| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/arch/alpha/kernel/time.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds | 
 | 5 |  * | 
 | 6 |  * This file contains the PC-specific time handling details: | 
 | 7 |  * reading the RTC at bootup, etc.. | 
 | 8 |  * 1994-07-02    Alan Modra | 
 | 9 |  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime | 
 | 10 |  * 1995-03-26    Markus Kuhn | 
 | 11 |  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 | 
 | 12 |  *      precision CMOS clock update | 
 | 13 |  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96 | 
 | 14 |  *		"A Kernel Model for Precision Timekeeping" by Dave Mills | 
 | 15 |  * 1997-01-09    Adrian Sun | 
 | 16 |  *      use interval timer if CONFIG_RTC=y | 
 | 17 |  * 1997-10-29    John Bowman (bowman@math.ualberta.ca) | 
 | 18 |  *      fixed tick loss calculation in timer_interrupt | 
 | 19 |  *      (round system clock to nearest tick instead of truncating) | 
 | 20 |  *      fixed algorithm in time_init for getting time from CMOS clock | 
 | 21 |  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net) | 
 | 22 |  *	fixed algorithm in do_gettimeofday() for calculating the precise time | 
 | 23 |  *	from processor cycle counter (now taking lost_ticks into account) | 
 | 24 |  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de> | 
 | 25 |  * 	Fixed time_init to be aware of epoches != 1900. This prevents | 
 | 26 |  * 	booting up in 2048 for me;) Code is stolen from rtc.c. | 
 | 27 |  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com> | 
 | 28 |  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM | 
 | 29 |  */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 30 | #include <linux/errno.h> | 
 | 31 | #include <linux/module.h> | 
 | 32 | #include <linux/sched.h> | 
 | 33 | #include <linux/kernel.h> | 
 | 34 | #include <linux/param.h> | 
 | 35 | #include <linux/string.h> | 
 | 36 | #include <linux/mm.h> | 
 | 37 | #include <linux/delay.h> | 
 | 38 | #include <linux/ioport.h> | 
 | 39 | #include <linux/irq.h> | 
 | 40 | #include <linux/interrupt.h> | 
 | 41 | #include <linux/init.h> | 
 | 42 | #include <linux/bcd.h> | 
 | 43 | #include <linux/profile.h> | 
 | 44 |  | 
 | 45 | #include <asm/uaccess.h> | 
 | 46 | #include <asm/io.h> | 
 | 47 | #include <asm/hwrpb.h> | 
 | 48 | #include <asm/8253pit.h> | 
 | 49 |  | 
 | 50 | #include <linux/mc146818rtc.h> | 
 | 51 | #include <linux/time.h> | 
 | 52 | #include <linux/timex.h> | 
 | 53 |  | 
 | 54 | #include "proto.h" | 
 | 55 | #include "irq_impl.h" | 
 | 56 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 57 | static int set_rtc_mmss(unsigned long); | 
 | 58 |  | 
 | 59 | DEFINE_SPINLOCK(rtc_lock); | 
| Al Viro | cff52da | 2006-10-11 17:40:22 +0100 | [diff] [blame] | 60 | EXPORT_SYMBOL(rtc_lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 61 |  | 
 | 62 | #define TICK_SIZE (tick_nsec / 1000) | 
 | 63 |  | 
 | 64 | /* | 
 | 65 |  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting | 
 | 66 |  * by 48 gives us 16 bits for HZ while keeping the accuracy good even | 
 | 67 |  * for large CPU clock rates. | 
 | 68 |  */ | 
 | 69 | #define FIX_SHIFT	48 | 
 | 70 |  | 
 | 71 | /* lump static variables together for more efficient access: */ | 
 | 72 | static struct { | 
 | 73 | 	/* cycle counter last time it got invoked */ | 
 | 74 | 	__u32 last_time; | 
 | 75 | 	/* ticks/cycle * 2^48 */ | 
 | 76 | 	unsigned long scaled_ticks_per_cycle; | 
 | 77 | 	/* last time the CMOS clock got updated */ | 
 | 78 | 	time_t last_rtc_update; | 
 | 79 | 	/* partial unused tick */ | 
 | 80 | 	unsigned long partial_tick; | 
 | 81 | } state; | 
 | 82 |  | 
 | 83 | unsigned long est_cycle_freq; | 
 | 84 |  | 
 | 85 |  | 
 | 86 | static inline __u32 rpcc(void) | 
 | 87 | { | 
 | 88 |     __u32 result; | 
 | 89 |     asm volatile ("rpcc %0" : "=r"(result)); | 
 | 90 |     return result; | 
 | 91 | } | 
 | 92 |  | 
 | 93 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 94 |  * timer_interrupt() needs to keep up the real-time clock, | 
 | 95 |  * as well as call the "do_timer()" routine every clocktick | 
 | 96 |  */ | 
| Al Viro | 8774cb8 | 2006-10-07 14:17:31 +0100 | [diff] [blame] | 97 | irqreturn_t timer_interrupt(int irq, void *dev) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 98 | { | 
 | 99 | 	unsigned long delta; | 
 | 100 | 	__u32 now; | 
 | 101 | 	long nticks; | 
 | 102 |  | 
 | 103 | #ifndef CONFIG_SMP | 
 | 104 | 	/* Not SMP, do kernel PC profiling here.  */ | 
| Al Viro | 8774cb8 | 2006-10-07 14:17:31 +0100 | [diff] [blame] | 105 | 	profile_tick(CPU_PROFILING); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 106 | #endif | 
 | 107 |  | 
 | 108 | 	write_seqlock(&xtime_lock); | 
 | 109 |  | 
 | 110 | 	/* | 
 | 111 | 	 * Calculate how many ticks have passed since the last update, | 
 | 112 | 	 * including any previous partial leftover.  Save any resulting | 
 | 113 | 	 * fraction for the next pass. | 
 | 114 | 	 */ | 
 | 115 | 	now = rpcc(); | 
 | 116 | 	delta = now - state.last_time; | 
 | 117 | 	state.last_time = now; | 
 | 118 | 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick; | 
 | 119 | 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);  | 
 | 120 | 	nticks = delta >> FIX_SHIFT; | 
 | 121 |  | 
 | 122 | 	while (nticks > 0) { | 
| Atsushi Nemoto | 3171a03 | 2006-09-29 02:00:32 -0700 | [diff] [blame] | 123 | 		do_timer(1); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 124 | #ifndef CONFIG_SMP | 
| Al Viro | 8774cb8 | 2006-10-07 14:17:31 +0100 | [diff] [blame] | 125 | 		update_process_times(user_mode(get_irq_regs())); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 126 | #endif | 
 | 127 | 		nticks--; | 
 | 128 | 	} | 
 | 129 |  | 
 | 130 | 	/* | 
 | 131 | 	 * If we have an externally synchronized Linux clock, then update | 
 | 132 | 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | 
 | 133 | 	 * called as close as possible to 500 ms before the new second starts. | 
 | 134 | 	 */ | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 135 | 	if (ntp_synced() | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 136 | 	    && xtime.tv_sec > state.last_rtc_update + 660 | 
 | 137 | 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2 | 
 | 138 | 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
 | 139 | 		int tmp = set_rtc_mmss(xtime.tv_sec); | 
 | 140 | 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0); | 
 | 141 | 	} | 
 | 142 |  | 
 | 143 | 	write_sequnlock(&xtime_lock); | 
 | 144 | 	return IRQ_HANDLED; | 
 | 145 | } | 
 | 146 |  | 
| Sam Ravnborg | ebaf4fc | 2007-07-15 23:38:37 -0700 | [diff] [blame] | 147 | void __init | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 148 | common_init_rtc(void) | 
 | 149 | { | 
 | 150 | 	unsigned char x; | 
 | 151 |  | 
 | 152 | 	/* Reset periodic interrupt frequency.  */ | 
 | 153 | 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f; | 
 | 154 |         /* Test includes known working values on various platforms | 
 | 155 |            where 0x26 is wrong; we refuse to change those. */ | 
 | 156 | 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) { | 
 | 157 | 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x); | 
 | 158 | 		CMOS_WRITE(0x26, RTC_FREQ_SELECT); | 
 | 159 | 	} | 
 | 160 |  | 
 | 161 | 	/* Turn on periodic interrupts.  */ | 
 | 162 | 	x = CMOS_READ(RTC_CONTROL); | 
 | 163 | 	if (!(x & RTC_PIE)) { | 
 | 164 | 		printk("Turning on RTC interrupts.\n"); | 
 | 165 | 		x |= RTC_PIE; | 
 | 166 | 		x &= ~(RTC_AIE | RTC_UIE); | 
 | 167 | 		CMOS_WRITE(x, RTC_CONTROL); | 
 | 168 | 	} | 
 | 169 | 	(void) CMOS_READ(RTC_INTR_FLAGS); | 
 | 170 |  | 
 | 171 | 	outb(0x36, 0x43);	/* pit counter 0: system timer */ | 
 | 172 | 	outb(0x00, 0x40); | 
 | 173 | 	outb(0x00, 0x40); | 
 | 174 |  | 
 | 175 | 	outb(0xb6, 0x43);	/* pit counter 2: speaker */ | 
 | 176 | 	outb(0x31, 0x42); | 
 | 177 | 	outb(0x13, 0x42); | 
 | 178 |  | 
 | 179 | 	init_rtc_irq(); | 
 | 180 | } | 
 | 181 |  | 
 | 182 |  | 
 | 183 | /* Validate a computed cycle counter result against the known bounds for | 
 | 184 |    the given processor core.  There's too much brokenness in the way of | 
 | 185 |    timing hardware for any one method to work everywhere.  :-( | 
 | 186 |  | 
 | 187 |    Return 0 if the result cannot be trusted, otherwise return the argument.  */ | 
 | 188 |  | 
 | 189 | static unsigned long __init | 
 | 190 | validate_cc_value(unsigned long cc) | 
 | 191 | { | 
 | 192 | 	static struct bounds { | 
 | 193 | 		unsigned int min, max; | 
 | 194 | 	} cpu_hz[] __initdata = { | 
 | 195 | 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */ | 
 | 196 | 		[EV4_CPU]    = {  100000000,  300000000 }, | 
 | 197 | 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */ | 
 | 198 | 		[EV45_CPU]   = {  200000000,  300000000 }, | 
 | 199 | 		[EV5_CPU]    = {  250000000,  433000000 }, | 
 | 200 | 		[EV56_CPU]   = {  333000000,  667000000 }, | 
 | 201 | 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */ | 
 | 202 | 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */ | 
 | 203 | 		[EV6_CPU]    = {  466000000,  600000000 }, | 
 | 204 | 		[EV67_CPU]   = {  600000000,  750000000 }, | 
 | 205 | 		[EV68AL_CPU] = {  750000000,  940000000 }, | 
 | 206 | 		[EV68CB_CPU] = { 1000000000, 1333333333 }, | 
 | 207 | 		/* None of the following are shipping as of 2001-11-01.  */ | 
 | 208 | 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */ | 
 | 209 | 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */ | 
 | 210 | 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */ | 
 | 211 | 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */ | 
 | 212 | 	}; | 
 | 213 |  | 
 | 214 | 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */ | 
 | 215 | 	const unsigned int deviation = 10000000; | 
 | 216 |  | 
 | 217 | 	struct percpu_struct *cpu; | 
 | 218 | 	unsigned int index; | 
 | 219 |  | 
 | 220 | 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset); | 
 | 221 | 	index = cpu->type & 0xffffffff; | 
 | 222 |  | 
 | 223 | 	/* If index out of bounds, no way to validate.  */ | 
| Tobias Klauser | 25c8716 | 2006-07-30 03:03:23 -0700 | [diff] [blame] | 224 | 	if (index >= ARRAY_SIZE(cpu_hz)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 225 | 		return cc; | 
 | 226 |  | 
 | 227 | 	/* If index contains no data, no way to validate.  */ | 
 | 228 | 	if (cpu_hz[index].max == 0) | 
 | 229 | 		return cc; | 
 | 230 |  | 
 | 231 | 	if (cc < cpu_hz[index].min - deviation | 
 | 232 | 	    || cc > cpu_hz[index].max + deviation) | 
 | 233 | 		return 0; | 
 | 234 |  | 
 | 235 | 	return cc; | 
 | 236 | } | 
 | 237 |  | 
 | 238 |  | 
 | 239 | /* | 
 | 240 |  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from | 
 | 241 |  * arch/i386/time.c. | 
 | 242 |  */ | 
 | 243 |  | 
 | 244 | #define CALIBRATE_LATCH	0xffff | 
 | 245 | #define TIMEOUT_COUNT	0x100000 | 
 | 246 |  | 
 | 247 | static unsigned long __init | 
 | 248 | calibrate_cc_with_pit(void) | 
 | 249 | { | 
 | 250 | 	int cc, count = 0; | 
 | 251 |  | 
 | 252 | 	/* Set the Gate high, disable speaker */ | 
 | 253 | 	outb((inb(0x61) & ~0x02) | 0x01, 0x61); | 
 | 254 |  | 
 | 255 | 	/* | 
 | 256 | 	 * Now let's take care of CTC channel 2 | 
 | 257 | 	 * | 
 | 258 | 	 * Set the Gate high, program CTC channel 2 for mode 0, | 
 | 259 | 	 * (interrupt on terminal count mode), binary count, | 
 | 260 | 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown. | 
 | 261 | 	 */ | 
 | 262 | 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */ | 
 | 263 | 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */ | 
 | 264 | 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */ | 
 | 265 |  | 
 | 266 | 	cc = rpcc(); | 
 | 267 | 	do { | 
 | 268 | 		count++; | 
 | 269 | 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT); | 
 | 270 | 	cc = rpcc() - cc; | 
 | 271 |  | 
 | 272 | 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */ | 
 | 273 | 	if (count <= 1 || count == TIMEOUT_COUNT) | 
 | 274 | 		return 0; | 
 | 275 |  | 
 | 276 | 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1); | 
 | 277 | } | 
 | 278 |  | 
 | 279 | /* The Linux interpretation of the CMOS clock register contents: | 
 | 280 |    When the Update-In-Progress (UIP) flag goes from 1 to 0, the | 
 | 281 |    RTC registers show the second which has precisely just started. | 
 | 282 |    Let's hope other operating systems interpret the RTC the same way.  */ | 
 | 283 |  | 
 | 284 | static unsigned long __init | 
 | 285 | rpcc_after_update_in_progress(void) | 
 | 286 | { | 
 | 287 | 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)); | 
 | 288 | 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); | 
 | 289 |  | 
 | 290 | 	return rpcc(); | 
 | 291 | } | 
 | 292 |  | 
 | 293 | void __init | 
 | 294 | time_init(void) | 
 | 295 | { | 
 | 296 | 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch; | 
 | 297 | 	unsigned long cycle_freq, tolerance; | 
 | 298 | 	long diff; | 
 | 299 |  | 
 | 300 | 	/* Calibrate CPU clock -- attempt #1.  */ | 
 | 301 | 	if (!est_cycle_freq) | 
 | 302 | 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit()); | 
 | 303 |  | 
| Matt Mackall | 4c2e6f6 | 2006-03-28 01:56:09 -0800 | [diff] [blame] | 304 | 	cc1 = rpcc(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 305 |  | 
 | 306 | 	/* Calibrate CPU clock -- attempt #2.  */ | 
 | 307 | 	if (!est_cycle_freq) { | 
| Matt Mackall | 4c2e6f6 | 2006-03-28 01:56:09 -0800 | [diff] [blame] | 308 | 		cc1 = rpcc_after_update_in_progress(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 309 | 		cc2 = rpcc_after_update_in_progress(); | 
 | 310 | 		est_cycle_freq = validate_cc_value(cc2 - cc1); | 
 | 311 | 		cc1 = cc2; | 
 | 312 | 	} | 
 | 313 |  | 
 | 314 | 	cycle_freq = hwrpb->cycle_freq; | 
 | 315 | 	if (est_cycle_freq) { | 
 | 316 | 		/* If the given value is within 250 PPM of what we calculated, | 
 | 317 | 		   accept it.  Otherwise, use what we found.  */ | 
 | 318 | 		tolerance = cycle_freq / 4000; | 
 | 319 | 		diff = cycle_freq - est_cycle_freq; | 
 | 320 | 		if (diff < 0) | 
 | 321 | 			diff = -diff; | 
 | 322 | 		if ((unsigned long)diff > tolerance) { | 
 | 323 | 			cycle_freq = est_cycle_freq; | 
 | 324 | 			printk("HWRPB cycle frequency bogus.  " | 
 | 325 | 			       "Estimated %lu Hz\n", cycle_freq); | 
 | 326 | 		} else { | 
 | 327 | 			est_cycle_freq = 0; | 
 | 328 | 		} | 
 | 329 | 	} else if (! validate_cc_value (cycle_freq)) { | 
 | 330 | 		printk("HWRPB cycle frequency bogus, " | 
 | 331 | 		       "and unable to estimate a proper value!\n"); | 
 | 332 | 	} | 
 | 333 |  | 
 | 334 | 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values | 
 | 335 | 	   to settle, as the Update-In-Progress bit going low isn't good | 
 | 336 | 	   enough on some hardware.  2ms is our guess; we haven't found  | 
 | 337 | 	   bogomips yet, but this is close on a 500Mhz box.  */ | 
 | 338 | 	__delay(1000000); | 
 | 339 |  | 
 | 340 | 	sec = CMOS_READ(RTC_SECONDS); | 
 | 341 | 	min = CMOS_READ(RTC_MINUTES); | 
 | 342 | 	hour = CMOS_READ(RTC_HOURS); | 
 | 343 | 	day = CMOS_READ(RTC_DAY_OF_MONTH); | 
 | 344 | 	mon = CMOS_READ(RTC_MONTH); | 
 | 345 | 	year = CMOS_READ(RTC_YEAR); | 
 | 346 |  | 
 | 347 | 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
 | 348 | 		BCD_TO_BIN(sec); | 
 | 349 | 		BCD_TO_BIN(min); | 
 | 350 | 		BCD_TO_BIN(hour); | 
 | 351 | 		BCD_TO_BIN(day); | 
 | 352 | 		BCD_TO_BIN(mon); | 
 | 353 | 		BCD_TO_BIN(year); | 
 | 354 | 	} | 
 | 355 |  | 
 | 356 | 	/* PC-like is standard; used for year >= 70 */ | 
 | 357 | 	epoch = 1900; | 
 | 358 | 	if (year < 20) | 
 | 359 | 		epoch = 2000; | 
 | 360 | 	else if (year >= 20 && year < 48) | 
 | 361 | 		/* NT epoch */ | 
 | 362 | 		epoch = 1980; | 
 | 363 | 	else if (year >= 48 && year < 70) | 
 | 364 | 		/* Digital UNIX epoch */ | 
 | 365 | 		epoch = 1952; | 
 | 366 |  | 
 | 367 | 	printk(KERN_INFO "Using epoch = %d\n", epoch); | 
 | 368 |  | 
 | 369 | 	if ((year += epoch) < 1970) | 
 | 370 | 		year += 100; | 
 | 371 |  | 
 | 372 | 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec); | 
 | 373 | 	xtime.tv_nsec = 0; | 
 | 374 |  | 
 | 375 |         wall_to_monotonic.tv_sec -= xtime.tv_sec; | 
 | 376 |         wall_to_monotonic.tv_nsec = 0; | 
 | 377 |  | 
 | 378 | 	if (HZ > (1<<16)) { | 
 | 379 | 		extern void __you_loose (void); | 
 | 380 | 		__you_loose(); | 
 | 381 | 	} | 
 | 382 |  | 
 | 383 | 	state.last_time = cc1; | 
 | 384 | 	state.scaled_ticks_per_cycle | 
 | 385 | 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq; | 
 | 386 | 	state.last_rtc_update = 0; | 
 | 387 | 	state.partial_tick = 0L; | 
 | 388 |  | 
 | 389 | 	/* Startup the timer source. */ | 
 | 390 | 	alpha_mv.init_rtc(); | 
 | 391 | } | 
 | 392 |  | 
 | 393 | /* | 
 | 394 |  * Use the cycle counter to estimate an displacement from the last time | 
 | 395 |  * tick.  Unfortunately the Alpha designers made only the low 32-bits of | 
 | 396 |  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz | 
 | 397 |  * part.  So we can't do the "find absolute time in terms of cycles" thing | 
 | 398 |  * that the other ports do. | 
 | 399 |  */ | 
 | 400 | void | 
 | 401 | do_gettimeofday(struct timeval *tv) | 
 | 402 | { | 
 | 403 | 	unsigned long flags; | 
| Atsushi Nemoto | 8ef3860 | 2006-09-30 23:28:31 -0700 | [diff] [blame] | 404 | 	unsigned long sec, usec, seq; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 405 | 	unsigned long delta_cycles, delta_usec, partial_tick; | 
 | 406 |  | 
 | 407 | 	do { | 
 | 408 | 		seq = read_seqbegin_irqsave(&xtime_lock, flags); | 
 | 409 |  | 
 | 410 | 		delta_cycles = rpcc() - state.last_time; | 
 | 411 | 		sec = xtime.tv_sec; | 
 | 412 | 		usec = (xtime.tv_nsec / 1000); | 
 | 413 | 		partial_tick = state.partial_tick; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 414 |  | 
 | 415 | 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 
 | 416 |  | 
 | 417 | #ifdef CONFIG_SMP | 
 | 418 | 	/* Until and unless we figure out how to get cpu cycle counters | 
 | 419 | 	   in sync and keep them there, we can't use the rpcc tricks.  */ | 
| Atsushi Nemoto | 8ef3860 | 2006-09-30 23:28:31 -0700 | [diff] [blame] | 420 | 	delta_usec = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 421 | #else | 
 | 422 | 	/* | 
 | 423 | 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks) | 
 | 424 | 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks) | 
 | 425 | 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks) | 
 | 426 | 	 * | 
 | 427 | 	 * which, given a 600MHz cycle and a 1024Hz tick, has a | 
 | 428 | 	 * dynamic range of about 1.7e17, which is less than the | 
 | 429 | 	 * 1.8e19 in an unsigned long, so we are safe from overflow. | 
 | 430 | 	 * | 
 | 431 | 	 * Round, but with .5 up always, since .5 to even is harder | 
 | 432 | 	 * with no clear gain. | 
 | 433 | 	 */ | 
 | 434 |  | 
 | 435 | 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle  | 
| Atsushi Nemoto | 8ef3860 | 2006-09-30 23:28:31 -0700 | [diff] [blame] | 436 | 		      + partial_tick) * 15625; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 437 | 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
 | 438 | #endif | 
 | 439 |  | 
 | 440 | 	usec += delta_usec; | 
 | 441 | 	if (usec >= 1000000) { | 
 | 442 | 		sec += 1; | 
 | 443 | 		usec -= 1000000; | 
 | 444 | 	} | 
 | 445 |  | 
 | 446 | 	tv->tv_sec = sec; | 
 | 447 | 	tv->tv_usec = usec; | 
 | 448 | } | 
 | 449 |  | 
 | 450 | EXPORT_SYMBOL(do_gettimeofday); | 
 | 451 |  | 
 | 452 | int | 
 | 453 | do_settimeofday(struct timespec *tv) | 
 | 454 | { | 
 | 455 | 	time_t wtm_sec, sec = tv->tv_sec; | 
 | 456 | 	long wtm_nsec, nsec = tv->tv_nsec; | 
 | 457 | 	unsigned long delta_nsec; | 
 | 458 |  | 
 | 459 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 460 | 		return -EINVAL; | 
 | 461 |  | 
 | 462 | 	write_seqlock_irq(&xtime_lock); | 
 | 463 |  | 
 | 464 | 	/* The offset that is added into time in do_gettimeofday above | 
 | 465 | 	   must be subtracted out here to keep a coherent view of the | 
 | 466 | 	   time.  Without this, a full-tick error is possible.  */ | 
 | 467 |  | 
 | 468 | #ifdef CONFIG_SMP | 
| Atsushi Nemoto | 8ef3860 | 2006-09-30 23:28:31 -0700 | [diff] [blame] | 469 | 	delta_nsec = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 470 | #else | 
 | 471 | 	delta_nsec = rpcc() - state.last_time; | 
 | 472 | 	delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle  | 
| Atsushi Nemoto | 8ef3860 | 2006-09-30 23:28:31 -0700 | [diff] [blame] | 473 | 		      + state.partial_tick) * 15625; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 474 | 	delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2; | 
 | 475 | 	delta_nsec *= 1000; | 
 | 476 | #endif | 
 | 477 |  | 
 | 478 | 	nsec -= delta_nsec; | 
 | 479 |  | 
 | 480 | 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
 | 481 | 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
 | 482 |  | 
 | 483 | 	set_normalized_timespec(&xtime, sec, nsec); | 
 | 484 | 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 | 485 |  | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 486 | 	ntp_clear(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 487 |  | 
 | 488 | 	write_sequnlock_irq(&xtime_lock); | 
 | 489 | 	clock_was_set(); | 
 | 490 | 	return 0; | 
 | 491 | } | 
 | 492 |  | 
 | 493 | EXPORT_SYMBOL(do_settimeofday); | 
 | 494 |  | 
 | 495 |  | 
 | 496 | /* | 
 | 497 |  * In order to set the CMOS clock precisely, set_rtc_mmss has to be | 
 | 498 |  * called 500 ms after the second nowtime has started, because when | 
 | 499 |  * nowtime is written into the registers of the CMOS clock, it will | 
 | 500 |  * jump to the next second precisely 500 ms later. Check the Motorola | 
 | 501 |  * MC146818A or Dallas DS12887 data sheet for details. | 
 | 502 |  * | 
 | 503 |  * BUG: This routine does not handle hour overflow properly; it just | 
 | 504 |  *      sets the minutes. Usually you won't notice until after reboot! | 
 | 505 |  */ | 
 | 506 |  | 
 | 507 |  | 
 | 508 | static int | 
 | 509 | set_rtc_mmss(unsigned long nowtime) | 
 | 510 | { | 
 | 511 | 	int retval = 0; | 
 | 512 | 	int real_seconds, real_minutes, cmos_minutes; | 
 | 513 | 	unsigned char save_control, save_freq_select; | 
 | 514 |  | 
 | 515 | 	/* irq are locally disabled here */ | 
 | 516 | 	spin_lock(&rtc_lock); | 
 | 517 | 	/* Tell the clock it's being set */ | 
 | 518 | 	save_control = CMOS_READ(RTC_CONTROL); | 
 | 519 | 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | 
 | 520 |  | 
 | 521 | 	/* Stop and reset prescaler */ | 
 | 522 | 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | 
 | 523 | 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | 
 | 524 |  | 
 | 525 | 	cmos_minutes = CMOS_READ(RTC_MINUTES); | 
 | 526 | 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | 
 | 527 | 		BCD_TO_BIN(cmos_minutes); | 
 | 528 |  | 
 | 529 | 	/* | 
 | 530 | 	 * since we're only adjusting minutes and seconds, | 
 | 531 | 	 * don't interfere with hour overflow. This avoids | 
 | 532 | 	 * messing with unknown time zones but requires your | 
 | 533 | 	 * RTC not to be off by more than 15 minutes | 
 | 534 | 	 */ | 
 | 535 | 	real_seconds = nowtime % 60; | 
 | 536 | 	real_minutes = nowtime / 60; | 
 | 537 | 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) { | 
 | 538 | 		/* correct for half hour time zone */ | 
 | 539 | 		real_minutes += 30; | 
 | 540 | 	} | 
 | 541 | 	real_minutes %= 60; | 
 | 542 |  | 
 | 543 | 	if (abs(real_minutes - cmos_minutes) < 30) { | 
 | 544 | 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
 | 545 | 			BIN_TO_BCD(real_seconds); | 
 | 546 | 			BIN_TO_BCD(real_minutes); | 
 | 547 | 		} | 
 | 548 | 		CMOS_WRITE(real_seconds,RTC_SECONDS); | 
 | 549 | 		CMOS_WRITE(real_minutes,RTC_MINUTES); | 
 | 550 | 	} else { | 
 | 551 | 		printk(KERN_WARNING | 
 | 552 | 		       "set_rtc_mmss: can't update from %d to %d\n", | 
 | 553 | 		       cmos_minutes, real_minutes); | 
 | 554 |  		retval = -1; | 
 | 555 | 	} | 
 | 556 |  | 
 | 557 | 	/* The following flags have to be released exactly in this order, | 
 | 558 | 	 * otherwise the DS12887 (popular MC146818A clone with integrated | 
 | 559 | 	 * battery and quartz) will not reset the oscillator and will not | 
 | 560 | 	 * update precisely 500 ms later. You won't find this mentioned in | 
 | 561 | 	 * the Dallas Semiconductor data sheets, but who believes data | 
 | 562 | 	 * sheets anyway ...                           -- Markus Kuhn | 
 | 563 | 	 */ | 
 | 564 | 	CMOS_WRITE(save_control, RTC_CONTROL); | 
 | 565 | 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | 
 | 566 | 	spin_unlock(&rtc_lock); | 
 | 567 |  | 
 | 568 | 	return retval; | 
 | 569 | } |