configure additional registers
795 */
796
797 /* Write OFDM timings on 5212*/
798 if (ah->ah_version == AR5K_AR5212 &&
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500799 channel->hw_value & CHANNEL_OFDM) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200800 ret = ath5k_hw_write_ofdm_timings(ah, channel);
801 if (ret)
802 return ret;
803 }
804
805 /*Enable/disable 802.11b mode on 5111
806 (enable 2111 frequency converter + CCK)*/
807 if (ah->ah_radio == AR5K_RF5111) {
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500808 if (mode == AR5K_MODE_11B)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200809 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
810 AR5K_TXCFG_B_MODE);
811 else
812 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
813 AR5K_TXCFG_B_MODE);
814 }
815
816 /*
817 * Set channel and calibrate the PHY
818 */
819 ret = ath5k_hw_channel(ah, channel);
820 if (ret)
821 return ret;
822
823 /* Set antenna mode */
824 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
825 ah->ah_antenna[ee_mode][0], 0xfffffc06);
826
827 /*
828 * In case a fixed antenna was set as default
829 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
830 * registers.
831 */
832 if (s_ant != 0){
833 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
834 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
835 else /* 2 - Aux */
836 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
837 } else {
838 ant[0] = AR5K_ANT_FIXED_A;
839 ant[1] = AR5K_ANT_FIXED_B;
840 }
841
842 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
843 AR5K_PHY_ANT_SWITCH_TABLE_0);
844 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
845 AR5K_PHY_ANT_SWITCH_TABLE_1);
846
847 /* Commit values from EEPROM */
848 if (ah->ah_radio == AR5K_RF5111)
849 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
850 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
851
852 ath5k_hw_reg_write(ah,
853 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
854 AR5K_PHY(0x5a));
855
856 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
857 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
858 0xffffc07f);
859 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
860 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
861 0xfffc0fff);
862 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
863 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
864 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
865 0xffff0000);
866
867 ath5k_hw_reg_write(ah,
868 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
869 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
870 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
871 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
872
873 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
874 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
875 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
876 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
877 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
878
879 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
880 AR5K_PHY_IQ_CORR_ENABLE |
881 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
882 ee->ee_q_cal[ee_mode]);
883
884 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
885 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
886 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
887 ee->ee_margin_tx_rx[ee_mode]);
888
889 } else {
890 mdelay(1);
891 /* Disable phy and wait */
892 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
893 mdelay(1);
894 }
895
896 /*
897 * Restore saved values
898 */
899 /*DCU/Antenna selection not available on 5210*/
900 if (ah->ah_version != AR5K_AR5210) {
901 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
902 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
903 }
904 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
905 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
906 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
907
908 /*
909 * Misc
910 */
911 /* XXX: add ah->aid once mac80211 gives this to us */
912 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
913
914 ath5k_hw_set_opmode(ah);
915 /*PISR/SISR Not available on 5210*/
916 if (ah->ah_version != AR5K_AR5210) {
917 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
918 /* If we later allow tuning for this, store into sc structure */
919 data = AR5K_TUNE_RSSI_THRES |
920 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
921 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
922 }
923
924 /*
925 * Set Rx/Tx DMA Configuration
Nick Kossifidis56c90542008-02-28 16:20:52 -0500926 *
927 * Set maximum DMA size (512) except for PCI-E cards since
928 * it causes rx overruns and tx errors (tested on 5424 but since
929 * rx overruns also occur on 5416/5418 with madwifi we set 128
930 * for all PCI-E cards to be safe).
931 *
932 * In dumps this is 128 for allchips.
933 *
934 * XXX: need to check 5210 for this
935 * TODO: Check out tx triger level, it's always 64 on dumps but I
936 * guess we can tweak it and see how it goes ;-)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200937 */
Nick Kossifidis56c90542008-02-28 16:20:52 -0500938 dma_size = (pdev->is_pcie) ? AR5K_DMASIZE_128B : AR5K_DMASIZE_512B;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200939 if (ah->ah_version != AR5K_AR5210) {
Nick Kossifidis56c90542008-02-28 16:20:52 -0500940 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
941 AR5K_TXCFG_SDMAMR, dma_size);
942 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
943 AR5K_RXCFG_SDMAMW, dma_size);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200944 }
945
946 /*
947 * Enable the PHY and wait until completion
948 */
949 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
950
951 /*
952 * 5111/5112 Specific
953 */
954 if (ah->ah_version != AR5K_AR5210) {
955 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
956 AR5K_PHY_RX_DELAY_M;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500957 data = (channel->hw_value & CHANNEL_CCK) ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200958 ((data << 2) / 22) : (data / 10);
959
960 udelay(100 + data);
961 } else {
962 mdelay(1);
963 }
964
965 /*
966 * Enable calibration and wait until completion
967 */
968 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
969 AR5K_PHY_AGCCTL_CAL);
970
971 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
972 AR5K_PHY_AGCCTL_CAL, 0, false)) {
973 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500974 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200975 return -EAGAIN;
976 }
977
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500978 ret = ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200979 if (ret)
980 return ret;
981
982 ah->ah_calibration = false;
983
984 /* A and G modes can use QAM modulation which requires enabling
985 * I and Q calibration. Don't bother in B mode. */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -0500986 if (!(mode == AR5K_MODE_11B)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200987 ah->ah_calibration = true;
988 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
989 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
990 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
991 AR5K_PHY_IQ_RUN);
992 }
993
994 /*
995 * Reset queues and start beacon timers at the end of the reset routine
996 */
997 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
998 /*No QCU on 5210*/
999 if (ah->ah_version != AR5K_AR5210)
1000 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
1001
1002 ret = ath5k_hw_reset_tx_queue(ah, i);
1003 if (ret) {
1004 ATH5K_ERR(ah->ah_sc,
1005 "failed to reset TX queue #%d\n", i);
1006 return ret;
1007 }
1008 }
1009
1010 /* Pre-enable interrupts on 5211/5212*/
1011 if (ah->ah_version != AR5K_AR5210)
1012 ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
1013 AR5K_INT_FATAL);
1014
1015 /*
1016 * Set RF kill flags if supported by the device (read from the EEPROM)
1017 * Disable gpio_intr for now since it results system hang.
1018 * TODO: Handle this in ath5k_intr
1019 */
1020#if 0
1021 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1022 ath5k_hw_set_gpio_input(ah, 0);
1023 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1024 if (ah->ah_gpio[0] == 0)
1025 ath5k_hw_set_gpio_intr(ah, 0, 1);
1026 else
1027 ath5k_hw_set_gpio_intr(ah, 0, 0);
1028 }
1029#endif
1030
1031 /*
1032 * Set the 32MHz reference clock on 5212 phy clock sleep register
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -05001033 *
1034 * TODO: Find out how to switch to external 32Khz clock to save power
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001035 */
1036 if (ah->ah_version == AR5K_AR5212) {
1037 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
1038 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
1039 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
1040 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
1041 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
Nick Kossifidis903b4742008-02-28 14:50:50 -05001042 ath5k_hw_reg_write(ah, ah->ah_phy_spending, AR5K_PHY_SPENDING);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001043 }
1044
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -05001045 if (ah->ah_version == AR5K_AR5212) {
1046 ath5k_hw_reg_write(ah, 0x000100aa, 0x8118);
1047 ath5k_hw_reg_write(ah, 0x00003210, 0x811c);
1048 ath5k_hw_reg_write(ah, 0x00000052, 0x8108);
1049 if (ah->ah_mac_srev >= AR5K_SREV_VER_AR2413)
1050 ath5k_hw_reg_write(ah, 0x00000004, 0x8120);
1051 }
1052
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001053 /*
1054 * Disable beacons and reset the register
1055 */
1056 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1057 AR5K_BEACON_RESET_TSF);
1058
1059 return 0;
1060}
1061
1062/*
1063 * Reset chipset
1064 */
1065static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
1066{
1067 int ret;
1068 u32 mask = val ? val : ~0U;
1069
1070 ATH5K_TRACE(ah->ah_sc);
1071
1072 /* Read-and-clear RX Descriptor Pointer*/
1073 ath5k_hw_reg_read(ah, AR5K_RXDP);
1074
1075 /*
1076 * Reset the device and wait until success
1077 */
1078 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
1079
1080 /* Wait at least 128 PCI clocks */
1081 udelay(15);
1082
1083 if (ah->ah_version == AR5K_AR5210) {
1084 val &= AR5K_RESET_CTL_CHIP;
1085 mask &= AR5K_RESET_CTL_CHIP;
1086 } else {
1087 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1088 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1089 }
1090
1091 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
1092
1093 /*
1094 * Reset configuration register (for hw byte-swap). Note that this
1095 * is only set for big endian. We do the necessary magic in
1096 * AR5K_INIT_CFG.
1097 */
1098 if ((val & AR5K_RESET_CTL_PCU) == 0)
1099 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
1100
1101 return ret;
1102}
1103
1104/*
1105 * Power management functions
1106 */
1107
1108/*
1109 * Sleep control
1110 */
1111int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
1112 bool set_chip, u16 sleep_duration)
1113{
1114 unsigned int i;
1115 u32 staid;
1116
1117 ATH5K_TRACE(ah->ah_sc);
1118 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
1119
1120 switch (mode) {
1121 case AR5K_PM_AUTO:
1122 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
1123 /* fallthrough */
1124 case AR5K_PM_NETWORK_SLEEP:
Joe Perchese9010e22008-03-07 14:21:16 -08001125 if (set_chip)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001126 ath5k_hw_reg_write(ah,
1127 AR5K_SLEEP_CTL_SLE | sleep_duration,
1128 AR5K_SLEEP_CTL);
1129
1130 staid |= AR5K_STA_ID1_PWR_SV;
1131 break;
1132
1133 case AR5K_PM_FULL_SLEEP:
Joe Perchese9010e22008-03-07 14:21:16 -08001134 if (set_chip)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001135 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
1136 AR5K_SLEEP_CTL);
1137
1138 staid |= AR5K_STA_ID1_PWR_SV;
1139 break;
1140
1141 case AR5K_PM_AWAKE:
Joe Perchese9010e22008-03-07 14:21:16 -08001142 if (!set_chip)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001143 goto commit;
1144
1145 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1146 AR5K_SLEEP_CTL);
1147
1148 for (i = 5000; i > 0; i--) {
1149 /* Check if the chip did wake up */
1150 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1151 AR5K_PCICFG_SPWR_DN) == 0)
1152 break;
1153
1154 /* Wait a bit and retry */
1155 udelay(200);
1156 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1157 AR5K_SLEEP_CTL);
1158 }
1159
1160 /* Fail if the chip didn't wake up */
1161 if (i <= 0)
1162 return -EIO;
1163
1164 staid &= ~AR5K_STA_ID1_PWR_SV;
1165 break;
1166
1167 default:
1168 return -EINVAL;
1169 }
1170
1171commit:
1172 ah->ah_power_mode = mode;
1173 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
1174
1175 return 0;
1176}
1177
1178/***********************\
1179 DMA Related Functions
1180\***********************/
1181
1182/*
1183 * Receive functions
1184 */
1185
1186/*
1187 * Start DMA receive
1188 */
1189void ath5k_hw_start_rx(struct ath5k_hw *ah)
1190{
1191 ATH5K_TRACE(ah->ah_sc);
1192 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
1193}
1194
1195/*
1196 * Stop DMA receive
1197 */
1198int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
1199{
1200 unsigned int i;
1201
1202 ATH5K_TRACE(ah->ah_sc);
1203 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
1204
1205 /*
1206 * It may take some time to disable the DMA receive unit
1207 */
1208 for (i = 2000; i > 0 &&
1209 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
1210 i--)
1211 udelay(10);
1212
1213 return i ? 0 : -EBUSY;
1214}
1215
1216/*
1217 * Get the address of the RX Descriptor
1218 */
1219u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
1220{
1221 return ath5k_hw_reg_read(ah, AR5K_RXDP);
1222}
1223
1224/*
1225 * Set the address of the RX Descriptor
1226 */
1227void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
1228{
1229 ATH5K_TRACE(ah->ah_sc);
1230
1231 /*TODO:Shouldn't we check if RX is enabled first ?*/
1232 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
1233}
1234
1235/*
1236 * Transmit functions
1237 */
1238
1239/*
1240 * Start DMA transmit for a specific queue
1241 * (see also QCU/DCU functions)
1242 */
1243int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
1244{
1245 u32 tx_queue;
1246
1247 ATH5K_TRACE(ah->ah_sc);
1248 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1249
1250 /* Return if queue is declared inactive */
1251 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1252 return -EIO;
1253
1254 if (ah->ah_version == AR5K_AR5210) {
1255 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1256
1257 /*
1258 * Set the queue by type on 5210
1259 */
1260 switch (ah->ah_txq[queue].tqi_type) {
1261 case AR5K_TX_QUEUE_DATA:
1262 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
1263 break;
1264 case AR5K_TX_QUEUE_BEACON:
1265 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1266 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
1267 AR5K_BSR);
1268 break;
1269 case AR5K_TX_QUEUE_CAB:
1270 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1271 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
1272 AR5K_BCR_BDMAE, AR5K_BSR);
1273 break;
1274 default:
1275 return -EINVAL;
1276 }
1277 /* Start queue */
1278 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1279 } else {
1280 /* Return if queue is disabled */
1281 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
1282 return -EIO;
1283
1284 /* Start queue */
1285 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
1286 }
1287
1288 return 0;
1289}
1290
1291/*
1292 * Stop DMA transmit for a specific queue
1293 * (see also QCU/DCU functions)
1294 */
1295int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
1296{
1297 unsigned int i = 100;
1298 u32 tx_queue, pending;
1299
1300 ATH5K_TRACE(ah->ah_sc);
1301 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1302
1303 /* Return if queue is declared inactive */
1304 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1305 return -EIO;
1306
1307 if (ah->ah_version == AR5K_AR5210) {
1308 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1309
1310 /*
1311 * Set by queue type
1312 */
1313 switch (ah->ah_txq[queue].tqi_type) {
1314 case AR5K_TX_QUEUE_DATA:
1315 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
1316 break;
1317 case AR5K_TX_QUEUE_BEACON:
1318 case AR5K_TX_QUEUE_CAB:
1319 /* XXX Fix me... */
1320 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
1321 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
1322 break;
1323 default:
1324 return -EINVAL;
1325 }
1326
1327 /* Stop queue */
1328 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1329 } else {
1330 /*
1331 * Schedule TX disable and wait until queue is empty
1332 */
1333 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
1334
1335 /*Check for pending frames*/
1336 do {
1337 pending = ath5k_hw_reg_read(ah,
1338 AR5K_QUEUE_STATUS(queue)) &
1339 AR5K_QCU_STS_FRMPENDCNT;
1340 udelay(100);
1341 } while (--i && pending);
1342
1343 /* Clear register */
1344 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
1345 }
1346
1347 /* TODO: Check for success else return error */
1348 return 0;
1349}
1350
1351/*
1352 * Get the address of the TX Descriptor for a specific queue
1353 * (see also QCU/DCU functions)
1354 */
1355u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
1356{
1357 u16 tx_reg;
1358
1359 ATH5K_TRACE(ah->ah_sc);
1360 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1361
1362 /*
1363 * Get the transmit queue descriptor pointer from the selected queue
1364 */
1365 /*5210 doesn't have QCU*/
1366 if (ah->ah_version == AR5K_AR5210) {
1367 switch (ah->ah_txq[queue].tqi_type) {
1368 case AR5K_TX_QUEUE_DATA:
1369 tx_reg = AR5K_NOQCU_TXDP0;
1370 break;
1371 case AR5K_TX_QUEUE_BEACON:
1372 case AR5K_TX_QUEUE_CAB:
1373 tx_reg = AR5K_NOQCU_TXDP1;
1374 break;
1375 default:
1376 return 0xffffffff;
1377 }
1378 } else {
1379 tx_reg = AR5K_QUEUE_TXDP(queue);
1380 }
1381
1382 return ath5k_hw_reg_read(ah, tx_reg);
1383}
1384
1385/*
1386 * Set the address of the TX Descriptor for a specific queue
1387 * (see also QCU/DCU functions)
1388 */
1389int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
1390{
1391 u16 tx_reg;
1392
1393 ATH5K_TRACE(ah->ah_sc);
1394 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1395
1396 /*
1397 * Set the transmit queue descriptor pointer register by type
1398 * on 5210
1399 */
1400 if (ah->ah_version == AR5K_AR5210) {
1401 switch (ah->ah_txq[queue].tqi_type) {
1402 case AR5K_TX_QUEUE_DATA:
1403 tx_reg = AR5K_NOQCU_TXDP0;
1404 break;
1405 case AR5K_TX_QUEUE_BEACON:
1406 case AR5K_TX_QUEUE_CAB:
1407 tx_reg = AR5K_NOQCU_TXDP1;
1408 break;
1409 default:
1410 return -EINVAL;
1411 }
1412 } else {
1413 /*
1414 * Set the transmit queue descriptor pointer for
1415 * the selected queue on QCU for 5211+
1416 * (this won't work if the queue is still active)
1417 */
1418 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
1419 return -EIO;
1420
1421 tx_reg = AR5K_QUEUE_TXDP(queue);
1422 }
1423
1424 /* Set descriptor pointer */
1425 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
1426
1427 return 0;
1428}
1429
1430/*
1431 * Update tx trigger level
1432 */
1433int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
1434{
1435 u32 trigger_level, imr;
1436 int ret = -EIO;
1437
1438 ATH5K_TRACE(ah->ah_sc);
1439
1440 /*
1441 * Disable interrupts by setting the mask
1442 */
1443 imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
1444
1445 /*TODO: Boundary check on trigger_level*/
1446 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
1447 AR5K_TXCFG_TXFULL);
1448
Joe Perchese9010e22008-03-07 14:21:16 -08001449 if (!increase) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001450 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
1451 goto done;
1452 } else
1453 trigger_level +=
1454 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
1455
1456 /*
1457 * Update trigger level on success
1458 */
1459 if (ah->ah_version == AR5K_AR5210)
1460 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
1461 else
1462 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1463 AR5K_TXCFG_TXFULL, trigger_level);
1464
1465 ret = 0;
1466
1467done:
1468 /*
1469 * Restore interrupt mask
1470 */
1471 ath5k_hw_set_intr(ah, imr);
1472
1473 return ret;
1474}
1475
1476/*
1477 * Interrupt handling
1478 */
1479
1480/*
1481 * Check if we have pending interrupts
1482 */
1483bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
1484{
1485 ATH5K_TRACE(ah->ah_sc);
1486 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
1487}
1488
1489/*
1490 * Get interrupt mask (ISR)
1491 */
1492int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
1493{
1494 u32 data;
1495
1496 ATH5K_TRACE(ah->ah_sc);
1497
1498 /*
1499 * Read interrupt status from the Interrupt Status register
1500 * on 5210
1501 */
1502 if (ah->ah_version == AR5K_AR5210) {
1503 data = ath5k_hw_reg_read(ah, AR5K_ISR);
1504 if (unlikely(data == AR5K_INT_NOCARD)) {
1505 *interrupt_mask = data;
1506 return -ENODEV;
1507 }
1508 } else {
1509 /*
1510 * Read interrupt status from the Read-And-Clear shadow register
1511 * Note: PISR/SISR Not available on 5210
1512 */
1513 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
1514 }
1515
1516 /*
1517 * Get abstract interrupt mask (driver-compatible)
1518 */
1519 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
1520
1521 if (unlikely(data == AR5K_INT_NOCARD))
1522 return -ENODEV;
1523
1524 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
1525 *interrupt_mask |= AR5K_INT_RX;
1526
1527 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
1528 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
1529 *interrupt_mask |= AR5K_INT_TX;
1530
1531 if (ah->ah_version != AR5K_AR5210) {
1532 /*HIU = Host Interface Unit (PCI etc)*/
1533 if (unlikely(data & (AR5K_ISR_HIUERR)))
1534 *interrupt_mask |= AR5K_INT_FATAL;
1535
1536 /*Beacon Not Ready*/
1537 if (unlikely(data & (AR5K_ISR_BNR)))
1538 *interrupt_mask |= AR5K_INT_BNR;
1539 }
1540
1541 /*
1542 * XXX: BMISS interrupts may occur after association.
1543 * I found this on 5210 code but it needs testing. If this is
1544 * true we should disable them before assoc and re-enable them
1545 * after a successfull assoc + some jiffies.
1546 */
1547#if 0
1548 interrupt_mask &= ~AR5K_INT_BMISS;
1549#endif
1550
1551 /*
1552 * In case we didn't handle anything,
1553 * print the register value.
1554 */
1555 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
1556 ATH5K_PRINTF("0x%08x\n", data);
1557
1558 return 0;
1559}
1560
1561/*
1562 * Set interrupt mask
1563 */
1564enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
1565{
1566 enum ath5k_int old_mask, int_mask;
1567
1568 /*
1569 * Disable card interrupts to prevent any race conditions
1570 * (they will be re-enabled afterwards).
1571 */
1572 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
1573
1574 old_mask = ah->ah_imr;
1575
1576 /*
1577 * Add additional, chipset-dependent interrupt mask flags
1578 * and write them to the IMR (interrupt mask register).
1579 */
1580 int_mask = new_mask & AR5K_INT_COMMON;
1581
1582 if (new_mask & AR5K_INT_RX)
1583 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
1584 AR5K_IMR_RXDESC;
1585
1586 if (new_mask & AR5K_INT_TX)
1587 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
1588 AR5K_IMR_TXURN;
1589
1590 if (ah->ah_version != AR5K_AR5210) {
1591 if (new_mask & AR5K_INT_FATAL) {
1592 int_mask |= AR5K_IMR_HIUERR;
1593 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
1594 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
1595 }
1596 }
1597
1598 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
1599
1600 /* Store new interrupt mask */
1601 ah->ah_imr = new_mask;
1602
1603 /* ..re-enable interrupts */
1604 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
1605
1606 return old_mask;
1607}
1608
1609
1610/*************************\
1611 EEPROM access functions
1612\*************************/
1613
1614/*
1615 * Read from eeprom
1616 */
1617static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
1618{
1619 u32 status, timeout;
1620
1621 ATH5K_TRACE(ah->ah_sc);
1622 /*
1623 * Initialize EEPROM access
1624 */
1625 if (ah->ah_version == AR5K_AR5210) {
1626 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1627 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
1628 } else {
1629 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1630 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1631 AR5K_EEPROM_CMD_READ);
1632 }
1633
1634 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1635 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1636 if (status & AR5K_EEPROM_STAT_RDDONE) {
1637 if (status & AR5K_EEPROM_STAT_RDERR)
1638 return -EIO;
1639 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
1640 0xffff);
1641 return 0;
1642 }
1643 udelay(15);
1644 }
1645
1646 return -ETIMEDOUT;
1647}
1648
1649/*
1650 * Write to eeprom - currently disabled, use at your own risk
1651 */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001652#if 0
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001653static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
1654{
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001655
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001656 u32 status, timeout;
1657
1658 ATH5K_TRACE(ah->ah_sc);
1659
1660 /*
1661 * Initialize eeprom access
1662 */
1663
1664 if (ah->ah_version == AR5K_AR5210) {
1665 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1666 } else {
1667 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1668 AR5K_EEPROM_CMD_RESET);
1669 }
1670
1671 /*
1672 * Write data to data register
1673 */
1674
1675 if (ah->ah_version == AR5K_AR5210) {
1676 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
1677 } else {
1678 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1679 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
1680 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1681 AR5K_EEPROM_CMD_WRITE);
1682 }
1683
1684 /*
1685 * Check status
1686 */
1687
1688 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1689 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1690 if (status & AR5K_EEPROM_STAT_WRDONE) {
1691 if (status & AR5K_EEPROM_STAT_WRERR)
1692 return EIO;
1693 return 0;
1694 }
1695 udelay(15);
1696 }
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001697
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001698 ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
1699 return -EIO;
1700}
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001701#endif
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001702
1703/*
1704 * Translate binary channel representation in EEPROM to frequency
1705 */
1706static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
1707{
1708 u16 val;
1709
1710 if (bin == AR5K_EEPROM_CHANNEL_DIS)
1711 return bin;
1712
1713 if (mode == AR5K_EEPROM_MODE_11A) {
1714 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1715 val = (5 * bin) + 4800;
1716 else
1717 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
1718 (bin * 10) + 5100;
1719 } else {
1720 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1721 val = bin + 2300;
1722 else
1723 val = bin + 2400;
1724 }
1725
1726 return val;
1727}
1728
1729/*
1730 * Read antenna infos from eeprom
1731 */
1732static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
1733 unsigned int mode)
1734{
1735 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1736 u32 o = *offset;
1737 u16 val;
1738 int ret, i = 0;
1739
1740 AR5K_EEPROM_READ(o++, val);
1741 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1742 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
1743 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1744
1745 AR5K_EEPROM_READ(o++, val);
1746 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1747 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1748 ee->ee_ant_control[mode][i++] = val & 0x3f;
1749
1750 AR5K_EEPROM_READ(o++, val);
1751 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
1752 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
1753 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
1754
1755 AR5K_EEPROM_READ(o++, val);
1756 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
1757 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
1758 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
1759 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1760
1761 AR5K_EEPROM_READ(o++, val);
1762 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1763 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1764 ee->ee_ant_control[mode][i++] = val & 0x3f;
1765
1766 /* Get antenna modes */
1767 ah->ah_antenna[mode][0] =
1768 (ee->ee_ant_control[mode][0] << 4) | 0x1;
1769 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
1770 ee->ee_ant_control[mode][1] |
1771 (ee->ee_ant_control[mode][2] << 6) |
1772 (ee->ee_ant_control[mode][3] << 12) |
1773 (ee->ee_ant_control[mode][4] << 18) |
1774 (ee->ee_ant_control[mode][5] << 24);
1775 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
1776 ee->ee_ant_control[mode][6] |
1777 (ee->ee_ant_control[mode][7] << 6) |
1778 (ee->ee_ant_control[mode][8] << 12) |
1779 (ee->ee_ant_control[mode][9] << 18) |
1780 (ee->ee_ant_control[mode][10] << 24);
1781
1782 /* return new offset */
1783 *offset = o;
1784
1785 return 0;
1786}
1787
1788/*
1789 * Read supported modes from eeprom
1790 */
1791static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
1792 unsigned int mode)
1793{
1794 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1795 u32 o = *offset;
1796 u16 val;
1797 int ret;
1798
1799 AR5K_EEPROM_READ(o++, val);
1800 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
1801 ee->ee_thr_62[mode] = val & 0xff;
1802
1803 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1804 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
1805
1806 AR5K_EEPROM_READ(o++, val);
1807 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
1808 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
1809
1810 AR5K_EEPROM_READ(o++, val);
1811 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
1812
1813 if ((val & 0xff) & 0x80)
1814 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
1815 else
1816 ee->ee_noise_floor_thr[mode] = val & 0xff;
1817
1818 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1819 ee->ee_noise_floor_thr[mode] =
1820 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
1821
1822 AR5K_EEPROM_READ(o++, val);
1823 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
1824 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
1825 ee->ee_xpd[mode] = val & 0x1;
1826
1827 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
1828 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
1829
1830 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
1831 AR5K_EEPROM_READ(o++, val);
1832 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
1833
1834 if (mode == AR5K_EEPROM_MODE_11A)
1835 ee->ee_xr_power[mode] = val & 0x3f;
1836 else {
1837 ee->ee_ob[mode][0] = val & 0x7;
1838 ee->ee_db[mode][0] = (val >> 3) & 0x7;
1839 }
1840 }
1841
1842 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
1843 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
1844 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
1845 } else {
1846 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
1847
1848 AR5K_EEPROM_READ(o++, val);
1849 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
1850
1851 if (mode == AR5K_EEPROM_MODE_11G)
1852 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1853 }
1854
1855 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
1856 mode == AR5K_EEPROM_MODE_11A) {
1857 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1858 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1859 }
1860
1861 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
1862 mode == AR5K_EEPROM_MODE_11G)
1863 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
1864
1865 /* return new offset */
1866 *offset = o;
1867
1868 return 0;
1869}
1870
1871/*
1872 * Initialize eeprom & capabilities structs
1873 */
1874static int ath5k_eeprom_init(struct ath5k_hw *ah)
1875{
1876 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1877 unsigned int mode, i;
1878 int ret;
1879 u32 offset;
1880 u16 val;
1881
1882 /* Initial TX thermal adjustment values */
1883 ee->ee_tx_clip = 4;
1884 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
1885 ee->ee_gain_select = 1;
1886
1887 /*
1888 * Read values from EEPROM and store them in the capability structure
1889 */
1890 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
1891 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
1892 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
1893 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
1894 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
1895
1896 /* Return if we have an old EEPROM */
1897 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
1898 return 0;
1899
1900#ifdef notyet
1901 /*
1902 * Validate the checksum of the EEPROM date. There are some
1903 * devices with invalid EEPROMs.
1904 */
1905 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
1906 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
1907 cksum ^= val;
1908 }
1909 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
1910 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
1911 return -EIO;
1912 }
1913#endif
1914
1915 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
1916 ee_ant_gain);
1917
1918 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1919 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
1920 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
1921 }
1922
1923 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
1924 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
1925 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
1926 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
1927
1928 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
1929 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
1930 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
1931 }
1932
1933 /*
1934 * Get conformance test limit values
1935 */
1936 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
1937 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
1938
1939 for (i = 0; i < ee->ee_ctls; i++) {
1940 AR5K_EEPROM_READ(offset++, val);
1941 ee->ee_ctl[i] = (val >> 8) & 0xff;
1942 ee->ee_ctl[i + 1] = val & 0xff;
1943 }
1944
1945 /*
1946 * Get values for 802.11a (5GHz)
1947 */
1948 mode = AR5K_EEPROM_MODE_11A;
1949
1950 ee->ee_turbo_max_power[mode] =
1951 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
1952
1953 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
1954
1955 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1956 if (ret)
1957 return ret;
1958
1959 AR5K_EEPROM_READ(offset++, val);
1960 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1961 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
1962 ee->ee_db[mode][3] = (val >> 2) & 0x7;
1963 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1964
1965 AR5K_EEPROM_READ(offset++, val);
1966 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
1967 ee->ee_db[mode][2] = (val >> 12) & 0x7;
1968 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
1969 ee->ee_db[mode][1] = (val >> 6) & 0x7;
1970 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
1971 ee->ee_db[mode][0] = val & 0x7;
1972
1973 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1974 if (ret)
1975 return ret;
1976
1977 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
1978 AR5K_EEPROM_READ(offset++, val);
1979 ee->ee_margin_tx_rx[mode] = val & 0x3f;
1980 }
1981
1982 /*
1983 * Get values for 802.11b (2.4GHz)
1984 */
1985 mode = AR5K_EEPROM_MODE_11B;
1986 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
1987
1988 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1989 if (ret)
1990 return ret;
1991
1992 AR5K_EEPROM_READ(offset++, val);
1993 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1994 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1995 ee->ee_db[mode][1] = val & 0x7;
1996
1997 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1998 if (ret)
1999 return ret;
2000
2001 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
2002 AR5K_EEPROM_READ(offset++, val);
2003 ee->ee_cal_pier[mode][0] =
2004 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2005 ee->ee_cal_pier[mode][1] =
2006 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
2007
2008 AR5K_EEPROM_READ(offset++, val);
2009 ee->ee_cal_pier[mode][2] =
2010 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2011 }
2012
2013 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
2014 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
2015
2016 /*
2017 * Get values for 802.11g (2.4GHz)
2018 */
2019 mode = AR5K_EEPROM_MODE_11G;
2020 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
2021
2022 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
2023 if (ret)
2024 return ret;
2025
2026 AR5K_EEPROM_READ(offset++, val);
2027 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
2028 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
2029 ee->ee_db[mode][1] = val & 0x7;
2030
2031 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
2032 if (ret)
2033 return ret;
2034
2035 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
2036 AR5K_EEPROM_READ(offset++, val);
2037 ee->ee_cal_pier[mode][0] =
2038 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2039 ee->ee_cal_pier[mode][1] =
2040 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
2041
2042 AR5K_EEPROM_READ(offset++, val);
2043 ee->ee_turbo_max_power[mode] = val & 0x7f;
2044 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
2045
2046 AR5K_EEPROM_READ(offset++, val);
2047 ee->ee_cal_pier[mode][2] =
2048 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
2049
2050 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
2051 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
2052
2053 AR5K_EEPROM_READ(offset++, val);
2054 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
2055 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
2056
2057 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
2058 AR5K_EEPROM_READ(offset++, val);
2059 ee->ee_cck_ofdm_gain_delta = val & 0xff;
2060 }
2061 }
2062
2063 /*
2064 * Read 5GHz EEPROM channels
2065 */
2066
2067 return 0;
2068}
2069
2070/*
2071 * Read the MAC address from eeprom
2072 */
2073static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
2074{
2075 u8 mac_d[ETH_ALEN];
2076 u32 total, offset;
2077 u16 data;
2078 int octet, ret;
2079
2080 memset(mac, 0, ETH_ALEN);
2081 memset(mac_d, 0, ETH_ALEN);
2082
2083 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
2084 if (ret)
2085 return ret;
2086
2087 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
2088 ret = ath5k_hw_eeprom_read(ah, offset, &data);
2089 if (ret)
2090 return ret;
2091
2092 total += data;
2093 mac_d[octet + 1] = data & 0xff;
2094 mac_d[octet] = data >> 8;
2095 octet += 2;
2096 }
2097
2098 memcpy(mac, mac_d, ETH_ALEN);
2099
2100 if (!total || total == 3 * 0xffff)
2101 return -EINVAL;
2102
2103 return 0;
2104}
2105
2106/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002107 * Fill the capabilities struct
2108 */
2109static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
2110{
2111 u16 ee_header;
2112
2113 ATH5K_TRACE(ah->ah_sc);
2114 /* Capabilities stored in the EEPROM */
2115 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
2116
2117 if (ah->ah_version == AR5K_AR5210) {
2118 /*
2119 * Set radio capabilities
2120 * (The AR5110 only supports the middle 5GHz band)
2121 */
2122 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
2123 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
2124 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
2125 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
2126
2127 /* Set supported modes */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002128 __set_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode);
2129 __set_bit(AR5K_MODE_11A_TURBO, ah->ah_capabilities.cap_mode);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002130 } else {
2131 /*
2132 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
2133 * XXX and from 2312 to 2732GHz. There are problems with the
2134 * XXX current ieee80211 implementation because the IEEE
2135 * XXX channel mapping does not support negative channel
2136 * XXX numbers (2312MHz is channel -19). Of course, this
2137 * XXX doesn't matter because these channels are out of range
2138 * XXX but some regulation domains like MKK (Japan) will
2139 * XXX support frequencies somewhere around 4.8GHz.
2140 */
2141
2142 /*
2143 * Set radio capabilities
2144 */
2145
2146 if (AR5K_EEPROM_HDR_11A(ee_header)) {
2147 ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2148 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
2149
2150 /* Set supported modes */
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002151 __set_bit(AR5K_MODE_11A,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002152 ah->ah_capabilities.cap_mode);
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002153 __set_bit(AR5K_MODE_11A_TURBO,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002154 ah->ah_capabilities.cap_mode);
2155 if (ah->ah_version == AR5K_AR5212)
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002156 __set_bit(AR5K_MODE_11G_TURBO,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002157 ah->ah_capabilities.cap_mode);
2158 }
2159
2160 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
2161 * connected */
2162 if (AR5K_EEPROM_HDR_11B(ee_header) ||
2163 AR5K_EEPROM_HDR_11G(ee_header)) {
2164 ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2165 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
2166
2167 if (AR5K_EEPROM_HDR_11B(ee_header))
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002168 __set_bit(AR5K_MODE_11B,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002169 ah->ah_capabilities.cap_mode);
2170
2171 if (AR5K_EEPROM_HDR_11G(ee_header))
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05002172 __set_bit(AR5K_MODE_11G,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002173 ah->ah_capabilities.cap_mode);
2174 }
2175 }
2176
2177 /* GPIO */
2178 ah->ah_gpio_npins = AR5K_NUM_GPIO;
2179
2180 /* Set number of supported TX queues */
2181 if (ah->ah_version == AR5K_AR5210)
2182 ah->ah_capabilities.cap_queues.q_tx_num =
2183 AR5K_NUM_TX_QUEUES_NOQCU;
2184 else
2185 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
2186
2187 return 0;
2188}
2189
2190/*********************************\
2191 Protocol Control Unit Functions
2192\*********************************/
2193
2194/*
2195 * Set Operation mode
2196 */
2197int ath5k_hw_set_opmode(struct ath5k_hw *ah)
2198{
2199 u32 pcu_reg, beacon_reg, low_id, high_id;
2200
2201 pcu_reg = 0;
2202 beacon_reg = 0;
2203
2204 ATH5K_TRACE(ah->ah_sc);
2205
2206 switch (ah->ah_op_mode) {
2207 case IEEE80211_IF_TYPE_IBSS:
2208 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
2209 (ah->ah_version == AR5K_AR5210 ?
2210 AR5K_STA_ID1_NO_PSPOLL : 0);
2211 beacon_reg |= AR5K_BCR_ADHOC;
2212 break;
2213
2214 case IEEE80211_IF_TYPE_AP:
2215 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
2216 (ah->ah_version == AR5K_AR5210 ?
2217 AR5K_STA_ID1_NO_PSPOLL : 0);
2218 beacon_reg |= AR5K_BCR_AP;
2219 break;
2220
2221 case IEEE80211_IF_TYPE_STA:
2222 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2223 (ah->ah_version == AR5K_AR5210 ?
2224 AR5K_STA_ID1_PWR_SV : 0);
2225 case IEEE80211_IF_TYPE_MNTR:
2226 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2227 (ah->ah_version == AR5K_AR5210 ?
2228 AR5K_STA_ID1_NO_PSPOLL : 0);
2229 break;
2230
2231 default:
2232 return -EINVAL;
2233 }
2234
2235 /*
2236 * Set PCU registers
2237 */
2238 low_id = AR5K_LOW_ID(ah->ah_sta_id);
2239 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
2240 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2241 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
2242
2243 /*
2244 * Set Beacon Control Register on 5210
2245 */
2246 if (ah->ah_version == AR5K_AR5210)
2247 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
2248
2249 return 0;
2250}
2251
2252/*
2253 * BSSID Functions
2254 */
2255
2256/*
2257 * Get station id
2258 */
2259void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
2260{
2261 ATH5K_TRACE(ah->ah_sc);
2262 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
2263}
2264
2265/*
2266 * Set station id
2267 */
2268int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
2269{
2270 u32 low_id, high_id;
2271
2272 ATH5K_TRACE(ah->ah_sc);
2273 /* Set new station ID */
2274 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
2275
2276 low_id = AR5K_LOW_ID(mac);
2277 high_id = AR5K_HIGH_ID(mac);
2278
2279 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2280 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
2281
2282 return 0;
2283}
2284
2285/*
2286 * Set BSSID
2287 */
2288void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
2289{
2290 u32 low_id, high_id;
2291 u16 tim_offset = 0;
2292
2293 /*
2294 * Set simple BSSID mask on 5212
2295 */
2296 if (ah->ah_version == AR5K_AR5212) {
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -05002297 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM0);
2298 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM1);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002299 }
2300
2301 /*
2302 * Set BSSID which triggers the "SME Join" operation
2303 */
2304 low_id = AR5K_LOW_ID(bssid);
2305 high_id = AR5K_HIGH_ID(bssid);
2306 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
2307 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
2308 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
2309
2310 if (assoc_id == 0) {
2311 ath5k_hw_disable_pspoll(ah);
2312 return;
2313 }
2314
2315 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
2316 tim_offset ? tim_offset + 4 : 0);
2317
2318 ath5k_hw_enable_pspoll(ah, NULL, 0);
2319}
2320/**
2321 * ath5k_hw_set_bssid_mask - set common bits we should listen to
2322 *
2323 * The bssid_mask is a utility used by AR5212 hardware to inform the hardware
2324 * which bits of the interface's MAC address should be looked at when trying
2325 * to decide which packets to ACK. In station mode every bit matters. In AP
2326 * mode with a single BSS every bit matters as well. In AP mode with
2327 * multiple BSSes not every bit matters.
2328 *
2329 * @ah: the &struct ath5k_hw
2330 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
2331 *
2332 * Note that this is a simple filter and *does* not filter out all
2333 * relevant frames. Some non-relevant frames will get through, probability
2334 * jocks are welcomed to compute.
2335 *
2336 * When handling multiple BSSes (or VAPs) you can get the BSSID mask by
2337 * computing the set of:
2338 *
2339 * ~ ( MAC XOR BSSID )
2340 *
2341 * When you do this you are essentially computing the common bits. Later it
2342 * is assumed the harware will "and" (&) the BSSID mask with the MAC address
2343 * to obtain the relevant bits which should match on the destination frame.
2344 *
2345 * Simple example: on your card you have have two BSSes you have created with
2346 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
2347 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
2348 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
2349 *
2350 * \
2351 * MAC: 0001 |
2352 * BSSID-01: 0100 | --> Belongs to us
2353 * BSSID-02: 1001 |
2354 * /
2355 * -------------------
2356 * BSSID-03: 0110 | --> External
2357 * -------------------
2358 *
2359 * Our bssid_mask would then be:
2360 *
2361 * On loop iteration for BSSID-01:
2362 * ~(0001 ^ 0100) -> ~(0101)
2363 * -> 1010
2364 * bssid_mask = 1010
2365 *
2366 * On loop iteration for BSSID-02:
2367 * bssid_mask &= ~(0001 ^ 1001)
2368 * bssid_mask = (1010) & ~(0001 ^ 1001)
2369 * bssid_mask = (1010) & ~(1001)
2370 * bssid_mask = (1010) & (0110)
2371 * bssid_mask = 0010
2372 *
2373 * A bssid_mask of 0010 means "only pay attention to the second least
2374 * significant bit". This is because its the only bit common
2375 * amongst the MAC and all BSSIDs we support. To findout what the real
2376 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
2377 * or our MAC address (we assume the hardware uses the MAC address).
2378 *
2379 * Now, suppose there's an incoming frame for BSSID-03:
2380 *
2381 * IFRAME-01: 0110
2382 *
2383 * An easy eye-inspeciton of this already should tell you that this frame
2384 * will not pass our check. This is beacuse the bssid_mask tells the
2385 * hardware to only look at the second least significant bit and the
2386 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
2387 * as 1, which does not match 0.
2388 *
2389 * So with IFRAME-01 we *assume* the hardware will do:
2390 *
2391 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2392 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
2393 * --> allow = (0010) == 0000 ? 1 : 0;
2394 * --> allow = 0
2395 *
2396 * Lets now test a frame that should work:
2397 *
2398 * IFRAME-02: 0001 (we should allow)
2399 *
2400 * allow = (0001 & 1010) == 1010
2401 *
2402 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2403 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
2404 * --> allow = (0010) == (0010)
2405 * --> allow = 1
2406 *
2407 * Other examples:
2408 *
2409 * IFRAME-03: 0100 --> allowed
2410 * IFRAME-04: 1001 --> allowed
2411 * IFRAME-05: 1101 --> allowed but its not for us!!!
2412 *
2413 */
2414int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
2415{
2416 u32 low_id, high_id;
2417 ATH5K_TRACE(ah->ah_sc);
2418
2419 if (ah->ah_version == AR5K_AR5212) {
2420 low_id = AR5K_LOW_ID(mask);
2421 high_id = AR5K_HIGH_ID(mask);
2422
2423 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
2424 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
2425
2426 return 0;
2427 }
2428
2429 return -EIO;
2430}
2431
2432/*
2433 * Receive start/stop functions
2434 */
2435
2436/*
2437 * Start receive on PCU
2438 */
2439void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
2440{
2441 ATH5K_TRACE(ah->ah_sc);
2442 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -05002443
2444 /* TODO: ANI Support */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002445}
2446
2447/*
2448 * Stop receive on PCU
2449 */
2450void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
2451{
2452 ATH5K_TRACE(ah->ah_sc);
2453 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
Nick Kossifidisc87cdfd2008-03-07 11:48:21 -05002454
2455 /* TODO: ANI Support */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002456}
2457
2458/*
2459 * RX Filter functions
2460 */
2461
2462/*
2463 * Set multicast filter
2464 */
2465void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
2466{
2467 ATH5K_TRACE(ah->ah_sc);
2468 /* Set the multicat filter */
2469 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
2470 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
2471}
2472
2473/*
2474 * Set multicast filter by index
2475 */
2476int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
2477{
2478
2479 ATH5K_TRACE(ah->ah_sc);
2480 if (index >= 64)
2481 return -EINVAL;
2482 else if (index >= 32)
2483 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
2484 (1 << (index - 32)));
2485 else
2486 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2487
2488 return 0;
2489}
2490
2491/*
2492 * Clear Multicast filter by index
2493 */
2494int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
2495{
2496
2497 ATH5K_TRACE(ah->ah_sc);
2498 if (index >= 64)
2499 return -EINVAL;
2500 else if (index >= 32)
2501 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
2502 (1 << (index - 32)));
2503 else
2504 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2505
2506 return 0;
2507}
2508
2509/*
2510 * Get current rx filter
2511 */
2512u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
2513{
2514 u32 data, filter = 0;
2515
2516 ATH5K_TRACE(ah->ah_sc);
2517 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
2518
2519 /*Radar detection for 5212*/
2520 if (ah->ah_version == AR5K_AR5212) {
2521 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
2522
2523 if (data & AR5K_PHY_ERR_FIL_RADAR)
2524 filter |= AR5K_RX_FILTER_RADARERR;
2525 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
2526 filter |= AR5K_RX_FILTER_PHYERR;
2527 }
2528
2529 return filter;
2530}
2531
2532/*
2533 * Set rx filter
2534 */
2535void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
2536{
2537 u32 data = 0;
2538
2539 ATH5K_TRACE(ah->ah_sc);
2540
2541 /* Set PHY error filter register on 5212*/
2542 if (ah->ah_version == AR5K_AR5212) {
2543 if (filter & AR5K_RX_FILTER_RADARERR)
2544 data |= AR5K_PHY_ERR_FIL_RADAR;
2545 if (filter & AR5K_RX_FILTER_PHYERR)
2546 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
2547 }
2548
2549 /*
2550 * The AR5210 uses promiscous mode to detect radar activity
2551 */
2552 if (ah->ah_version == AR5K_AR5210 &&
2553 (filter & AR5K_RX_FILTER_RADARERR)) {
2554 filter &= ~AR5K_RX_FILTER_RADARERR;
2555 filter |= AR5K_RX_FILTER_PROM;
2556 }
2557
2558 /*Zero length DMA*/
2559 if (data)
2560 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2561 else
2562 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2563
2564 /*Write RX Filter register*/
2565 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
2566
2567 /*Write PHY error filter register on 5212*/
2568 if (ah->ah_version == AR5K_AR5212)
2569 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
2570
2571}
2572
2573/*
2574 * Beacon related functions
2575 */
2576
2577/*
2578 * Get a 32bit TSF
2579 */
2580u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
2581{
2582 ATH5K_TRACE(ah->ah_sc);
2583 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
2584}
2585
2586/*
2587 * Get the full 64bit TSF
2588 */
2589u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
2590{
2591 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
2592 ATH5K_TRACE(ah->ah_sc);
2593
2594 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
2595}
2596
2597/*
2598 * Force a TSF reset
2599 */
2600void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
2601{
2602 ATH5K_TRACE(ah->ah_sc);
2603 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
2604}
2605
2606/*
2607 * Initialize beacon timers
2608 */
2609void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
2610{
2611 u32 timer1, timer2, timer3;
2612
2613 ATH5K_TRACE(ah->ah_sc);
2614 /*
2615 * Set the additional timers by mode
2616 */
2617 switch (ah->ah_op_mode) {
2618 case IEEE80211_IF_TYPE_STA:
2619 if (ah->ah_version == AR5K_AR5210) {
2620 timer1 = 0xffffffff;
2621 timer2 = 0xffffffff;
2622 } else {
2623 timer1 = 0x0000ffff;
2624 timer2 = 0x0007ffff;
2625 }
2626 break;
2627
2628 default:
Bruno Randolf1008e0f2008-01-18 21:51:19 +09002629 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
2630 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002631 }
2632
2633 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
2634
2635 /*
2636 * Set the beacon register and enable all timers.
2637 * (next beacon, DMA beacon, software beacon, ATIM window time)
2638 */
2639 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
2640 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
2641 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
2642 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
2643
2644 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
2645 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
2646 AR5K_BEACON);
2647}
2648
2649#if 0
2650/*
2651 * Set beacon timers
2652 */
2653int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
2654 const struct ath5k_beacon_state *state)
2655{
2656 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
2657
2658 /*
2659 * TODO: should be changed through *state
2660 * review struct ath5k_beacon_state struct
2661 *
2662 * XXX: These are used for cfp period bellow, are they
2663 * ok ? Is it O.K. for tsf here to be 0 or should we use
2664 * get_tsf ?
2665 */
2666 u32 dtim_count = 0; /* XXX */
2667 u32 cfp_count = 0; /* XXX */
2668 u32 tsf = 0; /* XXX */
2669
2670 ATH5K_TRACE(ah->ah_sc);
2671 /* Return on an invalid beacon state */
2672 if (state->bs_interval < 1)
2673 return -EINVAL;
2674
2675 interval = state->bs_interval;
2676 dtim = state->bs_dtim_period;
2677
2678 /*
2679 * PCF support?
2680 */
2681 if (state->bs_cfp_period > 0) {
2682 /*
2683 * Enable PCF mode and set the CFP
2684 * (Contention Free Period) and timer registers
2685 */
2686 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2687 state->bs_interval;
2688 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2689 state->bs_interval;
2690
2691 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
2692 AR5K_STA_ID1_DEFAULT_ANTENNA |
2693 AR5K_STA_ID1_PCF);
2694 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
2695 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
2696 AR5K_CFP_DUR);
2697 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
2698 next_cfp)) << 3, AR5K_TIMER2);
2699 } else {
2700 /* Disable PCF mode */
2701 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2702 AR5K_STA_ID1_DEFAULT_ANTENNA |
2703 AR5K_STA_ID1_PCF);
2704 }
2705
2706 /*
2707 * Enable the beacon timer register
2708 */
2709 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
2710
2711 /*
2712 * Start the beacon timers
2713 */
2714 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
2715 (AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
2716 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2717 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2718 AR5K_BEACON_PERIOD), AR5K_BEACON);
2719
2720 /*
2721 * Write new beacon miss threshold, if it appears to be valid
2722 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
2723 * and return if its not in range. We can test this by reading value and
2724 * setting value to a largest value and seeing which values register.
2725 */
2726
2727 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
2728 state->bs_bmiss_threshold);
2729
2730 /*
2731 * Set sleep control register
2732 * XXX: Didn't find this in 5210 code but since this register
2733 * exists also in ar5k's 5210 headers i leave it as common code.
2734 */
2735 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
2736 (state->bs_sleep_duration - 3) << 3);
2737
2738 /*
2739 * Set enhanced sleep registers on 5212
2740 */
2741 if (ah->ah_version == AR5K_AR5212) {
2742 if (state->bs_sleep_duration > state->bs_interval &&
2743 roundup(state->bs_sleep_duration, interval) ==
2744 state->bs_sleep_duration)
2745 interval = state->bs_sleep_duration;
2746
2747 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
2748 roundup(state->bs_sleep_duration, dtim) ==
2749 state->bs_sleep_duration))
2750 dtim = state->bs_sleep_duration;
2751
2752 if (interval > dtim)
2753 return -EINVAL;
2754
2755 next_beacon = interval == dtim ? state->bs_next_dtim :
2756 state->bs_next_beacon;
2757
2758 ath5k_hw_reg_write(ah,
2759 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
2760 AR5K_SLEEP0_NEXT_DTIM) |
2761 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
2762 AR5K_SLEEP0_ENH_SLEEP_EN |
2763 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
2764
2765 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
2766 AR5K_SLEEP1_NEXT_TIM) |
2767 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
2768
2769 ath5k_hw_reg_write(ah,
2770 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
2771 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
2772 }
2773
2774 return 0;
2775}
2776
2777/*
2778 * Reset beacon timers
2779 */
2780void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
2781{
2782 ATH5K_TRACE(ah->ah_sc);
2783 /*
2784 * Disable beacon timer
2785 */
2786 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
2787
2788 /*
2789 * Disable some beacon register values
2790 */
2791 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2792 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
2793 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
2794}
2795
2796/*
2797 * Wait for beacon queue to finish
2798 */
2799int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
2800{
2801 unsigned int i;
2802 int ret;
2803
2804 ATH5K_TRACE(ah->ah_sc);
2805
2806 /* 5210 doesn't have QCU*/
2807 if (ah->ah_version == AR5K_AR5210) {
2808 /*
2809 * Wait for beaconn queue to finish by checking
2810 * Control Register and Beacon Status Register.
2811 */
2812 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
2813 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
2814 ||
2815 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
2816 break;
2817 udelay(10);
2818 }
2819
2820 /* Timeout... */
2821 if (i <= 0) {
2822 /*
2823 * Re-schedule the beacon queue
2824 */
2825 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
2826 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
2827 AR5K_BCR);
2828
2829 return -EIO;
2830 }
2831 ret = 0;
2832 } else {
2833 /*5211/5212*/
2834 ret = ath5k_hw_register_timeout(ah,
2835 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
2836 AR5K_QCU_STS_FRMPENDCNT, 0, false);
2837
2838 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
2839 return -EIO;
2840 }
2841
2842 return ret;
2843}
2844#endif
2845
2846/*
2847 * Update mib counters (statistics)
2848 */
2849void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
2850 struct ath5k_mib_stats *statistics)
2851{
2852 ATH5K_TRACE(ah->ah_sc);
2853 /* Read-And-Clear */
2854 statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
2855 statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
2856 statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
2857 statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
2858 statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
2859
2860 /* Reset profile count registers on 5212*/
2861 if (ah->ah_version == AR5K_AR5212) {
2862 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
2863 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
2864 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
2865 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
2866 }
2867}
2868
2869/** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
2870 *
2871 * @ah: the &struct ath5k_hw
2872 * @high: determines if to use low bit rate or now
2873 */
2874void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
2875{
2876 if (ah->ah_version != AR5K_AR5212)
2877 return;
2878 else {
2879 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
2880 if (high)
2881 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
2882 else
2883 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
2884 }
2885}
2886
2887
2888/*
2889 * ACK/CTS Timeouts
2890 */
2891
2892/*
2893 * Set ACK timeout on PCU
2894 */
2895int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
2896{
2897 ATH5K_TRACE(ah->ah_sc);
2898 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
2899 ah->ah_turbo) <= timeout)
2900 return -EINVAL;
2901
2902 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
2903 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2904
2905 return 0;
2906}
2907
2908/*
2909 * Read the ACK timeout from PCU
2910 */
2911unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
2912{
2913 ATH5K_TRACE(ah->ah_sc);
2914
2915 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2916 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
2917}
2918
2919/*
2920 * Set CTS timeout on PCU
2921 */
2922int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
2923{
2924 ATH5K_TRACE(ah->ah_sc);
2925 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
2926 ah->ah_turbo) <= timeout)
2927 return -EINVAL;
2928
2929 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
2930 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2931
2932 return 0;
2933}
2934
2935/*
2936 * Read CTS timeout from PCU
2937 */
2938unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
2939{
2940 ATH5K_TRACE(ah->ah_sc);
2941 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2942 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
2943}
2944
2945/*
2946 * Key table (WEP) functions
2947 */
2948
2949int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
2950{
2951 unsigned int i;
2952
2953 ATH5K_TRACE(ah->ah_sc);
2954 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2955
2956 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
2957 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
2958
2959 /* Set NULL encryption on non-5210*/
2960 if (ah->ah_version != AR5K_AR5210)
2961 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
2962 AR5K_KEYTABLE_TYPE(entry));
2963
2964 return 0;
2965}
2966
2967int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
2968{
2969 ATH5K_TRACE(ah->ah_sc);
2970 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2971
2972 /* Check the validation flag at the end of the entry */
2973 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
2974 AR5K_KEYTABLE_VALID;
2975}
2976
2977int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
2978 const struct ieee80211_key_conf *key, const u8 *mac)
2979{
2980 unsigned int i;
2981 __le32 key_v[5] = {};
2982 u32 keytype;
2983
2984 ATH5K_TRACE(ah->ah_sc);
2985
2986 /* key->keylen comes in from mac80211 in bytes */
2987
2988 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
2989 return -EOPNOTSUPP;
2990
2991 switch (key->keylen) {
2992 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
2993 case 40 / 8:
2994 memcpy(&key_v[0], key->key, 5);
2995 keytype = AR5K_KEYTABLE_TYPE_40;
2996 break;
2997
2998 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
2999 case 104 / 8:
3000 memcpy(&key_v[0], &key->key[0], 6);
3001 memcpy(&key_v[2], &key->key[6], 6);
3002 memcpy(&key_v[4], &key->key[12], 1);
3003 keytype = AR5K_KEYTABLE_TYPE_104;
3004 break;
3005 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
3006 case 128 / 8:
3007 memcpy(&key_v[0], &key->key[0], 6);
3008 memcpy(&key_v[2], &key->key[6], 6);
3009 memcpy(&key_v[4], &key->key[12], 4);
3010 keytype = AR5K_KEYTABLE_TYPE_128;
3011 break;
3012
3013 default:
3014 return -EINVAL; /* shouldn't happen */
3015 }
3016
3017 for (i = 0; i < ARRAY_SIZE(key_v); i++)
3018 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
3019 AR5K_KEYTABLE_OFF(entry, i));
3020
3021 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
3022
3023 return ath5k_hw_set_key_lladdr(ah, entry, mac);
3024}
3025
3026int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
3027{
3028 u32 low_id, high_id;
3029
3030 ATH5K_TRACE(ah->ah_sc);
3031 /* Invalid entry (key table overflow) */
3032 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3033
3034 /* MAC may be NULL if it's a broadcast key. In this case no need to
3035 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
3036 if (unlikely(mac == NULL)) {
3037 low_id = 0xffffffff;
3038 high_id = 0xffff | AR5K_KEYTABLE_VALID;
3039 } else {
3040 low_id = AR5K_LOW_ID(mac);
3041 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
3042 }
3043
3044 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
3045 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
3046
3047 return 0;
3048}
3049
3050
3051/********************************************\
3052Queue Control Unit, DFS Control Unit Functions
3053\********************************************/
3054
3055/*
3056 * Initialize a transmit queue
3057 */
3058int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
3059 struct ath5k_txq_info *queue_info)
3060{
3061 unsigned int queue;
3062 int ret;
3063
3064 ATH5K_TRACE(ah->ah_sc);
3065
3066 /*
3067 * Get queue by type
3068 */
3069 /*5210 only has 2 queues*/
3070 if (ah->ah_version == AR5K_AR5210) {
3071 switch (queue_type) {
3072 case AR5K_TX_QUEUE_DATA:
3073 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
3074 break;
3075 case AR5K_TX_QUEUE_BEACON:
3076 case AR5K_TX_QUEUE_CAB:
3077 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
3078 break;
3079 default:
3080 return -EINVAL;
3081 }
3082 } else {
3083 switch (queue_type) {
3084 case AR5K_TX_QUEUE_DATA:
3085 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
3086 ah->ah_txq[queue].tqi_type !=
3087 AR5K_TX_QUEUE_INACTIVE; queue++) {
3088
3089 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
3090 return -EINVAL;
3091 }
3092 break;
3093 case AR5K_TX_QUEUE_UAPSD:
3094 queue = AR5K_TX_QUEUE_ID_UAPSD;
3095 break;
3096 case AR5K_TX_QUEUE_BEACON:
3097 queue = AR5K_TX_QUEUE_ID_BEACON;
3098 break;
3099 case AR5K_TX_QUEUE_CAB:
3100 queue = AR5K_TX_QUEUE_ID_CAB;
3101 break;
3102 case AR5K_TX_QUEUE_XR_DATA:
3103 if (ah->ah_version != AR5K_AR5212)
3104 ATH5K_ERR(ah->ah_sc,
3105 "XR data queues only supported in"
3106 " 5212!\n");
3107 queue = AR5K_TX_QUEUE_ID_XR_DATA;
3108 break;
3109 default:
3110 return -EINVAL;
3111 }
3112 }
3113
3114 /*
3115 * Setup internal queue structure
3116 */
3117 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
3118 ah->ah_txq[queue].tqi_type = queue_type;
3119
3120 if (queue_info != NULL) {
3121 queue_info->tqi_type = queue_type;
3122 ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
3123 if (ret)
3124 return ret;
3125 }
3126 /*
3127 * We use ah_txq_status to hold a temp value for
3128 * the Secondary interrupt mask registers on 5211+
3129 * check out ath5k_hw_reset_tx_queue
3130 */
3131 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
3132
3133 return queue;
3134}
3135
3136/*
3137 * Setup a transmit queue
3138 */
3139int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
3140 const struct ath5k_txq_info *queue_info)
3141{
3142 ATH5K_TRACE(ah->ah_sc);
3143 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3144
3145 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3146 return -EIO;
3147
3148 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
3149
3150 /*XXX: Is this supported on 5210 ?*/
3151 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
3152 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
3153 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
3154 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
3155 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
3156
3157 return 0;
3158}
3159
3160/*
3161 * Get properties for a specific transmit queue
3162 */
3163int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
3164 struct ath5k_txq_info *queue_info)
3165{
3166 ATH5K_TRACE(ah->ah_sc);
3167 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
3168 return 0;
3169}
3170
3171/*
3172 * Set a transmit queue inactive
3173 */
3174void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3175{
3176 ATH5K_TRACE(ah->ah_sc);
3177 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
3178 return;
3179
3180 /* This queue will be skipped in further operations */
3181 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
3182 /*For SIMR setup*/
3183 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
3184}
3185
3186/*
3187 * Set DFS params for a transmit queue
3188 */
3189int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3190{
3191 u32 cw_min, cw_max, retry_lg, retry_sh;
3192 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
3193
3194 ATH5K_TRACE(ah->ah_sc);
3195 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3196
3197 tq = &ah->ah_txq[queue];
3198
3199 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
3200 return 0;
3201
3202 if (ah->ah_version == AR5K_AR5210) {
3203 /* Only handle data queues, others will be ignored */
3204 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
3205 return 0;
3206
3207 /* Set Slot time */
Joe Perchese9010e22008-03-07 14:21:16 -08003208 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003209 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
3210 AR5K_SLOT_TIME);
3211 /* Set ACK_CTS timeout */
Joe Perchese9010e22008-03-07 14:21:16 -08003212 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003213 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
3214 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
3215 /* Set Transmit Latency */
Joe Perchese9010e22008-03-07 14:21:16 -08003216 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003217 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
3218 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
3219 /* Set IFS0 */
Joe Perchese9010e22008-03-07 14:21:16 -08003220 if (ah->ah_turbo)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003221 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
3222 (ah->ah_aifs + tq->tqi_aifs) *
3223 AR5K_INIT_SLOT_TIME_TURBO) <<
3224 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
3225 AR5K_IFS0);
3226 else
3227 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
3228 (ah->ah_aifs + tq->tqi_aifs) *
3229 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
3230 AR5K_INIT_SIFS, AR5K_IFS0);
3231
3232 /* Set IFS1 */
Joe Perchese9010e22008-03-07 14:21:16 -08003233 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003234 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
3235 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
3236 /* Set PHY register 0x9844 (??) */
Joe Perchese9010e22008-03-07 14:21:16 -08003237 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003238 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
3239 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
3240 AR5K_PHY(17));
3241 /* Set Frame Control Register */
Joe Perchese9010e22008-03-07 14:21:16 -08003242 ath5k_hw_reg_write(ah, ah->ah_turbo ?
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003243 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
3244 AR5K_PHY_TURBO_SHORT | 0x2020) :
3245 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
3246 AR5K_PHY_FRAME_CTL_5210);
3247 }
3248
3249 /*
3250 * Calculate cwmin/max by channel mode
3251 */
3252 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
3253 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
3254 ah->ah_aifs = AR5K_TUNE_AIFS;
3255 /*XR is only supported on 5212*/
3256 if (IS_CHAN_XR(ah->ah_current_channel) &&
3257 ah->ah_version == AR5K_AR5212) {
3258 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
3259 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
3260 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
3261 /*B mode is not supported on 5210*/
3262 } else if (IS_CHAN_B(ah->ah_current_channel) &&
3263 ah->ah_version != AR5K_AR5210) {
3264 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
3265 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
3266 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
3267 }
3268
3269 cw_min = 1;
3270 while (cw_min < ah->ah_cw_min)
3271 cw_min = (cw_min << 1) | 1;
3272
3273 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
3274 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
3275 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
3276 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
3277
3278 /*
3279 * Calculate and set retry limits
3280 */
Joe Perchese9010e22008-03-07 14:21:16 -08003281 if (ah->ah_software_retry) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003282 /* XXX Need to test this */
3283 retry_lg = ah->ah_limit_tx_retries;
3284 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
3285 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
3286 } else {
3287 retry_lg = AR5K_INIT_LG_RETRY;
3288 retry_sh = AR5K_INIT_SH_RETRY;
3289 }
3290
3291 /*No QCU/DCU [5210]*/
3292 if (ah->ah_version == AR5K_AR5210) {
3293 ath5k_hw_reg_write(ah,
3294 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
3295 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3296 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
3297 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3298 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
3299 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
3300 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
3301 AR5K_NODCU_RETRY_LMT);
3302 } else {
3303 /*QCU/DCU [5211+]*/
3304 ath5k_hw_reg_write(ah,
3305 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3306 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
3307 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3308 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
3309 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
3310 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
3311 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
3312
3313 /*===Rest is also for QCU/DCU only [5211+]===*/
3314
3315 /*
3316 * Set initial content window (cw_min/cw_max)
3317 * and arbitrated interframe space (aifs)...
3318 */
3319 ath5k_hw_reg_write(ah,
3320 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
3321 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
3322 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
3323 AR5K_DCU_LCL_IFS_AIFS),
3324 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
3325
3326 /*
3327 * Set misc registers
3328 */
3329 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
3330 AR5K_QUEUE_MISC(queue));
3331
3332 if (tq->tqi_cbr_period) {
3333 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
3334 AR5K_QCU_CBRCFG_INTVAL) |
3335 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
3336 AR5K_QCU_CBRCFG_ORN_THRES),
3337 AR5K_QUEUE_CBRCFG(queue));
3338 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3339 AR5K_QCU_MISC_FRSHED_CBR);
3340 if (tq->tqi_cbr_overflow_limit)
3341 AR5K_REG_ENABLE_BITS(ah,
3342 AR5K_QUEUE_MISC(queue),
3343 AR5K_QCU_MISC_CBR_THRES_ENABLE);
3344 }
3345
3346 if (tq->tqi_ready_time)
3347 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
3348 AR5K_QCU_RDYTIMECFG_INTVAL) |
3349 AR5K_QCU_RDYTIMECFG_ENABLE,
3350 AR5K_QUEUE_RDYTIMECFG(queue));
3351
3352 if (tq->tqi_burst_time) {
3353 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
3354 AR5K_DCU_CHAN_TIME_DUR) |
3355 AR5K_DCU_CHAN_TIME_ENABLE,
3356 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
3357
3358 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
3359 AR5K_REG_ENABLE_BITS(ah,
3360 AR5K_QUEUE_MISC(queue),
3361 AR5K_QCU_MISC_TXE);
3362 }
3363
3364 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
3365 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
3366 AR5K_QUEUE_DFS_MISC(queue));
3367
3368 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
3369 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
3370 AR5K_QUEUE_DFS_MISC(queue));
3371
3372 /*
3373 * Set registers by queue type
3374 */
3375 switch (tq->tqi_type) {
3376 case AR5K_TX_QUEUE_BEACON:
3377 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3378 AR5K_QCU_MISC_FRSHED_DBA_GT |
3379 AR5K_QCU_MISC_CBREXP_BCN |
3380 AR5K_QCU_MISC_BCN_ENABLE);
3381
3382 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3383 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3384 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
3385 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
3386 AR5K_DCU_MISC_BCN_ENABLE);
3387
3388 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
3389 (AR5K_TUNE_SW_BEACON_RESP -
3390 AR5K_TUNE_DMA_BEACON_RESP) -
3391 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
3392 AR5K_QCU_RDYTIMECFG_ENABLE,
3393 AR5K_QUEUE_RDYTIMECFG(queue));
3394 break;
3395
3396 case AR5K_TX_QUEUE_CAB:
3397 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3398 AR5K_QCU_MISC_FRSHED_DBA_GT |
3399 AR5K_QCU_MISC_CBREXP |
3400 AR5K_QCU_MISC_CBREXP_BCN);
3401
3402 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3403 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3404 AR5K_DCU_MISC_ARBLOCK_CTL_S));
3405 break;
3406
3407 case AR5K_TX_QUEUE_UAPSD:
3408 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3409 AR5K_QCU_MISC_CBREXP);
3410 break;
3411
3412 case AR5K_TX_QUEUE_DATA:
3413 default:
3414 break;
3415 }
3416
3417 /*
3418 * Enable interrupts for this tx queue
3419 * in the secondary interrupt mask registers
3420 */
3421 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
3422 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
3423
3424 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
3425 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
3426
3427 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
3428 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
3429
3430 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
3431 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
3432
3433 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
3434 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
3435
3436
3437 /* Update secondary interrupt mask registers */
3438 ah->ah_txq_imr_txok &= ah->ah_txq_status;
3439 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
3440 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
3441 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
3442 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
3443
3444 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
3445 AR5K_SIMR0_QCU_TXOK) |
3446 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
3447 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
3448 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
3449 AR5K_SIMR1_QCU_TXERR) |
3450 AR5K_REG_SM(ah->ah_txq_imr_txeol,
3451 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
3452 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
3453 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
3454 }
3455
3456 return 0;
3457}
3458
3459/*
3460 * Get number of pending frames
3461 * for a specific queue [5211+]
3462 */
3463u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
3464 ATH5K_TRACE(ah->ah_sc);
3465 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3466
3467 /* Return if queue is declared inactive */
3468 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3469 return false;
3470
3471 /* XXX: How about AR5K_CFG_TXCNT ? */
3472 if (ah->ah_version == AR5K_AR5210)
3473 return false;
3474
3475 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
3476}
3477
3478/*
3479 * Set slot time
3480 */
3481int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
3482{
3483 ATH5K_TRACE(ah->ah_sc);
3484 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
3485 return -EINVAL;
3486
3487 if (ah->ah_version == AR5K_AR5210)
3488 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
3489 ah->ah_turbo), AR5K_SLOT_TIME);
3490 else
3491 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
3492
3493 return 0;
3494}
3495
3496/*
3497 * Get slot time
3498 */
3499unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
3500{
3501 ATH5K_TRACE(ah->ah_sc);
3502 if (ah->ah_version == AR5K_AR5210)
3503 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
3504 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
3505 else
3506 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
3507}
3508
3509
3510/******************************\
3511 Hardware Descriptor Functions
3512\******************************/
3513
3514/*
3515 * TX Descriptor
3516 */
3517
3518/*
3519 * Initialize the 2-word tx descriptor on 5210/5211
3520 */
3521static int
3522ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3523 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
3524 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
3525 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
3526 unsigned int rtscts_rate, unsigned int rtscts_duration)
3527{
3528 u32 frame_type;
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003529 struct ath5k_hw_2w_tx_ctl *tx_ctl;
Bruno Randolf281c56d2008-02-05 18:44:55 +09003530 unsigned int frame_len;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003531
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003532 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003533
3534 /*
3535 * Validate input
3536 * - Zero retries don't make sense.
3537 * - A zero rate will put the HW into a mode where it continously sends
3538 * noise on the channel, so it is important to avoid this.
3539 */
3540 if (unlikely(tx_tries0 == 0)) {
3541 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3542 WARN_ON(1);
3543 return -EINVAL;
3544 }
3545 if (unlikely(tx_rate0 == 0)) {
3546 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3547 WARN_ON(1);
3548 return -EINVAL;
3549 }
3550
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003551 /* Clear descriptor */
3552 memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003553
3554 /* Setup control descriptor */
3555
3556 /* Verify and set frame length */
Bruno Randolf281c56d2008-02-05 18:44:55 +09003557
3558 /* remove padding we might have added before */
3559 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3560
3561 if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003562 return -EINVAL;
3563
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003564 tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003565
3566 /* Verify and set buffer length */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003567
3568 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3569 if(type == AR5K_PKT_TYPE_BEACON)
Bruno Randolf281c56d2008-02-05 18:44:55 +09003570 pkt_len = roundup(pkt_len, 4);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003571
Bruno Randolf281c56d2008-02-05 18:44:55 +09003572 if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003573 return -EINVAL;
3574
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003575 tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003576
3577 /*
3578 * Verify and set header length
3579 * XXX: I only found that on 5210 code, does it work on 5211 ?
3580 */
3581 if (ah->ah_version == AR5K_AR5210) {
3582 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
3583 return -EINVAL;
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003584 tx_ctl->tx_control_0 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003585 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
3586 }
3587
3588 /*Diferences between 5210-5211*/
3589 if (ah->ah_version == AR5K_AR5210) {
3590 switch (type) {
3591 case AR5K_PKT_TYPE_BEACON:
3592 case AR5K_PKT_TYPE_PROBE_RESP:
3593 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
3594 case AR5K_PKT_TYPE_PIFS:
3595 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
3596 default:
3597 frame_type = type /*<< 2 ?*/;
3598 }
3599
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003600 tx_ctl->tx_control_0 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003601 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
3602 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3603 } else {
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003604 tx_ctl->tx_control_0 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003605 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
3606 AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003607 tx_ctl->tx_control_1 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003608 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
3609 }
3610#define _TX_FLAGS(_c, _flag) \
3611 if (flags & AR5K_TXDESC_##_flag) \
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003612 tx_ctl->tx_control_##_c |= \
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003613 AR5K_2W_TX_DESC_CTL##_c##_##_flag
3614
3615 _TX_FLAGS(0, CLRDMASK);
3616 _TX_FLAGS(0, VEOL);
3617 _TX_FLAGS(0, INTREQ);
3618 _TX_FLAGS(0, RTSENA);
3619 _TX_FLAGS(1, NOACK);
3620
3621#undef _TX_FLAGS
3622
3623 /*
3624 * WEP crap
3625 */
3626 if (key_index != AR5K_TXKEYIX_INVALID) {
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003627 tx_ctl->tx_control_0 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003628 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003629 tx_ctl->tx_control_1 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003630 AR5K_REG_SM(key_index,
3631 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3632 }
3633
3634 /*
3635 * RTS/CTS Duration [5210 ?]
3636 */
3637 if ((ah->ah_version == AR5K_AR5210) &&
3638 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003639 tx_ctl->tx_control_1 |= rtscts_duration &
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003640 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
3641
3642 return 0;
3643}
3644
3645/*
3646 * Initialize the 4-word tx descriptor on 5212
3647 */
3648static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
3649 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
3650 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
3651 unsigned int tx_tries0, unsigned int key_index,
3652 unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
3653 unsigned int rtscts_duration)
3654{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003655 struct ath5k_hw_4w_tx_ctl *tx_ctl;
Bruno Randolf281c56d2008-02-05 18:44:55 +09003656 unsigned int frame_len;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003657
3658 ATH5K_TRACE(ah->ah_sc);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003659 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003660
3661 /*
3662 * Validate input
3663 * - Zero retries don't make sense.
3664 * - A zero rate will put the HW into a mode where it continously sends
3665 * noise on the channel, so it is important to avoid this.
3666 */
3667 if (unlikely(tx_tries0 == 0)) {
3668 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3669 WARN_ON(1);
3670 return -EINVAL;
3671 }
3672 if (unlikely(tx_rate0 == 0)) {
3673 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3674 WARN_ON(1);
3675 return -EINVAL;
3676 }
3677
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003678 /* Clear descriptor */
3679 memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003680
3681 /* Setup control descriptor */
3682
3683 /* Verify and set frame length */
Bruno Randolf281c56d2008-02-05 18:44:55 +09003684
3685 /* remove padding we might have added before */
3686 frame_len = pkt_len - (hdr_len & 3) + FCS_LEN;
3687
3688 if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003689 return -EINVAL;
3690
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003691 tx_ctl->tx_control_0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003692
3693 /* Verify and set buffer length */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003694
3695 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3696 if(type == AR5K_PKT_TYPE_BEACON)
Bruno Randolf281c56d2008-02-05 18:44:55 +09003697 pkt_len = roundup(pkt_len, 4);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003698
Bruno Randolf281c56d2008-02-05 18:44:55 +09003699 if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003700 return -EINVAL;
3701
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003702 tx_ctl->tx_control_1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003703
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003704 tx_ctl->tx_control_0 |=
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003705 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
3706 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003707 tx_ctl->tx_control_1 |= AR5K_REG_SM(type,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003708 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003709 tx_ctl->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003710 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003711 tx_ctl->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003712
3713#define _TX_FLAGS(_c, _flag) \
3714 if (flags & AR5K_TXDESC_##_flag) \
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003715 tx_ctl->tx_control_##_c |= \
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003716 AR5K_4W_TX_DESC_CTL##_c##_##_flag
3717
3718 _TX_FLAGS(0, CLRDMASK);
3719 _TX_FLAGS(0, VEOL);
3720 _TX_FLAGS(0, INTREQ);
3721 _TX_FLAGS(0, RTSENA);
3722 _TX_FLAGS(0, CTSENA);
3723 _TX_FLAGS(1, NOACK);
3724
3725#undef _TX_FLAGS
3726
3727 /*
3728 * WEP crap
3729 */
3730 if (key_index != AR5K_TXKEYIX_INVALID) {
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003731 tx_ctl->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3732 tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003733 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3734 }
3735
3736 /*
3737 * RTS/CTS
3738 */
3739 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
3740 if ((flags & AR5K_TXDESC_RTSENA) &&
3741 (flags & AR5K_TXDESC_CTSENA))
3742 return -EINVAL;
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003743 tx_ctl->tx_control_2 |= rtscts_duration &
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003744 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003745 tx_ctl->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003746 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
3747 }
3748
3749 return 0;
3750}
3751
3752/*
3753 * Initialize a 4-word multirate tx descriptor on 5212
3754 */
Jiri Slabyb9887632008-02-15 21:58:52 +01003755static int
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003756ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3757 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
3758 unsigned int tx_rate3, u_int tx_tries3)
3759{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003760 struct ath5k_hw_4w_tx_ctl *tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003761
3762 /*
3763 * Rates can be 0 as long as the retry count is 0 too.
3764 * A zero rate and nonzero retry count will put the HW into a mode where
3765 * it continously sends noise on the channel, so it is important to
3766 * avoid this.
3767 */
3768 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
3769 (tx_rate2 == 0 && tx_tries2 != 0) ||
3770 (tx_rate3 == 0 && tx_tries3 != 0))) {
3771 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3772 WARN_ON(1);
3773 return -EINVAL;
3774 }
3775
3776 if (ah->ah_version == AR5K_AR5212) {
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003777 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003778
3779#define _XTX_TRIES(_n) \
3780 if (tx_tries##_n) { \
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003781 tx_ctl->tx_control_2 |= \
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003782 AR5K_REG_SM(tx_tries##_n, \
3783 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003784 tx_ctl->tx_control_3 |= \
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003785 AR5K_REG_SM(tx_rate##_n, \
3786 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
3787 }
3788
3789 _XTX_TRIES(1);
3790 _XTX_TRIES(2);
3791 _XTX_TRIES(3);
3792
3793#undef _XTX_TRIES
3794
Jiri Slabyb9887632008-02-15 21:58:52 +01003795 return 1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003796 }
3797
Jiri Slabyb9887632008-02-15 21:58:52 +01003798 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003799}
3800
3801/*
3802 * Proccess the tx status descriptor on 5210/5211
3803 */
3804static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
Bruno Randolfb47f4072008-03-05 18:35:45 +09003805 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003806{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003807 struct ath5k_hw_2w_tx_ctl *tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003808 struct ath5k_hw_tx_status *tx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003809
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003810 ATH5K_TRACE(ah->ah_sc);
3811
3812 tx_ctl = &desc->ud.ds_tx5210.tx_ctl;
3813 tx_status = &desc->ud.ds_tx5210.tx_stat;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003814
3815 /* No frame has been send or error */
3816 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3817 return -EINPROGRESS;
3818
3819 /*
3820 * Get descriptor status
3821 */
Bruno Randolfb47f4072008-03-05 18:35:45 +09003822 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003823 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003824 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003825 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003826 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003827 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003828 /*TODO: ts->ts_virtcol + test*/
3829 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003830 AR5K_DESC_TX_STATUS1_SEQ_NUM);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003831 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003832 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003833 ts->ts_antenna = 1;
3834 ts->ts_status = 0;
3835 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003836 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3837
3838 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3839 if (tx_status->tx_status_0 &
3840 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003841 ts->ts_status |= AR5K_TXERR_XRETRY;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003842
3843 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003844 ts->ts_status |= AR5K_TXERR_FIFO;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003845
3846 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003847 ts->ts_status |= AR5K_TXERR_FILT;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003848 }
3849
3850 return 0;
3851}
3852
3853/*
3854 * Proccess a tx descriptor on 5212
3855 */
3856static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
Bruno Randolfb47f4072008-03-05 18:35:45 +09003857 struct ath5k_desc *desc, struct ath5k_tx_status *ts)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003858{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003859 struct ath5k_hw_4w_tx_ctl *tx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003860 struct ath5k_hw_tx_status *tx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003861
3862 ATH5K_TRACE(ah->ah_sc);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003863
3864 tx_ctl = &desc->ud.ds_tx5212.tx_ctl;
3865 tx_status = &desc->ud.ds_tx5212.tx_stat;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003866
3867 /* No frame has been send or error */
3868 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3869 return -EINPROGRESS;
3870
3871 /*
3872 * Get descriptor status
3873 */
Bruno Randolfb47f4072008-03-05 18:35:45 +09003874 ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003875 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003876 ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003877 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003878 ts->ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003879 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003880 ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003881 AR5K_DESC_TX_STATUS1_SEQ_NUM);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003882 ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003883 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003884 ts->ts_antenna = (tx_status->tx_status_1 &
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003885 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
Bruno Randolfb47f4072008-03-05 18:35:45 +09003886 ts->ts_status = 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003887
3888 switch (AR5K_REG_MS(tx_status->tx_status_1,
3889 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
3890 case 0:
Bruno Randolfb47f4072008-03-05 18:35:45 +09003891 ts->ts_rate = tx_ctl->tx_control_3 &
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003892 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3893 break;
3894 case 1:
Bruno Randolfb47f4072008-03-05 18:35:45 +09003895 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003896 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003897 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003898 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
3899 break;
3900 case 2:
Bruno Randolfb47f4072008-03-05 18:35:45 +09003901 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003902 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003903 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003904 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
3905 break;
3906 case 3:
Bruno Randolfb47f4072008-03-05 18:35:45 +09003907 ts->ts_rate = AR5K_REG_MS(tx_ctl->tx_control_3,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003908 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003909 ts->ts_longretry += AR5K_REG_MS(tx_ctl->tx_control_2,
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003910 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
3911 break;
3912 }
3913
3914 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3915 if (tx_status->tx_status_0 &
3916 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003917 ts->ts_status |= AR5K_TXERR_XRETRY;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003918
3919 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003920 ts->ts_status |= AR5K_TXERR_FIFO;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003921
3922 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
Bruno Randolfb47f4072008-03-05 18:35:45 +09003923 ts->ts_status |= AR5K_TXERR_FILT;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003924 }
3925
3926 return 0;
3927}
3928
3929/*
3930 * RX Descriptor
3931 */
3932
3933/*
3934 * Initialize an rx descriptor
3935 */
3936int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3937 u32 size, unsigned int flags)
3938{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003939 struct ath5k_hw_rx_ctl *rx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003940
3941 ATH5K_TRACE(ah->ah_sc);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003942 rx_ctl = &desc->ud.ds_rx.rx_ctl;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003943
3944 /*
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003945 * Clear the descriptor
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003946 * If we don't clean the status descriptor,
3947 * while scanning we get too many results,
3948 * most of them virtual, after some secs
3949 * of scanning system hangs. M.F.
3950 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003951 memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003952
3953 /* Setup descriptor */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003954 rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
3955 if (unlikely(rx_ctl->rx_control_1 != size))
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003956 return -EINVAL;
3957
3958 if (flags & AR5K_RXDESC_INTREQ)
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003959 rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003960
3961 return 0;
3962}
3963
3964/*
3965 * Proccess the rx status descriptor on 5210/5211
3966 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003967static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah,
Bruno Randolfb47f4072008-03-05 18:35:45 +09003968 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003969{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003970 struct ath5k_hw_rx_status *rx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003971
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003972 rx_status = &desc->ud.ds_rx.u.rx_stat;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003973
3974 /* No frame received / not ready */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003975 if (unlikely((rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_DONE)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003976 == 0))
3977 return -EINPROGRESS;
3978
3979 /*
3980 * Frame receive status
3981 */
Bruno Randolfb47f4072008-03-05 18:35:45 +09003982 rs->rs_datalen = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003983 AR5K_5210_RX_DESC_STATUS0_DATA_LEN;
Bruno Randolfb47f4072008-03-05 18:35:45 +09003984 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003985 AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003986 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003987 AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003988 rs->rs_antenna = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003989 AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANTENNA;
Bruno Randolfb47f4072008-03-05 18:35:45 +09003990 rs->rs_more = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003991 AR5K_5210_RX_DESC_STATUS0_MORE;
Bruno Randolfb47f4072008-03-05 18:35:45 +09003992 /* TODO: this timestamp is 13 bit, later on we assume 15 bit */
3993 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09003994 AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
Bruno Randolfb47f4072008-03-05 18:35:45 +09003995 rs->rs_status = 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003996
3997 /*
3998 * Key table status
3999 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004000 if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004001 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004002 AR5K_5210_RX_DESC_STATUS1_KEY_INDEX);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004003 else
Bruno Randolfb47f4072008-03-05 18:35:45 +09004004 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004005
4006 /*
4007 * Receive/descriptor errors
4008 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004009 if ((rx_status->rx_status_1 &
4010 AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4011 if (rx_status->rx_status_1 &
4012 AR5K_5210_RX_DESC_STATUS1_CRC_ERROR)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004013 rs->rs_status |= AR5K_RXERR_CRC;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004014
4015 if (rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004016 AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004017 rs->rs_status |= AR5K_RXERR_FIFO;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004018
4019 if (rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004020 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) {
Bruno Randolfb47f4072008-03-05 18:35:45 +09004021 rs->rs_status |= AR5K_RXERR_PHY;
4022 rs->rs_phyerr = AR5K_REG_MS(rx_status->rx_status_1,
4023 AR5K_5210_RX_DESC_STATUS1_PHY_ERROR);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004024 }
4025
4026 if (rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004027 AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004028 rs->rs_status |= AR5K_RXERR_DECRYPT;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004029 }
4030
4031 return 0;
4032}
4033
4034/*
4035 * Proccess the rx status descriptor on 5212
4036 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004037static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah,
Bruno Randolfb47f4072008-03-05 18:35:45 +09004038 struct ath5k_desc *desc, struct ath5k_rx_status *rs)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004039{
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004040 struct ath5k_hw_rx_status *rx_status;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004041 struct ath5k_hw_rx_error *rx_err;
4042
4043 ATH5K_TRACE(ah->ah_sc);
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004044 rx_status = &desc->ud.ds_rx.u.rx_stat;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004045
4046 /* Overlay on error */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004047 rx_err = &desc->ud.ds_rx.u.rx_err;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004048
4049 /* No frame received / not ready */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004050 if (unlikely((rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_DONE)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004051 == 0))
4052 return -EINPROGRESS;
4053
4054 /*
4055 * Frame receive status
4056 */
Bruno Randolfb47f4072008-03-05 18:35:45 +09004057 rs->rs_datalen = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004058 AR5K_5212_RX_DESC_STATUS0_DATA_LEN;
Bruno Randolfb47f4072008-03-05 18:35:45 +09004059 rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004060 AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL);
Bruno Randolfb47f4072008-03-05 18:35:45 +09004061 rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004062 AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE);
Bruno Randolfb47f4072008-03-05 18:35:45 +09004063 rs->rs_antenna = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004064 AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA;
Bruno Randolfb47f4072008-03-05 18:35:45 +09004065 rs->rs_more = rx_status->rx_status_0 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004066 AR5K_5212_RX_DESC_STATUS0_MORE;
Bruno Randolfb47f4072008-03-05 18:35:45 +09004067 rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004068 AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
Bruno Randolfb47f4072008-03-05 18:35:45 +09004069 rs->rs_status = 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004070
4071 /*
4072 * Key table status
4073 */
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004074 if (rx_status->rx_status_1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004075 rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004076 AR5K_5212_RX_DESC_STATUS1_KEY_INDEX);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004077 else
Bruno Randolfb47f4072008-03-05 18:35:45 +09004078 rs->rs_keyix = AR5K_RXKEYIX_INVALID;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004079
4080 /*
4081 * Receive/descriptor errors
4082 */
4083 if ((rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004084 AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4085 if (rx_status->rx_status_1 &
4086 AR5K_5212_RX_DESC_STATUS1_CRC_ERROR)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004087 rs->rs_status |= AR5K_RXERR_CRC;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004088
4089 if (rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004090 AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) {
Bruno Randolfb47f4072008-03-05 18:35:45 +09004091 rs->rs_status |= AR5K_RXERR_PHY;
4092 rs->rs_phyerr = AR5K_REG_MS(rx_err->rx_error_1,
4093 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004094 }
4095
4096 if (rx_status->rx_status_1 &
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004097 AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004098 rs->rs_status |= AR5K_RXERR_DECRYPT;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004099
Bruno Randolf19fd6e52008-03-05 18:35:23 +09004100 if (rx_status->rx_status_1 &
4101 AR5K_5212_RX_DESC_STATUS1_MIC_ERROR)
Bruno Randolfb47f4072008-03-05 18:35:45 +09004102 rs->rs_status |= AR5K_RXERR_MIC;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004103 }
4104
4105 return 0;
4106}
4107
4108
4109/****************\
4110 GPIO Functions
4111\****************/
4112
4113/*
4114 * Set led state
4115 */
4116void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
4117{
4118 u32 led;
4119 /*5210 has different led mode handling*/
4120 u32 led_5210;
4121
4122 ATH5K_TRACE(ah->ah_sc);
4123
4124 /*Reset led status*/
4125 if (ah->ah_version != AR5K_AR5210)
4126 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
4127 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
4128 else
4129 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
4130
4131 /*
4132 * Some blinking values, define at your wish
4133 */
4134 switch (state) {
4135 case AR5K_LED_SCAN:
4136 case AR5K_LED_AUTH:
4137 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
4138 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
4139 break;
4140
4141 case AR5K_LED_INIT:
4142 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
4143 led_5210 = AR5K_PCICFG_LED_PEND;
4144 break;
4145
4146 case AR5K_LED_ASSOC:
4147 case AR5K_LED_RUN:
4148 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
4149 led_5210 = AR5K_PCICFG_LED_ASSOC;
4150 break;
4151
4152 default:
4153 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
4154 led_5210 = AR5K_PCICFG_LED_PEND;
4155 break;
4156 }
4157
4158 /*Write new status to the register*/
4159 if (ah->ah_version != AR5K_AR5210)
4160 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
4161 else
4162 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
4163}
4164
4165/*
4166 * Set GPIO outputs
4167 */
4168int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
4169{
4170 ATH5K_TRACE(ah->ah_sc);
4171 if (gpio > AR5K_NUM_GPIO)
4172 return -EINVAL;
4173
4174 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4175 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
4176
4177 return 0;
4178}
4179
4180/*
4181 * Set GPIO inputs
4182 */
4183int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
4184{
4185 ATH5K_TRACE(ah->ah_sc);
4186 if (gpio > AR5K_NUM_GPIO)
4187 return -EINVAL;
4188
4189 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4190 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
4191
4192 return 0;
4193}
4194
4195/*
4196 * Get GPIO state
4197 */
4198u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
4199{
4200 ATH5K_TRACE(ah->ah_sc);
4201 if (gpio > AR5K_NUM_GPIO)
4202 return 0xffffffff;
4203
4204 /* GPIO input magic */
4205 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
4206 0x1;
4207}
4208
4209/*
4210 * Set GPIO state
4211 */
4212int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
4213{
4214 u32 data;
4215 ATH5K_TRACE(ah->ah_sc);
4216
4217 if (gpio > AR5K_NUM_GPIO)
4218 return -EINVAL;
4219
4220 /* GPIO output magic */
4221 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
4222
4223 data &= ~(1 << gpio);
4224 data |= (val & 1) << gpio;
4225
4226 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
4227
4228 return 0;
4229}
4230
4231/*
4232 * Initialize the GPIO interrupt (RFKill switch)
4233 */
4234void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
4235 u32 interrupt_level)
4236{
4237 u32 data;
4238
4239 ATH5K_TRACE(ah->ah_sc);
4240 if (gpio > AR5K_NUM_GPIO)
4241 return;
4242
4243 /*
4244 * Set the GPIO interrupt
4245 */
4246 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
4247 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
4248 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
4249 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
4250
4251 ath5k_hw_reg_write(ah, interrupt_level ? data :
4252 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
4253
4254 ah->ah_imr |= AR5K_IMR_GPIO;
4255
4256 /* Enable GPIO interrupts */
4257 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
4258}
4259
4260
Jiri Slabyfa1c1142007-08-12 17:33:16 +02004261
4262
4263/****************\
4264 Misc functions
4265\****************/
4266
4267int ath5k_hw_get_capability(struct ath5k_hw *ah,
4268 enum ath5k_capability_type cap_type,
4269 u32 capability, u32 *result)
4270{
4271 ATH5K_TRACE(ah->ah_sc);
4272
4273 switch (cap_type) {
4274 case AR5K_CAP_NUM_TXQUEUES:
4275 if (result) {
4276 if (ah->ah_version == AR5K_AR5210)
4277 *result = AR5K_NUM_TX_QUEUES_NOQCU;
4278 else
4279 *result = AR5K_NUM_TX_QUEUES;
4280 goto yes;
4281 }
4282 case AR5K_CAP_VEOL:
4283 goto yes;
4284 case AR5K_CAP_COMPRESSION:
4285 if (ah->ah_version == AR5K_AR5212)
4286 goto yes;
4287 else
4288 goto no;
4289 case AR5K_CAP_BURST:
4290 goto yes;
4291 case AR5K_CAP_TPC:
4292 goto yes;
4293 case AR5K_CAP_BSSIDMASK:
4294 if (ah->ah_version == AR5K_AR5212)
4295 goto yes;
4296 else
4297 goto no;
4298 case AR5K_CAP_XR:
4299 if (ah->ah_version == AR5K_AR5212)
4300 goto yes;
4301 else
4302 goto no;
4303 default:
4304 goto no;
4305 }
4306
4307no:
4308 return -EINVAL;
4309yes:
4310 return 0;
4311}
4312
4313static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
4314 u16 assoc_id)
4315{
4316 ATH5K_TRACE(ah->ah_sc);
4317
4318 if (ah->ah_version == AR5K_AR5210) {
4319 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
4320 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4321 return 0;
4322 }
4323
4324 return -EIO;
4325}
4326
4327static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
4328{
4329 ATH5K_TRACE(ah->ah_sc);
4330
4331 if (ah->ah_version == AR5K_AR5210) {
4332 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
4333 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4334 return 0;
4335 }
4336
4337 return -EIO;
4338}