| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1 | /******************************************************************************* | 
|  | 2 |  | 
|  | 3 | Intel PRO/1000 Linux driver | 
|  | 4 | Copyright(c) 1999 - 2007 Intel Corporation. | 
|  | 5 |  | 
|  | 6 | This program is free software; you can redistribute it and/or modify it | 
|  | 7 | under the terms and conditions of the GNU General Public License, | 
|  | 8 | version 2, as published by the Free Software Foundation. | 
|  | 9 |  | 
|  | 10 | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 12 | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 13 | more details. | 
|  | 14 |  | 
|  | 15 | You should have received a copy of the GNU General Public License along with | 
|  | 16 | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | 18 |  | 
|  | 19 | The full GNU General Public License is included in this distribution in | 
|  | 20 | the file called "COPYING". | 
|  | 21 |  | 
|  | 22 | Contact Information: | 
|  | 23 | Linux NICS <linux.nics@intel.com> | 
|  | 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | 26 |  | 
|  | 27 | *******************************************************************************/ | 
|  | 28 |  | 
|  | 29 | #include <linux/module.h> | 
|  | 30 | #include <linux/types.h> | 
|  | 31 | #include <linux/init.h> | 
|  | 32 | #include <linux/pci.h> | 
|  | 33 | #include <linux/vmalloc.h> | 
|  | 34 | #include <linux/pagemap.h> | 
|  | 35 | #include <linux/delay.h> | 
|  | 36 | #include <linux/netdevice.h> | 
|  | 37 | #include <linux/tcp.h> | 
|  | 38 | #include <linux/ipv6.h> | 
|  | 39 | #include <net/checksum.h> | 
|  | 40 | #include <net/ip6_checksum.h> | 
|  | 41 | #include <linux/mii.h> | 
|  | 42 | #include <linux/ethtool.h> | 
|  | 43 | #include <linux/if_vlan.h> | 
|  | 44 | #include <linux/cpu.h> | 
|  | 45 | #include <linux/smp.h> | 
|  | 46 |  | 
|  | 47 | #include "e1000.h" | 
|  | 48 |  | 
|  | 49 | #define DRV_VERSION "0.2.0" | 
|  | 50 | char e1000e_driver_name[] = "e1000e"; | 
|  | 51 | const char e1000e_driver_version[] = DRV_VERSION; | 
|  | 52 |  | 
|  | 53 | static const struct e1000_info *e1000_info_tbl[] = { | 
|  | 54 | [board_82571]		= &e1000_82571_info, | 
|  | 55 | [board_82572]		= &e1000_82572_info, | 
|  | 56 | [board_82573]		= &e1000_82573_info, | 
|  | 57 | [board_80003es2lan]	= &e1000_es2_info, | 
|  | 58 | [board_ich8lan]		= &e1000_ich8_info, | 
|  | 59 | [board_ich9lan]		= &e1000_ich9_info, | 
|  | 60 | }; | 
|  | 61 |  | 
|  | 62 | #ifdef DEBUG | 
|  | 63 | /** | 
|  | 64 | * e1000_get_hw_dev_name - return device name string | 
|  | 65 | * used by hardware layer to print debugging information | 
|  | 66 | **/ | 
|  | 67 | char *e1000e_get_hw_dev_name(struct e1000_hw *hw) | 
|  | 68 | { | 
| Auke Kok | 589c085 | 2007-10-04 11:38:43 -0700 | [diff] [blame] | 69 | return hw->adapter->netdev->name; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 70 | } | 
|  | 71 | #endif | 
|  | 72 |  | 
|  | 73 | /** | 
|  | 74 | * e1000_desc_unused - calculate if we have unused descriptors | 
|  | 75 | **/ | 
|  | 76 | static int e1000_desc_unused(struct e1000_ring *ring) | 
|  | 77 | { | 
|  | 78 | if (ring->next_to_clean > ring->next_to_use) | 
|  | 79 | return ring->next_to_clean - ring->next_to_use - 1; | 
|  | 80 |  | 
|  | 81 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | 
|  | 82 | } | 
|  | 83 |  | 
|  | 84 | /** | 
|  | 85 | * e1000_receive_skb - helper function to handle rx indications | 
|  | 86 | * @adapter: board private structure | 
|  | 87 | * @status: descriptor status field as written by hardware | 
|  | 88 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | 
|  | 89 | * @skb: pointer to sk_buff to be indicated to stack | 
|  | 90 | **/ | 
|  | 91 | static void e1000_receive_skb(struct e1000_adapter *adapter, | 
|  | 92 | struct net_device *netdev, | 
|  | 93 | struct sk_buff *skb, | 
|  | 94 | u8 status, u16 vlan) | 
|  | 95 | { | 
|  | 96 | skb->protocol = eth_type_trans(skb, netdev); | 
|  | 97 |  | 
|  | 98 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | 
|  | 99 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 
|  | 100 | le16_to_cpu(vlan) & | 
|  | 101 | E1000_RXD_SPC_VLAN_MASK); | 
|  | 102 | else | 
|  | 103 | netif_receive_skb(skb); | 
|  | 104 |  | 
|  | 105 | netdev->last_rx = jiffies; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /** | 
|  | 109 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
|  | 110 | * @adapter:     board private structure | 
|  | 111 | * @status_err:  receive descriptor status and error fields | 
|  | 112 | * @csum:	receive descriptor csum field | 
|  | 113 | * @sk_buff:     socket buffer with received data | 
|  | 114 | **/ | 
|  | 115 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
|  | 116 | u32 csum, struct sk_buff *skb) | 
|  | 117 | { | 
|  | 118 | u16 status = (u16)status_err; | 
|  | 119 | u8 errors = (u8)(status_err >> 24); | 
|  | 120 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 121 |  | 
|  | 122 | /* Ignore Checksum bit is set */ | 
|  | 123 | if (status & E1000_RXD_STAT_IXSM) | 
|  | 124 | return; | 
|  | 125 | /* TCP/UDP checksum error bit is set */ | 
|  | 126 | if (errors & E1000_RXD_ERR_TCPE) { | 
|  | 127 | /* let the stack verify checksum errors */ | 
|  | 128 | adapter->hw_csum_err++; | 
|  | 129 | return; | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | /* TCP/UDP Checksum has not been calculated */ | 
|  | 133 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
|  | 134 | return; | 
|  | 135 |  | 
|  | 136 | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | 137 | if (status & E1000_RXD_STAT_TCPCS) { | 
|  | 138 | /* TCP checksum is good */ | 
|  | 139 | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | 140 | } else { | 
|  | 141 | /* IP fragment with UDP payload */ | 
|  | 142 | /* Hardware complements the payload checksum, so we undo it | 
|  | 143 | * and then put the value in host order for further stack use. | 
|  | 144 | */ | 
|  | 145 | csum = ntohl(csum ^ 0xFFFF); | 
|  | 146 | skb->csum = csum; | 
|  | 147 | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | 148 | } | 
|  | 149 | adapter->hw_csum_good++; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | /** | 
|  | 153 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
|  | 154 | * @adapter: address of board private structure | 
|  | 155 | **/ | 
|  | 156 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | 157 | int cleaned_count) | 
|  | 158 | { | 
|  | 159 | struct net_device *netdev = adapter->netdev; | 
|  | 160 | struct pci_dev *pdev = adapter->pdev; | 
|  | 161 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 162 | struct e1000_rx_desc *rx_desc; | 
|  | 163 | struct e1000_buffer *buffer_info; | 
|  | 164 | struct sk_buff *skb; | 
|  | 165 | unsigned int i; | 
|  | 166 | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | 
|  | 167 |  | 
|  | 168 | i = rx_ring->next_to_use; | 
|  | 169 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 170 |  | 
|  | 171 | while (cleaned_count--) { | 
|  | 172 | skb = buffer_info->skb; | 
|  | 173 | if (skb) { | 
|  | 174 | skb_trim(skb, 0); | 
|  | 175 | goto map_skb; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | skb = netdev_alloc_skb(netdev, bufsz); | 
|  | 179 | if (!skb) { | 
|  | 180 | /* Better luck next round */ | 
|  | 181 | adapter->alloc_rx_buff_failed++; | 
|  | 182 | break; | 
|  | 183 | } | 
|  | 184 |  | 
|  | 185 | /* Make buffer alignment 2 beyond a 16 byte boundary | 
|  | 186 | * this will result in a 16 byte aligned IP header after | 
|  | 187 | * the 14 byte MAC header is removed | 
|  | 188 | */ | 
|  | 189 | skb_reserve(skb, NET_IP_ALIGN); | 
|  | 190 |  | 
|  | 191 | buffer_info->skb = skb; | 
|  | 192 | map_skb: | 
|  | 193 | buffer_info->dma = pci_map_single(pdev, skb->data, | 
|  | 194 | adapter->rx_buffer_len, | 
|  | 195 | PCI_DMA_FROMDEVICE); | 
|  | 196 | if (pci_dma_mapping_error(buffer_info->dma)) { | 
|  | 197 | dev_err(&pdev->dev, "RX DMA map failed\n"); | 
|  | 198 | adapter->rx_dma_failed++; | 
|  | 199 | break; | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | 203 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | 204 |  | 
|  | 205 | i++; | 
|  | 206 | if (i == rx_ring->count) | 
|  | 207 | i = 0; | 
|  | 208 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 209 | } | 
|  | 210 |  | 
|  | 211 | if (rx_ring->next_to_use != i) { | 
|  | 212 | rx_ring->next_to_use = i; | 
|  | 213 | if (i-- == 0) | 
|  | 214 | i = (rx_ring->count - 1); | 
|  | 215 |  | 
|  | 216 | /* Force memory writes to complete before letting h/w | 
|  | 217 | * know there are new descriptors to fetch.  (Only | 
|  | 218 | * applicable for weak-ordered memory model archs, | 
|  | 219 | * such as IA-64). */ | 
|  | 220 | wmb(); | 
|  | 221 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | 
|  | 222 | } | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | /** | 
|  | 226 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | 
|  | 227 | * @adapter: address of board private structure | 
|  | 228 | **/ | 
|  | 229 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | 
|  | 230 | int cleaned_count) | 
|  | 231 | { | 
|  | 232 | struct net_device *netdev = adapter->netdev; | 
|  | 233 | struct pci_dev *pdev = adapter->pdev; | 
|  | 234 | union e1000_rx_desc_packet_split *rx_desc; | 
|  | 235 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 236 | struct e1000_buffer *buffer_info; | 
|  | 237 | struct e1000_ps_page *ps_page; | 
|  | 238 | struct sk_buff *skb; | 
|  | 239 | unsigned int i, j; | 
|  | 240 |  | 
|  | 241 | i = rx_ring->next_to_use; | 
|  | 242 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 243 |  | 
|  | 244 | while (cleaned_count--) { | 
|  | 245 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | 246 |  | 
|  | 247 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 248 | ps_page = &buffer_info->ps_pages[j]; | 
|  | 249 | if (j >= adapter->rx_ps_pages) { | 
|  | 250 | /* all unused desc entries get hw null ptr */ | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 251 | rx_desc->read.buffer_addr[j+1] = ~0; | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 252 | continue; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 253 | } | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 254 | if (!ps_page->page) { | 
|  | 255 | ps_page->page = alloc_page(GFP_ATOMIC); | 
|  | 256 | if (!ps_page->page) { | 
|  | 257 | adapter->alloc_rx_buff_failed++; | 
|  | 258 | goto no_buffers; | 
|  | 259 | } | 
|  | 260 | ps_page->dma = pci_map_page(pdev, | 
|  | 261 | ps_page->page, | 
|  | 262 | 0, PAGE_SIZE, | 
|  | 263 | PCI_DMA_FROMDEVICE); | 
|  | 264 | if (pci_dma_mapping_error(ps_page->dma)) { | 
|  | 265 | dev_err(&adapter->pdev->dev, | 
|  | 266 | "RX DMA page map failed\n"); | 
|  | 267 | adapter->rx_dma_failed++; | 
|  | 268 | goto no_buffers; | 
|  | 269 | } | 
|  | 270 | } | 
|  | 271 | /* | 
|  | 272 | * Refresh the desc even if buffer_addrs | 
|  | 273 | * didn't change because each write-back | 
|  | 274 | * erases this info. | 
|  | 275 | */ | 
|  | 276 | rx_desc->read.buffer_addr[j+1] = | 
|  | 277 | cpu_to_le64(ps_page->dma); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 278 | } | 
|  | 279 |  | 
|  | 280 | skb = netdev_alloc_skb(netdev, | 
|  | 281 | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | 
|  | 282 |  | 
|  | 283 | if (!skb) { | 
|  | 284 | adapter->alloc_rx_buff_failed++; | 
|  | 285 | break; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* Make buffer alignment 2 beyond a 16 byte boundary | 
|  | 289 | * this will result in a 16 byte aligned IP header after | 
|  | 290 | * the 14 byte MAC header is removed | 
|  | 291 | */ | 
|  | 292 | skb_reserve(skb, NET_IP_ALIGN); | 
|  | 293 |  | 
|  | 294 | buffer_info->skb = skb; | 
|  | 295 | buffer_info->dma = pci_map_single(pdev, skb->data, | 
|  | 296 | adapter->rx_ps_bsize0, | 
|  | 297 | PCI_DMA_FROMDEVICE); | 
|  | 298 | if (pci_dma_mapping_error(buffer_info->dma)) { | 
|  | 299 | dev_err(&pdev->dev, "RX DMA map failed\n"); | 
|  | 300 | adapter->rx_dma_failed++; | 
|  | 301 | /* cleanup skb */ | 
|  | 302 | dev_kfree_skb_any(skb); | 
|  | 303 | buffer_info->skb = NULL; | 
|  | 304 | break; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | 
|  | 308 |  | 
|  | 309 | i++; | 
|  | 310 | if (i == rx_ring->count) | 
|  | 311 | i = 0; | 
|  | 312 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 313 | } | 
|  | 314 |  | 
|  | 315 | no_buffers: | 
|  | 316 | if (rx_ring->next_to_use != i) { | 
|  | 317 | rx_ring->next_to_use = i; | 
|  | 318 |  | 
|  | 319 | if (!(i--)) | 
|  | 320 | i = (rx_ring->count - 1); | 
|  | 321 |  | 
|  | 322 | /* Force memory writes to complete before letting h/w | 
|  | 323 | * know there are new descriptors to fetch.  (Only | 
|  | 324 | * applicable for weak-ordered memory model archs, | 
|  | 325 | * such as IA-64). */ | 
|  | 326 | wmb(); | 
|  | 327 | /* Hardware increments by 16 bytes, but packet split | 
|  | 328 | * descriptors are 32 bytes...so we increment tail | 
|  | 329 | * twice as much. | 
|  | 330 | */ | 
|  | 331 | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | 
|  | 332 | } | 
|  | 333 | } | 
|  | 334 |  | 
|  | 335 | /** | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 336 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
|  | 337 | * @adapter: board private structure | 
|  | 338 | * | 
|  | 339 | * the return value indicates whether actual cleaning was done, there | 
|  | 340 | * is no guarantee that everything was cleaned | 
|  | 341 | **/ | 
|  | 342 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | 343 | int *work_done, int work_to_do) | 
|  | 344 | { | 
|  | 345 | struct net_device *netdev = adapter->netdev; | 
|  | 346 | struct pci_dev *pdev = adapter->pdev; | 
|  | 347 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 348 | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | 349 | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | 350 | u32 length; | 
|  | 351 | unsigned int i; | 
|  | 352 | int cleaned_count = 0; | 
|  | 353 | bool cleaned = 0; | 
|  | 354 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  | 355 |  | 
|  | 356 | i = rx_ring->next_to_clean; | 
|  | 357 | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | 358 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 359 |  | 
|  | 360 | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | 361 | struct sk_buff *skb; | 
|  | 362 | u8 status; | 
|  | 363 |  | 
|  | 364 | if (*work_done >= work_to_do) | 
|  | 365 | break; | 
|  | 366 | (*work_done)++; | 
|  | 367 |  | 
|  | 368 | status = rx_desc->status; | 
|  | 369 | skb = buffer_info->skb; | 
|  | 370 | buffer_info->skb = NULL; | 
|  | 371 |  | 
|  | 372 | prefetch(skb->data - NET_IP_ALIGN); | 
|  | 373 |  | 
|  | 374 | i++; | 
|  | 375 | if (i == rx_ring->count) | 
|  | 376 | i = 0; | 
|  | 377 | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | 378 | prefetch(next_rxd); | 
|  | 379 |  | 
|  | 380 | next_buffer = &rx_ring->buffer_info[i]; | 
|  | 381 |  | 
|  | 382 | cleaned = 1; | 
|  | 383 | cleaned_count++; | 
|  | 384 | pci_unmap_single(pdev, | 
|  | 385 | buffer_info->dma, | 
|  | 386 | adapter->rx_buffer_len, | 
|  | 387 | PCI_DMA_FROMDEVICE); | 
|  | 388 | buffer_info->dma = 0; | 
|  | 389 |  | 
|  | 390 | length = le16_to_cpu(rx_desc->length); | 
|  | 391 |  | 
|  | 392 | /* !EOP means multiple descriptors were used to store a single | 
|  | 393 | * packet, also make sure the frame isn't just CRC only */ | 
|  | 394 | if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | 
|  | 395 | /* All receives must fit into a single buffer */ | 
|  | 396 | ndev_dbg(netdev, "%s: Receive packet consumed " | 
|  | 397 | "multiple buffers\n", netdev->name); | 
|  | 398 | /* recycle */ | 
|  | 399 | buffer_info->skb = skb; | 
|  | 400 | goto next_desc; | 
|  | 401 | } | 
|  | 402 |  | 
|  | 403 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | 
|  | 404 | /* recycle */ | 
|  | 405 | buffer_info->skb = skb; | 
|  | 406 | goto next_desc; | 
|  | 407 | } | 
|  | 408 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 409 | total_rx_bytes += length; | 
|  | 410 | total_rx_packets++; | 
|  | 411 |  | 
|  | 412 | /* code added for copybreak, this should improve | 
|  | 413 | * performance for small packets with large amounts | 
|  | 414 | * of reassembly being done in the stack */ | 
|  | 415 | if (length < copybreak) { | 
|  | 416 | struct sk_buff *new_skb = | 
|  | 417 | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | 
|  | 418 | if (new_skb) { | 
|  | 419 | skb_reserve(new_skb, NET_IP_ALIGN); | 
|  | 420 | memcpy(new_skb->data - NET_IP_ALIGN, | 
|  | 421 | skb->data - NET_IP_ALIGN, | 
|  | 422 | length + NET_IP_ALIGN); | 
|  | 423 | /* save the skb in buffer_info as good */ | 
|  | 424 | buffer_info->skb = skb; | 
|  | 425 | skb = new_skb; | 
|  | 426 | } | 
|  | 427 | /* else just continue with the old one */ | 
|  | 428 | } | 
|  | 429 | /* end copybreak code */ | 
|  | 430 | skb_put(skb, length); | 
|  | 431 |  | 
|  | 432 | /* Receive Checksum Offload */ | 
|  | 433 | e1000_rx_checksum(adapter, | 
|  | 434 | (u32)(status) | | 
|  | 435 | ((u32)(rx_desc->errors) << 24), | 
|  | 436 | le16_to_cpu(rx_desc->csum), skb); | 
|  | 437 |  | 
|  | 438 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | 
|  | 439 |  | 
|  | 440 | next_desc: | 
|  | 441 | rx_desc->status = 0; | 
|  | 442 |  | 
|  | 443 | /* return some buffers to hardware, one at a time is too slow */ | 
|  | 444 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | 445 | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | 446 | cleaned_count = 0; | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 | /* use prefetched values */ | 
|  | 450 | rx_desc = next_rxd; | 
|  | 451 | buffer_info = next_buffer; | 
|  | 452 | } | 
|  | 453 | rx_ring->next_to_clean = i; | 
|  | 454 |  | 
|  | 455 | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | 456 | if (cleaned_count) | 
|  | 457 | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | 458 |  | 
|  | 459 | adapter->total_rx_packets += total_rx_packets; | 
|  | 460 | adapter->total_rx_bytes += total_rx_bytes; | 
|  | 461 | return cleaned; | 
|  | 462 | } | 
|  | 463 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 464 | static void e1000_put_txbuf(struct e1000_adapter *adapter, | 
|  | 465 | struct e1000_buffer *buffer_info) | 
|  | 466 | { | 
|  | 467 | if (buffer_info->dma) { | 
|  | 468 | pci_unmap_page(adapter->pdev, buffer_info->dma, | 
|  | 469 | buffer_info->length, PCI_DMA_TODEVICE); | 
|  | 470 | buffer_info->dma = 0; | 
|  | 471 | } | 
|  | 472 | if (buffer_info->skb) { | 
|  | 473 | dev_kfree_skb_any(buffer_info->skb); | 
|  | 474 | buffer_info->skb = NULL; | 
|  | 475 | } | 
|  | 476 | } | 
|  | 477 |  | 
|  | 478 | static void e1000_print_tx_hang(struct e1000_adapter *adapter) | 
|  | 479 | { | 
|  | 480 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 481 | unsigned int i = tx_ring->next_to_clean; | 
|  | 482 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | 483 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | 484 | struct net_device *netdev = adapter->netdev; | 
|  | 485 |  | 
|  | 486 | /* detected Tx unit hang */ | 
|  | 487 | ndev_err(netdev, | 
|  | 488 | "Detected Tx Unit Hang:\n" | 
|  | 489 | "  TDH                  <%x>\n" | 
|  | 490 | "  TDT                  <%x>\n" | 
|  | 491 | "  next_to_use          <%x>\n" | 
|  | 492 | "  next_to_clean        <%x>\n" | 
|  | 493 | "buffer_info[next_to_clean]:\n" | 
|  | 494 | "  time_stamp           <%lx>\n" | 
|  | 495 | "  next_to_watch        <%x>\n" | 
|  | 496 | "  jiffies              <%lx>\n" | 
|  | 497 | "  next_to_watch.status <%x>\n", | 
|  | 498 | readl(adapter->hw.hw_addr + tx_ring->head), | 
|  | 499 | readl(adapter->hw.hw_addr + tx_ring->tail), | 
|  | 500 | tx_ring->next_to_use, | 
|  | 501 | tx_ring->next_to_clean, | 
|  | 502 | tx_ring->buffer_info[eop].time_stamp, | 
|  | 503 | eop, | 
|  | 504 | jiffies, | 
|  | 505 | eop_desc->upper.fields.status); | 
|  | 506 | } | 
|  | 507 |  | 
|  | 508 | /** | 
|  | 509 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
|  | 510 | * @adapter: board private structure | 
|  | 511 | * | 
|  | 512 | * the return value indicates whether actual cleaning was done, there | 
|  | 513 | * is no guarantee that everything was cleaned | 
|  | 514 | **/ | 
|  | 515 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | 
|  | 516 | { | 
|  | 517 | struct net_device *netdev = adapter->netdev; | 
|  | 518 | struct e1000_hw *hw = &adapter->hw; | 
|  | 519 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 520 | struct e1000_tx_desc *tx_desc, *eop_desc; | 
|  | 521 | struct e1000_buffer *buffer_info; | 
|  | 522 | unsigned int i, eop; | 
|  | 523 | unsigned int count = 0; | 
|  | 524 | bool cleaned = 0; | 
|  | 525 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | 
|  | 526 |  | 
|  | 527 | i = tx_ring->next_to_clean; | 
|  | 528 | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | 529 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | 530 |  | 
|  | 531 | while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | 
|  | 532 | for (cleaned = 0; !cleaned; ) { | 
|  | 533 | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | 534 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 535 | cleaned = (i == eop); | 
|  | 536 |  | 
|  | 537 | if (cleaned) { | 
|  | 538 | struct sk_buff *skb = buffer_info->skb; | 
|  | 539 | unsigned int segs, bytecount; | 
|  | 540 | segs = skb_shinfo(skb)->gso_segs ?: 1; | 
|  | 541 | /* multiply data chunks by size of headers */ | 
|  | 542 | bytecount = ((segs - 1) * skb_headlen(skb)) + | 
|  | 543 | skb->len; | 
|  | 544 | total_tx_packets += segs; | 
|  | 545 | total_tx_bytes += bytecount; | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | e1000_put_txbuf(adapter, buffer_info); | 
|  | 549 | tx_desc->upper.data = 0; | 
|  | 550 |  | 
|  | 551 | i++; | 
|  | 552 | if (i == tx_ring->count) | 
|  | 553 | i = 0; | 
|  | 554 | } | 
|  | 555 |  | 
|  | 556 | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | 557 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | 558 | #define E1000_TX_WEIGHT 64 | 
|  | 559 | /* weight of a sort for tx, to avoid endless transmit cleanup */ | 
|  | 560 | if (count++ == E1000_TX_WEIGHT) | 
|  | 561 | break; | 
|  | 562 | } | 
|  | 563 |  | 
|  | 564 | tx_ring->next_to_clean = i; | 
|  | 565 |  | 
|  | 566 | #define TX_WAKE_THRESHOLD 32 | 
|  | 567 | if (cleaned && netif_carrier_ok(netdev) && | 
|  | 568 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | 
|  | 569 | /* Make sure that anybody stopping the queue after this | 
|  | 570 | * sees the new next_to_clean. | 
|  | 571 | */ | 
|  | 572 | smp_mb(); | 
|  | 573 |  | 
|  | 574 | if (netif_queue_stopped(netdev) && | 
|  | 575 | !(test_bit(__E1000_DOWN, &adapter->state))) { | 
|  | 576 | netif_wake_queue(netdev); | 
|  | 577 | ++adapter->restart_queue; | 
|  | 578 | } | 
|  | 579 | } | 
|  | 580 |  | 
|  | 581 | if (adapter->detect_tx_hung) { | 
|  | 582 | /* Detect a transmit hang in hardware, this serializes the | 
|  | 583 | * check with the clearing of time_stamp and movement of i */ | 
|  | 584 | adapter->detect_tx_hung = 0; | 
|  | 585 | if (tx_ring->buffer_info[eop].dma && | 
|  | 586 | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp | 
|  | 587 | + (adapter->tx_timeout_factor * HZ)) | 
|  | 588 | && !(er32(STATUS) & | 
|  | 589 | E1000_STATUS_TXOFF)) { | 
|  | 590 | e1000_print_tx_hang(adapter); | 
|  | 591 | netif_stop_queue(netdev); | 
|  | 592 | } | 
|  | 593 | } | 
|  | 594 | adapter->total_tx_bytes += total_tx_bytes; | 
|  | 595 | adapter->total_tx_packets += total_tx_packets; | 
|  | 596 | return cleaned; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | /** | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 600 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | 
|  | 601 | * @adapter: board private structure | 
|  | 602 | * | 
|  | 603 | * the return value indicates whether actual cleaning was done, there | 
|  | 604 | * is no guarantee that everything was cleaned | 
|  | 605 | **/ | 
|  | 606 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | 607 | int *work_done, int work_to_do) | 
|  | 608 | { | 
|  | 609 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | 
|  | 610 | struct net_device *netdev = adapter->netdev; | 
|  | 611 | struct pci_dev *pdev = adapter->pdev; | 
|  | 612 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 613 | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | 614 | struct e1000_ps_page *ps_page; | 
|  | 615 | struct sk_buff *skb; | 
|  | 616 | unsigned int i, j; | 
|  | 617 | u32 length, staterr; | 
|  | 618 | int cleaned_count = 0; | 
|  | 619 | bool cleaned = 0; | 
|  | 620 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  | 621 |  | 
|  | 622 | i = rx_ring->next_to_clean; | 
|  | 623 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | 624 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | 625 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 626 |  | 
|  | 627 | while (staterr & E1000_RXD_STAT_DD) { | 
|  | 628 | if (*work_done >= work_to_do) | 
|  | 629 | break; | 
|  | 630 | (*work_done)++; | 
|  | 631 | skb = buffer_info->skb; | 
|  | 632 |  | 
|  | 633 | /* in the packet split case this is header only */ | 
|  | 634 | prefetch(skb->data - NET_IP_ALIGN); | 
|  | 635 |  | 
|  | 636 | i++; | 
|  | 637 | if (i == rx_ring->count) | 
|  | 638 | i = 0; | 
|  | 639 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | 640 | prefetch(next_rxd); | 
|  | 641 |  | 
|  | 642 | next_buffer = &rx_ring->buffer_info[i]; | 
|  | 643 |  | 
|  | 644 | cleaned = 1; | 
|  | 645 | cleaned_count++; | 
|  | 646 | pci_unmap_single(pdev, buffer_info->dma, | 
|  | 647 | adapter->rx_ps_bsize0, | 
|  | 648 | PCI_DMA_FROMDEVICE); | 
|  | 649 | buffer_info->dma = 0; | 
|  | 650 |  | 
|  | 651 | if (!(staterr & E1000_RXD_STAT_EOP)) { | 
|  | 652 | ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " | 
|  | 653 | "up the full packet\n", netdev->name); | 
|  | 654 | dev_kfree_skb_irq(skb); | 
|  | 655 | goto next_desc; | 
|  | 656 | } | 
|  | 657 |  | 
|  | 658 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | 
|  | 659 | dev_kfree_skb_irq(skb); | 
|  | 660 | goto next_desc; | 
|  | 661 | } | 
|  | 662 |  | 
|  | 663 | length = le16_to_cpu(rx_desc->wb.middle.length0); | 
|  | 664 |  | 
|  | 665 | if (!length) { | 
|  | 666 | ndev_dbg(netdev, "%s: Last part of the packet spanning" | 
|  | 667 | " multiple descriptors\n", netdev->name); | 
|  | 668 | dev_kfree_skb_irq(skb); | 
|  | 669 | goto next_desc; | 
|  | 670 | } | 
|  | 671 |  | 
|  | 672 | /* Good Receive */ | 
|  | 673 | skb_put(skb, length); | 
|  | 674 |  | 
|  | 675 | { | 
|  | 676 | /* this looks ugly, but it seems compiler issues make it | 
|  | 677 | more efficient than reusing j */ | 
|  | 678 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | 
|  | 679 |  | 
|  | 680 | /* page alloc/put takes too long and effects small packet | 
|  | 681 | * throughput, so unsplit small packets and save the alloc/put*/ | 
|  | 682 | if (l1 && (l1 <= copybreak) && | 
|  | 683 | ((length + l1) <= adapter->rx_ps_bsize0)) { | 
|  | 684 | u8 *vaddr; | 
|  | 685 |  | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 686 | ps_page = &buffer_info->ps_pages[0]; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 687 |  | 
|  | 688 | /* there is no documentation about how to call | 
|  | 689 | * kmap_atomic, so we can't hold the mapping | 
|  | 690 | * very long */ | 
|  | 691 | pci_dma_sync_single_for_cpu(pdev, ps_page->dma, | 
|  | 692 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  | 693 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | 
|  | 694 | memcpy(skb_tail_pointer(skb), vaddr, l1); | 
|  | 695 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | 
|  | 696 | pci_dma_sync_single_for_device(pdev, ps_page->dma, | 
|  | 697 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
| Auke Kok | 140a748 | 2007-10-25 13:57:58 -0700 | [diff] [blame] | 698 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 699 | skb_put(skb, l1); | 
|  | 700 | goto copydone; | 
|  | 701 | } /* if */ | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | 705 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | 
|  | 706 | if (!length) | 
|  | 707 | break; | 
|  | 708 |  | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 709 | ps_page = &buffer_info->ps_pages[j]; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 710 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
|  | 711 | PCI_DMA_FROMDEVICE); | 
|  | 712 | ps_page->dma = 0; | 
|  | 713 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | 
|  | 714 | ps_page->page = NULL; | 
|  | 715 | skb->len += length; | 
|  | 716 | skb->data_len += length; | 
|  | 717 | skb->truesize += length; | 
|  | 718 | } | 
|  | 719 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 720 | copydone: | 
|  | 721 | total_rx_bytes += skb->len; | 
|  | 722 | total_rx_packets++; | 
|  | 723 |  | 
|  | 724 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | 
|  | 725 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | 
|  | 726 |  | 
|  | 727 | if (rx_desc->wb.upper.header_status & | 
|  | 728 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | 
|  | 729 | adapter->rx_hdr_split++; | 
|  | 730 |  | 
|  | 731 | e1000_receive_skb(adapter, netdev, skb, | 
|  | 732 | staterr, rx_desc->wb.middle.vlan); | 
|  | 733 |  | 
|  | 734 | next_desc: | 
|  | 735 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | 
|  | 736 | buffer_info->skb = NULL; | 
|  | 737 |  | 
|  | 738 | /* return some buffers to hardware, one at a time is too slow */ | 
|  | 739 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | 740 | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | 741 | cleaned_count = 0; | 
|  | 742 | } | 
|  | 743 |  | 
|  | 744 | /* use prefetched values */ | 
|  | 745 | rx_desc = next_rxd; | 
|  | 746 | buffer_info = next_buffer; | 
|  | 747 |  | 
|  | 748 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | 749 | } | 
|  | 750 | rx_ring->next_to_clean = i; | 
|  | 751 |  | 
|  | 752 | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | 753 | if (cleaned_count) | 
|  | 754 | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | 755 |  | 
|  | 756 | adapter->total_rx_packets += total_rx_packets; | 
|  | 757 | adapter->total_rx_bytes += total_rx_bytes; | 
|  | 758 | return cleaned; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | /** | 
|  | 762 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
|  | 763 | * @adapter: board private structure | 
|  | 764 | **/ | 
|  | 765 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | 
|  | 766 | { | 
|  | 767 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 768 | struct e1000_buffer *buffer_info; | 
|  | 769 | struct e1000_ps_page *ps_page; | 
|  | 770 | struct pci_dev *pdev = adapter->pdev; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 771 | unsigned int i, j; | 
|  | 772 |  | 
|  | 773 | /* Free all the Rx ring sk_buffs */ | 
|  | 774 | for (i = 0; i < rx_ring->count; i++) { | 
|  | 775 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 776 | if (buffer_info->dma) { | 
|  | 777 | if (adapter->clean_rx == e1000_clean_rx_irq) | 
|  | 778 | pci_unmap_single(pdev, buffer_info->dma, | 
|  | 779 | adapter->rx_buffer_len, | 
|  | 780 | PCI_DMA_FROMDEVICE); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 781 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | 
|  | 782 | pci_unmap_single(pdev, buffer_info->dma, | 
|  | 783 | adapter->rx_ps_bsize0, | 
|  | 784 | PCI_DMA_FROMDEVICE); | 
|  | 785 | buffer_info->dma = 0; | 
|  | 786 | } | 
|  | 787 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 788 | if (buffer_info->skb) { | 
|  | 789 | dev_kfree_skb(buffer_info->skb); | 
|  | 790 | buffer_info->skb = NULL; | 
|  | 791 | } | 
|  | 792 |  | 
|  | 793 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 794 | ps_page = &buffer_info->ps_pages[j]; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 795 | if (!ps_page->page) | 
|  | 796 | break; | 
|  | 797 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
|  | 798 | PCI_DMA_FROMDEVICE); | 
|  | 799 | ps_page->dma = 0; | 
|  | 800 | put_page(ps_page->page); | 
|  | 801 | ps_page->page = NULL; | 
|  | 802 | } | 
|  | 803 | } | 
|  | 804 |  | 
|  | 805 | /* there also may be some cached data from a chained receive */ | 
|  | 806 | if (rx_ring->rx_skb_top) { | 
|  | 807 | dev_kfree_skb(rx_ring->rx_skb_top); | 
|  | 808 | rx_ring->rx_skb_top = NULL; | 
|  | 809 | } | 
|  | 810 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 811 | /* Zero out the descriptor ring */ | 
|  | 812 | memset(rx_ring->desc, 0, rx_ring->size); | 
|  | 813 |  | 
|  | 814 | rx_ring->next_to_clean = 0; | 
|  | 815 | rx_ring->next_to_use = 0; | 
|  | 816 |  | 
|  | 817 | writel(0, adapter->hw.hw_addr + rx_ring->head); | 
|  | 818 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | 
|  | 819 | } | 
|  | 820 |  | 
|  | 821 | /** | 
|  | 822 | * e1000_intr_msi - Interrupt Handler | 
|  | 823 | * @irq: interrupt number | 
|  | 824 | * @data: pointer to a network interface device structure | 
|  | 825 | **/ | 
|  | 826 | static irqreturn_t e1000_intr_msi(int irq, void *data) | 
|  | 827 | { | 
|  | 828 | struct net_device *netdev = data; | 
|  | 829 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 830 | struct e1000_hw *hw = &adapter->hw; | 
|  | 831 | u32 icr = er32(ICR); | 
|  | 832 |  | 
|  | 833 | /* read ICR disables interrupts using IAM, so keep up with our | 
|  | 834 | * enable/disable accounting */ | 
|  | 835 | atomic_inc(&adapter->irq_sem); | 
|  | 836 |  | 
|  | 837 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
|  | 838 | hw->mac.get_link_status = 1; | 
|  | 839 | /* ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | 840 | * disconnect (LSC) before accessing any PHY registers */ | 
|  | 841 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | 842 | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | 843 | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  | 844 |  | 
|  | 845 | /* 80003ES2LAN workaround-- For packet buffer work-around on | 
|  | 846 | * link down event; disable receives here in the ISR and reset | 
|  | 847 | * adapter in watchdog */ | 
|  | 848 | if (netif_carrier_ok(netdev) && | 
|  | 849 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | 
|  | 850 | /* disable receives */ | 
|  | 851 | u32 rctl = er32(RCTL); | 
|  | 852 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | 853 | } | 
|  | 854 | /* guard against interrupt when we're going down */ | 
|  | 855 | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | 856 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | 
|  | 860 | adapter->total_tx_bytes = 0; | 
|  | 861 | adapter->total_tx_packets = 0; | 
|  | 862 | adapter->total_rx_bytes = 0; | 
|  | 863 | adapter->total_rx_packets = 0; | 
|  | 864 | __netif_rx_schedule(netdev, &adapter->napi); | 
|  | 865 | } else { | 
|  | 866 | atomic_dec(&adapter->irq_sem); | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | return IRQ_HANDLED; | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | /** | 
|  | 873 | * e1000_intr - Interrupt Handler | 
|  | 874 | * @irq: interrupt number | 
|  | 875 | * @data: pointer to a network interface device structure | 
|  | 876 | **/ | 
|  | 877 | static irqreturn_t e1000_intr(int irq, void *data) | 
|  | 878 | { | 
|  | 879 | struct net_device *netdev = data; | 
|  | 880 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 881 | struct e1000_hw *hw = &adapter->hw; | 
|  | 882 |  | 
|  | 883 | u32 rctl, icr = er32(ICR); | 
|  | 884 | if (!icr) | 
|  | 885 | return IRQ_NONE;  /* Not our interrupt */ | 
|  | 886 |  | 
|  | 887 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
|  | 888 | * not set, then the adapter didn't send an interrupt */ | 
|  | 889 | if (!(icr & E1000_ICR_INT_ASSERTED)) | 
|  | 890 | return IRQ_NONE; | 
|  | 891 |  | 
|  | 892 | /* Interrupt Auto-Mask...upon reading ICR, | 
|  | 893 | * interrupts are masked.  No need for the | 
|  | 894 | * IMC write, but it does mean we should | 
|  | 895 | * account for it ASAP. */ | 
|  | 896 | atomic_inc(&adapter->irq_sem); | 
|  | 897 |  | 
|  | 898 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
|  | 899 | hw->mac.get_link_status = 1; | 
|  | 900 | /* ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | 901 | * disconnect (LSC) before accessing any PHY registers */ | 
|  | 902 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | 903 | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | 904 | e1000e_gig_downshift_workaround_ich8lan(hw); | 
|  | 905 |  | 
|  | 906 | /* 80003ES2LAN workaround-- | 
|  | 907 | * For packet buffer work-around on link down event; | 
|  | 908 | * disable receives here in the ISR and | 
|  | 909 | * reset adapter in watchdog | 
|  | 910 | */ | 
|  | 911 | if (netif_carrier_ok(netdev) && | 
|  | 912 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | 
|  | 913 | /* disable receives */ | 
|  | 914 | rctl = er32(RCTL); | 
|  | 915 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | 916 | } | 
|  | 917 | /* guard against interrupt when we're going down */ | 
|  | 918 | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | 919 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | 920 | } | 
|  | 921 |  | 
|  | 922 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | 
|  | 923 | adapter->total_tx_bytes = 0; | 
|  | 924 | adapter->total_tx_packets = 0; | 
|  | 925 | adapter->total_rx_bytes = 0; | 
|  | 926 | adapter->total_rx_packets = 0; | 
|  | 927 | __netif_rx_schedule(netdev, &adapter->napi); | 
|  | 928 | } else { | 
|  | 929 | atomic_dec(&adapter->irq_sem); | 
|  | 930 | } | 
|  | 931 |  | 
|  | 932 | return IRQ_HANDLED; | 
|  | 933 | } | 
|  | 934 |  | 
|  | 935 | static int e1000_request_irq(struct e1000_adapter *adapter) | 
|  | 936 | { | 
|  | 937 | struct net_device *netdev = adapter->netdev; | 
|  | 938 | void (*handler) = &e1000_intr; | 
|  | 939 | int irq_flags = IRQF_SHARED; | 
|  | 940 | int err; | 
|  | 941 |  | 
|  | 942 | err = pci_enable_msi(adapter->pdev); | 
|  | 943 | if (err) { | 
|  | 944 | ndev_warn(netdev, | 
|  | 945 | "Unable to allocate MSI interrupt Error: %d\n", err); | 
|  | 946 | } else { | 
|  | 947 | adapter->flags |= FLAG_MSI_ENABLED; | 
|  | 948 | handler = &e1000_intr_msi; | 
|  | 949 | irq_flags = 0; | 
|  | 950 | } | 
|  | 951 |  | 
|  | 952 | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | 
|  | 953 | netdev); | 
|  | 954 | if (err) { | 
|  | 955 | if (adapter->flags & FLAG_MSI_ENABLED) | 
|  | 956 | pci_disable_msi(adapter->pdev); | 
|  | 957 | ndev_err(netdev, | 
|  | 958 | "Unable to allocate interrupt Error: %d\n", err); | 
|  | 959 | } | 
|  | 960 |  | 
|  | 961 | return err; | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | static void e1000_free_irq(struct e1000_adapter *adapter) | 
|  | 965 | { | 
|  | 966 | struct net_device *netdev = adapter->netdev; | 
|  | 967 |  | 
|  | 968 | free_irq(adapter->pdev->irq, netdev); | 
|  | 969 | if (adapter->flags & FLAG_MSI_ENABLED) { | 
|  | 970 | pci_disable_msi(adapter->pdev); | 
|  | 971 | adapter->flags &= ~FLAG_MSI_ENABLED; | 
|  | 972 | } | 
|  | 973 | } | 
|  | 974 |  | 
|  | 975 | /** | 
|  | 976 | * e1000_irq_disable - Mask off interrupt generation on the NIC | 
|  | 977 | **/ | 
|  | 978 | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
|  | 979 | { | 
|  | 980 | struct e1000_hw *hw = &adapter->hw; | 
|  | 981 |  | 
|  | 982 | atomic_inc(&adapter->irq_sem); | 
|  | 983 | ew32(IMC, ~0); | 
|  | 984 | e1e_flush(); | 
|  | 985 | synchronize_irq(adapter->pdev->irq); | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | /** | 
|  | 989 | * e1000_irq_enable - Enable default interrupt generation settings | 
|  | 990 | **/ | 
|  | 991 | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
|  | 992 | { | 
|  | 993 | struct e1000_hw *hw = &adapter->hw; | 
|  | 994 |  | 
|  | 995 | if (atomic_dec_and_test(&adapter->irq_sem)) { | 
|  | 996 | ew32(IMS, IMS_ENABLE_MASK); | 
|  | 997 | e1e_flush(); | 
|  | 998 | } | 
|  | 999 | } | 
|  | 1000 |  | 
|  | 1001 | /** | 
|  | 1002 | * e1000_get_hw_control - get control of the h/w from f/w | 
|  | 1003 | * @adapter: address of board private structure | 
|  | 1004 | * | 
|  | 1005 | * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
|  | 1006 | * For ASF and Pass Through versions of f/w this means that | 
|  | 1007 | * the driver is loaded. For AMT version (only with 82573) | 
|  | 1008 | * of the f/w this means that the network i/f is open. | 
|  | 1009 | **/ | 
|  | 1010 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | 
|  | 1011 | { | 
|  | 1012 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1013 | u32 ctrl_ext; | 
|  | 1014 | u32 swsm; | 
|  | 1015 |  | 
|  | 1016 | /* Let firmware know the driver has taken over */ | 
|  | 1017 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | 1018 | swsm = er32(SWSM); | 
|  | 1019 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | 
|  | 1020 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | 1021 | ctrl_ext = er32(CTRL_EXT); | 
|  | 1022 | ew32(CTRL_EXT, | 
|  | 1023 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
|  | 1024 | } | 
|  | 1025 | } | 
|  | 1026 |  | 
|  | 1027 | /** | 
|  | 1028 | * e1000_release_hw_control - release control of the h/w to f/w | 
|  | 1029 | * @adapter: address of board private structure | 
|  | 1030 | * | 
|  | 1031 | * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. | 
|  | 1032 | * For ASF and Pass Through versions of f/w this means that the | 
|  | 1033 | * driver is no longer loaded. For AMT version (only with 82573) i | 
|  | 1034 | * of the f/w this means that the network i/f is closed. | 
|  | 1035 | * | 
|  | 1036 | **/ | 
|  | 1037 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | 
|  | 1038 | { | 
|  | 1039 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1040 | u32 ctrl_ext; | 
|  | 1041 | u32 swsm; | 
|  | 1042 |  | 
|  | 1043 | /* Let firmware taken over control of h/w */ | 
|  | 1044 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | 1045 | swsm = er32(SWSM); | 
|  | 1046 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | 
|  | 1047 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | 1048 | ctrl_ext = er32(CTRL_EXT); | 
|  | 1049 | ew32(CTRL_EXT, | 
|  | 1050 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | 1051 | } | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | static void e1000_release_manageability(struct e1000_adapter *adapter) | 
|  | 1055 | { | 
|  | 1056 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | 
|  | 1057 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1058 |  | 
|  | 1059 | u32 manc = er32(MANC); | 
|  | 1060 |  | 
|  | 1061 | /* re-enable hardware interception of ARP */ | 
|  | 1062 | manc |= E1000_MANC_ARP_EN; | 
|  | 1063 | manc &= ~E1000_MANC_EN_MNG2HOST; | 
|  | 1064 |  | 
|  | 1065 | /* don't explicitly have to mess with MANC2H since | 
|  | 1066 | * MANC has an enable disable that gates MANC2H */ | 
|  | 1067 | ew32(MANC, manc); | 
|  | 1068 | } | 
|  | 1069 | } | 
|  | 1070 |  | 
|  | 1071 | /** | 
|  | 1072 | * @e1000_alloc_ring - allocate memory for a ring structure | 
|  | 1073 | **/ | 
|  | 1074 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | 
|  | 1075 | struct e1000_ring *ring) | 
|  | 1076 | { | 
|  | 1077 | struct pci_dev *pdev = adapter->pdev; | 
|  | 1078 |  | 
|  | 1079 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | 
|  | 1080 | GFP_KERNEL); | 
|  | 1081 | if (!ring->desc) | 
|  | 1082 | return -ENOMEM; | 
|  | 1083 |  | 
|  | 1084 | return 0; | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | /** | 
|  | 1088 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | 1089 | * @adapter: board private structure | 
|  | 1090 | * | 
|  | 1091 | * Return 0 on success, negative on failure | 
|  | 1092 | **/ | 
|  | 1093 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | 
|  | 1094 | { | 
|  | 1095 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 1096 | int err = -ENOMEM, size; | 
|  | 1097 |  | 
|  | 1098 | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | 1099 | tx_ring->buffer_info = vmalloc(size); | 
|  | 1100 | if (!tx_ring->buffer_info) | 
|  | 1101 | goto err; | 
|  | 1102 | memset(tx_ring->buffer_info, 0, size); | 
|  | 1103 |  | 
|  | 1104 | /* round up to nearest 4K */ | 
|  | 1105 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | 1106 | tx_ring->size = ALIGN(tx_ring->size, 4096); | 
|  | 1107 |  | 
|  | 1108 | err = e1000_alloc_ring_dma(adapter, tx_ring); | 
|  | 1109 | if (err) | 
|  | 1110 | goto err; | 
|  | 1111 |  | 
|  | 1112 | tx_ring->next_to_use = 0; | 
|  | 1113 | tx_ring->next_to_clean = 0; | 
|  | 1114 | spin_lock_init(&adapter->tx_queue_lock); | 
|  | 1115 |  | 
|  | 1116 | return 0; | 
|  | 1117 | err: | 
|  | 1118 | vfree(tx_ring->buffer_info); | 
|  | 1119 | ndev_err(adapter->netdev, | 
|  | 1120 | "Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | 1121 | return err; | 
|  | 1122 | } | 
|  | 1123 |  | 
|  | 1124 | /** | 
|  | 1125 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | 1126 | * @adapter: board private structure | 
|  | 1127 | * | 
|  | 1128 | * Returns 0 on success, negative on failure | 
|  | 1129 | **/ | 
|  | 1130 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | 
|  | 1131 | { | 
|  | 1132 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1133 | struct e1000_buffer *buffer_info; | 
|  | 1134 | int i, size, desc_len, err = -ENOMEM; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1135 |  | 
|  | 1136 | size = sizeof(struct e1000_buffer) * rx_ring->count; | 
|  | 1137 | rx_ring->buffer_info = vmalloc(size); | 
|  | 1138 | if (!rx_ring->buffer_info) | 
|  | 1139 | goto err; | 
|  | 1140 | memset(rx_ring->buffer_info, 0, size); | 
|  | 1141 |  | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1142 | for (i = 0; i < rx_ring->count; i++) { | 
|  | 1143 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 1144 | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | 
|  | 1145 | sizeof(struct e1000_ps_page), | 
|  | 1146 | GFP_KERNEL); | 
|  | 1147 | if (!buffer_info->ps_pages) | 
|  | 1148 | goto err_pages; | 
|  | 1149 | } | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1150 |  | 
|  | 1151 | desc_len = sizeof(union e1000_rx_desc_packet_split); | 
|  | 1152 |  | 
|  | 1153 | /* Round up to nearest 4K */ | 
|  | 1154 | rx_ring->size = rx_ring->count * desc_len; | 
|  | 1155 | rx_ring->size = ALIGN(rx_ring->size, 4096); | 
|  | 1156 |  | 
|  | 1157 | err = e1000_alloc_ring_dma(adapter, rx_ring); | 
|  | 1158 | if (err) | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1159 | goto err_pages; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1160 |  | 
|  | 1161 | rx_ring->next_to_clean = 0; | 
|  | 1162 | rx_ring->next_to_use = 0; | 
|  | 1163 | rx_ring->rx_skb_top = NULL; | 
|  | 1164 |  | 
|  | 1165 | return 0; | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1166 |  | 
|  | 1167 | err_pages: | 
|  | 1168 | for (i = 0; i < rx_ring->count; i++) { | 
|  | 1169 | buffer_info = &rx_ring->buffer_info[i]; | 
|  | 1170 | kfree(buffer_info->ps_pages); | 
|  | 1171 | } | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1172 | err: | 
|  | 1173 | vfree(rx_ring->buffer_info); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1174 | ndev_err(adapter->netdev, | 
|  | 1175 | "Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | 1176 | return err; | 
|  | 1177 | } | 
|  | 1178 |  | 
|  | 1179 | /** | 
|  | 1180 | * e1000_clean_tx_ring - Free Tx Buffers | 
|  | 1181 | * @adapter: board private structure | 
|  | 1182 | **/ | 
|  | 1183 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | 
|  | 1184 | { | 
|  | 1185 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 1186 | struct e1000_buffer *buffer_info; | 
|  | 1187 | unsigned long size; | 
|  | 1188 | unsigned int i; | 
|  | 1189 |  | 
|  | 1190 | for (i = 0; i < tx_ring->count; i++) { | 
|  | 1191 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 1192 | e1000_put_txbuf(adapter, buffer_info); | 
|  | 1193 | } | 
|  | 1194 |  | 
|  | 1195 | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | 1196 | memset(tx_ring->buffer_info, 0, size); | 
|  | 1197 |  | 
|  | 1198 | memset(tx_ring->desc, 0, tx_ring->size); | 
|  | 1199 |  | 
|  | 1200 | tx_ring->next_to_use = 0; | 
|  | 1201 | tx_ring->next_to_clean = 0; | 
|  | 1202 |  | 
|  | 1203 | writel(0, adapter->hw.hw_addr + tx_ring->head); | 
|  | 1204 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | 
|  | 1205 | } | 
|  | 1206 |  | 
|  | 1207 | /** | 
|  | 1208 | * e1000e_free_tx_resources - Free Tx Resources per Queue | 
|  | 1209 | * @adapter: board private structure | 
|  | 1210 | * | 
|  | 1211 | * Free all transmit software resources | 
|  | 1212 | **/ | 
|  | 1213 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | 
|  | 1214 | { | 
|  | 1215 | struct pci_dev *pdev = adapter->pdev; | 
|  | 1216 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 1217 |  | 
|  | 1218 | e1000_clean_tx_ring(adapter); | 
|  | 1219 |  | 
|  | 1220 | vfree(tx_ring->buffer_info); | 
|  | 1221 | tx_ring->buffer_info = NULL; | 
|  | 1222 |  | 
|  | 1223 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | 
|  | 1224 | tx_ring->dma); | 
|  | 1225 | tx_ring->desc = NULL; | 
|  | 1226 | } | 
|  | 1227 |  | 
|  | 1228 | /** | 
|  | 1229 | * e1000e_free_rx_resources - Free Rx Resources | 
|  | 1230 | * @adapter: board private structure | 
|  | 1231 | * | 
|  | 1232 | * Free all receive software resources | 
|  | 1233 | **/ | 
|  | 1234 |  | 
|  | 1235 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | 
|  | 1236 | { | 
|  | 1237 | struct pci_dev *pdev = adapter->pdev; | 
|  | 1238 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1239 | int i; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1240 |  | 
|  | 1241 | e1000_clean_rx_ring(adapter); | 
|  | 1242 |  | 
| Auke Kok | 47f44e4 | 2007-10-25 13:57:44 -0700 | [diff] [blame] | 1243 | for (i = 0; i < rx_ring->count; i++) { | 
|  | 1244 | kfree(rx_ring->buffer_info[i].ps_pages); | 
|  | 1245 | } | 
|  | 1246 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1247 | vfree(rx_ring->buffer_info); | 
|  | 1248 | rx_ring->buffer_info = NULL; | 
|  | 1249 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1250 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | 
|  | 1251 | rx_ring->dma); | 
|  | 1252 | rx_ring->desc = NULL; | 
|  | 1253 | } | 
|  | 1254 |  | 
|  | 1255 | /** | 
|  | 1256 | * e1000_update_itr - update the dynamic ITR value based on statistics | 
|  | 1257 | *      Stores a new ITR value based on packets and byte | 
|  | 1258 | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | 1259 | *      computation is faster updates and more accurate ITR for the current | 
|  | 1260 | *      traffic pattern.  Constants in this function were computed | 
|  | 1261 | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | 1262 | *      on testing data as well as attempting to minimize response time | 
|  | 1263 | *      while increasing bulk throughput. | 
|  | 1264 | *      this functionality is controlled by the InterruptThrottleRate module | 
|  | 1265 | *      parameter (see e1000_param.c) | 
|  | 1266 | * @adapter: pointer to adapter | 
|  | 1267 | * @itr_setting: current adapter->itr | 
|  | 1268 | * @packets: the number of packets during this measurement interval | 
|  | 1269 | * @bytes: the number of bytes during this measurement interval | 
|  | 1270 | **/ | 
|  | 1271 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
|  | 1272 | u16 itr_setting, int packets, | 
|  | 1273 | int bytes) | 
|  | 1274 | { | 
|  | 1275 | unsigned int retval = itr_setting; | 
|  | 1276 |  | 
|  | 1277 | if (packets == 0) | 
|  | 1278 | goto update_itr_done; | 
|  | 1279 |  | 
|  | 1280 | switch (itr_setting) { | 
|  | 1281 | case lowest_latency: | 
|  | 1282 | /* handle TSO and jumbo frames */ | 
|  | 1283 | if (bytes/packets > 8000) | 
|  | 1284 | retval = bulk_latency; | 
|  | 1285 | else if ((packets < 5) && (bytes > 512)) { | 
|  | 1286 | retval = low_latency; | 
|  | 1287 | } | 
|  | 1288 | break; | 
|  | 1289 | case low_latency:  /* 50 usec aka 20000 ints/s */ | 
|  | 1290 | if (bytes > 10000) { | 
|  | 1291 | /* this if handles the TSO accounting */ | 
|  | 1292 | if (bytes/packets > 8000) { | 
|  | 1293 | retval = bulk_latency; | 
|  | 1294 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | 
|  | 1295 | retval = bulk_latency; | 
|  | 1296 | } else if ((packets > 35)) { | 
|  | 1297 | retval = lowest_latency; | 
|  | 1298 | } | 
|  | 1299 | } else if (bytes/packets > 2000) { | 
|  | 1300 | retval = bulk_latency; | 
|  | 1301 | } else if (packets <= 2 && bytes < 512) { | 
|  | 1302 | retval = lowest_latency; | 
|  | 1303 | } | 
|  | 1304 | break; | 
|  | 1305 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
|  | 1306 | if (bytes > 25000) { | 
|  | 1307 | if (packets > 35) { | 
|  | 1308 | retval = low_latency; | 
|  | 1309 | } | 
|  | 1310 | } else if (bytes < 6000) { | 
|  | 1311 | retval = low_latency; | 
|  | 1312 | } | 
|  | 1313 | break; | 
|  | 1314 | } | 
|  | 1315 |  | 
|  | 1316 | update_itr_done: | 
|  | 1317 | return retval; | 
|  | 1318 | } | 
|  | 1319 |  | 
|  | 1320 | static void e1000_set_itr(struct e1000_adapter *adapter) | 
|  | 1321 | { | 
|  | 1322 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1323 | u16 current_itr; | 
|  | 1324 | u32 new_itr = adapter->itr; | 
|  | 1325 |  | 
|  | 1326 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | 1327 | if (adapter->link_speed != SPEED_1000) { | 
|  | 1328 | current_itr = 0; | 
|  | 1329 | new_itr = 4000; | 
|  | 1330 | goto set_itr_now; | 
|  | 1331 | } | 
|  | 1332 |  | 
|  | 1333 | adapter->tx_itr = e1000_update_itr(adapter, | 
|  | 1334 | adapter->tx_itr, | 
|  | 1335 | adapter->total_tx_packets, | 
|  | 1336 | adapter->total_tx_bytes); | 
|  | 1337 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | 1338 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
|  | 1339 | adapter->tx_itr = low_latency; | 
|  | 1340 |  | 
|  | 1341 | adapter->rx_itr = e1000_update_itr(adapter, | 
|  | 1342 | adapter->rx_itr, | 
|  | 1343 | adapter->total_rx_packets, | 
|  | 1344 | adapter->total_rx_bytes); | 
|  | 1345 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | 1346 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
|  | 1347 | adapter->rx_itr = low_latency; | 
|  | 1348 |  | 
|  | 1349 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  | 1350 |  | 
|  | 1351 | switch (current_itr) { | 
|  | 1352 | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | 1353 | case lowest_latency: | 
|  | 1354 | new_itr = 70000; | 
|  | 1355 | break; | 
|  | 1356 | case low_latency: | 
|  | 1357 | new_itr = 20000; /* aka hwitr = ~200 */ | 
|  | 1358 | break; | 
|  | 1359 | case bulk_latency: | 
|  | 1360 | new_itr = 4000; | 
|  | 1361 | break; | 
|  | 1362 | default: | 
|  | 1363 | break; | 
|  | 1364 | } | 
|  | 1365 |  | 
|  | 1366 | set_itr_now: | 
|  | 1367 | if (new_itr != adapter->itr) { | 
|  | 1368 | /* this attempts to bias the interrupt rate towards Bulk | 
|  | 1369 | * by adding intermediate steps when interrupt rate is | 
|  | 1370 | * increasing */ | 
|  | 1371 | new_itr = new_itr > adapter->itr ? | 
|  | 1372 | min(adapter->itr + (new_itr >> 2), new_itr) : | 
|  | 1373 | new_itr; | 
|  | 1374 | adapter->itr = new_itr; | 
|  | 1375 | ew32(ITR, 1000000000 / (new_itr * 256)); | 
|  | 1376 | } | 
|  | 1377 | } | 
|  | 1378 |  | 
|  | 1379 | /** | 
|  | 1380 | * e1000_clean - NAPI Rx polling callback | 
|  | 1381 | * @adapter: board private structure | 
|  | 1382 | **/ | 
|  | 1383 | static int e1000_clean(struct napi_struct *napi, int budget) | 
|  | 1384 | { | 
|  | 1385 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | 
|  | 1386 | struct net_device *poll_dev = adapter->netdev; | 
| David S. Miller | d2c7ddd | 2008-01-15 22:43:24 -0800 | [diff] [blame] | 1387 | int tx_cleaned = 0, work_done = 0; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1388 |  | 
|  | 1389 | /* Must NOT use netdev_priv macro here. */ | 
|  | 1390 | adapter = poll_dev->priv; | 
|  | 1391 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1392 | /* e1000_clean is called per-cpu.  This lock protects | 
|  | 1393 | * tx_ring from being cleaned by multiple cpus | 
|  | 1394 | * simultaneously.  A failure obtaining the lock means | 
|  | 1395 | * tx_ring is currently being cleaned anyway. */ | 
|  | 1396 | if (spin_trylock(&adapter->tx_queue_lock)) { | 
| David S. Miller | d2c7ddd | 2008-01-15 22:43:24 -0800 | [diff] [blame] | 1397 | tx_cleaned = e1000_clean_tx_irq(adapter); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1398 | spin_unlock(&adapter->tx_queue_lock); | 
|  | 1399 | } | 
|  | 1400 |  | 
|  | 1401 | adapter->clean_rx(adapter, &work_done, budget); | 
|  | 1402 |  | 
| David S. Miller | d2c7ddd | 2008-01-15 22:43:24 -0800 | [diff] [blame] | 1403 | if (tx_cleaned) | 
|  | 1404 | work_done = budget; | 
|  | 1405 |  | 
| David S. Miller | 53e52c7 | 2008-01-07 21:06:12 -0800 | [diff] [blame] | 1406 | /* If budget not fully consumed, exit the polling mode */ | 
|  | 1407 | if (work_done < budget) { | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1408 | if (adapter->itr_setting & 3) | 
|  | 1409 | e1000_set_itr(adapter); | 
|  | 1410 | netif_rx_complete(poll_dev, napi); | 
|  | 1411 | e1000_irq_enable(adapter); | 
|  | 1412 | } | 
|  | 1413 |  | 
|  | 1414 | return work_done; | 
|  | 1415 | } | 
|  | 1416 |  | 
|  | 1417 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | 
|  | 1418 | { | 
|  | 1419 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 1420 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1421 | u32 vfta, index; | 
|  | 1422 |  | 
|  | 1423 | /* don't update vlan cookie if already programmed */ | 
|  | 1424 | if ((adapter->hw.mng_cookie.status & | 
|  | 1425 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | 1426 | (vid == adapter->mng_vlan_id)) | 
|  | 1427 | return; | 
|  | 1428 | /* add VID to filter table */ | 
|  | 1429 | index = (vid >> 5) & 0x7F; | 
|  | 1430 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | 1431 | vfta |= (1 << (vid & 0x1F)); | 
|  | 1432 | e1000e_write_vfta(hw, index, vfta); | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | 
|  | 1436 | { | 
|  | 1437 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 1438 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1439 | u32 vfta, index; | 
|  | 1440 |  | 
|  | 1441 | e1000_irq_disable(adapter); | 
|  | 1442 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | 
|  | 1443 | e1000_irq_enable(adapter); | 
|  | 1444 |  | 
|  | 1445 | if ((adapter->hw.mng_cookie.status & | 
|  | 1446 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | 1447 | (vid == adapter->mng_vlan_id)) { | 
|  | 1448 | /* release control to f/w */ | 
|  | 1449 | e1000_release_hw_control(adapter); | 
|  | 1450 | return; | 
|  | 1451 | } | 
|  | 1452 |  | 
|  | 1453 | /* remove VID from filter table */ | 
|  | 1454 | index = (vid >> 5) & 0x7F; | 
|  | 1455 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | 1456 | vfta &= ~(1 << (vid & 0x1F)); | 
|  | 1457 | e1000e_write_vfta(hw, index, vfta); | 
|  | 1458 | } | 
|  | 1459 |  | 
|  | 1460 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
|  | 1461 | { | 
|  | 1462 | struct net_device *netdev = adapter->netdev; | 
|  | 1463 | u16 vid = adapter->hw.mng_cookie.vlan_id; | 
|  | 1464 | u16 old_vid = adapter->mng_vlan_id; | 
|  | 1465 |  | 
|  | 1466 | if (!adapter->vlgrp) | 
|  | 1467 | return; | 
|  | 1468 |  | 
|  | 1469 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | 
|  | 1470 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | 1471 | if (adapter->hw.mng_cookie.status & | 
|  | 1472 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | 
|  | 1473 | e1000_vlan_rx_add_vid(netdev, vid); | 
|  | 1474 | adapter->mng_vlan_id = vid; | 
|  | 1475 | } | 
|  | 1476 |  | 
|  | 1477 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | 
|  | 1478 | (vid != old_vid) && | 
|  | 1479 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | 
|  | 1480 | e1000_vlan_rx_kill_vid(netdev, old_vid); | 
|  | 1481 | } else { | 
|  | 1482 | adapter->mng_vlan_id = vid; | 
|  | 1483 | } | 
|  | 1484 | } | 
|  | 1485 |  | 
|  | 1486 |  | 
|  | 1487 | static void e1000_vlan_rx_register(struct net_device *netdev, | 
|  | 1488 | struct vlan_group *grp) | 
|  | 1489 | { | 
|  | 1490 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 1491 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1492 | u32 ctrl, rctl; | 
|  | 1493 |  | 
|  | 1494 | e1000_irq_disable(adapter); | 
|  | 1495 | adapter->vlgrp = grp; | 
|  | 1496 |  | 
|  | 1497 | if (grp) { | 
|  | 1498 | /* enable VLAN tag insert/strip */ | 
|  | 1499 | ctrl = er32(CTRL); | 
|  | 1500 | ctrl |= E1000_CTRL_VME; | 
|  | 1501 | ew32(CTRL, ctrl); | 
|  | 1502 |  | 
|  | 1503 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | 1504 | /* enable VLAN receive filtering */ | 
|  | 1505 | rctl = er32(RCTL); | 
|  | 1506 | rctl |= E1000_RCTL_VFE; | 
|  | 1507 | rctl &= ~E1000_RCTL_CFIEN; | 
|  | 1508 | ew32(RCTL, rctl); | 
|  | 1509 | e1000_update_mng_vlan(adapter); | 
|  | 1510 | } | 
|  | 1511 | } else { | 
|  | 1512 | /* disable VLAN tag insert/strip */ | 
|  | 1513 | ctrl = er32(CTRL); | 
|  | 1514 | ctrl &= ~E1000_CTRL_VME; | 
|  | 1515 | ew32(CTRL, ctrl); | 
|  | 1516 |  | 
|  | 1517 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | 1518 | /* disable VLAN filtering */ | 
|  | 1519 | rctl = er32(RCTL); | 
|  | 1520 | rctl &= ~E1000_RCTL_VFE; | 
|  | 1521 | ew32(RCTL, rctl); | 
|  | 1522 | if (adapter->mng_vlan_id != | 
|  | 1523 | (u16)E1000_MNG_VLAN_NONE) { | 
|  | 1524 | e1000_vlan_rx_kill_vid(netdev, | 
|  | 1525 | adapter->mng_vlan_id); | 
|  | 1526 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | 1527 | } | 
|  | 1528 | } | 
|  | 1529 | } | 
|  | 1530 |  | 
|  | 1531 | e1000_irq_enable(adapter); | 
|  | 1532 | } | 
|  | 1533 |  | 
|  | 1534 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
|  | 1535 | { | 
|  | 1536 | u16 vid; | 
|  | 1537 |  | 
|  | 1538 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
|  | 1539 |  | 
|  | 1540 | if (!adapter->vlgrp) | 
|  | 1541 | return; | 
|  | 1542 |  | 
|  | 1543 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | 
|  | 1544 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | 
|  | 1545 | continue; | 
|  | 1546 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | 
|  | 1547 | } | 
|  | 1548 | } | 
|  | 1549 |  | 
|  | 1550 | static void e1000_init_manageability(struct e1000_adapter *adapter) | 
|  | 1551 | { | 
|  | 1552 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1553 | u32 manc, manc2h; | 
|  | 1554 |  | 
|  | 1555 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | 
|  | 1556 | return; | 
|  | 1557 |  | 
|  | 1558 | manc = er32(MANC); | 
|  | 1559 |  | 
|  | 1560 | /* disable hardware interception of ARP */ | 
|  | 1561 | manc &= ~(E1000_MANC_ARP_EN); | 
|  | 1562 |  | 
|  | 1563 | /* enable receiving management packets to the host. this will probably | 
|  | 1564 | * generate destination unreachable messages from the host OS, but | 
|  | 1565 | * the packets will be handled on SMBUS */ | 
|  | 1566 | manc |= E1000_MANC_EN_MNG2HOST; | 
|  | 1567 | manc2h = er32(MANC2H); | 
|  | 1568 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | 
|  | 1569 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | 
|  | 1570 | manc2h |= E1000_MNG2HOST_PORT_623; | 
|  | 1571 | manc2h |= E1000_MNG2HOST_PORT_664; | 
|  | 1572 | ew32(MANC2H, manc2h); | 
|  | 1573 | ew32(MANC, manc); | 
|  | 1574 | } | 
|  | 1575 |  | 
|  | 1576 | /** | 
|  | 1577 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
|  | 1578 | * @adapter: board private structure | 
|  | 1579 | * | 
|  | 1580 | * Configure the Tx unit of the MAC after a reset. | 
|  | 1581 | **/ | 
|  | 1582 | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
|  | 1583 | { | 
|  | 1584 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1585 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 1586 | u64 tdba; | 
|  | 1587 | u32 tdlen, tctl, tipg, tarc; | 
|  | 1588 | u32 ipgr1, ipgr2; | 
|  | 1589 |  | 
|  | 1590 | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  | 1591 | tdba = tx_ring->dma; | 
|  | 1592 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | 1593 | ew32(TDBAL, (tdba & DMA_32BIT_MASK)); | 
|  | 1594 | ew32(TDBAH, (tdba >> 32)); | 
|  | 1595 | ew32(TDLEN, tdlen); | 
|  | 1596 | ew32(TDH, 0); | 
|  | 1597 | ew32(TDT, 0); | 
|  | 1598 | tx_ring->head = E1000_TDH; | 
|  | 1599 | tx_ring->tail = E1000_TDT; | 
|  | 1600 |  | 
|  | 1601 | /* Set the default values for the Tx Inter Packet Gap timer */ | 
|  | 1602 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */ | 
|  | 1603 | ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */ | 
|  | 1604 | ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */ | 
|  | 1605 |  | 
|  | 1606 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | 
|  | 1607 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */ | 
|  | 1608 |  | 
|  | 1609 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | 1610 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | 1611 | ew32(TIPG, tipg); | 
|  | 1612 |  | 
|  | 1613 | /* Set the Tx Interrupt Delay register */ | 
|  | 1614 | ew32(TIDV, adapter->tx_int_delay); | 
|  | 1615 | /* tx irq moderation */ | 
|  | 1616 | ew32(TADV, adapter->tx_abs_int_delay); | 
|  | 1617 |  | 
|  | 1618 | /* Program the Transmit Control Register */ | 
|  | 1619 | tctl = er32(TCTL); | 
|  | 1620 | tctl &= ~E1000_TCTL_CT; | 
|  | 1621 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | 1622 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  | 1623 |  | 
|  | 1624 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | 
|  | 1625 | tarc = er32(TARC0); | 
|  | 1626 | /* set the speed mode bit, we'll clear it if we're not at | 
|  | 1627 | * gigabit link later */ | 
|  | 1628 | #define SPEED_MODE_BIT (1 << 21) | 
|  | 1629 | tarc |= SPEED_MODE_BIT; | 
|  | 1630 | ew32(TARC0, tarc); | 
|  | 1631 | } | 
|  | 1632 |  | 
|  | 1633 | /* errata: program both queues to unweighted RR */ | 
|  | 1634 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | 
|  | 1635 | tarc = er32(TARC0); | 
|  | 1636 | tarc |= 1; | 
|  | 1637 | ew32(TARC0, tarc); | 
|  | 1638 | tarc = er32(TARC1); | 
|  | 1639 | tarc |= 1; | 
|  | 1640 | ew32(TARC1, tarc); | 
|  | 1641 | } | 
|  | 1642 |  | 
|  | 1643 | e1000e_config_collision_dist(hw); | 
|  | 1644 |  | 
|  | 1645 | /* Setup Transmit Descriptor Settings for eop descriptor */ | 
|  | 1646 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
|  | 1647 |  | 
|  | 1648 | /* only set IDE if we are delaying interrupts using the timers */ | 
|  | 1649 | if (adapter->tx_int_delay) | 
|  | 1650 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
|  | 1651 |  | 
|  | 1652 | /* enable Report Status bit */ | 
|  | 1653 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  | 1654 |  | 
|  | 1655 | ew32(TCTL, tctl); | 
|  | 1656 |  | 
|  | 1657 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | 
|  | 1658 | } | 
|  | 1659 |  | 
|  | 1660 | /** | 
|  | 1661 | * e1000_setup_rctl - configure the receive control registers | 
|  | 1662 | * @adapter: Board private structure | 
|  | 1663 | **/ | 
|  | 1664 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
|  | 1665 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
|  | 1666 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
|  | 1667 | { | 
|  | 1668 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1669 | u32 rctl, rfctl; | 
|  | 1670 | u32 psrctl = 0; | 
|  | 1671 | u32 pages = 0; | 
|  | 1672 |  | 
|  | 1673 | /* Program MC offset vector base */ | 
|  | 1674 | rctl = er32(RCTL); | 
|  | 1675 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  | 1676 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
|  | 1677 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | 1678 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  | 1679 |  | 
|  | 1680 | /* Do not Store bad packets */ | 
|  | 1681 | rctl &= ~E1000_RCTL_SBP; | 
|  | 1682 |  | 
|  | 1683 | /* Enable Long Packet receive */ | 
|  | 1684 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
|  | 1685 | rctl &= ~E1000_RCTL_LPE; | 
|  | 1686 | else | 
|  | 1687 | rctl |= E1000_RCTL_LPE; | 
|  | 1688 |  | 
|  | 1689 | /* Setup buffer sizes */ | 
|  | 1690 | rctl &= ~E1000_RCTL_SZ_4096; | 
|  | 1691 | rctl |= E1000_RCTL_BSEX; | 
|  | 1692 | switch (adapter->rx_buffer_len) { | 
|  | 1693 | case 256: | 
|  | 1694 | rctl |= E1000_RCTL_SZ_256; | 
|  | 1695 | rctl &= ~E1000_RCTL_BSEX; | 
|  | 1696 | break; | 
|  | 1697 | case 512: | 
|  | 1698 | rctl |= E1000_RCTL_SZ_512; | 
|  | 1699 | rctl &= ~E1000_RCTL_BSEX; | 
|  | 1700 | break; | 
|  | 1701 | case 1024: | 
|  | 1702 | rctl |= E1000_RCTL_SZ_1024; | 
|  | 1703 | rctl &= ~E1000_RCTL_BSEX; | 
|  | 1704 | break; | 
|  | 1705 | case 2048: | 
|  | 1706 | default: | 
|  | 1707 | rctl |= E1000_RCTL_SZ_2048; | 
|  | 1708 | rctl &= ~E1000_RCTL_BSEX; | 
|  | 1709 | break; | 
|  | 1710 | case 4096: | 
|  | 1711 | rctl |= E1000_RCTL_SZ_4096; | 
|  | 1712 | break; | 
|  | 1713 | case 8192: | 
|  | 1714 | rctl |= E1000_RCTL_SZ_8192; | 
|  | 1715 | break; | 
|  | 1716 | case 16384: | 
|  | 1717 | rctl |= E1000_RCTL_SZ_16384; | 
|  | 1718 | break; | 
|  | 1719 | } | 
|  | 1720 |  | 
|  | 1721 | /* | 
|  | 1722 | * 82571 and greater support packet-split where the protocol | 
|  | 1723 | * header is placed in skb->data and the packet data is | 
|  | 1724 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | 
|  | 1725 | * In the case of a non-split, skb->data is linearly filled, | 
|  | 1726 | * followed by the page buffers.  Therefore, skb->data is | 
|  | 1727 | * sized to hold the largest protocol header. | 
|  | 1728 | * | 
|  | 1729 | * allocations using alloc_page take too long for regular MTU | 
|  | 1730 | * so only enable packet split for jumbo frames | 
|  | 1731 | * | 
|  | 1732 | * Using pages when the page size is greater than 16k wastes | 
|  | 1733 | * a lot of memory, since we allocate 3 pages at all times | 
|  | 1734 | * per packet. | 
|  | 1735 | */ | 
|  | 1736 | adapter->rx_ps_pages = 0; | 
|  | 1737 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | 
|  | 1738 | if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | 
|  | 1739 | adapter->rx_ps_pages = pages; | 
|  | 1740 |  | 
|  | 1741 | if (adapter->rx_ps_pages) { | 
|  | 1742 | /* Configure extra packet-split registers */ | 
|  | 1743 | rfctl = er32(RFCTL); | 
|  | 1744 | rfctl |= E1000_RFCTL_EXTEN; | 
|  | 1745 | /* disable packet split support for IPv6 extension headers, | 
|  | 1746 | * because some malformed IPv6 headers can hang the RX */ | 
|  | 1747 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | 
|  | 1748 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
|  | 1749 |  | 
|  | 1750 | ew32(RFCTL, rfctl); | 
|  | 1751 |  | 
| Auke Kok | 140a748 | 2007-10-25 13:57:58 -0700 | [diff] [blame] | 1752 | /* Enable Packet split descriptors */ | 
|  | 1753 | rctl |= E1000_RCTL_DTYP_PS; | 
|  | 1754 |  | 
|  | 1755 | /* Enable hardware CRC frame stripping */ | 
|  | 1756 | rctl |= E1000_RCTL_SECRC; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1757 |  | 
|  | 1758 | psrctl |= adapter->rx_ps_bsize0 >> | 
|  | 1759 | E1000_PSRCTL_BSIZE0_SHIFT; | 
|  | 1760 |  | 
|  | 1761 | switch (adapter->rx_ps_pages) { | 
|  | 1762 | case 3: | 
|  | 1763 | psrctl |= PAGE_SIZE << | 
|  | 1764 | E1000_PSRCTL_BSIZE3_SHIFT; | 
|  | 1765 | case 2: | 
|  | 1766 | psrctl |= PAGE_SIZE << | 
|  | 1767 | E1000_PSRCTL_BSIZE2_SHIFT; | 
|  | 1768 | case 1: | 
|  | 1769 | psrctl |= PAGE_SIZE >> | 
|  | 1770 | E1000_PSRCTL_BSIZE1_SHIFT; | 
|  | 1771 | break; | 
|  | 1772 | } | 
|  | 1773 |  | 
|  | 1774 | ew32(PSRCTL, psrctl); | 
|  | 1775 | } | 
|  | 1776 |  | 
|  | 1777 | ew32(RCTL, rctl); | 
|  | 1778 | } | 
|  | 1779 |  | 
|  | 1780 | /** | 
|  | 1781 | * e1000_configure_rx - Configure Receive Unit after Reset | 
|  | 1782 | * @adapter: board private structure | 
|  | 1783 | * | 
|  | 1784 | * Configure the Rx unit of the MAC after a reset. | 
|  | 1785 | **/ | 
|  | 1786 | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
|  | 1787 | { | 
|  | 1788 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1789 | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | 1790 | u64 rdba; | 
|  | 1791 | u32 rdlen, rctl, rxcsum, ctrl_ext; | 
|  | 1792 |  | 
|  | 1793 | if (adapter->rx_ps_pages) { | 
|  | 1794 | /* this is a 32 byte descriptor */ | 
|  | 1795 | rdlen = rx_ring->count * | 
|  | 1796 | sizeof(union e1000_rx_desc_packet_split); | 
|  | 1797 | adapter->clean_rx = e1000_clean_rx_irq_ps; | 
|  | 1798 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 1799 | } else { | 
|  | 1800 | rdlen = rx_ring->count * | 
|  | 1801 | sizeof(struct e1000_rx_desc); | 
|  | 1802 | adapter->clean_rx = e1000_clean_rx_irq; | 
|  | 1803 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
|  | 1804 | } | 
|  | 1805 |  | 
|  | 1806 | /* disable receives while setting up the descriptors */ | 
|  | 1807 | rctl = er32(RCTL); | 
|  | 1808 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | 1809 | e1e_flush(); | 
|  | 1810 | msleep(10); | 
|  | 1811 |  | 
|  | 1812 | /* set the Receive Delay Timer Register */ | 
|  | 1813 | ew32(RDTR, adapter->rx_int_delay); | 
|  | 1814 |  | 
|  | 1815 | /* irq moderation */ | 
|  | 1816 | ew32(RADV, adapter->rx_abs_int_delay); | 
|  | 1817 | if (adapter->itr_setting != 0) | 
|  | 1818 | ew32(ITR, | 
|  | 1819 | 1000000000 / (adapter->itr * 256)); | 
|  | 1820 |  | 
|  | 1821 | ctrl_ext = er32(CTRL_EXT); | 
|  | 1822 | /* Reset delay timers after every interrupt */ | 
|  | 1823 | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | 
|  | 1824 | /* Auto-Mask interrupts upon ICR access */ | 
|  | 1825 | ctrl_ext |= E1000_CTRL_EXT_IAME; | 
|  | 1826 | ew32(IAM, 0xffffffff); | 
|  | 1827 | ew32(CTRL_EXT, ctrl_ext); | 
|  | 1828 | e1e_flush(); | 
|  | 1829 |  | 
|  | 1830 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | 1831 | * the Base and Length of the Rx Descriptor Ring */ | 
|  | 1832 | rdba = rx_ring->dma; | 
|  | 1833 | ew32(RDBAL, (rdba & DMA_32BIT_MASK)); | 
|  | 1834 | ew32(RDBAH, (rdba >> 32)); | 
|  | 1835 | ew32(RDLEN, rdlen); | 
|  | 1836 | ew32(RDH, 0); | 
|  | 1837 | ew32(RDT, 0); | 
|  | 1838 | rx_ring->head = E1000_RDH; | 
|  | 1839 | rx_ring->tail = E1000_RDT; | 
|  | 1840 |  | 
|  | 1841 | /* Enable Receive Checksum Offload for TCP and UDP */ | 
|  | 1842 | rxcsum = er32(RXCSUM); | 
|  | 1843 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | 
|  | 1844 | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  | 1845 |  | 
|  | 1846 | /* IPv4 payload checksum for UDP fragments must be | 
|  | 1847 | * used in conjunction with packet-split. */ | 
|  | 1848 | if (adapter->rx_ps_pages) | 
|  | 1849 | rxcsum |= E1000_RXCSUM_IPPCSE; | 
|  | 1850 | } else { | 
|  | 1851 | rxcsum &= ~E1000_RXCSUM_TUOFL; | 
|  | 1852 | /* no need to clear IPPCSE as it defaults to 0 */ | 
|  | 1853 | } | 
|  | 1854 | ew32(RXCSUM, rxcsum); | 
|  | 1855 |  | 
|  | 1856 | /* Enable early receives on supported devices, only takes effect when | 
|  | 1857 | * packet size is equal or larger than the specified value (in 8 byte | 
|  | 1858 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ | 
|  | 1859 | if ((adapter->flags & FLAG_HAS_ERT) && | 
|  | 1860 | (adapter->netdev->mtu > ETH_DATA_LEN)) | 
|  | 1861 | ew32(ERT, E1000_ERT_2048); | 
|  | 1862 |  | 
|  | 1863 | /* Enable Receives */ | 
|  | 1864 | ew32(RCTL, rctl); | 
|  | 1865 | } | 
|  | 1866 |  | 
|  | 1867 | /** | 
|  | 1868 | *  e1000_mc_addr_list_update - Update Multicast addresses | 
|  | 1869 | *  @hw: pointer to the HW structure | 
|  | 1870 | *  @mc_addr_list: array of multicast addresses to program | 
|  | 1871 | *  @mc_addr_count: number of multicast addresses to program | 
|  | 1872 | *  @rar_used_count: the first RAR register free to program | 
|  | 1873 | *  @rar_count: total number of supported Receive Address Registers | 
|  | 1874 | * | 
|  | 1875 | *  Updates the Receive Address Registers and Multicast Table Array. | 
|  | 1876 | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|  | 1877 | *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
|  | 1878 | *  unless there are workarounds that change this.  Currently no func pointer | 
|  | 1879 | *  exists and all implementations are handled in the generic version of this | 
|  | 1880 | *  function. | 
|  | 1881 | **/ | 
|  | 1882 | static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, | 
|  | 1883 | u32 mc_addr_count, u32 rar_used_count, | 
|  | 1884 | u32 rar_count) | 
|  | 1885 | { | 
|  | 1886 | hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, | 
|  | 1887 | rar_used_count, rar_count); | 
|  | 1888 | } | 
|  | 1889 |  | 
|  | 1890 | /** | 
|  | 1891 | * e1000_set_multi - Multicast and Promiscuous mode set | 
|  | 1892 | * @netdev: network interface device structure | 
|  | 1893 | * | 
|  | 1894 | * The set_multi entry point is called whenever the multicast address | 
|  | 1895 | * list or the network interface flags are updated.  This routine is | 
|  | 1896 | * responsible for configuring the hardware for proper multicast, | 
|  | 1897 | * promiscuous mode, and all-multi behavior. | 
|  | 1898 | **/ | 
|  | 1899 | static void e1000_set_multi(struct net_device *netdev) | 
|  | 1900 | { | 
|  | 1901 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 1902 | struct e1000_hw *hw = &adapter->hw; | 
|  | 1903 | struct e1000_mac_info *mac = &hw->mac; | 
|  | 1904 | struct dev_mc_list *mc_ptr; | 
|  | 1905 | u8  *mta_list; | 
|  | 1906 | u32 rctl; | 
|  | 1907 | int i; | 
|  | 1908 |  | 
|  | 1909 | /* Check for Promiscuous and All Multicast modes */ | 
|  | 1910 |  | 
|  | 1911 | rctl = er32(RCTL); | 
|  | 1912 |  | 
|  | 1913 | if (netdev->flags & IFF_PROMISC) { | 
|  | 1914 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | 1915 | } else if (netdev->flags & IFF_ALLMULTI) { | 
|  | 1916 | rctl |= E1000_RCTL_MPE; | 
|  | 1917 | rctl &= ~E1000_RCTL_UPE; | 
|  | 1918 | } else { | 
|  | 1919 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | 1920 | } | 
|  | 1921 |  | 
|  | 1922 | ew32(RCTL, rctl); | 
|  | 1923 |  | 
|  | 1924 | if (netdev->mc_count) { | 
|  | 1925 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | 
|  | 1926 | if (!mta_list) | 
|  | 1927 | return; | 
|  | 1928 |  | 
|  | 1929 | /* prepare a packed array of only addresses. */ | 
|  | 1930 | mc_ptr = netdev->mc_list; | 
|  | 1931 |  | 
|  | 1932 | for (i = 0; i < netdev->mc_count; i++) { | 
|  | 1933 | if (!mc_ptr) | 
|  | 1934 | break; | 
|  | 1935 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | 
|  | 1936 | ETH_ALEN); | 
|  | 1937 | mc_ptr = mc_ptr->next; | 
|  | 1938 | } | 
|  | 1939 |  | 
|  | 1940 | e1000_mc_addr_list_update(hw, mta_list, i, 1, | 
|  | 1941 | mac->rar_entry_count); | 
|  | 1942 | kfree(mta_list); | 
|  | 1943 | } else { | 
|  | 1944 | /* | 
|  | 1945 | * if we're called from probe, we might not have | 
|  | 1946 | * anything to do here, so clear out the list | 
|  | 1947 | */ | 
|  | 1948 | e1000_mc_addr_list_update(hw, NULL, 0, 1, | 
|  | 1949 | mac->rar_entry_count); | 
|  | 1950 | } | 
|  | 1951 | } | 
|  | 1952 |  | 
|  | 1953 | /** | 
|  | 1954 | * e1000_configure - configure the hardware for RX and TX | 
|  | 1955 | * @adapter: private board structure | 
|  | 1956 | **/ | 
|  | 1957 | static void e1000_configure(struct e1000_adapter *adapter) | 
|  | 1958 | { | 
|  | 1959 | e1000_set_multi(adapter->netdev); | 
|  | 1960 |  | 
|  | 1961 | e1000_restore_vlan(adapter); | 
|  | 1962 | e1000_init_manageability(adapter); | 
|  | 1963 |  | 
|  | 1964 | e1000_configure_tx(adapter); | 
|  | 1965 | e1000_setup_rctl(adapter); | 
|  | 1966 | e1000_configure_rx(adapter); | 
|  | 1967 | adapter->alloc_rx_buf(adapter, | 
|  | 1968 | e1000_desc_unused(adapter->rx_ring)); | 
|  | 1969 | } | 
|  | 1970 |  | 
|  | 1971 | /** | 
|  | 1972 | * e1000e_power_up_phy - restore link in case the phy was powered down | 
|  | 1973 | * @adapter: address of board private structure | 
|  | 1974 | * | 
|  | 1975 | * The phy may be powered down to save power and turn off link when the | 
|  | 1976 | * driver is unloaded and wake on lan is not enabled (among others) | 
|  | 1977 | * *** this routine MUST be followed by a call to e1000e_reset *** | 
|  | 1978 | **/ | 
|  | 1979 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | 
|  | 1980 | { | 
|  | 1981 | u16 mii_reg = 0; | 
|  | 1982 |  | 
|  | 1983 | /* Just clear the power down bit to wake the phy back up */ | 
|  | 1984 | if (adapter->hw.media_type == e1000_media_type_copper) { | 
|  | 1985 | /* according to the manual, the phy will retain its | 
|  | 1986 | * settings across a power-down/up cycle */ | 
|  | 1987 | e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); | 
|  | 1988 | mii_reg &= ~MII_CR_POWER_DOWN; | 
|  | 1989 | e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); | 
|  | 1990 | } | 
|  | 1991 |  | 
|  | 1992 | adapter->hw.mac.ops.setup_link(&adapter->hw); | 
|  | 1993 | } | 
|  | 1994 |  | 
|  | 1995 | /** | 
|  | 1996 | * e1000_power_down_phy - Power down the PHY | 
|  | 1997 | * | 
|  | 1998 | * Power down the PHY so no link is implied when interface is down | 
|  | 1999 | * The PHY cannot be powered down is management or WoL is active | 
|  | 2000 | */ | 
|  | 2001 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
|  | 2002 | { | 
|  | 2003 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2004 | u16 mii_reg; | 
|  | 2005 |  | 
|  | 2006 | /* WoL is enabled */ | 
|  | 2007 | if (!adapter->wol) | 
|  | 2008 | return; | 
|  | 2009 |  | 
|  | 2010 | /* non-copper PHY? */ | 
|  | 2011 | if (adapter->hw.media_type != e1000_media_type_copper) | 
|  | 2012 | return; | 
|  | 2013 |  | 
|  | 2014 | /* reset is blocked because of a SoL/IDER session */ | 
|  | 2015 | if (e1000e_check_mng_mode(hw) || | 
|  | 2016 | e1000_check_reset_block(hw)) | 
|  | 2017 | return; | 
|  | 2018 |  | 
|  | 2019 | /* managebility (AMT) is enabled */ | 
|  | 2020 | if (er32(MANC) & E1000_MANC_SMBUS_EN) | 
|  | 2021 | return; | 
|  | 2022 |  | 
|  | 2023 | /* power down the PHY */ | 
|  | 2024 | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | 
|  | 2025 | mii_reg |= MII_CR_POWER_DOWN; | 
|  | 2026 | e1e_wphy(hw, PHY_CONTROL, mii_reg); | 
|  | 2027 | mdelay(1); | 
|  | 2028 | } | 
|  | 2029 |  | 
|  | 2030 | /** | 
|  | 2031 | * e1000e_reset - bring the hardware into a known good state | 
|  | 2032 | * | 
|  | 2033 | * This function boots the hardware and enables some settings that | 
|  | 2034 | * require a configuration cycle of the hardware - those cannot be | 
|  | 2035 | * set/changed during runtime. After reset the device needs to be | 
|  | 2036 | * properly configured for rx, tx etc. | 
|  | 2037 | */ | 
|  | 2038 | void e1000e_reset(struct e1000_adapter *adapter) | 
|  | 2039 | { | 
|  | 2040 | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | 2041 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2042 | u32 tx_space, min_tx_space, min_rx_space; | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2043 | u32 pba; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2044 | u16 hwm; | 
|  | 2045 |  | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2046 | ew32(PBA, adapter->pba); | 
|  | 2047 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2048 | if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { | 
|  | 2049 | /* To maintain wire speed transmits, the Tx FIFO should be | 
|  | 2050 | * large enough to accommodate two full transmit packets, | 
|  | 2051 | * rounded up to the next 1KB and expressed in KB.  Likewise, | 
|  | 2052 | * the Rx FIFO should be large enough to accommodate at least | 
|  | 2053 | * one full receive packet and is similarly rounded up and | 
|  | 2054 | * expressed in KB. */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2055 | pba = er32(PBA); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2056 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2057 | tx_space = pba >> 16; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2058 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2059 | pba &= 0xffff; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2060 | /* the tx fifo also stores 16 bytes of information about the tx | 
|  | 2061 | * but don't include ethernet FCS because hardware appends it */ | 
|  | 2062 | min_tx_space = (mac->max_frame_size + | 
|  | 2063 | sizeof(struct e1000_tx_desc) - | 
|  | 2064 | ETH_FCS_LEN) * 2; | 
|  | 2065 | min_tx_space = ALIGN(min_tx_space, 1024); | 
|  | 2066 | min_tx_space >>= 10; | 
|  | 2067 | /* software strips receive CRC, so leave room for it */ | 
|  | 2068 | min_rx_space = mac->max_frame_size; | 
|  | 2069 | min_rx_space = ALIGN(min_rx_space, 1024); | 
|  | 2070 | min_rx_space >>= 10; | 
|  | 2071 |  | 
|  | 2072 | /* If current Tx allocation is less than the min Tx FIFO size, | 
|  | 2073 | * and the min Tx FIFO size is less than the current Rx FIFO | 
|  | 2074 | * allocation, take space away from current Rx allocation */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2075 | if ((tx_space < min_tx_space) && | 
|  | 2076 | ((min_tx_space - tx_space) < pba)) { | 
|  | 2077 | pba -= min_tx_space - tx_space; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2078 |  | 
|  | 2079 | /* if short on rx space, rx wins and must trump tx | 
|  | 2080 | * adjustment or use Early Receive if available */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2081 | if ((pba < min_rx_space) && | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2082 | (!(adapter->flags & FLAG_HAS_ERT))) | 
|  | 2083 | /* ERT enabled in e1000_configure_rx */ | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2084 | pba = min_rx_space; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2085 | } | 
| Auke Kok | df76246 | 2007-10-25 13:57:53 -0700 | [diff] [blame] | 2086 |  | 
|  | 2087 | ew32(PBA, pba); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2088 | } | 
|  | 2089 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2090 |  | 
|  | 2091 | /* flow control settings */ | 
|  | 2092 | /* The high water mark must be low enough to fit one full frame | 
|  | 2093 | * (or the size used for early receive) above it in the Rx FIFO. | 
|  | 2094 | * Set it to the lower of: | 
|  | 2095 | * - 90% of the Rx FIFO size, and | 
|  | 2096 | * - the full Rx FIFO size minus the early receive size (for parts | 
|  | 2097 | *   with ERT support assuming ERT set to E1000_ERT_2048), or | 
|  | 2098 | * - the full Rx FIFO size minus one full frame */ | 
|  | 2099 | if (adapter->flags & FLAG_HAS_ERT) | 
|  | 2100 | hwm = min(((adapter->pba << 10) * 9 / 10), | 
|  | 2101 | ((adapter->pba << 10) - (E1000_ERT_2048 << 3))); | 
|  | 2102 | else | 
|  | 2103 | hwm = min(((adapter->pba << 10) * 9 / 10), | 
|  | 2104 | ((adapter->pba << 10) - mac->max_frame_size)); | 
|  | 2105 |  | 
|  | 2106 | mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ | 
|  | 2107 | mac->fc_low_water = mac->fc_high_water - 8; | 
|  | 2108 |  | 
|  | 2109 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | 
|  | 2110 | mac->fc_pause_time = 0xFFFF; | 
|  | 2111 | else | 
|  | 2112 | mac->fc_pause_time = E1000_FC_PAUSE_TIME; | 
|  | 2113 | mac->fc = mac->original_fc; | 
|  | 2114 |  | 
|  | 2115 | /* Allow time for pending master requests to run */ | 
|  | 2116 | mac->ops.reset_hw(hw); | 
|  | 2117 | ew32(WUC, 0); | 
|  | 2118 |  | 
|  | 2119 | if (mac->ops.init_hw(hw)) | 
|  | 2120 | ndev_err(adapter->netdev, "Hardware Error\n"); | 
|  | 2121 |  | 
|  | 2122 | e1000_update_mng_vlan(adapter); | 
|  | 2123 |  | 
|  | 2124 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | 2125 | ew32(VET, ETH_P_8021Q); | 
|  | 2126 |  | 
|  | 2127 | e1000e_reset_adaptive(hw); | 
|  | 2128 | e1000_get_phy_info(hw); | 
|  | 2129 |  | 
|  | 2130 | if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { | 
|  | 2131 | u16 phy_data = 0; | 
|  | 2132 | /* speed up time to link by disabling smart power down, ignore | 
|  | 2133 | * the return value of this function because there is nothing | 
|  | 2134 | * different we would do if it failed */ | 
|  | 2135 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | 2136 | phy_data &= ~IGP02E1000_PM_SPD; | 
|  | 2137 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | 2138 | } | 
|  | 2139 |  | 
|  | 2140 | e1000_release_manageability(adapter); | 
|  | 2141 | } | 
|  | 2142 |  | 
|  | 2143 | int e1000e_up(struct e1000_adapter *adapter) | 
|  | 2144 | { | 
|  | 2145 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2146 |  | 
|  | 2147 | /* hardware has been reset, we need to reload some things */ | 
|  | 2148 | e1000_configure(adapter); | 
|  | 2149 |  | 
|  | 2150 | clear_bit(__E1000_DOWN, &adapter->state); | 
|  | 2151 |  | 
|  | 2152 | napi_enable(&adapter->napi); | 
|  | 2153 | e1000_irq_enable(adapter); | 
|  | 2154 |  | 
|  | 2155 | /* fire a link change interrupt to start the watchdog */ | 
|  | 2156 | ew32(ICS, E1000_ICS_LSC); | 
|  | 2157 | return 0; | 
|  | 2158 | } | 
|  | 2159 |  | 
|  | 2160 | void e1000e_down(struct e1000_adapter *adapter) | 
|  | 2161 | { | 
|  | 2162 | struct net_device *netdev = adapter->netdev; | 
|  | 2163 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2164 | u32 tctl, rctl; | 
|  | 2165 |  | 
|  | 2166 | /* signal that we're down so the interrupt handler does not | 
|  | 2167 | * reschedule our watchdog timer */ | 
|  | 2168 | set_bit(__E1000_DOWN, &adapter->state); | 
|  | 2169 |  | 
|  | 2170 | /* disable receives in the hardware */ | 
|  | 2171 | rctl = er32(RCTL); | 
|  | 2172 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | 2173 | /* flush and sleep below */ | 
|  | 2174 |  | 
|  | 2175 | netif_stop_queue(netdev); | 
|  | 2176 |  | 
|  | 2177 | /* disable transmits in the hardware */ | 
|  | 2178 | tctl = er32(TCTL); | 
|  | 2179 | tctl &= ~E1000_TCTL_EN; | 
|  | 2180 | ew32(TCTL, tctl); | 
|  | 2181 | /* flush both disables and wait for them to finish */ | 
|  | 2182 | e1e_flush(); | 
|  | 2183 | msleep(10); | 
|  | 2184 |  | 
|  | 2185 | napi_disable(&adapter->napi); | 
| David S. Miller | 49d85c5 | 2008-01-18 04:21:39 -0800 | [diff] [blame] | 2186 | atomic_set(&adapter->irq_sem, 0); | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 2187 | e1000_irq_disable(adapter); | 
|  | 2188 |  | 
|  | 2189 | del_timer_sync(&adapter->watchdog_timer); | 
|  | 2190 | del_timer_sync(&adapter->phy_info_timer); | 
|  | 2191 |  | 
|  | 2192 | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | 2193 | netif_carrier_off(netdev); | 
|  | 2194 | adapter->link_speed = 0; | 
|  | 2195 | adapter->link_duplex = 0; | 
|  | 2196 |  | 
|  | 2197 | e1000e_reset(adapter); | 
|  | 2198 | e1000_clean_tx_ring(adapter); | 
|  | 2199 | e1000_clean_rx_ring(adapter); | 
|  | 2200 |  | 
|  | 2201 | /* | 
|  | 2202 | * TODO: for power management, we could drop the link and | 
|  | 2203 | * pci_disable_device here. | 
|  | 2204 | */ | 
|  | 2205 | } | 
|  | 2206 |  | 
|  | 2207 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | 
|  | 2208 | { | 
|  | 2209 | might_sleep(); | 
|  | 2210 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | 2211 | msleep(1); | 
|  | 2212 | e1000e_down(adapter); | 
|  | 2213 | e1000e_up(adapter); | 
|  | 2214 | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  | 2215 | } | 
|  | 2216 |  | 
|  | 2217 | /** | 
|  | 2218 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | 2219 | * @adapter: board private structure to initialize | 
|  | 2220 | * | 
|  | 2221 | * e1000_sw_init initializes the Adapter private data structure. | 
|  | 2222 | * Fields are initialized based on PCI device information and | 
|  | 2223 | * OS network device settings (MTU size). | 
|  | 2224 | **/ | 
|  | 2225 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | 
|  | 2226 | { | 
|  | 2227 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2228 | struct net_device *netdev = adapter->netdev; | 
|  | 2229 |  | 
|  | 2230 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | 
|  | 2231 | adapter->rx_ps_bsize0 = 128; | 
|  | 2232 | hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | 2233 | hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | 
|  | 2234 |  | 
|  | 2235 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
|  | 2236 | if (!adapter->tx_ring) | 
|  | 2237 | goto err; | 
|  | 2238 |  | 
|  | 2239 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
|  | 2240 | if (!adapter->rx_ring) | 
|  | 2241 | goto err; | 
|  | 2242 |  | 
|  | 2243 | spin_lock_init(&adapter->tx_queue_lock); | 
|  | 2244 |  | 
|  | 2245 | /* Explicitly disable IRQ since the NIC can be in any state. */ | 
|  | 2246 | atomic_set(&adapter->irq_sem, 0); | 
|  | 2247 | e1000_irq_disable(adapter); | 
|  | 2248 |  | 
|  | 2249 | spin_lock_init(&adapter->stats_lock); | 
|  | 2250 |  | 
|  | 2251 | set_bit(__E1000_DOWN, &adapter->state); | 
|  | 2252 | return 0; | 
|  | 2253 |  | 
|  | 2254 | err: | 
|  | 2255 | ndev_err(netdev, "Unable to allocate memory for queues\n"); | 
|  | 2256 | kfree(adapter->rx_ring); | 
|  | 2257 | kfree(adapter->tx_ring); | 
|  | 2258 | return -ENOMEM; | 
|  | 2259 | } | 
|  | 2260 |  | 
|  | 2261 | /** | 
|  | 2262 | * e1000_open - Called when a network interface is made active | 
|  | 2263 | * @netdev: network interface device structure | 
|  | 2264 | * | 
|  | 2265 | * Returns 0 on success, negative value on failure | 
|  | 2266 | * | 
|  | 2267 | * The open entry point is called when a network interface is made | 
|  | 2268 | * active by the system (IFF_UP).  At this point all resources needed | 
|  | 2269 | * for transmit and receive operations are allocated, the interrupt | 
|  | 2270 | * handler is registered with the OS, the watchdog timer is started, | 
|  | 2271 | * and the stack is notified that the interface is ready. | 
|  | 2272 | **/ | 
|  | 2273 | static int e1000_open(struct net_device *netdev) | 
|  | 2274 | { | 
|  | 2275 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 2276 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2277 | int err; | 
|  | 2278 |  | 
|  | 2279 | /* disallow open during test */ | 
|  | 2280 | if (test_bit(__E1000_TESTING, &adapter->state)) | 
|  | 2281 | return -EBUSY; | 
|  | 2282 |  | 
|  | 2283 | /* allocate transmit descriptors */ | 
|  | 2284 | err = e1000e_setup_tx_resources(adapter); | 
|  | 2285 | if (err) | 
|  | 2286 | goto err_setup_tx; | 
|  | 2287 |  | 
|  | 2288 | /* allocate receive descriptors */ | 
|  | 2289 | err = e1000e_setup_rx_resources(adapter); | 
|  | 2290 | if (err) | 
|  | 2291 | goto err_setup_rx; | 
|  | 2292 |  | 
|  | 2293 | e1000e_power_up_phy(adapter); | 
|  | 2294 |  | 
|  | 2295 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | 2296 | if ((adapter->hw.mng_cookie.status & | 
|  | 2297 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | 
|  | 2298 | e1000_update_mng_vlan(adapter); | 
|  | 2299 |  | 
|  | 2300 | /* If AMT is enabled, let the firmware know that the network | 
|  | 2301 | * interface is now open */ | 
|  | 2302 | if ((adapter->flags & FLAG_HAS_AMT) && | 
|  | 2303 | e1000e_check_mng_mode(&adapter->hw)) | 
|  | 2304 | e1000_get_hw_control(adapter); | 
|  | 2305 |  | 
|  | 2306 | /* before we allocate an interrupt, we must be ready to handle it. | 
|  | 2307 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
|  | 2308 | * as soon as we call pci_request_irq, so we have to setup our | 
|  | 2309 | * clean_rx handler before we do so.  */ | 
|  | 2310 | e1000_configure(adapter); | 
|  | 2311 |  | 
|  | 2312 | err = e1000_request_irq(adapter); | 
|  | 2313 | if (err) | 
|  | 2314 | goto err_req_irq; | 
|  | 2315 |  | 
|  | 2316 | /* From here on the code is the same as e1000e_up() */ | 
|  | 2317 | clear_bit(__E1000_DOWN, &adapter->state); | 
|  | 2318 |  | 
|  | 2319 | napi_enable(&adapter->napi); | 
|  | 2320 |  | 
|  | 2321 | e1000_irq_enable(adapter); | 
|  | 2322 |  | 
|  | 2323 | /* fire a link status change interrupt to start the watchdog */ | 
|  | 2324 | ew32(ICS, E1000_ICS_LSC); | 
|  | 2325 |  | 
|  | 2326 | return 0; | 
|  | 2327 |  | 
|  | 2328 | err_req_irq: | 
|  | 2329 | e1000_release_hw_control(adapter); | 
|  | 2330 | e1000_power_down_phy(adapter); | 
|  | 2331 | e1000e_free_rx_resources(adapter); | 
|  | 2332 | err_setup_rx: | 
|  | 2333 | e1000e_free_tx_resources(adapter); | 
|  | 2334 | err_setup_tx: | 
|  | 2335 | e1000e_reset(adapter); | 
|  | 2336 |  | 
|  | 2337 | return err; | 
|  | 2338 | } | 
|  | 2339 |  | 
|  | 2340 | /** | 
|  | 2341 | * e1000_close - Disables a network interface | 
|  | 2342 | * @netdev: network interface device structure | 
|  | 2343 | * | 
|  | 2344 | * Returns 0, this is not allowed to fail | 
|  | 2345 | * | 
|  | 2346 | * The close entry point is called when an interface is de-activated | 
|  | 2347 | * by the OS.  The hardware is still under the drivers control, but | 
|  | 2348 | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | 2349 | * hardware, and all transmit and receive resources are freed. | 
|  | 2350 | **/ | 
|  | 2351 | static int e1000_close(struct net_device *netdev) | 
|  | 2352 | { | 
|  | 2353 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 2354 |  | 
|  | 2355 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  | 2356 | e1000e_down(adapter); | 
|  | 2357 | e1000_power_down_phy(adapter); | 
|  | 2358 | e1000_free_irq(adapter); | 
|  | 2359 |  | 
|  | 2360 | e1000e_free_tx_resources(adapter); | 
|  | 2361 | e1000e_free_rx_resources(adapter); | 
|  | 2362 |  | 
|  | 2363 | /* kill manageability vlan ID if supported, but not if a vlan with | 
|  | 2364 | * the same ID is registered on the host OS (let 8021q kill it) */ | 
|  | 2365 | if ((adapter->hw.mng_cookie.status & | 
|  | 2366 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | 2367 | !(adapter->vlgrp && | 
|  | 2368 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | 
|  | 2369 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 
|  | 2370 |  | 
|  | 2371 | /* If AMT is enabled, let the firmware know that the network | 
|  | 2372 | * interface is now closed */ | 
|  | 2373 | if ((adapter->flags & FLAG_HAS_AMT) && | 
|  | 2374 | e1000e_check_mng_mode(&adapter->hw)) | 
|  | 2375 | e1000_release_hw_control(adapter); | 
|  | 2376 |  | 
|  | 2377 | return 0; | 
|  | 2378 | } | 
|  | 2379 | /** | 
|  | 2380 | * e1000_set_mac - Change the Ethernet Address of the NIC | 
|  | 2381 | * @netdev: network interface device structure | 
|  | 2382 | * @p: pointer to an address structure | 
|  | 2383 | * | 
|  | 2384 | * Returns 0 on success, negative on failure | 
|  | 2385 | **/ | 
|  | 2386 | static int e1000_set_mac(struct net_device *netdev, void *p) | 
|  | 2387 | { | 
|  | 2388 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 2389 | struct sockaddr *addr = p; | 
|  | 2390 |  | 
|  | 2391 | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | 2392 | return -EADDRNOTAVAIL; | 
|  | 2393 |  | 
|  | 2394 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | 2395 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | 
|  | 2396 |  | 
|  | 2397 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | 
|  | 2398 |  | 
|  | 2399 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | 
|  | 2400 | /* activate the work around */ | 
|  | 2401 | e1000e_set_laa_state_82571(&adapter->hw, 1); | 
|  | 2402 |  | 
|  | 2403 | /* Hold a copy of the LAA in RAR[14] This is done so that | 
|  | 2404 | * between the time RAR[0] gets clobbered  and the time it | 
|  | 2405 | * gets fixed (in e1000_watchdog), the actual LAA is in one | 
|  | 2406 | * of the RARs and no incoming packets directed to this port | 
|  | 2407 | * are dropped. Eventually the LAA will be in RAR[0] and | 
|  | 2408 | * RAR[14] */ | 
|  | 2409 | e1000e_rar_set(&adapter->hw, | 
|  | 2410 | adapter->hw.mac.addr, | 
|  | 2411 | adapter->hw.mac.rar_entry_count - 1); | 
|  | 2412 | } | 
|  | 2413 |  | 
|  | 2414 | return 0; | 
|  | 2415 | } | 
|  | 2416 |  | 
|  | 2417 | /* Need to wait a few seconds after link up to get diagnostic information from | 
|  | 2418 | * the phy */ | 
|  | 2419 | static void e1000_update_phy_info(unsigned long data) | 
|  | 2420 | { | 
|  | 2421 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | 2422 | e1000_get_phy_info(&adapter->hw); | 
|  | 2423 | } | 
|  | 2424 |  | 
|  | 2425 | /** | 
|  | 2426 | * e1000e_update_stats - Update the board statistics counters | 
|  | 2427 | * @adapter: board private structure | 
|  | 2428 | **/ | 
|  | 2429 | void e1000e_update_stats(struct e1000_adapter *adapter) | 
|  | 2430 | { | 
|  | 2431 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2432 | struct pci_dev *pdev = adapter->pdev; | 
|  | 2433 | unsigned long irq_flags; | 
|  | 2434 | u16 phy_tmp; | 
|  | 2435 |  | 
|  | 2436 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
|  | 2437 |  | 
|  | 2438 | /* | 
|  | 2439 | * Prevent stats update while adapter is being reset, or if the pci | 
|  | 2440 | * connection is down. | 
|  | 2441 | */ | 
|  | 2442 | if (adapter->link_speed == 0) | 
|  | 2443 | return; | 
|  | 2444 | if (pci_channel_offline(pdev)) | 
|  | 2445 | return; | 
|  | 2446 |  | 
|  | 2447 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | 
|  | 2448 |  | 
|  | 2449 | /* these counters are modified from e1000_adjust_tbi_stats, | 
|  | 2450 | * called from the interrupt context, so they must only | 
|  | 2451 | * be written while holding adapter->stats_lock | 
|  | 2452 | */ | 
|  | 2453 |  | 
|  | 2454 | adapter->stats.crcerrs += er32(CRCERRS); | 
|  | 2455 | adapter->stats.gprc += er32(GPRC); | 
|  | 2456 | adapter->stats.gorcl += er32(GORCL); | 
|  | 2457 | adapter->stats.gorch += er32(GORCH); | 
|  | 2458 | adapter->stats.bprc += er32(BPRC); | 
|  | 2459 | adapter->stats.mprc += er32(MPRC); | 
|  | 2460 | adapter->stats.roc += er32(ROC); | 
|  | 2461 |  | 
|  | 2462 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | 
|  | 2463 | adapter->stats.prc64 += er32(PRC64); | 
|  | 2464 | adapter->stats.prc127 += er32(PRC127); | 
|  | 2465 | adapter->stats.prc255 += er32(PRC255); | 
|  | 2466 | adapter->stats.prc511 += er32(PRC511); | 
|  | 2467 | adapter->stats.prc1023 += er32(PRC1023); | 
|  | 2468 | adapter->stats.prc1522 += er32(PRC1522); | 
|  | 2469 | adapter->stats.symerrs += er32(SYMERRS); | 
|  | 2470 | adapter->stats.sec += er32(SEC); | 
|  | 2471 | } | 
|  | 2472 |  | 
|  | 2473 | adapter->stats.mpc += er32(MPC); | 
|  | 2474 | adapter->stats.scc += er32(SCC); | 
|  | 2475 | adapter->stats.ecol += er32(ECOL); | 
|  | 2476 | adapter->stats.mcc += er32(MCC); | 
|  | 2477 | adapter->stats.latecol += er32(LATECOL); | 
|  | 2478 | adapter->stats.dc += er32(DC); | 
|  | 2479 | adapter->stats.rlec += er32(RLEC); | 
|  | 2480 | adapter->stats.xonrxc += er32(XONRXC); | 
|  | 2481 | adapter->stats.xontxc += er32(XONTXC); | 
|  | 2482 | adapter->stats.xoffrxc += er32(XOFFRXC); | 
|  | 2483 | adapter->stats.xofftxc += er32(XOFFTXC); | 
|  | 2484 | adapter->stats.fcruc += er32(FCRUC); | 
|  | 2485 | adapter->stats.gptc += er32(GPTC); | 
|  | 2486 | adapter->stats.gotcl += er32(GOTCL); | 
|  | 2487 | adapter->stats.gotch += er32(GOTCH); | 
|  | 2488 | adapter->stats.rnbc += er32(RNBC); | 
|  | 2489 | adapter->stats.ruc += er32(RUC); | 
|  | 2490 | adapter->stats.rfc += er32(RFC); | 
|  | 2491 | adapter->stats.rjc += er32(RJC); | 
|  | 2492 | adapter->stats.torl += er32(TORL); | 
|  | 2493 | adapter->stats.torh += er32(TORH); | 
|  | 2494 | adapter->stats.totl += er32(TOTL); | 
|  | 2495 | adapter->stats.toth += er32(TOTH); | 
|  | 2496 | adapter->stats.tpr += er32(TPR); | 
|  | 2497 |  | 
|  | 2498 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | 
|  | 2499 | adapter->stats.ptc64 += er32(PTC64); | 
|  | 2500 | adapter->stats.ptc127 += er32(PTC127); | 
|  | 2501 | adapter->stats.ptc255 += er32(PTC255); | 
|  | 2502 | adapter->stats.ptc511 += er32(PTC511); | 
|  | 2503 | adapter->stats.ptc1023 += er32(PTC1023); | 
|  | 2504 | adapter->stats.ptc1522 += er32(PTC1522); | 
|  | 2505 | } | 
|  | 2506 |  | 
|  | 2507 | adapter->stats.mptc += er32(MPTC); | 
|  | 2508 | adapter->stats.bptc += er32(BPTC); | 
|  | 2509 |  | 
|  | 2510 | /* used for adaptive IFS */ | 
|  | 2511 |  | 
|  | 2512 | hw->mac.tx_packet_delta = er32(TPT); | 
|  | 2513 | adapter->stats.tpt += hw->mac.tx_packet_delta; | 
|  | 2514 | hw->mac.collision_delta = er32(COLC); | 
|  | 2515 | adapter->stats.colc += hw->mac.collision_delta; | 
|  | 2516 |  | 
|  | 2517 | adapter->stats.algnerrc += er32(ALGNERRC); | 
|  | 2518 | adapter->stats.rxerrc += er32(RXERRC); | 
|  | 2519 | adapter->stats.tncrs += er32(TNCRS); | 
|  | 2520 | adapter->stats.cexterr += er32(CEXTERR); | 
|  | 2521 | adapter->stats.tsctc += er32(TSCTC); | 
|  | 2522 | adapter->stats.tsctfc += er32(TSCTFC); | 
|  | 2523 |  | 
|  | 2524 | adapter->stats.iac += er32(IAC); | 
|  | 2525 |  | 
|  | 2526 | if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { | 
|  | 2527 | adapter->stats.icrxoc += er32(ICRXOC); | 
|  | 2528 | adapter->stats.icrxptc += er32(ICRXPTC); | 
|  | 2529 | adapter->stats.icrxatc += er32(ICRXATC); | 
|  | 2530 | adapter->stats.ictxptc += er32(ICTXPTC); | 
|  | 2531 | adapter->stats.ictxatc += er32(ICTXATC); | 
|  | 2532 | adapter->stats.ictxqec += er32(ICTXQEC); | 
|  | 2533 | adapter->stats.ictxqmtc += er32(ICTXQMTC); | 
|  | 2534 | adapter->stats.icrxdmtc += er32(ICRXDMTC); | 
|  | 2535 | } | 
|  | 2536 |  | 
|  | 2537 | /* Fill out the OS statistics structure */ | 
|  | 2538 | adapter->net_stats.rx_packets = adapter->stats.gprc; | 
|  | 2539 | adapter->net_stats.tx_packets = adapter->stats.gptc; | 
|  | 2540 | adapter->net_stats.rx_bytes = adapter->stats.gorcl; | 
|  | 2541 | adapter->net_stats.tx_bytes = adapter->stats.gotcl; | 
|  | 2542 | adapter->net_stats.multicast = adapter->stats.mprc; | 
|  | 2543 | adapter->net_stats.collisions = adapter->stats.colc; | 
|  | 2544 |  | 
|  | 2545 | /* Rx Errors */ | 
|  | 2546 |  | 
|  | 2547 | /* RLEC on some newer hardware can be incorrect so build | 
|  | 2548 | * our own version based on RUC and ROC */ | 
|  | 2549 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 
|  | 2550 | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | 2551 | adapter->stats.ruc + adapter->stats.roc + | 
|  | 2552 | adapter->stats.cexterr; | 
|  | 2553 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | 
|  | 2554 | adapter->stats.roc; | 
|  | 2555 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 
|  | 2556 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 
|  | 2557 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | 
|  | 2558 |  | 
|  | 2559 | /* Tx Errors */ | 
|  | 2560 | adapter->net_stats.tx_errors = adapter->stats.ecol + | 
|  | 2561 | adapter->stats.latecol; | 
|  | 2562 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | 
|  | 2563 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | 
|  | 2564 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | 
|  | 2565 |  | 
|  | 2566 | /* Tx Dropped needs to be maintained elsewhere */ | 
|  | 2567 |  | 
|  | 2568 | /* Phy Stats */ | 
|  | 2569 | if (hw->media_type == e1000_media_type_copper) { | 
|  | 2570 | if ((adapter->link_speed == SPEED_1000) && | 
|  | 2571 | (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
|  | 2572 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
|  | 2573 | adapter->phy_stats.idle_errors += phy_tmp; | 
|  | 2574 | } | 
|  | 2575 | } | 
|  | 2576 |  | 
|  | 2577 | /* Management Stats */ | 
|  | 2578 | adapter->stats.mgptc += er32(MGTPTC); | 
|  | 2579 | adapter->stats.mgprc += er32(MGTPRC); | 
|  | 2580 | adapter->stats.mgpdc += er32(MGTPDC); | 
|  | 2581 |  | 
|  | 2582 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
|  | 2583 | } | 
|  | 2584 |  | 
|  | 2585 | static void e1000_print_link_info(struct e1000_adapter *adapter) | 
|  | 2586 | { | 
|  | 2587 | struct net_device *netdev = adapter->netdev; | 
|  | 2588 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2589 | u32 ctrl = er32(CTRL); | 
|  | 2590 |  | 
|  | 2591 | ndev_info(netdev, | 
|  | 2592 | "Link is Up %d Mbps %s, Flow Control: %s\n", | 
|  | 2593 | adapter->link_speed, | 
|  | 2594 | (adapter->link_duplex == FULL_DUPLEX) ? | 
|  | 2595 | "Full Duplex" : "Half Duplex", | 
|  | 2596 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | 
|  | 2597 | "RX/TX" : | 
|  | 2598 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | 
|  | 2599 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | 
|  | 2600 | } | 
|  | 2601 |  | 
|  | 2602 | /** | 
|  | 2603 | * e1000_watchdog - Timer Call-back | 
|  | 2604 | * @data: pointer to adapter cast into an unsigned long | 
|  | 2605 | **/ | 
|  | 2606 | static void e1000_watchdog(unsigned long data) | 
|  | 2607 | { | 
|  | 2608 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | 2609 |  | 
|  | 2610 | /* Do the rest outside of interrupt context */ | 
|  | 2611 | schedule_work(&adapter->watchdog_task); | 
|  | 2612 |  | 
|  | 2613 | /* TODO: make this use queue_delayed_work() */ | 
|  | 2614 | } | 
|  | 2615 |  | 
|  | 2616 | static void e1000_watchdog_task(struct work_struct *work) | 
|  | 2617 | { | 
|  | 2618 | struct e1000_adapter *adapter = container_of(work, | 
|  | 2619 | struct e1000_adapter, watchdog_task); | 
|  | 2620 |  | 
|  | 2621 | struct net_device *netdev = adapter->netdev; | 
|  | 2622 | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | 2623 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 2624 | struct e1000_hw *hw = &adapter->hw; | 
|  | 2625 | u32 link, tctl; | 
|  | 2626 | s32 ret_val; | 
|  | 2627 | int tx_pending = 0; | 
|  | 2628 |  | 
|  | 2629 | if ((netif_carrier_ok(netdev)) && | 
|  | 2630 | (er32(STATUS) & E1000_STATUS_LU)) | 
|  | 2631 | goto link_up; | 
|  | 2632 |  | 
|  | 2633 | ret_val = mac->ops.check_for_link(hw); | 
|  | 2634 | if ((ret_val == E1000_ERR_PHY) && | 
|  | 2635 | (adapter->hw.phy.type == e1000_phy_igp_3) && | 
|  | 2636 | (er32(CTRL) & | 
|  | 2637 | E1000_PHY_CTRL_GBE_DISABLE)) { | 
|  | 2638 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | 
|  | 2639 | ndev_info(netdev, | 
|  | 2640 | "Gigabit has been disabled, downgrading speed\n"); | 
|  | 2641 | } | 
|  | 2642 |  | 
|  | 2643 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | 
|  | 2644 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | 
|  | 2645 | e1000_update_mng_vlan(adapter); | 
|  | 2646 |  | 
|  | 2647 | if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && | 
|  | 2648 | !(er32(TXCW) & E1000_TXCW_ANE)) | 
|  | 2649 | link = adapter->hw.mac.serdes_has_link; | 
|  | 2650 | else | 
|  | 2651 | link = er32(STATUS) & E1000_STATUS_LU; | 
|  | 2652 |  | 
|  | 2653 | if (link) { | 
|  | 2654 | if (!netif_carrier_ok(netdev)) { | 
|  | 2655 | bool txb2b = 1; | 
|  | 2656 | mac->ops.get_link_up_info(&adapter->hw, | 
|  | 2657 | &adapter->link_speed, | 
|  | 2658 | &adapter->link_duplex); | 
|  | 2659 | e1000_print_link_info(adapter); | 
|  | 2660 | /* tweak tx_queue_len according to speed/duplex | 
|  | 2661 | * and adjust the timeout factor */ | 
|  | 2662 | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | 2663 | adapter->tx_timeout_factor = 1; | 
|  | 2664 | switch (adapter->link_speed) { | 
|  | 2665 | case SPEED_10: | 
|  | 2666 | txb2b = 0; | 
|  | 2667 | netdev->tx_queue_len = 10; | 
|  | 2668 | adapter->tx_timeout_factor = 14; | 
|  | 2669 | break; | 
|  | 2670 | case SPEED_100: | 
|  | 2671 | txb2b = 0; | 
|  | 2672 | netdev->tx_queue_len = 100; | 
|  | 2673 | /* maybe add some timeout factor ? */ | 
|  | 2674 | break; | 
|  | 2675 | } | 
|  | 2676 |  | 
|  | 2677 | /* workaround: re-program speed mode bit after | 
|  | 2678 | * link-up event */ | 
|  | 2679 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | 
|  | 2680 | !txb2b) { | 
|  | 2681 | u32 tarc0; | 
|  | 2682 | tarc0 = er32(TARC0); | 
|  | 2683 | tarc0 &= ~SPEED_MODE_BIT; | 
|  | 2684 | ew32(TARC0, tarc0); | 
|  | 2685 | } | 
|  | 2686 |  | 
|  | 2687 | /* disable TSO for pcie and 10/100 speeds, to avoid | 
|  | 2688 | * some hardware issues */ | 
|  | 2689 | if (!(adapter->flags & FLAG_TSO_FORCE)) { | 
|  | 2690 | switch (adapter->link_speed) { | 
|  | 2691 | case SPEED_10: | 
|  | 2692 | case SPEED_100: | 
|  | 2693 | ndev_info(netdev, | 
|  | 2694 | "10/100 speed: disabling TSO\n"); | 
|  | 2695 | netdev->features &= ~NETIF_F_TSO; | 
|  | 2696 | netdev->features &= ~NETIF_F_TSO6; | 
|  | 2697 | break; | 
|  | 2698 | case SPEED_1000: | 
|  | 2699 | netdev->features |= NETIF_F_TSO; | 
|  | 2700 | netdev->features |= NETIF_F_TSO6; | 
|  | 2701 | break; | 
|  | 2702 | default: | 
|  | 2703 | /* oops */ | 
|  | 2704 | break; | 
|  | 2705 | } | 
|  | 2706 | } | 
|  | 2707 |  | 
|  | 2708 | /* enable transmits in the hardware, need to do this | 
|  | 2709 | * after setting TARC0 */ | 
|  | 2710 | tctl = er32(TCTL); | 
|  | 2711 | tctl |= E1000_TCTL_EN; | 
|  | 2712 | ew32(TCTL, tctl); | 
|  | 2713 |  | 
|  | 2714 | netif_carrier_on(netdev); | 
|  | 2715 | netif_wake_queue(netdev); | 
|  | 2716 |  | 
|  | 2717 | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | 2718 | mod_timer(&adapter->phy_info_timer, | 
|  | 2719 | round_jiffies(jiffies + 2 * HZ)); | 
|  | 2720 | } else { | 
|  | 2721 | /* make sure the receive unit is started */ | 
|  | 2722 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) { | 
|  | 2723 | u32 rctl = er32(RCTL); | 
|  | 2724 | ew32(RCTL, rctl | | 
|  | 2725 | E1000_RCTL_EN); | 
|  | 2726 | } | 
|  | 2727 | } | 
|  | 2728 | } else { | 
|  | 2729 | if (netif_carrier_ok(netdev)) { | 
|  | 2730 | adapter->link_speed = 0; | 
|  | 2731 | adapter->link_duplex = 0; | 
|  | 2732 | ndev_info(netdev, "Link is Down\n"); | 
|  | 2733 | netif_carrier_off(netdev); | 
|  | 2734 | netif_stop_queue(netdev); | 
|  | 2735 | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | 2736 | mod_timer(&adapter->phy_info_timer, | 
|  | 2737 | round_jiffies(jiffies + 2 * HZ)); | 
|  | 2738 |  | 
|  | 2739 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | 
|  | 2740 | schedule_work(&adapter->reset_task); | 
|  | 2741 | } | 
|  | 2742 | } | 
|  | 2743 |  | 
|  | 2744 | link_up: | 
|  | 2745 | e1000e_update_stats(adapter); | 
|  | 2746 |  | 
|  | 2747 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
|  | 2748 | adapter->tpt_old = adapter->stats.tpt; | 
|  | 2749 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | 
|  | 2750 | adapter->colc_old = adapter->stats.colc; | 
|  | 2751 |  | 
|  | 2752 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | 
|  | 2753 | adapter->gorcl_old = adapter->stats.gorcl; | 
|  | 2754 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | 
|  | 2755 | adapter->gotcl_old = adapter->stats.gotcl; | 
|  | 2756 |  | 
|  | 2757 | e1000e_update_adaptive(&adapter->hw); | 
|  | 2758 |  | 
|  | 2759 | if (!netif_carrier_ok(netdev)) { | 
|  | 2760 | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | 
|  | 2761 | tx_ring->count); | 
|  | 2762 | if (tx_pending) { | 
|  | 2763 | /* We've lost link, so the controller stops DMA, | 
|  | 2764 | * but we've got queued Tx work that's never going | 
|  | 2765 | * to get done, so reset controller to flush Tx. | 
|  | 2766 | * (Do the reset outside of interrupt context). */ | 
|  | 2767 | adapter->tx_timeout_count++; | 
|  | 2768 | schedule_work(&adapter->reset_task); | 
|  | 2769 | } | 
|  | 2770 | } | 
|  | 2771 |  | 
|  | 2772 | /* Cause software interrupt to ensure rx ring is cleaned */ | 
|  | 2773 | ew32(ICS, E1000_ICS_RXDMT0); | 
|  | 2774 |  | 
|  | 2775 | /* Force detection of hung controller every watchdog period */ | 
|  | 2776 | adapter->detect_tx_hung = 1; | 
|  | 2777 |  | 
|  | 2778 | /* With 82571 controllers, LAA may be overwritten due to controller | 
|  | 2779 | * reset from the other port. Set the appropriate LAA in RAR[0] */ | 
|  | 2780 | if (e1000e_get_laa_state_82571(hw)) | 
|  | 2781 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | 
|  | 2782 |  | 
|  | 2783 | /* Reset the timer */ | 
|  | 2784 | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | 2785 | mod_timer(&adapter->watchdog_timer, | 
|  | 2786 | round_jiffies(jiffies + 2 * HZ)); | 
|  | 2787 | } | 
|  | 2788 |  | 
|  | 2789 | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
|  | 2790 | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
|  | 2791 | #define E1000_TX_FLAGS_TSO		0x00000004 | 
|  | 2792 | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
|  | 2793 | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
|  | 2794 | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
|  | 2795 |  | 
|  | 2796 | static int e1000_tso(struct e1000_adapter *adapter, | 
|  | 2797 | struct sk_buff *skb) | 
|  | 2798 | { | 
|  | 2799 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 2800 | struct e1000_context_desc *context_desc; | 
|  | 2801 | struct e1000_buffer *buffer_info; | 
|  | 2802 | unsigned int i; | 
|  | 2803 | u32 cmd_length = 0; | 
|  | 2804 | u16 ipcse = 0, tucse, mss; | 
|  | 2805 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
|  | 2806 | int err; | 
|  | 2807 |  | 
|  | 2808 | if (skb_is_gso(skb)) { | 
|  | 2809 | if (skb_header_cloned(skb)) { | 
|  | 2810 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | 2811 | if (err) | 
|  | 2812 | return err; | 
|  | 2813 | } | 
|  | 2814 |  | 
|  | 2815 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | 2816 | mss = skb_shinfo(skb)->gso_size; | 
|  | 2817 | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | 2818 | struct iphdr *iph = ip_hdr(skb); | 
|  | 2819 | iph->tot_len = 0; | 
|  | 2820 | iph->check = 0; | 
|  | 2821 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
|  | 2822 | iph->daddr, 0, | 
|  | 2823 | IPPROTO_TCP, | 
|  | 2824 | 0); | 
|  | 2825 | cmd_length = E1000_TXD_CMD_IP; | 
|  | 2826 | ipcse = skb_transport_offset(skb) - 1; | 
|  | 2827 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | 
|  | 2828 | ipv6_hdr(skb)->payload_len = 0; | 
|  | 2829 | tcp_hdr(skb)->check = | 
|  | 2830 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | 2831 | &ipv6_hdr(skb)->daddr, | 
|  | 2832 | 0, IPPROTO_TCP, 0); | 
|  | 2833 | ipcse = 0; | 
|  | 2834 | } | 
|  | 2835 | ipcss = skb_network_offset(skb); | 
|  | 2836 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
|  | 2837 | tucss = skb_transport_offset(skb); | 
|  | 2838 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
|  | 2839 | tucse = 0; | 
|  | 2840 |  | 
|  | 2841 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
|  | 2842 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
|  | 2843 |  | 
|  | 2844 | i = tx_ring->next_to_use; | 
|  | 2845 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | 2846 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 2847 |  | 
|  | 2848 | context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
|  | 2849 | context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
|  | 2850 | context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
|  | 2851 | context_desc->upper_setup.tcp_fields.tucss = tucss; | 
|  | 2852 | context_desc->upper_setup.tcp_fields.tucso = tucso; | 
|  | 2853 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
|  | 2854 | context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
|  | 2855 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
|  | 2856 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
|  | 2857 |  | 
|  | 2858 | buffer_info->time_stamp = jiffies; | 
|  | 2859 | buffer_info->next_to_watch = i; | 
|  | 2860 |  | 
|  | 2861 | i++; | 
|  | 2862 | if (i == tx_ring->count) | 
|  | 2863 | i = 0; | 
|  | 2864 | tx_ring->next_to_use = i; | 
|  | 2865 |  | 
|  | 2866 | return 1; | 
|  | 2867 | } | 
|  | 2868 |  | 
|  | 2869 | return 0; | 
|  | 2870 | } | 
|  | 2871 |  | 
|  | 2872 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | 
|  | 2873 | { | 
|  | 2874 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 2875 | struct e1000_context_desc *context_desc; | 
|  | 2876 | struct e1000_buffer *buffer_info; | 
|  | 2877 | unsigned int i; | 
|  | 2878 | u8 css; | 
|  | 2879 |  | 
|  | 2880 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | 2881 | css = skb_transport_offset(skb); | 
|  | 2882 |  | 
|  | 2883 | i = tx_ring->next_to_use; | 
|  | 2884 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 2885 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | 2886 |  | 
|  | 2887 | context_desc->lower_setup.ip_config = 0; | 
|  | 2888 | context_desc->upper_setup.tcp_fields.tucss = css; | 
|  | 2889 | context_desc->upper_setup.tcp_fields.tucso = | 
|  | 2890 | css + skb->csum_offset; | 
|  | 2891 | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | 2892 | context_desc->tcp_seg_setup.data = 0; | 
|  | 2893 | context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | 
|  | 2894 |  | 
|  | 2895 | buffer_info->time_stamp = jiffies; | 
|  | 2896 | buffer_info->next_to_watch = i; | 
|  | 2897 |  | 
|  | 2898 | i++; | 
|  | 2899 | if (i == tx_ring->count) | 
|  | 2900 | i = 0; | 
|  | 2901 | tx_ring->next_to_use = i; | 
|  | 2902 |  | 
|  | 2903 | return 1; | 
|  | 2904 | } | 
|  | 2905 |  | 
|  | 2906 | return 0; | 
|  | 2907 | } | 
|  | 2908 |  | 
|  | 2909 | #define E1000_MAX_PER_TXD	8192 | 
|  | 2910 | #define E1000_MAX_TXD_PWR	12 | 
|  | 2911 |  | 
|  | 2912 | static int e1000_tx_map(struct e1000_adapter *adapter, | 
|  | 2913 | struct sk_buff *skb, unsigned int first, | 
|  | 2914 | unsigned int max_per_txd, unsigned int nr_frags, | 
|  | 2915 | unsigned int mss) | 
|  | 2916 | { | 
|  | 2917 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 2918 | struct e1000_buffer *buffer_info; | 
|  | 2919 | unsigned int len = skb->len - skb->data_len; | 
|  | 2920 | unsigned int offset = 0, size, count = 0, i; | 
|  | 2921 | unsigned int f; | 
|  | 2922 |  | 
|  | 2923 | i = tx_ring->next_to_use; | 
|  | 2924 |  | 
|  | 2925 | while (len) { | 
|  | 2926 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 2927 | size = min(len, max_per_txd); | 
|  | 2928 |  | 
|  | 2929 | /* Workaround for premature desc write-backs | 
|  | 2930 | * in TSO mode.  Append 4-byte sentinel desc */ | 
|  | 2931 | if (mss && !nr_frags && size == len && size > 8) | 
|  | 2932 | size -= 4; | 
|  | 2933 |  | 
|  | 2934 | buffer_info->length = size; | 
|  | 2935 | /* set time_stamp *before* dma to help avoid a possible race */ | 
|  | 2936 | buffer_info->time_stamp = jiffies; | 
|  | 2937 | buffer_info->dma = | 
|  | 2938 | pci_map_single(adapter->pdev, | 
|  | 2939 | skb->data + offset, | 
|  | 2940 | size, | 
|  | 2941 | PCI_DMA_TODEVICE); | 
|  | 2942 | if (pci_dma_mapping_error(buffer_info->dma)) { | 
|  | 2943 | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | 
|  | 2944 | adapter->tx_dma_failed++; | 
|  | 2945 | return -1; | 
|  | 2946 | } | 
|  | 2947 | buffer_info->next_to_watch = i; | 
|  | 2948 |  | 
|  | 2949 | len -= size; | 
|  | 2950 | offset += size; | 
|  | 2951 | count++; | 
|  | 2952 | i++; | 
|  | 2953 | if (i == tx_ring->count) | 
|  | 2954 | i = 0; | 
|  | 2955 | } | 
|  | 2956 |  | 
|  | 2957 | for (f = 0; f < nr_frags; f++) { | 
|  | 2958 | struct skb_frag_struct *frag; | 
|  | 2959 |  | 
|  | 2960 | frag = &skb_shinfo(skb)->frags[f]; | 
|  | 2961 | len = frag->size; | 
|  | 2962 | offset = frag->page_offset; | 
|  | 2963 |  | 
|  | 2964 | while (len) { | 
|  | 2965 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 2966 | size = min(len, max_per_txd); | 
|  | 2967 | /* Workaround for premature desc write-backs | 
|  | 2968 | * in TSO mode.  Append 4-byte sentinel desc */ | 
|  | 2969 | if (mss && f == (nr_frags-1) && size == len && size > 8) | 
|  | 2970 | size -= 4; | 
|  | 2971 |  | 
|  | 2972 | buffer_info->length = size; | 
|  | 2973 | buffer_info->time_stamp = jiffies; | 
|  | 2974 | buffer_info->dma = | 
|  | 2975 | pci_map_page(adapter->pdev, | 
|  | 2976 | frag->page, | 
|  | 2977 | offset, | 
|  | 2978 | size, | 
|  | 2979 | PCI_DMA_TODEVICE); | 
|  | 2980 | if (pci_dma_mapping_error(buffer_info->dma)) { | 
|  | 2981 | dev_err(&adapter->pdev->dev, | 
|  | 2982 | "TX DMA page map failed\n"); | 
|  | 2983 | adapter->tx_dma_failed++; | 
|  | 2984 | return -1; | 
|  | 2985 | } | 
|  | 2986 |  | 
|  | 2987 | buffer_info->next_to_watch = i; | 
|  | 2988 |  | 
|  | 2989 | len -= size; | 
|  | 2990 | offset += size; | 
|  | 2991 | count++; | 
|  | 2992 |  | 
|  | 2993 | i++; | 
|  | 2994 | if (i == tx_ring->count) | 
|  | 2995 | i = 0; | 
|  | 2996 | } | 
|  | 2997 | } | 
|  | 2998 |  | 
|  | 2999 | if (i == 0) | 
|  | 3000 | i = tx_ring->count - 1; | 
|  | 3001 | else | 
|  | 3002 | i--; | 
|  | 3003 |  | 
|  | 3004 | tx_ring->buffer_info[i].skb = skb; | 
|  | 3005 | tx_ring->buffer_info[first].next_to_watch = i; | 
|  | 3006 |  | 
|  | 3007 | return count; | 
|  | 3008 | } | 
|  | 3009 |  | 
|  | 3010 | static void e1000_tx_queue(struct e1000_adapter *adapter, | 
|  | 3011 | int tx_flags, int count) | 
|  | 3012 | { | 
|  | 3013 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 3014 | struct e1000_tx_desc *tx_desc = NULL; | 
|  | 3015 | struct e1000_buffer *buffer_info; | 
|  | 3016 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
|  | 3017 | unsigned int i; | 
|  | 3018 |  | 
|  | 3019 | if (tx_flags & E1000_TX_FLAGS_TSO) { | 
|  | 3020 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
|  | 3021 | E1000_TXD_CMD_TSE; | 
|  | 3022 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | 3023 |  | 
|  | 3024 | if (tx_flags & E1000_TX_FLAGS_IPV4) | 
|  | 3025 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
|  | 3026 | } | 
|  | 3027 |  | 
|  | 3028 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | 
|  | 3029 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | 3030 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | 3031 | } | 
|  | 3032 |  | 
|  | 3033 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | 
|  | 3034 | txd_lower |= E1000_TXD_CMD_VLE; | 
|  | 3035 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
|  | 3036 | } | 
|  | 3037 |  | 
|  | 3038 | i = tx_ring->next_to_use; | 
|  | 3039 |  | 
|  | 3040 | while (count--) { | 
|  | 3041 | buffer_info = &tx_ring->buffer_info[i]; | 
|  | 3042 | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | 3043 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | 3044 | tx_desc->lower.data = | 
|  | 3045 | cpu_to_le32(txd_lower | buffer_info->length); | 
|  | 3046 | tx_desc->upper.data = cpu_to_le32(txd_upper); | 
|  | 3047 |  | 
|  | 3048 | i++; | 
|  | 3049 | if (i == tx_ring->count) | 
|  | 3050 | i = 0; | 
|  | 3051 | } | 
|  | 3052 |  | 
|  | 3053 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
|  | 3054 |  | 
|  | 3055 | /* Force memory writes to complete before letting h/w | 
|  | 3056 | * know there are new descriptors to fetch.  (Only | 
|  | 3057 | * applicable for weak-ordered memory model archs, | 
|  | 3058 | * such as IA-64). */ | 
|  | 3059 | wmb(); | 
|  | 3060 |  | 
|  | 3061 | tx_ring->next_to_use = i; | 
|  | 3062 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | 
|  | 3063 | /* we need this if more than one processor can write to our tail | 
|  | 3064 | * at a time, it synchronizes IO on IA64/Altix systems */ | 
|  | 3065 | mmiowb(); | 
|  | 3066 | } | 
|  | 3067 |  | 
|  | 3068 | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
|  | 3069 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | 
|  | 3070 | struct sk_buff *skb) | 
|  | 3071 | { | 
|  | 3072 | struct e1000_hw *hw =  &adapter->hw; | 
|  | 3073 | u16 length, offset; | 
|  | 3074 |  | 
|  | 3075 | if (vlan_tx_tag_present(skb)) { | 
|  | 3076 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) | 
|  | 3077 | && (adapter->hw.mng_cookie.status & | 
|  | 3078 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | 
|  | 3079 | return 0; | 
|  | 3080 | } | 
|  | 3081 |  | 
|  | 3082 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | 
|  | 3083 | return 0; | 
|  | 3084 |  | 
|  | 3085 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | 
|  | 3086 | return 0; | 
|  | 3087 |  | 
|  | 3088 | { | 
|  | 3089 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | 
|  | 3090 | struct udphdr *udp; | 
|  | 3091 |  | 
|  | 3092 | if (ip->protocol != IPPROTO_UDP) | 
|  | 3093 | return 0; | 
|  | 3094 |  | 
|  | 3095 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | 
|  | 3096 | if (ntohs(udp->dest) != 67) | 
|  | 3097 | return 0; | 
|  | 3098 |  | 
|  | 3099 | offset = (u8 *)udp + 8 - skb->data; | 
|  | 3100 | length = skb->len - offset; | 
|  | 3101 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | 
|  | 3102 | } | 
|  | 3103 |  | 
|  | 3104 | return 0; | 
|  | 3105 | } | 
|  | 3106 |  | 
|  | 3107 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | 3108 | { | 
|  | 3109 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3110 |  | 
|  | 3111 | netif_stop_queue(netdev); | 
|  | 3112 | /* Herbert's original patch had: | 
|  | 3113 | *  smp_mb__after_netif_stop_queue(); | 
|  | 3114 | * but since that doesn't exist yet, just open code it. */ | 
|  | 3115 | smp_mb(); | 
|  | 3116 |  | 
|  | 3117 | /* We need to check again in a case another CPU has just | 
|  | 3118 | * made room available. */ | 
|  | 3119 | if (e1000_desc_unused(adapter->tx_ring) < size) | 
|  | 3120 | return -EBUSY; | 
|  | 3121 |  | 
|  | 3122 | /* A reprieve! */ | 
|  | 3123 | netif_start_queue(netdev); | 
|  | 3124 | ++adapter->restart_queue; | 
|  | 3125 | return 0; | 
|  | 3126 | } | 
|  | 3127 |  | 
|  | 3128 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | 3129 | { | 
|  | 3130 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3131 |  | 
|  | 3132 | if (e1000_desc_unused(adapter->tx_ring) >= size) | 
|  | 3133 | return 0; | 
|  | 3134 | return __e1000_maybe_stop_tx(netdev, size); | 
|  | 3135 | } | 
|  | 3136 |  | 
|  | 3137 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 
|  | 3138 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
|  | 3139 | { | 
|  | 3140 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3141 | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | 3142 | unsigned int first; | 
|  | 3143 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | 
|  | 3144 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
|  | 3145 | unsigned int tx_flags = 0; | 
| Auke Kok | 4e6c709 | 2007-10-05 14:15:23 -0700 | [diff] [blame] | 3146 | unsigned int len = skb->len - skb->data_len; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3147 | unsigned long irq_flags; | 
| Auke Kok | 4e6c709 | 2007-10-05 14:15:23 -0700 | [diff] [blame] | 3148 | unsigned int nr_frags; | 
|  | 3149 | unsigned int mss; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3150 | int count = 0; | 
|  | 3151 | int tso; | 
|  | 3152 | unsigned int f; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3153 |  | 
|  | 3154 | if (test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | 3155 | dev_kfree_skb_any(skb); | 
|  | 3156 | return NETDEV_TX_OK; | 
|  | 3157 | } | 
|  | 3158 |  | 
|  | 3159 | if (skb->len <= 0) { | 
|  | 3160 | dev_kfree_skb_any(skb); | 
|  | 3161 | return NETDEV_TX_OK; | 
|  | 3162 | } | 
|  | 3163 |  | 
|  | 3164 | mss = skb_shinfo(skb)->gso_size; | 
|  | 3165 | /* The controller does a simple calculation to | 
|  | 3166 | * make sure there is enough room in the FIFO before | 
|  | 3167 | * initiating the DMA for each buffer.  The calc is: | 
|  | 3168 | * 4 = ceil(buffer len/mss).  To make sure we don't | 
|  | 3169 | * overrun the FIFO, adjust the max buffer len if mss | 
|  | 3170 | * drops. */ | 
|  | 3171 | if (mss) { | 
|  | 3172 | u8 hdr_len; | 
|  | 3173 | max_per_txd = min(mss << 2, max_per_txd); | 
|  | 3174 | max_txd_pwr = fls(max_per_txd) - 1; | 
|  | 3175 |  | 
|  | 3176 | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
|  | 3177 | * points to just header, pull a few bytes of payload from | 
|  | 3178 | * frags into skb->data */ | 
|  | 3179 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
| Auke Kok | 4e6c709 | 2007-10-05 14:15:23 -0700 | [diff] [blame] | 3180 | if (skb->data_len && (hdr_len == len)) { | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3181 | unsigned int pull_size; | 
|  | 3182 |  | 
|  | 3183 | pull_size = min((unsigned int)4, skb->data_len); | 
|  | 3184 | if (!__pskb_pull_tail(skb, pull_size)) { | 
|  | 3185 | ndev_err(netdev, | 
|  | 3186 | "__pskb_pull_tail failed.\n"); | 
|  | 3187 | dev_kfree_skb_any(skb); | 
|  | 3188 | return NETDEV_TX_OK; | 
|  | 3189 | } | 
|  | 3190 | len = skb->len - skb->data_len; | 
|  | 3191 | } | 
|  | 3192 | } | 
|  | 3193 |  | 
|  | 3194 | /* reserve a descriptor for the offload context */ | 
|  | 3195 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | 3196 | count++; | 
|  | 3197 | count++; | 
|  | 3198 |  | 
|  | 3199 | count += TXD_USE_COUNT(len, max_txd_pwr); | 
|  | 3200 |  | 
|  | 3201 | nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | 3202 | for (f = 0; f < nr_frags; f++) | 
|  | 3203 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 
|  | 3204 | max_txd_pwr); | 
|  | 3205 |  | 
|  | 3206 | if (adapter->hw.mac.tx_pkt_filtering) | 
|  | 3207 | e1000_transfer_dhcp_info(adapter, skb); | 
|  | 3208 |  | 
|  | 3209 | if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) | 
|  | 3210 | /* Collision - tell upper layer to requeue */ | 
|  | 3211 | return NETDEV_TX_LOCKED; | 
|  | 3212 |  | 
|  | 3213 | /* need: count + 2 desc gap to keep tail from touching | 
|  | 3214 | * head, otherwise try next time */ | 
|  | 3215 | if (e1000_maybe_stop_tx(netdev, count + 2)) { | 
|  | 3216 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
|  | 3217 | return NETDEV_TX_BUSY; | 
|  | 3218 | } | 
|  | 3219 |  | 
|  | 3220 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | 
|  | 3221 | tx_flags |= E1000_TX_FLAGS_VLAN; | 
|  | 3222 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
|  | 3223 | } | 
|  | 3224 |  | 
|  | 3225 | first = tx_ring->next_to_use; | 
|  | 3226 |  | 
|  | 3227 | tso = e1000_tso(adapter, skb); | 
|  | 3228 | if (tso < 0) { | 
|  | 3229 | dev_kfree_skb_any(skb); | 
|  | 3230 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
|  | 3231 | return NETDEV_TX_OK; | 
|  | 3232 | } | 
|  | 3233 |  | 
|  | 3234 | if (tso) | 
|  | 3235 | tx_flags |= E1000_TX_FLAGS_TSO; | 
|  | 3236 | else if (e1000_tx_csum(adapter, skb)) | 
|  | 3237 | tx_flags |= E1000_TX_FLAGS_CSUM; | 
|  | 3238 |  | 
|  | 3239 | /* Old method was to assume IPv4 packet by default if TSO was enabled. | 
|  | 3240 | * 82571 hardware supports TSO capabilities for IPv6 as well... | 
|  | 3241 | * no longer assume, we must. */ | 
|  | 3242 | if (skb->protocol == htons(ETH_P_IP)) | 
|  | 3243 | tx_flags |= E1000_TX_FLAGS_IPV4; | 
|  | 3244 |  | 
|  | 3245 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | 
|  | 3246 | if (count < 0) { | 
|  | 3247 | /* handle pci_map_single() error in e1000_tx_map */ | 
|  | 3248 | dev_kfree_skb_any(skb); | 
|  | 3249 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
| Krishna Kumar | 7b5dfe1 | 2007-09-21 09:41:15 -0700 | [diff] [blame] | 3250 | return NETDEV_TX_OK; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3251 | } | 
|  | 3252 |  | 
|  | 3253 | e1000_tx_queue(adapter, tx_flags, count); | 
|  | 3254 |  | 
|  | 3255 | netdev->trans_start = jiffies; | 
|  | 3256 |  | 
|  | 3257 | /* Make sure there is space in the ring for the next send. */ | 
|  | 3258 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | 
|  | 3259 |  | 
|  | 3260 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
|  | 3261 | return NETDEV_TX_OK; | 
|  | 3262 | } | 
|  | 3263 |  | 
|  | 3264 | /** | 
|  | 3265 | * e1000_tx_timeout - Respond to a Tx Hang | 
|  | 3266 | * @netdev: network interface device structure | 
|  | 3267 | **/ | 
|  | 3268 | static void e1000_tx_timeout(struct net_device *netdev) | 
|  | 3269 | { | 
|  | 3270 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3271 |  | 
|  | 3272 | /* Do the reset outside of interrupt context */ | 
|  | 3273 | adapter->tx_timeout_count++; | 
|  | 3274 | schedule_work(&adapter->reset_task); | 
|  | 3275 | } | 
|  | 3276 |  | 
|  | 3277 | static void e1000_reset_task(struct work_struct *work) | 
|  | 3278 | { | 
|  | 3279 | struct e1000_adapter *adapter; | 
|  | 3280 | adapter = container_of(work, struct e1000_adapter, reset_task); | 
|  | 3281 |  | 
|  | 3282 | e1000e_reinit_locked(adapter); | 
|  | 3283 | } | 
|  | 3284 |  | 
|  | 3285 | /** | 
|  | 3286 | * e1000_get_stats - Get System Network Statistics | 
|  | 3287 | * @netdev: network interface device structure | 
|  | 3288 | * | 
|  | 3289 | * Returns the address of the device statistics structure. | 
|  | 3290 | * The statistics are actually updated from the timer callback. | 
|  | 3291 | **/ | 
|  | 3292 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | 
|  | 3293 | { | 
|  | 3294 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3295 |  | 
|  | 3296 | /* only return the current stats */ | 
|  | 3297 | return &adapter->net_stats; | 
|  | 3298 | } | 
|  | 3299 |  | 
|  | 3300 | /** | 
|  | 3301 | * e1000_change_mtu - Change the Maximum Transfer Unit | 
|  | 3302 | * @netdev: network interface device structure | 
|  | 3303 | * @new_mtu: new value for maximum frame size | 
|  | 3304 | * | 
|  | 3305 | * Returns 0 on success, negative on failure | 
|  | 3306 | **/ | 
|  | 3307 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | 3308 | { | 
|  | 3309 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3310 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | 3311 |  | 
|  | 3312 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | 
|  | 3313 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
|  | 3314 | ndev_err(netdev, "Invalid MTU setting\n"); | 
|  | 3315 | return -EINVAL; | 
|  | 3316 | } | 
|  | 3317 |  | 
|  | 3318 | /* Jumbo frame size limits */ | 
|  | 3319 | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | 3320 | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | 
|  | 3321 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | 
|  | 3322 | return -EINVAL; | 
|  | 3323 | } | 
|  | 3324 | if (adapter->hw.phy.type == e1000_phy_ife) { | 
|  | 3325 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | 
|  | 3326 | return -EINVAL; | 
|  | 3327 | } | 
|  | 3328 | } | 
|  | 3329 |  | 
|  | 3330 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | 
|  | 3331 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
|  | 3332 | ndev_err(netdev, "MTU > 9216 not supported.\n"); | 
|  | 3333 | return -EINVAL; | 
|  | 3334 | } | 
|  | 3335 |  | 
|  | 3336 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | 3337 | msleep(1); | 
|  | 3338 | /* e1000e_down has a dependency on max_frame_size */ | 
|  | 3339 | adapter->hw.mac.max_frame_size = max_frame; | 
|  | 3340 | if (netif_running(netdev)) | 
|  | 3341 | e1000e_down(adapter); | 
|  | 3342 |  | 
|  | 3343 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | 3344 | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | 3345 | * larger slab size. | 
| Auke Kok | f920c18 | 2007-10-25 13:58:03 -0700 | [diff] [blame] | 3346 | * i.e. RXBUFFER_2048 --> size-4096 slab */ | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3347 |  | 
|  | 3348 | if (max_frame <= 256) | 
|  | 3349 | adapter->rx_buffer_len = 256; | 
|  | 3350 | else if (max_frame <= 512) | 
|  | 3351 | adapter->rx_buffer_len = 512; | 
|  | 3352 | else if (max_frame <= 1024) | 
|  | 3353 | adapter->rx_buffer_len = 1024; | 
|  | 3354 | else if (max_frame <= 2048) | 
|  | 3355 | adapter->rx_buffer_len = 2048; | 
|  | 3356 | else | 
|  | 3357 | adapter->rx_buffer_len = 4096; | 
|  | 3358 |  | 
|  | 3359 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 
|  | 3360 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | 
|  | 3361 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | 
|  | 3362 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | 
|  | 3363 | + ETH_FCS_LEN ; | 
|  | 3364 |  | 
|  | 3365 | ndev_info(netdev, "changing MTU from %d to %d\n", | 
|  | 3366 | netdev->mtu, new_mtu); | 
|  | 3367 | netdev->mtu = new_mtu; | 
|  | 3368 |  | 
|  | 3369 | if (netif_running(netdev)) | 
|  | 3370 | e1000e_up(adapter); | 
|  | 3371 | else | 
|  | 3372 | e1000e_reset(adapter); | 
|  | 3373 |  | 
|  | 3374 | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  | 3375 |  | 
|  | 3376 | return 0; | 
|  | 3377 | } | 
|  | 3378 |  | 
|  | 3379 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | 3380 | int cmd) | 
|  | 3381 | { | 
|  | 3382 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3383 | struct mii_ioctl_data *data = if_mii(ifr); | 
|  | 3384 | unsigned long irq_flags; | 
|  | 3385 |  | 
|  | 3386 | if (adapter->hw.media_type != e1000_media_type_copper) | 
|  | 3387 | return -EOPNOTSUPP; | 
|  | 3388 |  | 
|  | 3389 | switch (cmd) { | 
|  | 3390 | case SIOCGMIIPHY: | 
|  | 3391 | data->phy_id = adapter->hw.phy.addr; | 
|  | 3392 | break; | 
|  | 3393 | case SIOCGMIIREG: | 
|  | 3394 | if (!capable(CAP_NET_ADMIN)) | 
|  | 3395 | return -EPERM; | 
|  | 3396 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | 
|  | 3397 | if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, | 
|  | 3398 | &data->val_out)) { | 
|  | 3399 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
|  | 3400 | return -EIO; | 
|  | 3401 | } | 
|  | 3402 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
|  | 3403 | break; | 
|  | 3404 | case SIOCSMIIREG: | 
|  | 3405 | default: | 
|  | 3406 | return -EOPNOTSUPP; | 
|  | 3407 | } | 
|  | 3408 | return 0; | 
|  | 3409 | } | 
|  | 3410 |  | 
|  | 3411 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | 3412 | { | 
|  | 3413 | switch (cmd) { | 
|  | 3414 | case SIOCGMIIPHY: | 
|  | 3415 | case SIOCGMIIREG: | 
|  | 3416 | case SIOCSMIIREG: | 
|  | 3417 | return e1000_mii_ioctl(netdev, ifr, cmd); | 
|  | 3418 | default: | 
|  | 3419 | return -EOPNOTSUPP; | 
|  | 3420 | } | 
|  | 3421 | } | 
|  | 3422 |  | 
|  | 3423 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | 3424 | { | 
|  | 3425 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 3426 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3427 | struct e1000_hw *hw = &adapter->hw; | 
|  | 3428 | u32 ctrl, ctrl_ext, rctl, status; | 
|  | 3429 | u32 wufc = adapter->wol; | 
|  | 3430 | int retval = 0; | 
|  | 3431 |  | 
|  | 3432 | netif_device_detach(netdev); | 
|  | 3433 |  | 
|  | 3434 | if (netif_running(netdev)) { | 
|  | 3435 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  | 3436 | e1000e_down(adapter); | 
|  | 3437 | e1000_free_irq(adapter); | 
|  | 3438 | } | 
|  | 3439 |  | 
|  | 3440 | retval = pci_save_state(pdev); | 
|  | 3441 | if (retval) | 
|  | 3442 | return retval; | 
|  | 3443 |  | 
|  | 3444 | status = er32(STATUS); | 
|  | 3445 | if (status & E1000_STATUS_LU) | 
|  | 3446 | wufc &= ~E1000_WUFC_LNKC; | 
|  | 3447 |  | 
|  | 3448 | if (wufc) { | 
|  | 3449 | e1000_setup_rctl(adapter); | 
|  | 3450 | e1000_set_multi(netdev); | 
|  | 3451 |  | 
|  | 3452 | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | 3453 | if (wufc & E1000_WUFC_MC) { | 
|  | 3454 | rctl = er32(RCTL); | 
|  | 3455 | rctl |= E1000_RCTL_MPE; | 
|  | 3456 | ew32(RCTL, rctl); | 
|  | 3457 | } | 
|  | 3458 |  | 
|  | 3459 | ctrl = er32(CTRL); | 
|  | 3460 | /* advertise wake from D3Cold */ | 
|  | 3461 | #define E1000_CTRL_ADVD3WUC 0x00100000 | 
|  | 3462 | /* phy power management enable */ | 
|  | 3463 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
|  | 3464 | ctrl |= E1000_CTRL_ADVD3WUC | | 
|  | 3465 | E1000_CTRL_EN_PHY_PWR_MGMT; | 
|  | 3466 | ew32(CTRL, ctrl); | 
|  | 3467 |  | 
|  | 3468 | if (adapter->hw.media_type == e1000_media_type_fiber || | 
|  | 3469 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | 
|  | 3470 | /* keep the laser running in D3 */ | 
|  | 3471 | ctrl_ext = er32(CTRL_EXT); | 
|  | 3472 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
|  | 3473 | ew32(CTRL_EXT, ctrl_ext); | 
|  | 3474 | } | 
|  | 3475 |  | 
|  | 3476 | /* Allow time for pending master requests to run */ | 
|  | 3477 | e1000e_disable_pcie_master(&adapter->hw); | 
|  | 3478 |  | 
|  | 3479 | ew32(WUC, E1000_WUC_PME_EN); | 
|  | 3480 | ew32(WUFC, wufc); | 
|  | 3481 | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | 3482 | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | 3483 | } else { | 
|  | 3484 | ew32(WUC, 0); | 
|  | 3485 | ew32(WUFC, 0); | 
|  | 3486 | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | 3487 | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  | 3488 | } | 
|  | 3489 |  | 
|  | 3490 | e1000_release_manageability(adapter); | 
|  | 3491 |  | 
|  | 3492 | /* make sure adapter isn't asleep if manageability is enabled */ | 
|  | 3493 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | 
|  | 3494 | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | 3495 | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | 3496 | } | 
|  | 3497 |  | 
|  | 3498 | if (adapter->hw.phy.type == e1000_phy_igp_3) | 
|  | 3499 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | 
|  | 3500 |  | 
|  | 3501 | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | 3502 | * would have already happened in close and is redundant. */ | 
|  | 3503 | e1000_release_hw_control(adapter); | 
|  | 3504 |  | 
|  | 3505 | pci_disable_device(pdev); | 
|  | 3506 |  | 
|  | 3507 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  | 3508 |  | 
|  | 3509 | return 0; | 
|  | 3510 | } | 
|  | 3511 |  | 
|  | 3512 | #ifdef CONFIG_PM | 
|  | 3513 | static int e1000_resume(struct pci_dev *pdev) | 
|  | 3514 | { | 
|  | 3515 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 3516 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3517 | struct e1000_hw *hw = &adapter->hw; | 
|  | 3518 | u32 err; | 
|  | 3519 |  | 
|  | 3520 | pci_set_power_state(pdev, PCI_D0); | 
|  | 3521 | pci_restore_state(pdev); | 
|  | 3522 | err = pci_enable_device(pdev); | 
|  | 3523 | if (err) { | 
|  | 3524 | dev_err(&pdev->dev, | 
|  | 3525 | "Cannot enable PCI device from suspend\n"); | 
|  | 3526 | return err; | 
|  | 3527 | } | 
|  | 3528 |  | 
|  | 3529 | pci_set_master(pdev); | 
|  | 3530 |  | 
|  | 3531 | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | 3532 | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  | 3533 |  | 
|  | 3534 | if (netif_running(netdev)) { | 
|  | 3535 | err = e1000_request_irq(adapter); | 
|  | 3536 | if (err) | 
|  | 3537 | return err; | 
|  | 3538 | } | 
|  | 3539 |  | 
|  | 3540 | e1000e_power_up_phy(adapter); | 
|  | 3541 | e1000e_reset(adapter); | 
|  | 3542 | ew32(WUS, ~0); | 
|  | 3543 |  | 
|  | 3544 | e1000_init_manageability(adapter); | 
|  | 3545 |  | 
|  | 3546 | if (netif_running(netdev)) | 
|  | 3547 | e1000e_up(adapter); | 
|  | 3548 |  | 
|  | 3549 | netif_device_attach(netdev); | 
|  | 3550 |  | 
|  | 3551 | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | 3552 | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | 3553 | * under the control of the driver. */ | 
|  | 3554 | if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) | 
|  | 3555 | e1000_get_hw_control(adapter); | 
|  | 3556 |  | 
|  | 3557 | return 0; | 
|  | 3558 | } | 
|  | 3559 | #endif | 
|  | 3560 |  | 
|  | 3561 | static void e1000_shutdown(struct pci_dev *pdev) | 
|  | 3562 | { | 
|  | 3563 | e1000_suspend(pdev, PMSG_SUSPEND); | 
|  | 3564 | } | 
|  | 3565 |  | 
|  | 3566 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | 3567 | /* | 
|  | 3568 | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | 3569 | * without having to re-enable interrupts. It's not called while | 
|  | 3570 | * the interrupt routine is executing. | 
|  | 3571 | */ | 
|  | 3572 | static void e1000_netpoll(struct net_device *netdev) | 
|  | 3573 | { | 
|  | 3574 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3575 |  | 
|  | 3576 | disable_irq(adapter->pdev->irq); | 
|  | 3577 | e1000_intr(adapter->pdev->irq, netdev); | 
|  | 3578 |  | 
|  | 3579 | e1000_clean_tx_irq(adapter); | 
|  | 3580 |  | 
|  | 3581 | enable_irq(adapter->pdev->irq); | 
|  | 3582 | } | 
|  | 3583 | #endif | 
|  | 3584 |  | 
|  | 3585 | /** | 
|  | 3586 | * e1000_io_error_detected - called when PCI error is detected | 
|  | 3587 | * @pdev: Pointer to PCI device | 
|  | 3588 | * @state: The current pci connection state | 
|  | 3589 | * | 
|  | 3590 | * This function is called after a PCI bus error affecting | 
|  | 3591 | * this device has been detected. | 
|  | 3592 | */ | 
|  | 3593 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | 3594 | pci_channel_state_t state) | 
|  | 3595 | { | 
|  | 3596 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 3597 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3598 |  | 
|  | 3599 | netif_device_detach(netdev); | 
|  | 3600 |  | 
|  | 3601 | if (netif_running(netdev)) | 
|  | 3602 | e1000e_down(adapter); | 
|  | 3603 | pci_disable_device(pdev); | 
|  | 3604 |  | 
|  | 3605 | /* Request a slot slot reset. */ | 
|  | 3606 | return PCI_ERS_RESULT_NEED_RESET; | 
|  | 3607 | } | 
|  | 3608 |  | 
|  | 3609 | /** | 
|  | 3610 | * e1000_io_slot_reset - called after the pci bus has been reset. | 
|  | 3611 | * @pdev: Pointer to PCI device | 
|  | 3612 | * | 
|  | 3613 | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | 3614 | * resembles the first-half of the e1000_resume routine. | 
|  | 3615 | */ | 
|  | 3616 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
|  | 3617 | { | 
|  | 3618 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 3619 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3620 | struct e1000_hw *hw = &adapter->hw; | 
|  | 3621 |  | 
|  | 3622 | if (pci_enable_device(pdev)) { | 
|  | 3623 | dev_err(&pdev->dev, | 
|  | 3624 | "Cannot re-enable PCI device after reset.\n"); | 
|  | 3625 | return PCI_ERS_RESULT_DISCONNECT; | 
|  | 3626 | } | 
|  | 3627 | pci_set_master(pdev); | 
|  | 3628 |  | 
|  | 3629 | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | 3630 | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  | 3631 |  | 
|  | 3632 | e1000e_reset(adapter); | 
|  | 3633 | ew32(WUS, ~0); | 
|  | 3634 |  | 
|  | 3635 | return PCI_ERS_RESULT_RECOVERED; | 
|  | 3636 | } | 
|  | 3637 |  | 
|  | 3638 | /** | 
|  | 3639 | * e1000_io_resume - called when traffic can start flowing again. | 
|  | 3640 | * @pdev: Pointer to PCI device | 
|  | 3641 | * | 
|  | 3642 | * This callback is called when the error recovery driver tells us that | 
|  | 3643 | * its OK to resume normal operation. Implementation resembles the | 
|  | 3644 | * second-half of the e1000_resume routine. | 
|  | 3645 | */ | 
|  | 3646 | static void e1000_io_resume(struct pci_dev *pdev) | 
|  | 3647 | { | 
|  | 3648 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 3649 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 3650 |  | 
|  | 3651 | e1000_init_manageability(adapter); | 
|  | 3652 |  | 
|  | 3653 | if (netif_running(netdev)) { | 
|  | 3654 | if (e1000e_up(adapter)) { | 
|  | 3655 | dev_err(&pdev->dev, | 
|  | 3656 | "can't bring device back up after reset\n"); | 
|  | 3657 | return; | 
|  | 3658 | } | 
|  | 3659 | } | 
|  | 3660 |  | 
|  | 3661 | netif_device_attach(netdev); | 
|  | 3662 |  | 
|  | 3663 | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | 3664 | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | 3665 | * under the control of the driver. */ | 
|  | 3666 | if (!(adapter->flags & FLAG_HAS_AMT) || | 
|  | 3667 | !e1000e_check_mng_mode(&adapter->hw)) | 
|  | 3668 | e1000_get_hw_control(adapter); | 
|  | 3669 |  | 
|  | 3670 | } | 
|  | 3671 |  | 
|  | 3672 | static void e1000_print_device_info(struct e1000_adapter *adapter) | 
|  | 3673 | { | 
|  | 3674 | struct e1000_hw *hw = &adapter->hw; | 
|  | 3675 | struct net_device *netdev = adapter->netdev; | 
|  | 3676 | u32 part_num; | 
|  | 3677 |  | 
|  | 3678 | /* print bus type/speed/width info */ | 
|  | 3679 | ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " | 
|  | 3680 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | 3681 | /* bus width */ | 
|  | 3682 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | 
|  | 3683 | "Width x1"), | 
|  | 3684 | /* MAC address */ | 
|  | 3685 | netdev->dev_addr[0], netdev->dev_addr[1], | 
|  | 3686 | netdev->dev_addr[2], netdev->dev_addr[3], | 
|  | 3687 | netdev->dev_addr[4], netdev->dev_addr[5]); | 
|  | 3688 | ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", | 
|  | 3689 | (hw->phy.type == e1000_phy_ife) | 
|  | 3690 | ? "10/100" : "1000"); | 
|  | 3691 | e1000e_read_part_num(hw, &part_num); | 
|  | 3692 | ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", | 
|  | 3693 | hw->mac.type, hw->phy.type, | 
|  | 3694 | (part_num >> 8), (part_num & 0xff)); | 
|  | 3695 | } | 
|  | 3696 |  | 
|  | 3697 | /** | 
|  | 3698 | * e1000_probe - Device Initialization Routine | 
|  | 3699 | * @pdev: PCI device information struct | 
|  | 3700 | * @ent: entry in e1000_pci_tbl | 
|  | 3701 | * | 
|  | 3702 | * Returns 0 on success, negative on failure | 
|  | 3703 | * | 
|  | 3704 | * e1000_probe initializes an adapter identified by a pci_dev structure. | 
|  | 3705 | * The OS initialization, configuring of the adapter private structure, | 
|  | 3706 | * and a hardware reset occur. | 
|  | 3707 | **/ | 
|  | 3708 | static int __devinit e1000_probe(struct pci_dev *pdev, | 
|  | 3709 | const struct pci_device_id *ent) | 
|  | 3710 | { | 
|  | 3711 | struct net_device *netdev; | 
|  | 3712 | struct e1000_adapter *adapter; | 
|  | 3713 | struct e1000_hw *hw; | 
|  | 3714 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | 
|  | 3715 | unsigned long mmio_start, mmio_len; | 
|  | 3716 | unsigned long flash_start, flash_len; | 
|  | 3717 |  | 
|  | 3718 | static int cards_found; | 
|  | 3719 | int i, err, pci_using_dac; | 
|  | 3720 | u16 eeprom_data = 0; | 
|  | 3721 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
|  | 3722 |  | 
|  | 3723 | err = pci_enable_device(pdev); | 
|  | 3724 | if (err) | 
|  | 3725 | return err; | 
|  | 3726 |  | 
|  | 3727 | pci_using_dac = 0; | 
|  | 3728 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | 
|  | 3729 | if (!err) { | 
|  | 3730 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | 
|  | 3731 | if (!err) | 
|  | 3732 | pci_using_dac = 1; | 
|  | 3733 | } else { | 
|  | 3734 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
|  | 3735 | if (err) { | 
|  | 3736 | err = pci_set_consistent_dma_mask(pdev, | 
|  | 3737 | DMA_32BIT_MASK); | 
|  | 3738 | if (err) { | 
|  | 3739 | dev_err(&pdev->dev, "No usable DMA " | 
|  | 3740 | "configuration, aborting\n"); | 
|  | 3741 | goto err_dma; | 
|  | 3742 | } | 
|  | 3743 | } | 
|  | 3744 | } | 
|  | 3745 |  | 
|  | 3746 | err = pci_request_regions(pdev, e1000e_driver_name); | 
|  | 3747 | if (err) | 
|  | 3748 | goto err_pci_reg; | 
|  | 3749 |  | 
|  | 3750 | pci_set_master(pdev); | 
|  | 3751 |  | 
|  | 3752 | err = -ENOMEM; | 
|  | 3753 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
|  | 3754 | if (!netdev) | 
|  | 3755 | goto err_alloc_etherdev; | 
|  | 3756 |  | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3757 | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  | 3758 |  | 
|  | 3759 | pci_set_drvdata(pdev, netdev); | 
|  | 3760 | adapter = netdev_priv(netdev); | 
|  | 3761 | hw = &adapter->hw; | 
|  | 3762 | adapter->netdev = netdev; | 
|  | 3763 | adapter->pdev = pdev; | 
|  | 3764 | adapter->ei = ei; | 
|  | 3765 | adapter->pba = ei->pba; | 
|  | 3766 | adapter->flags = ei->flags; | 
|  | 3767 | adapter->hw.adapter = adapter; | 
|  | 3768 | adapter->hw.mac.type = ei->mac; | 
|  | 3769 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | 
|  | 3770 |  | 
|  | 3771 | mmio_start = pci_resource_start(pdev, 0); | 
|  | 3772 | mmio_len = pci_resource_len(pdev, 0); | 
|  | 3773 |  | 
|  | 3774 | err = -EIO; | 
|  | 3775 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | 
|  | 3776 | if (!adapter->hw.hw_addr) | 
|  | 3777 | goto err_ioremap; | 
|  | 3778 |  | 
|  | 3779 | if ((adapter->flags & FLAG_HAS_FLASH) && | 
|  | 3780 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
|  | 3781 | flash_start = pci_resource_start(pdev, 1); | 
|  | 3782 | flash_len = pci_resource_len(pdev, 1); | 
|  | 3783 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | 
|  | 3784 | if (!adapter->hw.flash_address) | 
|  | 3785 | goto err_flashmap; | 
|  | 3786 | } | 
|  | 3787 |  | 
|  | 3788 | /* construct the net_device struct */ | 
|  | 3789 | netdev->open			= &e1000_open; | 
|  | 3790 | netdev->stop			= &e1000_close; | 
|  | 3791 | netdev->hard_start_xmit		= &e1000_xmit_frame; | 
|  | 3792 | netdev->get_stats		= &e1000_get_stats; | 
|  | 3793 | netdev->set_multicast_list	= &e1000_set_multi; | 
|  | 3794 | netdev->set_mac_address		= &e1000_set_mac; | 
|  | 3795 | netdev->change_mtu		= &e1000_change_mtu; | 
|  | 3796 | netdev->do_ioctl		= &e1000_ioctl; | 
|  | 3797 | e1000e_set_ethtool_ops(netdev); | 
|  | 3798 | netdev->tx_timeout		= &e1000_tx_timeout; | 
|  | 3799 | netdev->watchdog_timeo		= 5 * HZ; | 
|  | 3800 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | 
|  | 3801 | netdev->vlan_rx_register	= e1000_vlan_rx_register; | 
|  | 3802 | netdev->vlan_rx_add_vid		= e1000_vlan_rx_add_vid; | 
|  | 3803 | netdev->vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid; | 
|  | 3804 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | 3805 | netdev->poll_controller		= e1000_netpoll; | 
|  | 3806 | #endif | 
|  | 3807 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  | 3808 |  | 
|  | 3809 | netdev->mem_start = mmio_start; | 
|  | 3810 | netdev->mem_end = mmio_start + mmio_len; | 
|  | 3811 |  | 
|  | 3812 | adapter->bd_number = cards_found++; | 
|  | 3813 |  | 
|  | 3814 | /* setup adapter struct */ | 
|  | 3815 | err = e1000_sw_init(adapter); | 
|  | 3816 | if (err) | 
|  | 3817 | goto err_sw_init; | 
|  | 3818 |  | 
|  | 3819 | err = -EIO; | 
|  | 3820 |  | 
|  | 3821 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | 
|  | 3822 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | 
|  | 3823 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | 
|  | 3824 |  | 
|  | 3825 | err = ei->get_invariants(adapter); | 
|  | 3826 | if (err) | 
|  | 3827 | goto err_hw_init; | 
|  | 3828 |  | 
|  | 3829 | hw->mac.ops.get_bus_info(&adapter->hw); | 
|  | 3830 |  | 
|  | 3831 | adapter->hw.phy.wait_for_link = 0; | 
|  | 3832 |  | 
|  | 3833 | /* Copper options */ | 
|  | 3834 | if (adapter->hw.media_type == e1000_media_type_copper) { | 
|  | 3835 | adapter->hw.phy.mdix = AUTO_ALL_MODES; | 
|  | 3836 | adapter->hw.phy.disable_polarity_correction = 0; | 
|  | 3837 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | 
|  | 3838 | } | 
|  | 3839 |  | 
|  | 3840 | if (e1000_check_reset_block(&adapter->hw)) | 
|  | 3841 | ndev_info(netdev, | 
|  | 3842 | "PHY reset is blocked due to SOL/IDER session.\n"); | 
|  | 3843 |  | 
|  | 3844 | netdev->features = NETIF_F_SG | | 
|  | 3845 | NETIF_F_HW_CSUM | | 
|  | 3846 | NETIF_F_HW_VLAN_TX | | 
|  | 3847 | NETIF_F_HW_VLAN_RX; | 
|  | 3848 |  | 
|  | 3849 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | 
|  | 3850 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | 
|  | 3851 |  | 
|  | 3852 | netdev->features |= NETIF_F_TSO; | 
|  | 3853 | netdev->features |= NETIF_F_TSO6; | 
|  | 3854 |  | 
|  | 3855 | if (pci_using_dac) | 
|  | 3856 | netdev->features |= NETIF_F_HIGHDMA; | 
|  | 3857 |  | 
|  | 3858 | /* We should not be using LLTX anymore, but we are still TX faster with | 
|  | 3859 | * it. */ | 
|  | 3860 | netdev->features |= NETIF_F_LLTX; | 
|  | 3861 |  | 
|  | 3862 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | 
|  | 3863 | adapter->flags |= FLAG_MNG_PT_ENABLED; | 
|  | 3864 |  | 
|  | 3865 | /* before reading the NVM, reset the controller to | 
|  | 3866 | * put the device in a known good starting state */ | 
|  | 3867 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | 
|  | 3868 |  | 
|  | 3869 | /* | 
|  | 3870 | * systems with ASPM and others may see the checksum fail on the first | 
|  | 3871 | * attempt. Let's give it a few tries | 
|  | 3872 | */ | 
|  | 3873 | for (i = 0;; i++) { | 
|  | 3874 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | 
|  | 3875 | break; | 
|  | 3876 | if (i == 2) { | 
|  | 3877 | ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); | 
|  | 3878 | err = -EIO; | 
|  | 3879 | goto err_eeprom; | 
|  | 3880 | } | 
|  | 3881 | } | 
|  | 3882 |  | 
|  | 3883 | /* copy the MAC address out of the NVM */ | 
|  | 3884 | if (e1000e_read_mac_addr(&adapter->hw)) | 
|  | 3885 | ndev_err(netdev, "NVM Read Error while reading MAC address\n"); | 
|  | 3886 |  | 
|  | 3887 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | 
|  | 3888 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | 
|  | 3889 |  | 
|  | 3890 | if (!is_valid_ether_addr(netdev->perm_addr)) { | 
|  | 3891 | ndev_err(netdev, "Invalid MAC Address: " | 
|  | 3892 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | 3893 | netdev->perm_addr[0], netdev->perm_addr[1], | 
|  | 3894 | netdev->perm_addr[2], netdev->perm_addr[3], | 
|  | 3895 | netdev->perm_addr[4], netdev->perm_addr[5]); | 
|  | 3896 | err = -EIO; | 
|  | 3897 | goto err_eeprom; | 
|  | 3898 | } | 
|  | 3899 |  | 
|  | 3900 | init_timer(&adapter->watchdog_timer); | 
|  | 3901 | adapter->watchdog_timer.function = &e1000_watchdog; | 
|  | 3902 | adapter->watchdog_timer.data = (unsigned long) adapter; | 
|  | 3903 |  | 
|  | 3904 | init_timer(&adapter->phy_info_timer); | 
|  | 3905 | adapter->phy_info_timer.function = &e1000_update_phy_info; | 
|  | 3906 | adapter->phy_info_timer.data = (unsigned long) adapter; | 
|  | 3907 |  | 
|  | 3908 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
|  | 3909 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | 
|  | 3910 |  | 
|  | 3911 | e1000e_check_options(adapter); | 
|  | 3912 |  | 
|  | 3913 | /* Initialize link parameters. User can change them with ethtool */ | 
|  | 3914 | adapter->hw.mac.autoneg = 1; | 
| Auke Kok | 309af40 | 2007-10-05 15:22:02 -0700 | [diff] [blame] | 3915 | adapter->fc_autoneg = 1; | 
| Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame] | 3916 | adapter->hw.mac.original_fc = e1000_fc_default; | 
|  | 3917 | adapter->hw.mac.fc = e1000_fc_default; | 
|  | 3918 | adapter->hw.phy.autoneg_advertised = 0x2f; | 
|  | 3919 |  | 
|  | 3920 | /* ring size defaults */ | 
|  | 3921 | adapter->rx_ring->count = 256; | 
|  | 3922 | adapter->tx_ring->count = 256; | 
|  | 3923 |  | 
|  | 3924 | /* | 
|  | 3925 | * Initial Wake on LAN setting - If APM wake is enabled in | 
|  | 3926 | * the EEPROM, enable the ACPI Magic Packet filter | 
|  | 3927 | */ | 
|  | 3928 | if (adapter->flags & FLAG_APME_IN_WUC) { | 
|  | 3929 | /* APME bit in EEPROM is mapped to WUC.APME */ | 
|  | 3930 | eeprom_data = er32(WUC); | 
|  | 3931 | eeprom_apme_mask = E1000_WUC_APME; | 
|  | 3932 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | 
|  | 3933 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | 
|  | 3934 | (adapter->hw.bus.func == 1)) | 
|  | 3935 | e1000_read_nvm(&adapter->hw, | 
|  | 3936 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
|  | 3937 | else | 
|  | 3938 | e1000_read_nvm(&adapter->hw, | 
|  | 3939 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
|  | 3940 | } | 
|  | 3941 |  | 
|  | 3942 | /* fetch WoL from EEPROM */ | 
|  | 3943 | if (eeprom_data & eeprom_apme_mask) | 
|  | 3944 | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  | 3945 |  | 
|  | 3946 | /* | 
|  | 3947 | * now that we have the eeprom settings, apply the special cases | 
|  | 3948 | * where the eeprom may be wrong or the board simply won't support | 
|  | 3949 | * wake on lan on a particular port | 
|  | 3950 | */ | 
|  | 3951 | if (!(adapter->flags & FLAG_HAS_WOL)) | 
|  | 3952 | adapter->eeprom_wol = 0; | 
|  | 3953 |  | 
|  | 3954 | /* initialize the wol settings based on the eeprom settings */ | 
|  | 3955 | adapter->wol = adapter->eeprom_wol; | 
|  | 3956 |  | 
|  | 3957 | /* reset the hardware with the new settings */ | 
|  | 3958 | e1000e_reset(adapter); | 
|  | 3959 |  | 
|  | 3960 | /* If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | 3961 | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | 3962 | * under the control of the driver. */ | 
|  | 3963 | if (!(adapter->flags & FLAG_HAS_AMT) || | 
|  | 3964 | !e1000e_check_mng_mode(&adapter->hw)) | 
|  | 3965 | e1000_get_hw_control(adapter); | 
|  | 3966 |  | 
|  | 3967 | /* tell the stack to leave us alone until e1000_open() is called */ | 
|  | 3968 | netif_carrier_off(netdev); | 
|  | 3969 | netif_stop_queue(netdev); | 
|  | 3970 |  | 
|  | 3971 | strcpy(netdev->name, "eth%d"); | 
|  | 3972 | err = register_netdev(netdev); | 
|  | 3973 | if (err) | 
|  | 3974 | goto err_register; | 
|  | 3975 |  | 
|  | 3976 | e1000_print_device_info(adapter); | 
|  | 3977 |  | 
|  | 3978 | return 0; | 
|  | 3979 |  | 
|  | 3980 | err_register: | 
|  | 3981 | err_hw_init: | 
|  | 3982 | e1000_release_hw_control(adapter); | 
|  | 3983 | err_eeprom: | 
|  | 3984 | if (!e1000_check_reset_block(&adapter->hw)) | 
|  | 3985 | e1000_phy_hw_reset(&adapter->hw); | 
|  | 3986 |  | 
|  | 3987 | if (adapter->hw.flash_address) | 
|  | 3988 | iounmap(adapter->hw.flash_address); | 
|  | 3989 |  | 
|  | 3990 | err_flashmap: | 
|  | 3991 | kfree(adapter->tx_ring); | 
|  | 3992 | kfree(adapter->rx_ring); | 
|  | 3993 | err_sw_init: | 
|  | 3994 | iounmap(adapter->hw.hw_addr); | 
|  | 3995 | err_ioremap: | 
|  | 3996 | free_netdev(netdev); | 
|  | 3997 | err_alloc_etherdev: | 
|  | 3998 | pci_release_regions(pdev); | 
|  | 3999 | err_pci_reg: | 
|  | 4000 | err_dma: | 
|  | 4001 | pci_disable_device(pdev); | 
|  | 4002 | return err; | 
|  | 4003 | } | 
|  | 4004 |  | 
|  | 4005 | /** | 
|  | 4006 | * e1000_remove - Device Removal Routine | 
|  | 4007 | * @pdev: PCI device information struct | 
|  | 4008 | * | 
|  | 4009 | * e1000_remove is called by the PCI subsystem to alert the driver | 
|  | 4010 | * that it should release a PCI device.  The could be caused by a | 
|  | 4011 | * Hot-Plug event, or because the driver is going to be removed from | 
|  | 4012 | * memory. | 
|  | 4013 | **/ | 
|  | 4014 | static void __devexit e1000_remove(struct pci_dev *pdev) | 
|  | 4015 | { | 
|  | 4016 | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | 4017 | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | 4018 |  | 
|  | 4019 | /* flush_scheduled work may reschedule our watchdog task, so | 
|  | 4020 | * explicitly disable watchdog tasks from being rescheduled  */ | 
|  | 4021 | set_bit(__E1000_DOWN, &adapter->state); | 
|  | 4022 | del_timer_sync(&adapter->watchdog_timer); | 
|  | 4023 | del_timer_sync(&adapter->phy_info_timer); | 
|  | 4024 |  | 
|  | 4025 | flush_scheduled_work(); | 
|  | 4026 |  | 
|  | 4027 | e1000_release_manageability(adapter); | 
|  | 4028 |  | 
|  | 4029 | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | 4030 | * would have already happened in close and is redundant. */ | 
|  | 4031 | e1000_release_hw_control(adapter); | 
|  | 4032 |  | 
|  | 4033 | unregister_netdev(netdev); | 
|  | 4034 |  | 
|  | 4035 | if (!e1000_check_reset_block(&adapter->hw)) | 
|  | 4036 | e1000_phy_hw_reset(&adapter->hw); | 
|  | 4037 |  | 
|  | 4038 | kfree(adapter->tx_ring); | 
|  | 4039 | kfree(adapter->rx_ring); | 
|  | 4040 |  | 
|  | 4041 | iounmap(adapter->hw.hw_addr); | 
|  | 4042 | if (adapter->hw.flash_address) | 
|  | 4043 | iounmap(adapter->hw.flash_address); | 
|  | 4044 | pci_release_regions(pdev); | 
|  | 4045 |  | 
|  | 4046 | free_netdev(netdev); | 
|  | 4047 |  | 
|  | 4048 | pci_disable_device(pdev); | 
|  | 4049 | } | 
|  | 4050 |  | 
|  | 4051 | /* PCI Error Recovery (ERS) */ | 
|  | 4052 | static struct pci_error_handlers e1000_err_handler = { | 
|  | 4053 | .error_detected = e1000_io_error_detected, | 
|  | 4054 | .slot_reset = e1000_io_slot_reset, | 
|  | 4055 | .resume = e1000_io_resume, | 
|  | 4056 | }; | 
|  | 4057 |  | 
|  | 4058 | static struct pci_device_id e1000_pci_tbl[] = { | 
|  | 4059 | /* | 
|  | 4060 | * Support for 82571/2/3, es2lan and ich8 will be phased in | 
|  | 4061 | * stepwise. | 
|  | 4062 |  | 
|  | 4063 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | 
|  | 4064 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | 
|  | 4065 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | 
|  | 4066 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | 
|  | 4067 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | 
|  | 4068 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | 
|  | 4069 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | 
|  | 4070 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | 
|  | 4071 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | 
|  | 4072 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | 
|  | 4073 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | 
|  | 4074 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | 
|  | 4075 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | 
|  | 4076 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | 
|  | 4077 | board_80003es2lan }, | 
|  | 4078 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | 
|  | 4079 | board_80003es2lan }, | 
|  | 4080 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | 
|  | 4081 | board_80003es2lan }, | 
|  | 4082 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | 
|  | 4083 | board_80003es2lan }, | 
|  | 4084 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | 
|  | 4085 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | 
|  | 4086 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | 
|  | 4087 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | 
|  | 4088 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | 
|  | 4089 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | 
|  | 4090 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | 
|  | 4091 | */ | 
|  | 4092 |  | 
|  | 4093 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | 
|  | 4094 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | 
|  | 4095 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | 
|  | 4096 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | 
|  | 4097 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | 
|  | 4098 |  | 
|  | 4099 | { }	/* terminate list */ | 
|  | 4100 | }; | 
|  | 4101 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
|  | 4102 |  | 
|  | 4103 | /* PCI Device API Driver */ | 
|  | 4104 | static struct pci_driver e1000_driver = { | 
|  | 4105 | .name     = e1000e_driver_name, | 
|  | 4106 | .id_table = e1000_pci_tbl, | 
|  | 4107 | .probe    = e1000_probe, | 
|  | 4108 | .remove   = __devexit_p(e1000_remove), | 
|  | 4109 | #ifdef CONFIG_PM | 
|  | 4110 | /* Power Managment Hooks */ | 
|  | 4111 | .suspend  = e1000_suspend, | 
|  | 4112 | .resume   = e1000_resume, | 
|  | 4113 | #endif | 
|  | 4114 | .shutdown = e1000_shutdown, | 
|  | 4115 | .err_handler = &e1000_err_handler | 
|  | 4116 | }; | 
|  | 4117 |  | 
|  | 4118 | /** | 
|  | 4119 | * e1000_init_module - Driver Registration Routine | 
|  | 4120 | * | 
|  | 4121 | * e1000_init_module is the first routine called when the driver is | 
|  | 4122 | * loaded. All it does is register with the PCI subsystem. | 
|  | 4123 | **/ | 
|  | 4124 | static int __init e1000_init_module(void) | 
|  | 4125 | { | 
|  | 4126 | int ret; | 
|  | 4127 | printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | 
|  | 4128 | e1000e_driver_name, e1000e_driver_version); | 
|  | 4129 | printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", | 
|  | 4130 | e1000e_driver_name); | 
|  | 4131 | ret = pci_register_driver(&e1000_driver); | 
|  | 4132 |  | 
|  | 4133 | return ret; | 
|  | 4134 | } | 
|  | 4135 | module_init(e1000_init_module); | 
|  | 4136 |  | 
|  | 4137 | /** | 
|  | 4138 | * e1000_exit_module - Driver Exit Cleanup Routine | 
|  | 4139 | * | 
|  | 4140 | * e1000_exit_module is called just before the driver is removed | 
|  | 4141 | * from memory. | 
|  | 4142 | **/ | 
|  | 4143 | static void __exit e1000_exit_module(void) | 
|  | 4144 | { | 
|  | 4145 | pci_unregister_driver(&e1000_driver); | 
|  | 4146 | } | 
|  | 4147 | module_exit(e1000_exit_module); | 
|  | 4148 |  | 
|  | 4149 |  | 
|  | 4150 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
|  | 4151 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
|  | 4152 | MODULE_LICENSE("GPL"); | 
|  | 4153 | MODULE_VERSION(DRV_VERSION); | 
|  | 4154 |  | 
|  | 4155 | /* e1000_main.c */ |