| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1 | /******************************************************************************* | 
|  | 2 |  | 
|  | 3 | Intel PRO/1000 Linux driver | 
|  | 4 | Copyright(c) 1999 - 2007 Intel Corporation. | 
|  | 5 |  | 
|  | 6 | This program is free software; you can redistribute it and/or modify it | 
|  | 7 | under the terms and conditions of the GNU General Public License, | 
|  | 8 | version 2, as published by the Free Software Foundation. | 
|  | 9 |  | 
|  | 10 | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 12 | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 13 | more details. | 
|  | 14 |  | 
|  | 15 | You should have received a copy of the GNU General Public License along with | 
|  | 16 | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | 18 |  | 
|  | 19 | The full GNU General Public License is included in this distribution in | 
|  | 20 | the file called "COPYING". | 
|  | 21 |  | 
|  | 22 | Contact Information: | 
|  | 23 | Linux NICS <linux.nics@intel.com> | 
|  | 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | 26 |  | 
|  | 27 | *******************************************************************************/ | 
|  | 28 |  | 
|  | 29 | /* | 
|  | 30 | * 80003ES2LAN Gigabit Ethernet Controller (Copper) | 
|  | 31 | * 80003ES2LAN Gigabit Ethernet Controller (Serdes) | 
|  | 32 | */ | 
|  | 33 |  | 
|  | 34 | #include <linux/netdevice.h> | 
|  | 35 | #include <linux/ethtool.h> | 
|  | 36 | #include <linux/delay.h> | 
|  | 37 | #include <linux/pci.h> | 
|  | 38 |  | 
|  | 39 | #include "e1000.h" | 
|  | 40 |  | 
|  | 41 | #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00 | 
|  | 42 | #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02 | 
|  | 43 | #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10 | 
|  | 44 |  | 
|  | 45 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008 | 
|  | 46 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800 | 
|  | 47 | #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010 | 
|  | 48 |  | 
|  | 49 | #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 | 
|  | 50 | #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000 | 
|  | 51 |  | 
|  | 52 | #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ | 
|  | 53 | #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000 | 
|  | 54 |  | 
|  | 55 | #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8 | 
|  | 56 | #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9 | 
|  | 57 |  | 
|  | 58 | /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ | 
|  | 59 | #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */ | 
|  | 60 | #define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060 | 
|  | 61 | #define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */ | 
|  | 62 | #define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */ | 
|  | 63 | #define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */ | 
|  | 64 |  | 
|  | 65 | /* PHY Specific Control Register 2 (Page 0, Register 26) */ | 
|  | 66 | #define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000 | 
|  | 67 | /* 1=Reverse Auto-Negotiation */ | 
|  | 68 |  | 
|  | 69 | /* MAC Specific Control Register (Page 2, Register 21) */ | 
|  | 70 | /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ | 
|  | 71 | #define GG82563_MSCR_TX_CLK_MASK		 0x0007 | 
|  | 72 | #define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004 | 
|  | 73 | #define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005 | 
|  | 74 | #define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007 | 
|  | 75 |  | 
|  | 76 | #define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */ | 
|  | 77 |  | 
|  | 78 | /* DSP Distance Register (Page 5, Register 26) */ | 
|  | 79 | #define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M | 
|  | 80 | 1 = 50-80M | 
|  | 81 | 2 = 80-110M | 
|  | 82 | 3 = 110-140M | 
|  | 83 | 4 = >140M */ | 
|  | 84 |  | 
|  | 85 | /* Kumeran Mode Control Register (Page 193, Register 16) */ | 
|  | 86 | #define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800 | 
|  | 87 |  | 
|  | 88 | /* Power Management Control Register (Page 193, Register 20) */ | 
|  | 89 | #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001 | 
|  | 90 | /* 1=Enable SERDES Electrical Idle */ | 
|  | 91 |  | 
|  | 92 | /* In-Band Control Register (Page 194, Register 18) */ | 
|  | 93 | #define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */ | 
|  | 94 |  | 
|  | 95 | /* A table for the GG82563 cable length where the range is defined | 
|  | 96 | * with a lower bound at "index" and the upper bound at | 
|  | 97 | * "index + 5". | 
|  | 98 | */ | 
|  | 99 | static const u16 e1000_gg82563_cable_length_table[] = | 
|  | 100 | { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; | 
|  | 101 |  | 
|  | 102 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); | 
|  | 103 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); | 
|  | 104 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); | 
|  | 105 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); | 
|  | 106 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); | 
|  | 107 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); | 
|  | 108 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); | 
|  | 109 |  | 
|  | 110 | /** | 
|  | 111 | *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. | 
|  | 112 | *  @hw: pointer to the HW structure | 
|  | 113 | * | 
|  | 114 | *  This is a function pointer entry point called by the api module. | 
|  | 115 | **/ | 
|  | 116 | static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) | 
|  | 117 | { | 
|  | 118 | struct e1000_phy_info *phy = &hw->phy; | 
|  | 119 | s32 ret_val; | 
|  | 120 |  | 
|  | 121 | if (hw->media_type != e1000_media_type_copper) { | 
|  | 122 | phy->type	= e1000_phy_none; | 
|  | 123 | return 0; | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | phy->addr		= 1; | 
|  | 127 | phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | 128 | phy->reset_delay_us      = 100; | 
|  | 129 | phy->type		= e1000_phy_gg82563; | 
|  | 130 |  | 
|  | 131 | /* This can only be done after all function pointers are setup. */ | 
|  | 132 | ret_val = e1000e_get_phy_id(hw); | 
|  | 133 |  | 
|  | 134 | /* Verify phy id */ | 
|  | 135 | if (phy->id != GG82563_E_PHY_ID) | 
|  | 136 | return -E1000_ERR_PHY; | 
|  | 137 |  | 
|  | 138 | return ret_val; | 
|  | 139 | } | 
|  | 140 |  | 
|  | 141 | /** | 
|  | 142 | *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. | 
|  | 143 | *  @hw: pointer to the HW structure | 
|  | 144 | * | 
|  | 145 | *  This is a function pointer entry point called by the api module. | 
|  | 146 | **/ | 
|  | 147 | static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) | 
|  | 148 | { | 
|  | 149 | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | 150 | u32 eecd = er32(EECD); | 
|  | 151 | u16 size; | 
|  | 152 |  | 
|  | 153 | nvm->opcode_bits	= 8; | 
|  | 154 | nvm->delay_usec	 = 1; | 
|  | 155 | switch (nvm->override) { | 
|  | 156 | case e1000_nvm_override_spi_large: | 
|  | 157 | nvm->page_size    = 32; | 
|  | 158 | nvm->address_bits = 16; | 
|  | 159 | break; | 
|  | 160 | case e1000_nvm_override_spi_small: | 
|  | 161 | nvm->page_size    = 8; | 
|  | 162 | nvm->address_bits = 8; | 
|  | 163 | break; | 
|  | 164 | default: | 
|  | 165 | nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | 
|  | 166 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | 
|  | 167 | break; | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | nvm->type	       = e1000_nvm_eeprom_spi; | 
|  | 171 |  | 
|  | 172 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | 173 | E1000_EECD_SIZE_EX_SHIFT); | 
|  | 174 |  | 
|  | 175 | /* Added to a constant, "size" becomes the left-shift value | 
|  | 176 | * for setting word_size. | 
|  | 177 | */ | 
|  | 178 | size += NVM_WORD_SIZE_BASE_SHIFT; | 
|  | 179 | nvm->word_size	= 1 << size; | 
|  | 180 |  | 
|  | 181 | return 0; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | /** | 
|  | 185 | *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. | 
|  | 186 | *  @hw: pointer to the HW structure | 
|  | 187 | * | 
|  | 188 | *  This is a function pointer entry point called by the api module. | 
|  | 189 | **/ | 
|  | 190 | static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) | 
|  | 191 | { | 
|  | 192 | struct e1000_hw *hw = &adapter->hw; | 
|  | 193 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 194 | struct e1000_mac_operations *func = &mac->ops; | 
|  | 195 |  | 
|  | 196 | /* Set media type */ | 
|  | 197 | switch (adapter->pdev->device) { | 
|  | 198 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 
|  | 199 | hw->media_type = e1000_media_type_internal_serdes; | 
|  | 200 | break; | 
|  | 201 | default: | 
|  | 202 | hw->media_type = e1000_media_type_copper; | 
|  | 203 | break; | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | /* Set mta register count */ | 
|  | 207 | mac->mta_reg_count = 128; | 
|  | 208 | /* Set rar entry count */ | 
|  | 209 | mac->rar_entry_count = E1000_RAR_ENTRIES; | 
|  | 210 | /* Set if manageability features are enabled. */ | 
|  | 211 | mac->arc_subsystem_valid = | 
|  | 212 | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; | 
|  | 213 |  | 
|  | 214 | /* check for link */ | 
|  | 215 | switch (hw->media_type) { | 
|  | 216 | case e1000_media_type_copper: | 
|  | 217 | func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; | 
|  | 218 | func->check_for_link = e1000e_check_for_copper_link; | 
|  | 219 | break; | 
|  | 220 | case e1000_media_type_fiber: | 
|  | 221 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; | 
|  | 222 | func->check_for_link = e1000e_check_for_fiber_link; | 
|  | 223 | break; | 
|  | 224 | case e1000_media_type_internal_serdes: | 
|  | 225 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; | 
|  | 226 | func->check_for_link = e1000e_check_for_serdes_link; | 
|  | 227 | break; | 
|  | 228 | default: | 
|  | 229 | return -E1000_ERR_CONFIG; | 
|  | 230 | break; | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | return 0; | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter) | 
|  | 237 | { | 
|  | 238 | struct e1000_hw *hw = &adapter->hw; | 
|  | 239 | s32 rc; | 
|  | 240 |  | 
|  | 241 | rc = e1000_init_mac_params_80003es2lan(adapter); | 
|  | 242 | if (rc) | 
|  | 243 | return rc; | 
|  | 244 |  | 
|  | 245 | rc = e1000_init_nvm_params_80003es2lan(hw); | 
|  | 246 | if (rc) | 
|  | 247 | return rc; | 
|  | 248 |  | 
|  | 249 | rc = e1000_init_phy_params_80003es2lan(hw); | 
|  | 250 | if (rc) | 
|  | 251 | return rc; | 
|  | 252 |  | 
|  | 253 | return 0; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | /** | 
|  | 257 | *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY | 
|  | 258 | *  @hw: pointer to the HW structure | 
|  | 259 | * | 
|  | 260 | *  A wrapper to acquire access rights to the correct PHY.  This is a | 
|  | 261 | *  function pointer entry point called by the api module. | 
|  | 262 | **/ | 
|  | 263 | static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) | 
|  | 264 | { | 
|  | 265 | u16 mask; | 
|  | 266 |  | 
|  | 267 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
|  | 268 |  | 
|  | 269 | return e1000_acquire_swfw_sync_80003es2lan(hw, mask); | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | /** | 
|  | 273 | *  e1000_release_phy_80003es2lan - Release rights to access PHY | 
|  | 274 | *  @hw: pointer to the HW structure | 
|  | 275 | * | 
|  | 276 | *  A wrapper to release access rights to the correct PHY.  This is a | 
|  | 277 | *  function pointer entry point called by the api module. | 
|  | 278 | **/ | 
|  | 279 | static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) | 
|  | 280 | { | 
|  | 281 | u16 mask; | 
|  | 282 |  | 
|  | 283 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
|  | 284 | e1000_release_swfw_sync_80003es2lan(hw, mask); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | /** | 
|  | 288 | *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM | 
|  | 289 | *  @hw: pointer to the HW structure | 
|  | 290 | * | 
|  | 291 | *  Acquire the semaphore to access the EEPROM.  This is a function | 
|  | 292 | *  pointer entry point called by the api module. | 
|  | 293 | **/ | 
|  | 294 | static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) | 
|  | 295 | { | 
|  | 296 | s32 ret_val; | 
|  | 297 |  | 
|  | 298 | ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | 
|  | 299 | if (ret_val) | 
|  | 300 | return ret_val; | 
|  | 301 |  | 
|  | 302 | ret_val = e1000e_acquire_nvm(hw); | 
|  | 303 |  | 
|  | 304 | if (ret_val) | 
|  | 305 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | 
|  | 306 |  | 
|  | 307 | return ret_val; | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | /** | 
|  | 311 | *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM | 
|  | 312 | *  @hw: pointer to the HW structure | 
|  | 313 | * | 
|  | 314 | *  Release the semaphore used to access the EEPROM.  This is a | 
|  | 315 | *  function pointer entry point called by the api module. | 
|  | 316 | **/ | 
|  | 317 | static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) | 
|  | 318 | { | 
|  | 319 | e1000e_release_nvm(hw); | 
|  | 320 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /** | 
|  | 324 | *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore | 
|  | 325 | *  @hw: pointer to the HW structure | 
|  | 326 | *  @mask: specifies which semaphore to acquire | 
|  | 327 | * | 
|  | 328 | *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask | 
|  | 329 | *  will also specify which port we're acquiring the lock for. | 
|  | 330 | **/ | 
|  | 331 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) | 
|  | 332 | { | 
|  | 333 | u32 swfw_sync; | 
|  | 334 | u32 swmask = mask; | 
|  | 335 | u32 fwmask = mask << 16; | 
|  | 336 | s32 i = 0; | 
|  | 337 | s32 timeout = 200; | 
|  | 338 |  | 
|  | 339 | while (i < timeout) { | 
|  | 340 | if (e1000e_get_hw_semaphore(hw)) | 
|  | 341 | return -E1000_ERR_SWFW_SYNC; | 
|  | 342 |  | 
|  | 343 | swfw_sync = er32(SW_FW_SYNC); | 
|  | 344 | if (!(swfw_sync & (fwmask | swmask))) | 
|  | 345 | break; | 
|  | 346 |  | 
|  | 347 | /* Firmware currently using resource (fwmask) | 
|  | 348 | * or other software thread using resource (swmask) */ | 
|  | 349 | e1000e_put_hw_semaphore(hw); | 
|  | 350 | mdelay(5); | 
|  | 351 | i++; | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | if (i == timeout) { | 
|  | 355 | hw_dbg(hw, | 
|  | 356 | "Driver can't access resource, SW_FW_SYNC timeout.\n"); | 
|  | 357 | return -E1000_ERR_SWFW_SYNC; | 
|  | 358 | } | 
|  | 359 |  | 
|  | 360 | swfw_sync |= swmask; | 
|  | 361 | ew32(SW_FW_SYNC, swfw_sync); | 
|  | 362 |  | 
|  | 363 | e1000e_put_hw_semaphore(hw); | 
|  | 364 |  | 
|  | 365 | return 0; | 
|  | 366 | } | 
|  | 367 |  | 
|  | 368 | /** | 
|  | 369 | *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore | 
|  | 370 | *  @hw: pointer to the HW structure | 
|  | 371 | *  @mask: specifies which semaphore to acquire | 
|  | 372 | * | 
|  | 373 | *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask | 
|  | 374 | *  will also specify which port we're releasing the lock for. | 
|  | 375 | **/ | 
|  | 376 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) | 
|  | 377 | { | 
|  | 378 | u32 swfw_sync; | 
|  | 379 |  | 
|  | 380 | while (e1000e_get_hw_semaphore(hw) != 0); | 
|  | 381 | /* Empty */ | 
|  | 382 |  | 
|  | 383 | swfw_sync = er32(SW_FW_SYNC); | 
|  | 384 | swfw_sync &= ~mask; | 
|  | 385 | ew32(SW_FW_SYNC, swfw_sync); | 
|  | 386 |  | 
|  | 387 | e1000e_put_hw_semaphore(hw); | 
|  | 388 | } | 
|  | 389 |  | 
|  | 390 | /** | 
|  | 391 | *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register | 
|  | 392 | *  @hw: pointer to the HW structure | 
|  | 393 | *  @offset: offset of the register to read | 
|  | 394 | *  @data: pointer to the data returned from the operation | 
|  | 395 | * | 
|  | 396 | *  Read the GG82563 PHY register.  This is a function pointer entry | 
|  | 397 | *  point called by the api module. | 
|  | 398 | **/ | 
|  | 399 | static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, | 
|  | 400 | u32 offset, u16 *data) | 
|  | 401 | { | 
|  | 402 | s32 ret_val; | 
|  | 403 | u32 page_select; | 
|  | 404 | u16 temp; | 
|  | 405 |  | 
|  | 406 | /* Select Configuration Page */ | 
|  | 407 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) | 
|  | 408 | page_select = GG82563_PHY_PAGE_SELECT; | 
|  | 409 | else | 
|  | 410 | /* Use Alternative Page Select register to access | 
|  | 411 | * registers 30 and 31 | 
|  | 412 | */ | 
|  | 413 | page_select = GG82563_PHY_PAGE_SELECT_ALT; | 
|  | 414 |  | 
|  | 415 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); | 
|  | 416 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); | 
|  | 417 | if (ret_val) | 
|  | 418 | return ret_val; | 
|  | 419 |  | 
|  | 420 | /* The "ready" bit in the MDIC register may be incorrectly set | 
|  | 421 | * before the device has completed the "Page Select" MDI | 
|  | 422 | * transaction.  So we wait 200us after each MDI command... | 
|  | 423 | */ | 
|  | 424 | udelay(200); | 
|  | 425 |  | 
|  | 426 | /* ...and verify the command was successful. */ | 
|  | 427 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); | 
|  | 428 |  | 
|  | 429 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { | 
|  | 430 | ret_val = -E1000_ERR_PHY; | 
|  | 431 | return ret_val; | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | udelay(200); | 
|  | 435 |  | 
|  | 436 | ret_val = e1000e_read_phy_reg_m88(hw, | 
|  | 437 | MAX_PHY_REG_ADDRESS & offset, | 
|  | 438 | data); | 
|  | 439 |  | 
|  | 440 | udelay(200); | 
|  | 441 |  | 
|  | 442 | return ret_val; | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | /** | 
|  | 446 | *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register | 
|  | 447 | *  @hw: pointer to the HW structure | 
|  | 448 | *  @offset: offset of the register to read | 
|  | 449 | *  @data: value to write to the register | 
|  | 450 | * | 
|  | 451 | *  Write to the GG82563 PHY register.  This is a function pointer entry | 
|  | 452 | *  point called by the api module. | 
|  | 453 | **/ | 
|  | 454 | static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, | 
|  | 455 | u32 offset, u16 data) | 
|  | 456 | { | 
|  | 457 | s32 ret_val; | 
|  | 458 | u32 page_select; | 
|  | 459 | u16 temp; | 
|  | 460 |  | 
|  | 461 | /* Select Configuration Page */ | 
|  | 462 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) | 
|  | 463 | page_select = GG82563_PHY_PAGE_SELECT; | 
|  | 464 | else | 
|  | 465 | /* Use Alternative Page Select register to access | 
|  | 466 | * registers 30 and 31 | 
|  | 467 | */ | 
|  | 468 | page_select = GG82563_PHY_PAGE_SELECT_ALT; | 
|  | 469 |  | 
|  | 470 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); | 
|  | 471 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); | 
|  | 472 | if (ret_val) | 
|  | 473 | return ret_val; | 
|  | 474 |  | 
|  | 475 |  | 
|  | 476 | /* The "ready" bit in the MDIC register may be incorrectly set | 
|  | 477 | * before the device has completed the "Page Select" MDI | 
|  | 478 | * transaction.  So we wait 200us after each MDI command... | 
|  | 479 | */ | 
|  | 480 | udelay(200); | 
|  | 481 |  | 
|  | 482 | /* ...and verify the command was successful. */ | 
|  | 483 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); | 
|  | 484 |  | 
|  | 485 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) | 
|  | 486 | return -E1000_ERR_PHY; | 
|  | 487 |  | 
|  | 488 | udelay(200); | 
|  | 489 |  | 
|  | 490 | ret_val = e1000e_write_phy_reg_m88(hw, | 
|  | 491 | MAX_PHY_REG_ADDRESS & offset, | 
|  | 492 | data); | 
|  | 493 |  | 
|  | 494 | udelay(200); | 
|  | 495 |  | 
|  | 496 | return ret_val; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /** | 
|  | 500 | *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM | 
|  | 501 | *  @hw: pointer to the HW structure | 
|  | 502 | *  @offset: offset of the register to read | 
|  | 503 | *  @words: number of words to write | 
|  | 504 | *  @data: buffer of data to write to the NVM | 
|  | 505 | * | 
|  | 506 | *  Write "words" of data to the ESB2 NVM.  This is a function | 
|  | 507 | *  pointer entry point called by the api module. | 
|  | 508 | **/ | 
|  | 509 | static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, | 
|  | 510 | u16 words, u16 *data) | 
|  | 511 | { | 
|  | 512 | return e1000e_write_nvm_spi(hw, offset, words, data); | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | /** | 
|  | 516 | *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete | 
|  | 517 | *  @hw: pointer to the HW structure | 
|  | 518 | * | 
|  | 519 | *  Wait a specific amount of time for manageability processes to complete. | 
|  | 520 | *  This is a function pointer entry point called by the phy module. | 
|  | 521 | **/ | 
|  | 522 | static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) | 
|  | 523 | { | 
|  | 524 | s32 timeout = PHY_CFG_TIMEOUT; | 
|  | 525 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | 
|  | 526 |  | 
|  | 527 | if (hw->bus.func == 1) | 
|  | 528 | mask = E1000_NVM_CFG_DONE_PORT_1; | 
|  | 529 |  | 
|  | 530 | while (timeout) { | 
|  | 531 | if (er32(EEMNGCTL) & mask) | 
|  | 532 | break; | 
|  | 533 | msleep(1); | 
|  | 534 | timeout--; | 
|  | 535 | } | 
|  | 536 | if (!timeout) { | 
|  | 537 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | 
|  | 538 | return -E1000_ERR_RESET; | 
|  | 539 | } | 
|  | 540 |  | 
|  | 541 | return 0; | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | /** | 
|  | 545 | *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex | 
|  | 546 | *  @hw: pointer to the HW structure | 
|  | 547 | * | 
|  | 548 | *  Force the speed and duplex settings onto the PHY.  This is a | 
|  | 549 | *  function pointer entry point called by the phy module. | 
|  | 550 | **/ | 
|  | 551 | static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) | 
|  | 552 | { | 
|  | 553 | s32 ret_val; | 
|  | 554 | u16 phy_data; | 
|  | 555 | bool link; | 
|  | 556 |  | 
|  | 557 | /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI | 
|  | 558 | * forced whenever speed and duplex are forced. | 
|  | 559 | */ | 
|  | 560 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 561 | if (ret_val) | 
|  | 562 | return ret_val; | 
|  | 563 |  | 
|  | 564 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; | 
|  | 565 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); | 
|  | 566 | if (ret_val) | 
|  | 567 | return ret_val; | 
|  | 568 |  | 
|  | 569 | hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data); | 
|  | 570 |  | 
|  | 571 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | 
|  | 572 | if (ret_val) | 
|  | 573 | return ret_val; | 
|  | 574 |  | 
|  | 575 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | 
|  | 576 |  | 
|  | 577 | /* Reset the phy to commit changes. */ | 
|  | 578 | phy_data |= MII_CR_RESET; | 
|  | 579 |  | 
|  | 580 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | 
|  | 581 | if (ret_val) | 
|  | 582 | return ret_val; | 
|  | 583 |  | 
|  | 584 | udelay(1); | 
|  | 585 |  | 
|  | 586 | if (hw->phy.wait_for_link) { | 
|  | 587 | hw_dbg(hw, "Waiting for forced speed/duplex link " | 
|  | 588 | "on GG82563 phy.\n"); | 
|  | 589 |  | 
|  | 590 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | 
|  | 591 | 100000, &link); | 
|  | 592 | if (ret_val) | 
|  | 593 | return ret_val; | 
|  | 594 |  | 
|  | 595 | if (!link) { | 
|  | 596 | /* We didn't get link. | 
|  | 597 | * Reset the DSP and cross our fingers. | 
|  | 598 | */ | 
|  | 599 | ret_val = e1000e_phy_reset_dsp(hw); | 
|  | 600 | if (ret_val) | 
|  | 601 | return ret_val; | 
|  | 602 | } | 
|  | 603 |  | 
|  | 604 | /* Try once more */ | 
|  | 605 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | 
|  | 606 | 100000, &link); | 
|  | 607 | if (ret_val) | 
|  | 608 | return ret_val; | 
|  | 609 | } | 
|  | 610 |  | 
|  | 611 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | 
|  | 612 | if (ret_val) | 
|  | 613 | return ret_val; | 
|  | 614 |  | 
|  | 615 | /* Resetting the phy means we need to verify the TX_CLK corresponds | 
|  | 616 | * to the link speed.  10Mbps -> 2.5MHz, else 25MHz. | 
|  | 617 | */ | 
|  | 618 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; | 
|  | 619 | if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) | 
|  | 620 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; | 
|  | 621 | else | 
|  | 622 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; | 
|  | 623 |  | 
|  | 624 | /* In addition, we must re-enable CRS on Tx for both half and full | 
|  | 625 | * duplex. | 
|  | 626 | */ | 
|  | 627 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | 
|  | 628 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); | 
|  | 629 |  | 
|  | 630 | return ret_val; | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | /** | 
|  | 634 | *  e1000_get_cable_length_80003es2lan - Set approximate cable length | 
|  | 635 | *  @hw: pointer to the HW structure | 
|  | 636 | * | 
|  | 637 | *  Find the approximate cable length as measured by the GG82563 PHY. | 
|  | 638 | *  This is a function pointer entry point called by the phy module. | 
|  | 639 | **/ | 
|  | 640 | static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) | 
|  | 641 | { | 
|  | 642 | struct e1000_phy_info *phy = &hw->phy; | 
|  | 643 | s32 ret_val; | 
|  | 644 | u16 phy_data; | 
|  | 645 | u16 index; | 
|  | 646 |  | 
|  | 647 | ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); | 
|  | 648 | if (ret_val) | 
|  | 649 | return ret_val; | 
|  | 650 |  | 
|  | 651 | index = phy_data & GG82563_DSPD_CABLE_LENGTH; | 
|  | 652 | phy->min_cable_length = e1000_gg82563_cable_length_table[index]; | 
|  | 653 | phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; | 
|  | 654 |  | 
|  | 655 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | 
|  | 656 |  | 
|  | 657 | return 0; | 
|  | 658 | } | 
|  | 659 |  | 
|  | 660 | /** | 
|  | 661 | *  e1000_get_link_up_info_80003es2lan - Report speed and duplex | 
|  | 662 | *  @hw: pointer to the HW structure | 
|  | 663 | *  @speed: pointer to speed buffer | 
|  | 664 | *  @duplex: pointer to duplex buffer | 
|  | 665 | * | 
|  | 666 | *  Retrieve the current speed and duplex configuration. | 
|  | 667 | *  This is a function pointer entry point called by the api module. | 
|  | 668 | **/ | 
|  | 669 | static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, | 
|  | 670 | u16 *duplex) | 
|  | 671 | { | 
|  | 672 | s32 ret_val; | 
|  | 673 |  | 
|  | 674 | if (hw->media_type == e1000_media_type_copper) { | 
|  | 675 | ret_val = e1000e_get_speed_and_duplex_copper(hw, | 
|  | 676 | speed, | 
|  | 677 | duplex); | 
|  | 678 | if (ret_val) | 
|  | 679 | return ret_val; | 
|  | 680 | if (*speed == SPEED_1000) | 
|  | 681 | ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); | 
|  | 682 | else | 
|  | 683 | ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, | 
|  | 684 | *duplex); | 
|  | 685 | } else { | 
|  | 686 | ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, | 
|  | 687 | speed, | 
|  | 688 | duplex); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | return ret_val; | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | /** | 
|  | 695 | *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller | 
|  | 696 | *  @hw: pointer to the HW structure | 
|  | 697 | * | 
|  | 698 | *  Perform a global reset to the ESB2 controller. | 
|  | 699 | *  This is a function pointer entry point called by the api module. | 
|  | 700 | **/ | 
|  | 701 | static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) | 
|  | 702 | { | 
|  | 703 | u32 ctrl; | 
|  | 704 | u32 icr; | 
|  | 705 | s32 ret_val; | 
|  | 706 |  | 
|  | 707 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | 708 | * on the last TLP read/write transaction when MAC is reset. | 
|  | 709 | */ | 
|  | 710 | ret_val = e1000e_disable_pcie_master(hw); | 
|  | 711 | if (ret_val) | 
|  | 712 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | 
|  | 713 |  | 
|  | 714 | hw_dbg(hw, "Masking off all interrupts\n"); | 
|  | 715 | ew32(IMC, 0xffffffff); | 
|  | 716 |  | 
|  | 717 | ew32(RCTL, 0); | 
|  | 718 | ew32(TCTL, E1000_TCTL_PSP); | 
|  | 719 | e1e_flush(); | 
|  | 720 |  | 
|  | 721 | msleep(10); | 
|  | 722 |  | 
|  | 723 | ctrl = er32(CTRL); | 
|  | 724 |  | 
|  | 725 | hw_dbg(hw, "Issuing a global reset to MAC\n"); | 
|  | 726 | ew32(CTRL, ctrl | E1000_CTRL_RST); | 
|  | 727 |  | 
|  | 728 | ret_val = e1000e_get_auto_rd_done(hw); | 
|  | 729 | if (ret_val) | 
|  | 730 | /* We don't want to continue accessing MAC registers. */ | 
|  | 731 | return ret_val; | 
|  | 732 |  | 
|  | 733 | /* Clear any pending interrupt events. */ | 
|  | 734 | ew32(IMC, 0xffffffff); | 
|  | 735 | icr = er32(ICR); | 
|  | 736 |  | 
|  | 737 | return 0; | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | /** | 
|  | 741 | *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller | 
|  | 742 | *  @hw: pointer to the HW structure | 
|  | 743 | * | 
|  | 744 | *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters. | 
|  | 745 | *  This is a function pointer entry point called by the api module. | 
|  | 746 | **/ | 
|  | 747 | static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) | 
|  | 748 | { | 
|  | 749 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 750 | u32 reg_data; | 
|  | 751 | s32 ret_val; | 
|  | 752 | u16 i; | 
|  | 753 |  | 
|  | 754 | e1000_initialize_hw_bits_80003es2lan(hw); | 
|  | 755 |  | 
|  | 756 | /* Initialize identification LED */ | 
|  | 757 | ret_val = e1000e_id_led_init(hw); | 
|  | 758 | if (ret_val) { | 
|  | 759 | hw_dbg(hw, "Error initializing identification LED\n"); | 
|  | 760 | return ret_val; | 
|  | 761 | } | 
|  | 762 |  | 
|  | 763 | /* Disabling VLAN filtering */ | 
|  | 764 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | 
|  | 765 | e1000e_clear_vfta(hw); | 
|  | 766 |  | 
|  | 767 | /* Setup the receive address. */ | 
|  | 768 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); | 
|  | 769 |  | 
|  | 770 | /* Zero out the Multicast HASH table */ | 
|  | 771 | hw_dbg(hw, "Zeroing the MTA\n"); | 
|  | 772 | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | 773 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | 
|  | 774 |  | 
|  | 775 | /* Setup link and flow control */ | 
|  | 776 | ret_val = e1000e_setup_link(hw); | 
|  | 777 |  | 
|  | 778 | /* Set the transmit descriptor write-back policy */ | 
|  | 779 | reg_data = er32(TXDCTL); | 
|  | 780 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | 781 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; | 
|  | 782 | ew32(TXDCTL, reg_data); | 
|  | 783 |  | 
|  | 784 | /* ...for both queues. */ | 
|  | 785 | reg_data = er32(TXDCTL1); | 
|  | 786 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | 787 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; | 
|  | 788 | ew32(TXDCTL1, reg_data); | 
|  | 789 |  | 
|  | 790 | /* Enable retransmit on late collisions */ | 
|  | 791 | reg_data = er32(TCTL); | 
|  | 792 | reg_data |= E1000_TCTL_RTLC; | 
|  | 793 | ew32(TCTL, reg_data); | 
|  | 794 |  | 
|  | 795 | /* Configure Gigabit Carry Extend Padding */ | 
|  | 796 | reg_data = er32(TCTL_EXT); | 
|  | 797 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | 
|  | 798 | reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; | 
|  | 799 | ew32(TCTL_EXT, reg_data); | 
|  | 800 |  | 
|  | 801 | /* Configure Transmit Inter-Packet Gap */ | 
|  | 802 | reg_data = er32(TIPG); | 
|  | 803 | reg_data &= ~E1000_TIPG_IPGT_MASK; | 
|  | 804 | reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; | 
|  | 805 | ew32(TIPG, reg_data); | 
|  | 806 |  | 
|  | 807 | reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); | 
|  | 808 | reg_data &= ~0x00100000; | 
|  | 809 | E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); | 
|  | 810 |  | 
|  | 811 | /* Clear all of the statistics registers (clear on read).  It is | 
|  | 812 | * important that we do this after we have tried to establish link | 
|  | 813 | * because the symbol error count will increment wildly if there | 
|  | 814 | * is no link. | 
|  | 815 | */ | 
|  | 816 | e1000_clear_hw_cntrs_80003es2lan(hw); | 
|  | 817 |  | 
|  | 818 | return ret_val; | 
|  | 819 | } | 
|  | 820 |  | 
|  | 821 | /** | 
|  | 822 | *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 | 
|  | 823 | *  @hw: pointer to the HW structure | 
|  | 824 | * | 
|  | 825 | *  Initializes required hardware-dependent bits needed for normal operation. | 
|  | 826 | **/ | 
|  | 827 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) | 
|  | 828 | { | 
|  | 829 | u32 reg; | 
|  | 830 |  | 
|  | 831 | /* Transmit Descriptor Control 0 */ | 
|  | 832 | reg = er32(TXDCTL); | 
|  | 833 | reg |= (1 << 22); | 
|  | 834 | ew32(TXDCTL, reg); | 
|  | 835 |  | 
|  | 836 | /* Transmit Descriptor Control 1 */ | 
|  | 837 | reg = er32(TXDCTL1); | 
|  | 838 | reg |= (1 << 22); | 
|  | 839 | ew32(TXDCTL1, reg); | 
|  | 840 |  | 
|  | 841 | /* Transmit Arbitration Control 0 */ | 
|  | 842 | reg = er32(TARC0); | 
|  | 843 | reg &= ~(0xF << 27); /* 30:27 */ | 
|  | 844 | if (hw->media_type != e1000_media_type_copper) | 
|  | 845 | reg &= ~(1 << 20); | 
|  | 846 | ew32(TARC0, reg); | 
|  | 847 |  | 
|  | 848 | /* Transmit Arbitration Control 1 */ | 
|  | 849 | reg = er32(TARC1); | 
|  | 850 | if (er32(TCTL) & E1000_TCTL_MULR) | 
|  | 851 | reg &= ~(1 << 28); | 
|  | 852 | else | 
|  | 853 | reg |= (1 << 28); | 
|  | 854 | ew32(TARC1, reg); | 
|  | 855 | } | 
|  | 856 |  | 
|  | 857 | /** | 
|  | 858 | *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link | 
|  | 859 | *  @hw: pointer to the HW structure | 
|  | 860 | * | 
|  | 861 | *  Setup some GG82563 PHY registers for obtaining link | 
|  | 862 | **/ | 
|  | 863 | static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) | 
|  | 864 | { | 
|  | 865 | struct e1000_phy_info *phy = &hw->phy; | 
|  | 866 | s32 ret_val; | 
|  | 867 | u32 ctrl_ext; | 
|  | 868 | u16 data; | 
|  | 869 |  | 
|  | 870 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, | 
|  | 871 | &data); | 
|  | 872 | if (ret_val) | 
|  | 873 | return ret_val; | 
|  | 874 |  | 
|  | 875 | data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | 
|  | 876 | /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ | 
|  | 877 | data |= GG82563_MSCR_TX_CLK_1000MBPS_25; | 
|  | 878 |  | 
|  | 879 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, | 
|  | 880 | data); | 
|  | 881 | if (ret_val) | 
|  | 882 | return ret_val; | 
|  | 883 |  | 
|  | 884 | /* Options: | 
|  | 885 | *   MDI/MDI-X = 0 (default) | 
|  | 886 | *   0 - Auto for all speeds | 
|  | 887 | *   1 - MDI mode | 
|  | 888 | *   2 - MDI-X mode | 
|  | 889 | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | 890 | */ | 
|  | 891 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); | 
|  | 892 | if (ret_val) | 
|  | 893 | return ret_val; | 
|  | 894 |  | 
|  | 895 | data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | 
|  | 896 |  | 
|  | 897 | switch (phy->mdix) { | 
|  | 898 | case 1: | 
|  | 899 | data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | 
|  | 900 | break; | 
|  | 901 | case 2: | 
|  | 902 | data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | 
|  | 903 | break; | 
|  | 904 | case 0: | 
|  | 905 | default: | 
|  | 906 | data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | 
|  | 907 | break; | 
|  | 908 | } | 
|  | 909 |  | 
|  | 910 | /* Options: | 
|  | 911 | *   disable_polarity_correction = 0 (default) | 
|  | 912 | *       Automatic Correction for Reversed Cable Polarity | 
|  | 913 | *   0 - Disabled | 
|  | 914 | *   1 - Enabled | 
|  | 915 | */ | 
|  | 916 | data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 
|  | 917 | if (phy->disable_polarity_correction) | 
|  | 918 | data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 
|  | 919 |  | 
|  | 920 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); | 
|  | 921 | if (ret_val) | 
|  | 922 | return ret_val; | 
|  | 923 |  | 
|  | 924 | /* SW Reset the PHY so all changes take effect */ | 
|  | 925 | ret_val = e1000e_commit_phy(hw); | 
|  | 926 | if (ret_val) { | 
|  | 927 | hw_dbg(hw, "Error Resetting the PHY\n"); | 
|  | 928 | return ret_val; | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | /* Bypass RX and TX FIFO's */ | 
|  | 932 | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | 933 | E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, | 
|  | 934 | E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | | 
|  | 935 | E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); | 
|  | 936 | if (ret_val) | 
|  | 937 | return ret_val; | 
|  | 938 |  | 
|  | 939 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); | 
|  | 940 | if (ret_val) | 
|  | 941 | return ret_val; | 
|  | 942 |  | 
|  | 943 | data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | 
|  | 944 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); | 
|  | 945 | if (ret_val) | 
|  | 946 | return ret_val; | 
|  | 947 |  | 
|  | 948 | ctrl_ext = er32(CTRL_EXT); | 
|  | 949 | ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | 
|  | 950 | ew32(CTRL_EXT, ctrl_ext); | 
|  | 951 |  | 
|  | 952 | ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); | 
|  | 953 | if (ret_val) | 
|  | 954 | return ret_val; | 
|  | 955 |  | 
|  | 956 | /* Do not init these registers when the HW is in IAMT mode, since the | 
|  | 957 | * firmware will have already initialized them.  We only initialize | 
|  | 958 | * them if the HW is not in IAMT mode. | 
|  | 959 | */ | 
|  | 960 | if (!e1000e_check_mng_mode(hw)) { | 
|  | 961 | /* Enable Electrical Idle on the PHY */ | 
|  | 962 | data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | 
|  | 963 | ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); | 
|  | 964 | if (ret_val) | 
|  | 965 | return ret_val; | 
|  | 966 |  | 
|  | 967 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); | 
|  | 968 | if (ret_val) | 
|  | 969 | return ret_val; | 
|  | 970 |  | 
|  | 971 | data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | 972 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); | 
|  | 973 | if (ret_val) | 
|  | 974 | return ret_val; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | /* Workaround: Disable padding in Kumeran interface in the MAC | 
|  | 978 | * and in the PHY to avoid CRC errors. | 
|  | 979 | */ | 
|  | 980 | ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); | 
|  | 981 | if (ret_val) | 
|  | 982 | return ret_val; | 
|  | 983 |  | 
|  | 984 | data |= GG82563_ICR_DIS_PADDING; | 
|  | 985 | ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); | 
|  | 986 | if (ret_val) | 
|  | 987 | return ret_val; | 
|  | 988 |  | 
|  | 989 | return 0; | 
|  | 990 | } | 
|  | 991 |  | 
|  | 992 | /** | 
|  | 993 | *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 | 
|  | 994 | *  @hw: pointer to the HW structure | 
|  | 995 | * | 
|  | 996 | *  Essentially a wrapper for setting up all things "copper" related. | 
|  | 997 | *  This is a function pointer entry point called by the mac module. | 
|  | 998 | **/ | 
|  | 999 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) | 
|  | 1000 | { | 
|  | 1001 | u32 ctrl; | 
|  | 1002 | s32 ret_val; | 
|  | 1003 | u16 reg_data; | 
|  | 1004 |  | 
|  | 1005 | ctrl = er32(CTRL); | 
|  | 1006 | ctrl |= E1000_CTRL_SLU; | 
|  | 1007 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | 1008 | ew32(CTRL, ctrl); | 
|  | 1009 |  | 
|  | 1010 | /* Set the mac to wait the maximum time between each | 
|  | 1011 | * iteration and increase the max iterations when | 
|  | 1012 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | 
|  | 1013 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | 
|  | 1014 | if (ret_val) | 
|  | 1015 | return ret_val; | 
|  | 1016 | ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | 
|  | 1017 | if (ret_val) | 
|  | 1018 | return ret_val; | 
|  | 1019 | reg_data |= 0x3F; | 
|  | 1020 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | 
|  | 1021 | if (ret_val) | 
|  | 1022 | return ret_val; | 
|  | 1023 | ret_val = e1000e_read_kmrn_reg(hw, | 
|  | 1024 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, | 
|  | 1025 | ®_data); | 
|  | 1026 | if (ret_val) | 
|  | 1027 | return ret_val; | 
|  | 1028 | reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; | 
|  | 1029 | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | 1030 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, | 
|  | 1031 | reg_data); | 
|  | 1032 | if (ret_val) | 
|  | 1033 | return ret_val; | 
|  | 1034 |  | 
|  | 1035 | ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); | 
|  | 1036 | if (ret_val) | 
|  | 1037 | return ret_val; | 
|  | 1038 |  | 
|  | 1039 | ret_val = e1000e_setup_copper_link(hw); | 
|  | 1040 |  | 
|  | 1041 | return 0; | 
|  | 1042 | } | 
|  | 1043 |  | 
|  | 1044 | /** | 
|  | 1045 | *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation | 
|  | 1046 | *  @hw: pointer to the HW structure | 
|  | 1047 | *  @duplex: current duplex setting | 
|  | 1048 | * | 
|  | 1049 | *  Configure the KMRN interface by applying last minute quirks for | 
|  | 1050 | *  10/100 operation. | 
|  | 1051 | **/ | 
|  | 1052 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) | 
|  | 1053 | { | 
|  | 1054 | s32 ret_val; | 
|  | 1055 | u32 tipg; | 
|  | 1056 | u16 reg_data; | 
|  | 1057 |  | 
|  | 1058 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; | 
|  | 1059 | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | 1060 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, | 
|  | 1061 | reg_data); | 
|  | 1062 | if (ret_val) | 
|  | 1063 | return ret_val; | 
|  | 1064 |  | 
|  | 1065 | /* Configure Transmit Inter-Packet Gap */ | 
|  | 1066 | tipg = er32(TIPG); | 
|  | 1067 | tipg &= ~E1000_TIPG_IPGT_MASK; | 
|  | 1068 | tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; | 
|  | 1069 | ew32(TIPG, tipg); | 
|  | 1070 |  | 
|  | 1071 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 
|  | 1072 | if (ret_val) | 
|  | 1073 | return ret_val; | 
|  | 1074 |  | 
|  | 1075 | if (duplex == HALF_DUPLEX) | 
|  | 1076 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | 1077 | else | 
|  | 1078 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | 1079 |  | 
|  | 1080 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | 
|  | 1081 |  | 
|  | 1082 | return 0; | 
|  | 1083 | } | 
|  | 1084 |  | 
|  | 1085 | /** | 
|  | 1086 | *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation | 
|  | 1087 | *  @hw: pointer to the HW structure | 
|  | 1088 | * | 
|  | 1089 | *  Configure the KMRN interface by applying last minute quirks for | 
|  | 1090 | *  gigabit operation. | 
|  | 1091 | **/ | 
|  | 1092 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) | 
|  | 1093 | { | 
|  | 1094 | s32 ret_val; | 
|  | 1095 | u16 reg_data; | 
|  | 1096 | u32 tipg; | 
|  | 1097 |  | 
|  | 1098 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; | 
|  | 1099 | ret_val = e1000e_write_kmrn_reg(hw, | 
|  | 1100 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, | 
|  | 1101 | reg_data); | 
|  | 1102 | if (ret_val) | 
|  | 1103 | return ret_val; | 
|  | 1104 |  | 
|  | 1105 | /* Configure Transmit Inter-Packet Gap */ | 
|  | 1106 | tipg = er32(TIPG); | 
|  | 1107 | tipg &= ~E1000_TIPG_IPGT_MASK; | 
|  | 1108 | tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; | 
|  | 1109 | ew32(TIPG, tipg); | 
|  | 1110 |  | 
|  | 1111 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 
|  | 1112 | if (ret_val) | 
|  | 1113 | return ret_val; | 
|  | 1114 |  | 
|  | 1115 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | 1116 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | 
|  | 1117 |  | 
|  | 1118 | return ret_val; | 
|  | 1119 | } | 
|  | 1120 |  | 
|  | 1121 | /** | 
|  | 1122 | *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters | 
|  | 1123 | *  @hw: pointer to the HW structure | 
|  | 1124 | * | 
|  | 1125 | *  Clears the hardware counters by reading the counter registers. | 
|  | 1126 | **/ | 
|  | 1127 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) | 
|  | 1128 | { | 
|  | 1129 | u32 temp; | 
|  | 1130 |  | 
|  | 1131 | e1000e_clear_hw_cntrs_base(hw); | 
|  | 1132 |  | 
|  | 1133 | temp = er32(PRC64); | 
|  | 1134 | temp = er32(PRC127); | 
|  | 1135 | temp = er32(PRC255); | 
|  | 1136 | temp = er32(PRC511); | 
|  | 1137 | temp = er32(PRC1023); | 
|  | 1138 | temp = er32(PRC1522); | 
|  | 1139 | temp = er32(PTC64); | 
|  | 1140 | temp = er32(PTC127); | 
|  | 1141 | temp = er32(PTC255); | 
|  | 1142 | temp = er32(PTC511); | 
|  | 1143 | temp = er32(PTC1023); | 
|  | 1144 | temp = er32(PTC1522); | 
|  | 1145 |  | 
|  | 1146 | temp = er32(ALGNERRC); | 
|  | 1147 | temp = er32(RXERRC); | 
|  | 1148 | temp = er32(TNCRS); | 
|  | 1149 | temp = er32(CEXTERR); | 
|  | 1150 | temp = er32(TSCTC); | 
|  | 1151 | temp = er32(TSCTFC); | 
|  | 1152 |  | 
|  | 1153 | temp = er32(MGTPRC); | 
|  | 1154 | temp = er32(MGTPDC); | 
|  | 1155 | temp = er32(MGTPTC); | 
|  | 1156 |  | 
|  | 1157 | temp = er32(IAC); | 
|  | 1158 | temp = er32(ICRXOC); | 
|  | 1159 |  | 
|  | 1160 | temp = er32(ICRXPTC); | 
|  | 1161 | temp = er32(ICRXATC); | 
|  | 1162 | temp = er32(ICTXPTC); | 
|  | 1163 | temp = er32(ICTXATC); | 
|  | 1164 | temp = er32(ICTXQEC); | 
|  | 1165 | temp = er32(ICTXQMTC); | 
|  | 1166 | temp = er32(ICRXDMTC); | 
|  | 1167 | } | 
|  | 1168 |  | 
|  | 1169 | static struct e1000_mac_operations es2_mac_ops = { | 
|  | 1170 | .mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, | 
|  | 1171 | /* check_for_link dependent on media type */ | 
|  | 1172 | .cleanup_led		= e1000e_cleanup_led_generic, | 
|  | 1173 | .clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan, | 
|  | 1174 | .get_bus_info		= e1000e_get_bus_info_pcie, | 
|  | 1175 | .get_link_up_info	= e1000_get_link_up_info_80003es2lan, | 
|  | 1176 | .led_on			= e1000e_led_on_generic, | 
|  | 1177 | .led_off		= e1000e_led_off_generic, | 
|  | 1178 | .mc_addr_list_update	= e1000e_mc_addr_list_update_generic, | 
|  | 1179 | .reset_hw		= e1000_reset_hw_80003es2lan, | 
|  | 1180 | .init_hw		= e1000_init_hw_80003es2lan, | 
|  | 1181 | .setup_link		= e1000e_setup_link, | 
|  | 1182 | /* setup_physical_interface dependent on media type */ | 
|  | 1183 | }; | 
|  | 1184 |  | 
|  | 1185 | static struct e1000_phy_operations es2_phy_ops = { | 
|  | 1186 | .acquire_phy		= e1000_acquire_phy_80003es2lan, | 
|  | 1187 | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | 1188 | .commit_phy	 	= e1000e_phy_sw_reset, | 
|  | 1189 | .force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan, | 
|  | 1190 | .get_cfg_done       	= e1000_get_cfg_done_80003es2lan, | 
|  | 1191 | .get_cable_length   	= e1000_get_cable_length_80003es2lan, | 
|  | 1192 | .get_phy_info       	= e1000e_get_phy_info_m88, | 
|  | 1193 | .read_phy_reg       	= e1000_read_phy_reg_gg82563_80003es2lan, | 
|  | 1194 | .release_phy		= e1000_release_phy_80003es2lan, | 
|  | 1195 | .reset_phy	  	= e1000e_phy_hw_reset_generic, | 
|  | 1196 | .set_d0_lplu_state  	= NULL, | 
|  | 1197 | .set_d3_lplu_state  	= e1000e_set_d3_lplu_state, | 
|  | 1198 | .write_phy_reg      	= e1000_write_phy_reg_gg82563_80003es2lan, | 
|  | 1199 | }; | 
|  | 1200 |  | 
|  | 1201 | static struct e1000_nvm_operations es2_nvm_ops = { | 
|  | 1202 | .acquire_nvm		= e1000_acquire_nvm_80003es2lan, | 
|  | 1203 | .read_nvm		= e1000e_read_nvm_eerd, | 
|  | 1204 | .release_nvm		= e1000_release_nvm_80003es2lan, | 
|  | 1205 | .update_nvm		= e1000e_update_nvm_checksum_generic, | 
|  | 1206 | .valid_led_default	= e1000e_valid_led_default, | 
|  | 1207 | .validate_nvm		= e1000e_validate_nvm_checksum_generic, | 
|  | 1208 | .write_nvm		= e1000_write_nvm_80003es2lan, | 
|  | 1209 | }; | 
|  | 1210 |  | 
|  | 1211 | struct e1000_info e1000_es2_info = { | 
|  | 1212 | .mac			= e1000_80003es2lan, | 
|  | 1213 | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | 1214 | | FLAG_HAS_JUMBO_FRAMES | 
|  | 1215 | | FLAG_HAS_STATS_PTC_PRC | 
|  | 1216 | | FLAG_HAS_WOL | 
|  | 1217 | | FLAG_APME_IN_CTRL3 | 
|  | 1218 | | FLAG_RX_CSUM_ENABLED | 
|  | 1219 | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | 1220 | | FLAG_HAS_STATS_ICR_ICT | 
|  | 1221 | | FLAG_RX_NEEDS_RESTART /* errata */ | 
|  | 1222 | | FLAG_TARC_SET_BIT_ZERO /* errata */ | 
|  | 1223 | | FLAG_APME_CHECK_PORT_B | 
|  | 1224 | | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | 
|  | 1225 | | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, | 
|  | 1226 | .pba			= 38, | 
|  | 1227 | .get_invariants		= e1000_get_invariants_80003es2lan, | 
|  | 1228 | .mac_ops		= &es2_mac_ops, | 
|  | 1229 | .phy_ops		= &es2_phy_ops, | 
|  | 1230 | .nvm_ops		= &es2_nvm_ops, | 
|  | 1231 | }; | 
|  | 1232 |  |