Matt Wagantall | e9b715a | 2012-01-04 18:16:14 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 and |
| 6 | * only version 2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | */ |
| 13 | |
| 14 | #define pr_fmt(fmt) "%s: " fmt, __func__ |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/io.h> |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/err.h> |
| 22 | #include <linux/errno.h> |
| 23 | #include <linux/cpufreq.h> |
| 24 | #include <linux/cpu.h> |
| 25 | #include <linux/regulator/consumer.h> |
| 26 | |
| 27 | #include <asm/mach-types.h> |
| 28 | #include <asm/cpu.h> |
| 29 | |
| 30 | #include <mach/board.h> |
| 31 | #include <mach/msm_iomap.h> |
| 32 | #include <mach/socinfo.h> |
| 33 | #include <mach/msm-krait-l2-accessors.h> |
| 34 | #include <mach/rpm-regulator.h> |
| 35 | #include <mach/msm_bus.h> |
| 36 | |
| 37 | #include "acpuclock.h" |
| 38 | #include "acpuclock-krait.h" |
| 39 | |
| 40 | /* MUX source selects. */ |
| 41 | #define PRI_SRC_SEL_SEC_SRC 0 |
| 42 | #define PRI_SRC_SEL_HFPLL 1 |
| 43 | #define PRI_SRC_SEL_HFPLL_DIV2 2 |
| 44 | #define SEC_SRC_SEL_QSB 0 |
| 45 | #define SEC_SRC_SEL_L2PLL 1 |
| 46 | #define SEC_SRC_SEL_AUX 2 |
| 47 | |
| 48 | /* PTE EFUSE register offset. */ |
| 49 | #define PTE_EFUSE 0xC0 |
| 50 | |
| 51 | static DEFINE_MUTEX(driver_lock); |
| 52 | static DEFINE_SPINLOCK(l2_lock); |
| 53 | |
| 54 | static struct drv_data { |
| 55 | const struct acpu_level *acpu_freq_tbl; |
| 56 | const struct l2_level *l2_freq_tbl; |
| 57 | struct scalable *scalable; |
| 58 | u32 bus_perf_client; |
| 59 | struct device *dev; |
| 60 | } drv; |
| 61 | |
| 62 | static unsigned long acpuclk_krait_get_rate(int cpu) |
| 63 | { |
| 64 | return drv.scalable[cpu].cur_speed->khz; |
| 65 | } |
| 66 | |
| 67 | /* Select a source on the primary MUX. */ |
| 68 | static void set_pri_clk_src(struct scalable *sc, u32 pri_src_sel) |
| 69 | { |
| 70 | u32 regval; |
| 71 | |
| 72 | regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| 73 | regval &= ~0x3; |
| 74 | regval |= (pri_src_sel & 0x3); |
| 75 | set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| 76 | /* Wait for switch to complete. */ |
| 77 | mb(); |
| 78 | udelay(1); |
| 79 | } |
| 80 | |
| 81 | /* Select a source on the secondary MUX. */ |
| 82 | static void set_sec_clk_src(struct scalable *sc, u32 sec_src_sel) |
| 83 | { |
| 84 | u32 regval; |
| 85 | |
| 86 | regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| 87 | regval &= ~(0x3 << 2); |
| 88 | regval |= ((sec_src_sel & 0x3) << 2); |
| 89 | set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| 90 | /* Wait for switch to complete. */ |
| 91 | mb(); |
| 92 | udelay(1); |
| 93 | } |
| 94 | |
| 95 | /* Enable an already-configured HFPLL. */ |
| 96 | static void hfpll_enable(struct scalable *sc, bool skip_regulators) |
| 97 | { |
| 98 | int rc; |
| 99 | |
| 100 | if (!skip_regulators) { |
| 101 | /* Enable regulators required by the HFPLL. */ |
| 102 | if (sc->vreg[VREG_HFPLL_A].rpm_vreg_id) { |
| 103 | rc = rpm_vreg_set_voltage( |
| 104 | sc->vreg[VREG_HFPLL_A].rpm_vreg_id, |
| 105 | sc->vreg[VREG_HFPLL_A].rpm_vreg_voter, |
| 106 | sc->vreg[VREG_HFPLL_A].cur_vdd, |
| 107 | sc->vreg[VREG_HFPLL_A].max_vdd, 0); |
| 108 | if (rc) |
| 109 | dev_err(drv.dev, |
| 110 | "%s regulator enable failed (%d)\n", |
| 111 | sc->vreg[VREG_HFPLL_A].name, rc); |
| 112 | } |
| 113 | if (sc->vreg[VREG_HFPLL_B].rpm_vreg_id) { |
| 114 | rc = rpm_vreg_set_voltage( |
| 115 | sc->vreg[VREG_HFPLL_B].rpm_vreg_id, |
| 116 | sc->vreg[VREG_HFPLL_B].rpm_vreg_voter, |
| 117 | sc->vreg[VREG_HFPLL_B].cur_vdd, |
| 118 | sc->vreg[VREG_HFPLL_B].max_vdd, 0); |
| 119 | if (rc) |
| 120 | dev_err(drv.dev, |
| 121 | "%s regulator enable failed (%d)\n", |
| 122 | sc->vreg[VREG_HFPLL_B].name, rc); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | /* Disable PLL bypass mode. */ |
| 127 | writel_relaxed(0x2, sc->hfpll_base + sc->hfpll_data->mode_offset); |
| 128 | |
| 129 | /* |
| 130 | * H/W requires a 5us delay between disabling the bypass and |
| 131 | * de-asserting the reset. Delay 10us just to be safe. |
| 132 | */ |
| 133 | mb(); |
| 134 | udelay(10); |
| 135 | |
| 136 | /* De-assert active-low PLL reset. */ |
| 137 | writel_relaxed(0x6, sc->hfpll_base + sc->hfpll_data->mode_offset); |
| 138 | |
| 139 | /* Wait for PLL to lock. */ |
| 140 | mb(); |
| 141 | udelay(60); |
| 142 | |
| 143 | /* Enable PLL output. */ |
| 144 | writel_relaxed(0x7, sc->hfpll_base + sc->hfpll_data->mode_offset); |
| 145 | } |
| 146 | |
| 147 | /* Disable a HFPLL for power-savings or while it's being reprogrammed. */ |
| 148 | static void hfpll_disable(struct scalable *sc, bool skip_regulators) |
| 149 | { |
| 150 | int rc; |
| 151 | |
| 152 | /* |
| 153 | * Disable the PLL output, disable test mode, enable the bypass mode, |
| 154 | * and assert the reset. |
| 155 | */ |
| 156 | writel_relaxed(0, sc->hfpll_base + sc->hfpll_data->mode_offset); |
| 157 | |
| 158 | if (!skip_regulators) { |
| 159 | /* Remove voltage votes required by the HFPLL. */ |
| 160 | if (sc->vreg[VREG_HFPLL_B].rpm_vreg_id) { |
| 161 | rc = rpm_vreg_set_voltage( |
| 162 | sc->vreg[VREG_HFPLL_B].rpm_vreg_id, |
| 163 | sc->vreg[VREG_HFPLL_B].rpm_vreg_voter, |
| 164 | 0, 0, 0); |
| 165 | if (rc) |
| 166 | dev_err(drv.dev, |
| 167 | "%s regulator enable failed (%d)\n", |
| 168 | sc->vreg[VREG_HFPLL_B].name, rc); |
| 169 | } |
| 170 | if (sc->vreg[VREG_HFPLL_A].rpm_vreg_id) { |
| 171 | rc = rpm_vreg_set_voltage( |
| 172 | sc->vreg[VREG_HFPLL_A].rpm_vreg_id, |
| 173 | sc->vreg[VREG_HFPLL_A].rpm_vreg_voter, |
| 174 | 0, 0, 0); |
| 175 | if (rc) |
| 176 | dev_err(drv.dev, |
| 177 | "%s regulator enable failed (%d)\n", |
| 178 | sc->vreg[VREG_HFPLL_A].name, rc); |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /* Program the HFPLL rate. Assumes HFPLL is already disabled. */ |
| 184 | static void hfpll_set_rate(struct scalable *sc, const struct core_speed *tgt_s) |
| 185 | { |
| 186 | writel_relaxed(tgt_s->pll_l_val, |
| 187 | sc->hfpll_base + sc->hfpll_data->l_offset); |
| 188 | } |
| 189 | |
| 190 | /* Return the L2 speed that should be applied. */ |
| 191 | static const struct l2_level *compute_l2_level(struct scalable *sc, |
| 192 | const struct l2_level *vote_l) |
| 193 | { |
| 194 | const struct l2_level *new_l; |
| 195 | int cpu; |
| 196 | |
| 197 | /* Find max L2 speed vote. */ |
| 198 | sc->l2_vote = vote_l; |
| 199 | new_l = drv.l2_freq_tbl; |
| 200 | for_each_present_cpu(cpu) |
| 201 | new_l = max(new_l, drv.scalable[cpu].l2_vote); |
| 202 | |
| 203 | return new_l; |
| 204 | } |
| 205 | |
| 206 | /* Update the bus bandwidth request. */ |
| 207 | static void set_bus_bw(unsigned int bw) |
| 208 | { |
| 209 | int ret; |
| 210 | |
| 211 | /* Update bandwidth if request has changed. This may sleep. */ |
| 212 | ret = msm_bus_scale_client_update_request(drv.bus_perf_client, bw); |
| 213 | if (ret) |
| 214 | dev_err(drv.dev, "bandwidth request failed (%d)\n", ret); |
| 215 | } |
| 216 | |
| 217 | /* Set the CPU or L2 clock speed. */ |
| 218 | static void set_speed(struct scalable *sc, const struct core_speed *tgt_s) |
| 219 | { |
| 220 | const struct core_speed *strt_s = sc->cur_speed; |
| 221 | |
| 222 | if (strt_s->src == HFPLL && tgt_s->src == HFPLL) { |
| 223 | /* |
| 224 | * Move to an always-on source running at a frequency |
| 225 | * that does not require an elevated CPU voltage. |
| 226 | */ |
| 227 | set_sec_clk_src(sc, SEC_SRC_SEL_AUX); |
| 228 | set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| 229 | |
| 230 | /* Re-program HFPLL. */ |
| 231 | hfpll_disable(sc, 1); |
| 232 | hfpll_set_rate(sc, tgt_s); |
| 233 | hfpll_enable(sc, 1); |
| 234 | |
| 235 | /* Move to HFPLL. */ |
| 236 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 237 | } else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) { |
| 238 | set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| 239 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 240 | hfpll_disable(sc, 0); |
| 241 | } else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) { |
| 242 | hfpll_set_rate(sc, tgt_s); |
| 243 | hfpll_enable(sc, 0); |
| 244 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 245 | } else { |
| 246 | set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| 247 | } |
| 248 | |
| 249 | sc->cur_speed = tgt_s; |
| 250 | } |
| 251 | |
| 252 | /* Apply any per-cpu voltage increases. */ |
| 253 | static int increase_vdd(int cpu, int vdd_core, int vdd_mem, int vdd_dig, |
| 254 | enum setrate_reason reason) |
| 255 | { |
| 256 | struct scalable *sc = &drv.scalable[cpu]; |
| 257 | int rc = 0; |
| 258 | |
| 259 | /* |
| 260 | * Increase vdd_mem active-set before vdd_dig. |
| 261 | * vdd_mem should be >= vdd_dig. |
| 262 | */ |
| 263 | if (vdd_mem > sc->vreg[VREG_MEM].cur_vdd) { |
| 264 | rc = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| 265 | sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| 266 | sc->vreg[VREG_MEM].max_vdd, 0); |
| 267 | if (rc) { |
| 268 | dev_err(drv.dev, |
| 269 | "vdd_mem (cpu%d) increase failed (%d)\n", |
| 270 | cpu, rc); |
| 271 | return rc; |
| 272 | } |
| 273 | sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| 274 | } |
| 275 | |
| 276 | /* Increase vdd_dig active-set vote. */ |
| 277 | if (vdd_dig > sc->vreg[VREG_DIG].cur_vdd) { |
| 278 | rc = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| 279 | sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| 280 | sc->vreg[VREG_DIG].max_vdd, 0); |
| 281 | if (rc) { |
| 282 | dev_err(drv.dev, |
| 283 | "vdd_dig (cpu%d) increase failed (%d)\n", |
| 284 | cpu, rc); |
| 285 | return rc; |
| 286 | } |
| 287 | sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Update per-CPU core voltage. Don't do this for the hotplug path for |
| 292 | * which it should already be correct. Attempting to set it is bad |
| 293 | * because we don't know what CPU we are running on at this point, but |
| 294 | * the CPU regulator API requires we call it from the affected CPU. |
| 295 | */ |
| 296 | if (vdd_core > sc->vreg[VREG_CORE].cur_vdd |
| 297 | && reason != SETRATE_HOTPLUG) { |
| 298 | rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| 299 | sc->vreg[VREG_CORE].max_vdd); |
| 300 | if (rc) { |
| 301 | dev_err(drv.dev, |
| 302 | "vdd_core (cpu%d) increase failed (%d)\n", |
| 303 | cpu, rc); |
| 304 | return rc; |
| 305 | } |
| 306 | sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| 307 | } |
| 308 | |
| 309 | return rc; |
| 310 | } |
| 311 | |
| 312 | /* Apply any per-cpu voltage decreases. */ |
| 313 | static void decrease_vdd(int cpu, int vdd_core, int vdd_mem, int vdd_dig, |
| 314 | enum setrate_reason reason) |
| 315 | { |
| 316 | struct scalable *sc = &drv.scalable[cpu]; |
| 317 | int ret; |
| 318 | |
| 319 | /* |
| 320 | * Update per-CPU core voltage. This must be called on the CPU |
| 321 | * that's being affected. Don't do this in the hotplug remove path, |
| 322 | * where the rail is off and we're executing on the other CPU. |
| 323 | */ |
| 324 | if (vdd_core < sc->vreg[VREG_CORE].cur_vdd |
| 325 | && reason != SETRATE_HOTPLUG) { |
| 326 | ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| 327 | sc->vreg[VREG_CORE].max_vdd); |
| 328 | if (ret) { |
| 329 | dev_err(drv.dev, |
| 330 | "vdd_core (cpu%d) decrease failed (%d)\n", |
| 331 | cpu, ret); |
| 332 | return; |
| 333 | } |
| 334 | sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| 335 | } |
| 336 | |
| 337 | /* Decrease vdd_dig active-set vote. */ |
| 338 | if (vdd_dig < sc->vreg[VREG_DIG].cur_vdd) { |
| 339 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| 340 | sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| 341 | sc->vreg[VREG_DIG].max_vdd, 0); |
| 342 | if (ret) { |
| 343 | dev_err(drv.dev, |
| 344 | "vdd_dig (cpu%d) decrease failed (%d)\n", |
| 345 | cpu, ret); |
| 346 | return; |
| 347 | } |
| 348 | sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Decrease vdd_mem active-set after vdd_dig. |
| 353 | * vdd_mem should be >= vdd_dig. |
| 354 | */ |
| 355 | if (vdd_mem < sc->vreg[VREG_MEM].cur_vdd) { |
| 356 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| 357 | sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| 358 | sc->vreg[VREG_MEM].max_vdd, 0); |
| 359 | if (ret) { |
| 360 | dev_err(drv.dev, |
| 361 | "vdd_mem (cpu%d) decrease failed (%d)\n", |
| 362 | cpu, ret); |
| 363 | return; |
| 364 | } |
| 365 | sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | static int calculate_vdd_mem(const struct acpu_level *tgt) |
| 370 | { |
| 371 | return tgt->l2_level->vdd_mem; |
| 372 | } |
| 373 | |
| 374 | static int calculate_vdd_dig(const struct acpu_level *tgt) |
| 375 | { |
| 376 | int pll_vdd_dig; |
| 377 | const int *hfpll_vdd = drv.scalable[L2].hfpll_data->vdd; |
| 378 | const u32 low_vdd_l_max = drv.scalable[L2].hfpll_data->low_vdd_l_max; |
| 379 | |
| 380 | if (tgt->l2_level->speed.src != HFPLL) |
| 381 | pll_vdd_dig = hfpll_vdd[HFPLL_VDD_NONE]; |
| 382 | else if (tgt->l2_level->speed.pll_l_val > low_vdd_l_max) |
| 383 | pll_vdd_dig = hfpll_vdd[HFPLL_VDD_NOM]; |
| 384 | else |
| 385 | pll_vdd_dig = hfpll_vdd[HFPLL_VDD_LOW]; |
| 386 | |
| 387 | return max(tgt->l2_level->vdd_dig, pll_vdd_dig); |
| 388 | } |
| 389 | |
| 390 | static int calculate_vdd_core(const struct acpu_level *tgt) |
| 391 | { |
| 392 | return tgt->vdd_core; |
| 393 | } |
| 394 | |
| 395 | /* Set the CPU's clock rate and adjust the L2 rate, voltage and BW requests. */ |
| 396 | static int acpuclk_krait_set_rate(int cpu, unsigned long rate, |
| 397 | enum setrate_reason reason) |
| 398 | { |
| 399 | const struct core_speed *strt_acpu_s, *tgt_acpu_s; |
| 400 | const struct l2_level *tgt_l2_l; |
| 401 | const struct acpu_level *tgt; |
| 402 | int vdd_mem, vdd_dig, vdd_core; |
| 403 | unsigned long flags; |
| 404 | int rc = 0; |
| 405 | |
| 406 | if (cpu > num_possible_cpus()) { |
| 407 | rc = -EINVAL; |
| 408 | goto out; |
| 409 | } |
| 410 | |
| 411 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| 412 | mutex_lock(&driver_lock); |
| 413 | |
| 414 | strt_acpu_s = drv.scalable[cpu].cur_speed; |
| 415 | |
| 416 | /* Return early if rate didn't change. */ |
| 417 | if (rate == strt_acpu_s->khz) |
| 418 | goto out; |
| 419 | |
| 420 | /* Find target frequency. */ |
| 421 | for (tgt = drv.acpu_freq_tbl; tgt->speed.khz != 0; tgt++) { |
| 422 | if (tgt->speed.khz == rate) { |
| 423 | tgt_acpu_s = &tgt->speed; |
| 424 | break; |
| 425 | } |
| 426 | } |
| 427 | if (tgt->speed.khz == 0) { |
| 428 | rc = -EINVAL; |
| 429 | goto out; |
| 430 | } |
| 431 | |
| 432 | /* Calculate voltage requirements for the current CPU. */ |
| 433 | vdd_mem = calculate_vdd_mem(tgt); |
| 434 | vdd_dig = calculate_vdd_dig(tgt); |
| 435 | vdd_core = calculate_vdd_core(tgt); |
| 436 | |
| 437 | /* Increase VDD levels if needed. */ |
| 438 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) { |
| 439 | rc = increase_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| 440 | if (rc) |
| 441 | goto out; |
| 442 | } |
| 443 | |
| 444 | pr_debug("Switching from ACPU%d rate %lu KHz -> %lu KHz\n", |
| 445 | cpu, strt_acpu_s->khz, tgt_acpu_s->khz); |
| 446 | |
| 447 | /* Set the new CPU speed. */ |
| 448 | set_speed(&drv.scalable[cpu], tgt_acpu_s); |
| 449 | |
| 450 | /* |
| 451 | * Update the L2 vote and apply the rate change. A spinlock is |
| 452 | * necessary to ensure L2 rate is calculated and set atomically |
| 453 | * with the CPU frequency, even if acpuclk_krait_set_rate() is |
| 454 | * called from an atomic context and the driver_lock mutex is not |
| 455 | * acquired. |
| 456 | */ |
| 457 | spin_lock_irqsave(&l2_lock, flags); |
| 458 | tgt_l2_l = compute_l2_level(&drv.scalable[cpu], tgt->l2_level); |
| 459 | set_speed(&drv.scalable[L2], &tgt_l2_l->speed); |
| 460 | spin_unlock_irqrestore(&l2_lock, flags); |
| 461 | |
| 462 | /* Nothing else to do for power collapse or SWFI. */ |
| 463 | if (reason == SETRATE_PC || reason == SETRATE_SWFI) |
| 464 | goto out; |
| 465 | |
| 466 | /* Update bus bandwith request. */ |
| 467 | set_bus_bw(tgt_l2_l->bw_level); |
| 468 | |
| 469 | /* Drop VDD levels if we can. */ |
| 470 | decrease_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| 471 | |
| 472 | pr_debug("ACPU%d speed change complete\n", cpu); |
| 473 | |
| 474 | out: |
| 475 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| 476 | mutex_unlock(&driver_lock); |
| 477 | return rc; |
| 478 | } |
| 479 | |
| 480 | /* Initialize a HFPLL at a given rate and enable it. */ |
| 481 | static void __init hfpll_init(struct scalable *sc, |
| 482 | const struct core_speed *tgt_s) |
| 483 | { |
| 484 | pr_debug("Initializing HFPLL%d\n", sc - drv.scalable); |
| 485 | |
| 486 | /* Disable the PLL for re-programming. */ |
| 487 | hfpll_disable(sc, 1); |
| 488 | |
| 489 | /* Configure PLL parameters for integer mode. */ |
| 490 | writel_relaxed(sc->hfpll_data->config_val, |
| 491 | sc->hfpll_base + sc->hfpll_data->config_offset); |
| 492 | writel_relaxed(0, sc->hfpll_base + sc->hfpll_data->m_offset); |
| 493 | writel_relaxed(1, sc->hfpll_base + sc->hfpll_data->n_offset); |
| 494 | |
| 495 | /* Set an initial rate and enable the PLL. */ |
| 496 | hfpll_set_rate(sc, tgt_s); |
| 497 | hfpll_enable(sc, 0); |
| 498 | } |
| 499 | |
| 500 | /* Voltage regulator initialization. */ |
| 501 | static void __init regulator_init(const struct acpu_level *lvl) |
| 502 | { |
| 503 | int cpu, ret; |
| 504 | struct scalable *sc; |
| 505 | int vdd_mem, vdd_dig, vdd_core; |
| 506 | |
| 507 | vdd_mem = calculate_vdd_mem(lvl); |
| 508 | vdd_dig = calculate_vdd_dig(lvl); |
| 509 | |
| 510 | for_each_possible_cpu(cpu) { |
| 511 | sc = &drv.scalable[cpu]; |
| 512 | |
| 513 | /* Set initial vdd_mem vote. */ |
| 514 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| 515 | sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| 516 | sc->vreg[VREG_MEM].max_vdd, 0); |
| 517 | if (ret) { |
| 518 | dev_err(drv.dev, "%s initialization failed (%d)\n", |
| 519 | sc->vreg[VREG_MEM].name, ret); |
| 520 | BUG(); |
| 521 | } |
| 522 | sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| 523 | |
| 524 | /* Set initial vdd_dig vote. */ |
| 525 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| 526 | sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| 527 | sc->vreg[VREG_DIG].max_vdd, 0); |
| 528 | if (ret) { |
| 529 | dev_err(drv.dev, "%s initialization failed (%d)\n", |
| 530 | sc->vreg[VREG_DIG].name, ret); |
| 531 | BUG(); |
| 532 | } |
| 533 | sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| 534 | |
| 535 | /* Setup Krait CPU regulators and initial core voltage. */ |
| 536 | sc->vreg[VREG_CORE].reg = regulator_get(NULL, |
| 537 | sc->vreg[VREG_CORE].name); |
| 538 | if (IS_ERR(sc->vreg[VREG_CORE].reg)) { |
| 539 | dev_err(drv.dev, "regulator_get(%s) failed (%ld)\n", |
| 540 | sc->vreg[VREG_CORE].name, |
| 541 | PTR_ERR(sc->vreg[VREG_CORE].reg)); |
| 542 | BUG(); |
| 543 | } |
| 544 | vdd_core = calculate_vdd_core(lvl); |
| 545 | ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| 546 | sc->vreg[VREG_CORE].max_vdd); |
| 547 | if (ret) { |
| 548 | dev_err(drv.dev, "regulator_set_voltage(%s) (%d)\n", |
| 549 | sc->vreg[VREG_CORE].name, ret); |
| 550 | BUG(); |
| 551 | } |
| 552 | sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| 553 | ret = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| 554 | sc->vreg[VREG_CORE].peak_ua); |
| 555 | if (ret < 0) { |
| 556 | dev_err(drv.dev, "regulator_set_optimum_mode(%s) failed" |
| 557 | " (%d)\n", sc->vreg[VREG_CORE].name, ret); |
| 558 | BUG(); |
| 559 | } |
| 560 | ret = regulator_enable(sc->vreg[VREG_CORE].reg); |
| 561 | if (ret) { |
| 562 | dev_err(drv.dev, "regulator_enable(%s) failed (%d)\n", |
| 563 | sc->vreg[VREG_CORE].name, ret); |
| 564 | BUG(); |
| 565 | } |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | /* Set initial rate for a given core. */ |
| 570 | static void __init init_clock_sources(struct scalable *sc, |
| 571 | const struct core_speed *tgt_s) |
| 572 | { |
| 573 | u32 regval; |
| 574 | |
| 575 | /* Program AUX source input to the secondary MUX. */ |
| 576 | if (sc->aux_clk_sel_addr) |
| 577 | writel_relaxed(sc->aux_clk_sel, sc->aux_clk_sel_addr); |
| 578 | |
| 579 | /* Switch away from the HFPLL while it's re-initialized. */ |
| 580 | set_sec_clk_src(sc, SEC_SRC_SEL_AUX); |
| 581 | set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| 582 | hfpll_init(sc, tgt_s); |
| 583 | |
| 584 | /* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */ |
| 585 | regval = get_l2_indirect_reg(sc->l2cpmr_iaddr); |
| 586 | regval &= ~(0x3 << 6); |
| 587 | set_l2_indirect_reg(sc->l2cpmr_iaddr, regval); |
| 588 | |
| 589 | /* Switch to the target clock source. */ |
| 590 | set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| 591 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 592 | sc->cur_speed = tgt_s; |
| 593 | } |
| 594 | |
| 595 | static void __init per_cpu_init(int cpu, const struct acpu_level *max_level) |
| 596 | { |
| 597 | drv.scalable[cpu].hfpll_base = |
| 598 | ioremap(drv.scalable[cpu].hfpll_phys_base, SZ_32); |
| 599 | BUG_ON(!drv.scalable[cpu].hfpll_base); |
| 600 | |
| 601 | init_clock_sources(&drv.scalable[cpu], &max_level->speed); |
| 602 | drv.scalable[cpu].l2_vote = max_level->l2_level; |
| 603 | } |
| 604 | |
| 605 | /* Register with bus driver. */ |
| 606 | static void __init bus_init(struct msm_bus_scale_pdata *bus_scale_data, |
| 607 | unsigned int init_bw) |
| 608 | { |
| 609 | int ret; |
| 610 | |
| 611 | drv.bus_perf_client = msm_bus_scale_register_client(bus_scale_data); |
| 612 | if (!drv.bus_perf_client) { |
| 613 | dev_err(drv.dev, "unable to register bus client\n"); |
| 614 | BUG(); |
| 615 | } |
| 616 | |
| 617 | ret = msm_bus_scale_client_update_request(drv.bus_perf_client, init_bw); |
| 618 | if (ret) |
| 619 | dev_err(drv.dev, "initial bandwidth req failed (%d)\n", ret); |
| 620 | } |
| 621 | |
| 622 | #ifdef CONFIG_CPU_FREQ_MSM |
| 623 | static struct cpufreq_frequency_table freq_table[NR_CPUS][35]; |
| 624 | |
| 625 | static void __init cpufreq_table_init(void) |
| 626 | { |
| 627 | int cpu; |
| 628 | |
| 629 | for_each_possible_cpu(cpu) { |
| 630 | int i, freq_cnt = 0; |
| 631 | /* Construct the freq_table tables from acpu_freq_tbl. */ |
| 632 | for (i = 0; drv.acpu_freq_tbl[i].speed.khz != 0 |
| 633 | && freq_cnt < ARRAY_SIZE(*freq_table); i++) { |
| 634 | if (drv.acpu_freq_tbl[i].use_for_scaling) { |
| 635 | freq_table[cpu][freq_cnt].index = freq_cnt; |
| 636 | freq_table[cpu][freq_cnt].frequency |
| 637 | = drv.acpu_freq_tbl[i].speed.khz; |
| 638 | freq_cnt++; |
| 639 | } |
| 640 | } |
| 641 | /* freq_table not big enough to store all usable freqs. */ |
| 642 | BUG_ON(drv.acpu_freq_tbl[i].speed.khz != 0); |
| 643 | |
| 644 | freq_table[cpu][freq_cnt].index = freq_cnt; |
| 645 | freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END; |
| 646 | |
| 647 | dev_info(drv.dev, "CPU%d: %d frequencies supported\n", |
| 648 | cpu, freq_cnt); |
| 649 | |
| 650 | /* Register table with CPUFreq. */ |
| 651 | cpufreq_frequency_table_get_attr(freq_table[cpu], cpu); |
| 652 | } |
| 653 | } |
| 654 | #else |
| 655 | static void __init cpufreq_table_init(void) {} |
| 656 | #endif |
| 657 | |
| 658 | #define HOT_UNPLUG_KHZ STBY_KHZ |
| 659 | static int __cpuinit acpuclk_cpu_callback(struct notifier_block *nfb, |
| 660 | unsigned long action, void *hcpu) |
| 661 | { |
| 662 | static int prev_khz[NR_CPUS]; |
| 663 | int rc, cpu = (int)hcpu; |
| 664 | struct scalable *sc = &drv.scalable[cpu]; |
| 665 | |
| 666 | switch (action & ~CPU_TASKS_FROZEN) { |
| 667 | case CPU_DEAD: |
| 668 | prev_khz[cpu] = acpuclk_krait_get_rate(cpu); |
| 669 | /* Fall through. */ |
| 670 | case CPU_UP_CANCELED: |
| 671 | acpuclk_krait_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG); |
| 672 | regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, 0); |
| 673 | break; |
| 674 | case CPU_UP_PREPARE: |
| 675 | if (WARN_ON(!prev_khz[cpu])) |
| 676 | return NOTIFY_BAD; |
| 677 | rc = regulator_set_optimum_mode(sc->vreg[VREG_CORE].reg, |
| 678 | sc->vreg[VREG_CORE].peak_ua); |
| 679 | if (rc < 0) |
| 680 | return NOTIFY_BAD; |
| 681 | acpuclk_krait_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG); |
| 682 | break; |
| 683 | default: |
| 684 | break; |
| 685 | } |
| 686 | |
| 687 | return NOTIFY_OK; |
| 688 | } |
| 689 | |
| 690 | static struct notifier_block __cpuinitdata acpuclk_cpu_notifier = { |
| 691 | .notifier_call = acpuclk_cpu_callback, |
| 692 | }; |
| 693 | |
| 694 | static const struct acpu_level __init *select_freq_plan( |
| 695 | const struct acpu_level *const *pvs_tbl, u32 qfprom_phys) |
| 696 | { |
| 697 | const struct acpu_level *l, *max_acpu_level = NULL; |
| 698 | void __iomem *qfprom_base; |
| 699 | u32 pte_efuse, pvs, tbl_idx; |
| 700 | char *pvs_names[] = { "Slow", "Nominal", "Fast", "Unknown" }; |
| 701 | |
| 702 | qfprom_base = ioremap(qfprom_phys, SZ_256); |
| 703 | /* Select frequency tables. */ |
| 704 | if (qfprom_base) { |
| 705 | pte_efuse = readl_relaxed(qfprom_base + PTE_EFUSE); |
| 706 | pvs = (pte_efuse >> 10) & 0x7; |
| 707 | iounmap(qfprom_base); |
| 708 | if (pvs == 0x7) |
| 709 | pvs = (pte_efuse >> 13) & 0x7; |
| 710 | |
| 711 | switch (pvs) { |
| 712 | case 0x0: |
| 713 | case 0x7: |
| 714 | tbl_idx = PVS_SLOW; |
| 715 | break; |
| 716 | case 0x1: |
| 717 | tbl_idx = PVS_NOMINAL; |
| 718 | break; |
| 719 | case 0x3: |
| 720 | tbl_idx = PVS_FAST; |
| 721 | break; |
| 722 | default: |
| 723 | tbl_idx = PVS_UNKNOWN; |
| 724 | break; |
| 725 | } |
| 726 | } else { |
| 727 | tbl_idx = PVS_UNKNOWN; |
| 728 | dev_err(drv.dev, "Unable to map QFPROM base\n"); |
| 729 | } |
| 730 | dev_info(drv.dev, "ACPU PVS: %s\n", pvs_names[tbl_idx]); |
| 731 | if (tbl_idx == PVS_UNKNOWN) { |
| 732 | tbl_idx = PVS_SLOW; |
| 733 | dev_warn(drv.dev, "ACPU PVS: Defaulting to %s\n", |
| 734 | pvs_names[tbl_idx]); |
| 735 | } |
| 736 | drv.acpu_freq_tbl = pvs_tbl[tbl_idx]; |
| 737 | |
| 738 | /* Find the max supported scaling frequency. */ |
| 739 | for (l = drv.acpu_freq_tbl; l->speed.khz != 0; l++) |
| 740 | if (l->use_for_scaling) |
| 741 | max_acpu_level = l; |
| 742 | BUG_ON(!max_acpu_level); |
| 743 | dev_info(drv.dev, "Max ACPU freq: %lu KHz\n", |
| 744 | max_acpu_level->speed.khz); |
| 745 | |
| 746 | return max_acpu_level; |
| 747 | } |
| 748 | |
| 749 | static struct acpuclk_data acpuclk_krait_data = { |
| 750 | .set_rate = acpuclk_krait_set_rate, |
| 751 | .get_rate = acpuclk_krait_get_rate, |
| 752 | .power_collapse_khz = STBY_KHZ, |
| 753 | .wait_for_irq_khz = STBY_KHZ, |
| 754 | }; |
| 755 | |
| 756 | int __init acpuclk_krait_init(struct device *dev, |
| 757 | const struct acpuclk_krait_params *params) |
| 758 | { |
| 759 | const struct acpu_level *max_acpu_level; |
| 760 | int cpu; |
| 761 | |
| 762 | drv.scalable = params->scalable; |
| 763 | drv.l2_freq_tbl = params->l2_freq_tbl; |
| 764 | drv.dev = dev; |
| 765 | |
| 766 | drv.scalable[L2].hfpll_base = |
| 767 | ioremap(drv.scalable[L2].hfpll_phys_base, SZ_32); |
| 768 | BUG_ON(!drv.scalable[L2].hfpll_base); |
| 769 | |
| 770 | max_acpu_level = select_freq_plan(params->pvs_acpu_freq_tbl, |
| 771 | params->qfprom_phys_base); |
| 772 | regulator_init(max_acpu_level); |
| 773 | bus_init(params->bus_scale_data, max_acpu_level->l2_level->bw_level); |
| 774 | init_clock_sources(&drv.scalable[L2], &max_acpu_level->l2_level->speed); |
| 775 | for_each_online_cpu(cpu) |
| 776 | per_cpu_init(cpu, max_acpu_level); |
| 777 | |
| 778 | cpufreq_table_init(); |
| 779 | |
| 780 | acpuclk_register(&acpuclk_krait_data); |
| 781 | register_hotcpu_notifier(&acpuclk_cpu_notifier); |
| 782 | |
| 783 | return 0; |
| 784 | } |