| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 1 | /* SCTP kernel reference Implementation | 
|  | 2 | * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. | 
|  | 3 | * | 
|  | 4 | * This file is part of the SCTP kernel reference Implementation | 
|  | 5 | * | 
|  | 6 | * The SCTP reference implementation is free software; | 
|  | 7 | * you can redistribute it and/or modify it under the terms of | 
|  | 8 | * the GNU General Public License as published by | 
|  | 9 | * the Free Software Foundation; either version 2, or (at your option) | 
|  | 10 | * any later version. | 
|  | 11 | * | 
|  | 12 | * The SCTP reference implementation is distributed in the hope that it | 
|  | 13 | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | 14 | *                 ************************ | 
|  | 15 | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 16 | * See the GNU General Public License for more details. | 
|  | 17 | * | 
|  | 18 | * You should have received a copy of the GNU General Public License | 
|  | 19 | * along with GNU CC; see the file COPYING.  If not, write to | 
|  | 20 | * the Free Software Foundation, 59 Temple Place - Suite 330, | 
|  | 21 | * Boston, MA 02111-1307, USA. | 
|  | 22 | * | 
|  | 23 | * Please send any bug reports or fixes you make to the | 
|  | 24 | * email address(es): | 
|  | 25 | *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
|  | 26 | * | 
|  | 27 | * Or submit a bug report through the following website: | 
|  | 28 | *    http://www.sf.net/projects/lksctp | 
|  | 29 | * | 
|  | 30 | * Written or modified by: | 
|  | 31 | *   Vlad Yasevich     <vladislav.yasevich@hp.com> | 
|  | 32 | * | 
|  | 33 | * Any bugs reported given to us we will try to fix... any fixes shared will | 
|  | 34 | * be incorporated into the next SCTP release. | 
|  | 35 | */ | 
|  | 36 |  | 
|  | 37 | #include <linux/types.h> | 
|  | 38 | #include <linux/crypto.h> | 
|  | 39 | #include <linux/scatterlist.h> | 
|  | 40 | #include <net/sctp/sctp.h> | 
|  | 41 | #include <net/sctp/auth.h> | 
|  | 42 |  | 
|  | 43 | static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { | 
|  | 44 | { | 
|  | 45 | /* id 0 is reserved.  as all 0 */ | 
|  | 46 | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, | 
|  | 47 | }, | 
|  | 48 | { | 
|  | 49 | .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, | 
|  | 50 | .hmac_name="hmac(sha1)", | 
|  | 51 | .hmac_len = SCTP_SHA1_SIG_SIZE, | 
|  | 52 | }, | 
|  | 53 | { | 
|  | 54 | /* id 2 is reserved as well */ | 
|  | 55 | .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, | 
|  | 56 | }, | 
| Vlad Yasevich | b7e0fe9 | 2007-11-29 09:53:52 -0500 | [diff] [blame] | 57 | #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 58 | { | 
|  | 59 | .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, | 
|  | 60 | .hmac_name="hmac(sha256)", | 
|  | 61 | .hmac_len = SCTP_SHA256_SIG_SIZE, | 
|  | 62 | } | 
| Vlad Yasevich | b7e0fe9 | 2007-11-29 09:53:52 -0500 | [diff] [blame] | 63 | #endif | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 64 | }; | 
|  | 65 |  | 
|  | 66 |  | 
|  | 67 | void sctp_auth_key_put(struct sctp_auth_bytes *key) | 
|  | 68 | { | 
|  | 69 | if (!key) | 
|  | 70 | return; | 
|  | 71 |  | 
|  | 72 | if (atomic_dec_and_test(&key->refcnt)) { | 
|  | 73 | kfree(key); | 
|  | 74 | SCTP_DBG_OBJCNT_DEC(keys); | 
|  | 75 | } | 
|  | 76 | } | 
|  | 77 |  | 
|  | 78 | /* Create a new key structure of a given length */ | 
|  | 79 | static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) | 
|  | 80 | { | 
|  | 81 | struct sctp_auth_bytes *key; | 
|  | 82 |  | 
|  | 83 | /* Allocate the shared key */ | 
|  | 84 | key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); | 
|  | 85 | if (!key) | 
|  | 86 | return NULL; | 
|  | 87 |  | 
|  | 88 | key->len = key_len; | 
|  | 89 | atomic_set(&key->refcnt, 1); | 
|  | 90 | SCTP_DBG_OBJCNT_INC(keys); | 
|  | 91 |  | 
|  | 92 | return key; | 
|  | 93 | } | 
|  | 94 |  | 
|  | 95 | /* Create a new shared key container with a give key id */ | 
|  | 96 | struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) | 
|  | 97 | { | 
|  | 98 | struct sctp_shared_key *new; | 
|  | 99 |  | 
|  | 100 | /* Allocate the shared key container */ | 
|  | 101 | new = kzalloc(sizeof(struct sctp_shared_key), gfp); | 
|  | 102 | if (!new) | 
|  | 103 | return NULL; | 
|  | 104 |  | 
|  | 105 | INIT_LIST_HEAD(&new->key_list); | 
|  | 106 | new->key_id = key_id; | 
|  | 107 |  | 
|  | 108 | return new; | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | /* Free the shared key stucture */ | 
| Adrian Bunk | 8ad7c62 | 2007-10-26 04:21:23 -0700 | [diff] [blame] | 112 | static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 113 | { | 
|  | 114 | BUG_ON(!list_empty(&sh_key->key_list)); | 
|  | 115 | sctp_auth_key_put(sh_key->key); | 
|  | 116 | sh_key->key = NULL; | 
|  | 117 | kfree(sh_key); | 
|  | 118 | } | 
|  | 119 |  | 
|  | 120 | /* Destory the entire key list.  This is done during the | 
|  | 121 | * associon and endpoint free process. | 
|  | 122 | */ | 
|  | 123 | void sctp_auth_destroy_keys(struct list_head *keys) | 
|  | 124 | { | 
|  | 125 | struct sctp_shared_key *ep_key; | 
|  | 126 | struct sctp_shared_key *tmp; | 
|  | 127 |  | 
|  | 128 | if (list_empty(keys)) | 
|  | 129 | return; | 
|  | 130 |  | 
|  | 131 | key_for_each_safe(ep_key, tmp, keys) { | 
|  | 132 | list_del_init(&ep_key->key_list); | 
|  | 133 | sctp_auth_shkey_free(ep_key); | 
|  | 134 | } | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | /* Compare two byte vectors as numbers.  Return values | 
|  | 138 | * are: | 
|  | 139 | * 	  0 - vectors are equal | 
|  | 140 | * 	< 0 - vector 1 is smaller then vector2 | 
|  | 141 | * 	> 0 - vector 1 is greater then vector2 | 
|  | 142 | * | 
|  | 143 | * Algorithm is: | 
|  | 144 | * 	This is performed by selecting the numerically smaller key vector... | 
|  | 145 | *	If the key vectors are equal as numbers but differ in length ... | 
|  | 146 | *	the shorter vector is considered smaller | 
|  | 147 | * | 
|  | 148 | * Examples (with small values): | 
|  | 149 | * 	000123456789 > 123456789 (first number is longer) | 
|  | 150 | * 	000123456789 < 234567891 (second number is larger numerically) | 
|  | 151 | * 	123456789 > 2345678 	 (first number is both larger & longer) | 
|  | 152 | */ | 
|  | 153 | static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, | 
|  | 154 | struct sctp_auth_bytes *vector2) | 
|  | 155 | { | 
|  | 156 | int diff; | 
|  | 157 | int i; | 
|  | 158 | const __u8 *longer; | 
|  | 159 |  | 
|  | 160 | diff = vector1->len - vector2->len; | 
|  | 161 | if (diff) { | 
|  | 162 | longer = (diff > 0) ? vector1->data : vector2->data; | 
|  | 163 |  | 
|  | 164 | /* Check to see if the longer number is | 
|  | 165 | * lead-zero padded.  If it is not, it | 
|  | 166 | * is automatically larger numerically. | 
|  | 167 | */ | 
|  | 168 | for (i = 0; i < abs(diff); i++ ) { | 
|  | 169 | if (longer[i] != 0) | 
|  | 170 | return diff; | 
|  | 171 | } | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | /* lengths are the same, compare numbers */ | 
|  | 175 | return memcmp(vector1->data, vector2->data, vector1->len); | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | /* | 
|  | 179 | * Create a key vector as described in SCTP-AUTH, Section 6.1 | 
|  | 180 | *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | 
|  | 181 | *    parameter sent by each endpoint are concatenated as byte vectors. | 
|  | 182 | *    These parameters include the parameter type, parameter length, and | 
|  | 183 | *    the parameter value, but padding is omitted; all padding MUST be | 
|  | 184 | *    removed from this concatenation before proceeding with further | 
|  | 185 | *    computation of keys.  Parameters which were not sent are simply | 
|  | 186 | *    omitted from the concatenation process.  The resulting two vectors | 
|  | 187 | *    are called the two key vectors. | 
|  | 188 | */ | 
|  | 189 | static struct sctp_auth_bytes *sctp_auth_make_key_vector( | 
|  | 190 | sctp_random_param_t *random, | 
|  | 191 | sctp_chunks_param_t *chunks, | 
|  | 192 | sctp_hmac_algo_param_t *hmacs, | 
|  | 193 | gfp_t gfp) | 
|  | 194 | { | 
|  | 195 | struct sctp_auth_bytes *new; | 
|  | 196 | __u32	len; | 
|  | 197 | __u32	offset = 0; | 
|  | 198 |  | 
|  | 199 | len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length); | 
|  | 200 | if (chunks) | 
|  | 201 | len += ntohs(chunks->param_hdr.length); | 
|  | 202 |  | 
|  | 203 | new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp); | 
|  | 204 | if (!new) | 
|  | 205 | return NULL; | 
|  | 206 |  | 
|  | 207 | new->len = len; | 
|  | 208 |  | 
|  | 209 | memcpy(new->data, random, ntohs(random->param_hdr.length)); | 
|  | 210 | offset += ntohs(random->param_hdr.length); | 
|  | 211 |  | 
|  | 212 | if (chunks) { | 
|  | 213 | memcpy(new->data + offset, chunks, | 
|  | 214 | ntohs(chunks->param_hdr.length)); | 
|  | 215 | offset += ntohs(chunks->param_hdr.length); | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length)); | 
|  | 219 |  | 
|  | 220 | return new; | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 |  | 
|  | 224 | /* Make a key vector based on our local parameters */ | 
| Adrian Bunk | 8ad7c62 | 2007-10-26 04:21:23 -0700 | [diff] [blame] | 225 | static struct sctp_auth_bytes *sctp_auth_make_local_vector( | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 226 | const struct sctp_association *asoc, | 
|  | 227 | gfp_t gfp) | 
|  | 228 | { | 
|  | 229 | return sctp_auth_make_key_vector( | 
|  | 230 | (sctp_random_param_t*)asoc->c.auth_random, | 
|  | 231 | (sctp_chunks_param_t*)asoc->c.auth_chunks, | 
|  | 232 | (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, | 
|  | 233 | gfp); | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | /* Make a key vector based on peer's parameters */ | 
| Adrian Bunk | 8ad7c62 | 2007-10-26 04:21:23 -0700 | [diff] [blame] | 237 | static struct sctp_auth_bytes *sctp_auth_make_peer_vector( | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 238 | const struct sctp_association *asoc, | 
|  | 239 | gfp_t gfp) | 
|  | 240 | { | 
|  | 241 | return sctp_auth_make_key_vector(asoc->peer.peer_random, | 
|  | 242 | asoc->peer.peer_chunks, | 
|  | 243 | asoc->peer.peer_hmacs, | 
|  | 244 | gfp); | 
|  | 245 | } | 
|  | 246 |  | 
|  | 247 |  | 
|  | 248 | /* Set the value of the association shared key base on the parameters | 
|  | 249 | * given.  The algorithm is: | 
|  | 250 | *    From the endpoint pair shared keys and the key vectors the | 
|  | 251 | *    association shared keys are computed.  This is performed by selecting | 
|  | 252 | *    the numerically smaller key vector and concatenating it to the | 
|  | 253 | *    endpoint pair shared key, and then concatenating the numerically | 
|  | 254 | *    larger key vector to that.  The result of the concatenation is the | 
|  | 255 | *    association shared key. | 
|  | 256 | */ | 
|  | 257 | static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( | 
|  | 258 | struct sctp_shared_key *ep_key, | 
|  | 259 | struct sctp_auth_bytes *first_vector, | 
|  | 260 | struct sctp_auth_bytes *last_vector, | 
|  | 261 | gfp_t gfp) | 
|  | 262 | { | 
|  | 263 | struct sctp_auth_bytes *secret; | 
|  | 264 | __u32 offset = 0; | 
|  | 265 | __u32 auth_len; | 
|  | 266 |  | 
|  | 267 | auth_len = first_vector->len + last_vector->len; | 
|  | 268 | if (ep_key->key) | 
|  | 269 | auth_len += ep_key->key->len; | 
|  | 270 |  | 
|  | 271 | secret = sctp_auth_create_key(auth_len, gfp); | 
|  | 272 | if (!secret) | 
|  | 273 | return NULL; | 
|  | 274 |  | 
|  | 275 | if (ep_key->key) { | 
|  | 276 | memcpy(secret->data, ep_key->key->data, ep_key->key->len); | 
|  | 277 | offset += ep_key->key->len; | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | memcpy(secret->data + offset, first_vector->data, first_vector->len); | 
|  | 281 | offset += first_vector->len; | 
|  | 282 |  | 
|  | 283 | memcpy(secret->data + offset, last_vector->data, last_vector->len); | 
|  | 284 |  | 
|  | 285 | return secret; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* Create an association shared key.  Follow the algorithm | 
|  | 289 | * described in SCTP-AUTH, Section 6.1 | 
|  | 290 | */ | 
|  | 291 | static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( | 
|  | 292 | const struct sctp_association *asoc, | 
|  | 293 | struct sctp_shared_key *ep_key, | 
|  | 294 | gfp_t gfp) | 
|  | 295 | { | 
|  | 296 | struct sctp_auth_bytes *local_key_vector; | 
|  | 297 | struct sctp_auth_bytes *peer_key_vector; | 
|  | 298 | struct sctp_auth_bytes	*first_vector, | 
|  | 299 | *last_vector; | 
|  | 300 | struct sctp_auth_bytes	*secret = NULL; | 
|  | 301 | int	cmp; | 
|  | 302 |  | 
|  | 303 |  | 
|  | 304 | /* Now we need to build the key vectors | 
|  | 305 | * SCTP-AUTH , Section 6.1 | 
|  | 306 | *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO | 
|  | 307 | *    parameter sent by each endpoint are concatenated as byte vectors. | 
|  | 308 | *    These parameters include the parameter type, parameter length, and | 
|  | 309 | *    the parameter value, but padding is omitted; all padding MUST be | 
|  | 310 | *    removed from this concatenation before proceeding with further | 
|  | 311 | *    computation of keys.  Parameters which were not sent are simply | 
|  | 312 | *    omitted from the concatenation process.  The resulting two vectors | 
|  | 313 | *    are called the two key vectors. | 
|  | 314 | */ | 
|  | 315 |  | 
|  | 316 | local_key_vector = sctp_auth_make_local_vector(asoc, gfp); | 
|  | 317 | peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); | 
|  | 318 |  | 
|  | 319 | if (!peer_key_vector || !local_key_vector) | 
|  | 320 | goto out; | 
|  | 321 |  | 
|  | 322 | /* Figure out the order in wich the key_vectors will be | 
|  | 323 | * added to the endpoint shared key. | 
|  | 324 | * SCTP-AUTH, Section 6.1: | 
|  | 325 | *   This is performed by selecting the numerically smaller key | 
|  | 326 | *   vector and concatenating it to the endpoint pair shared | 
|  | 327 | *   key, and then concatenating the numerically larger key | 
|  | 328 | *   vector to that.  If the key vectors are equal as numbers | 
|  | 329 | *   but differ in length, then the concatenation order is the | 
|  | 330 | *   endpoint shared key, followed by the shorter key vector, | 
|  | 331 | *   followed by the longer key vector.  Otherwise, the key | 
|  | 332 | *   vectors are identical, and may be concatenated to the | 
|  | 333 | *   endpoint pair key in any order. | 
|  | 334 | */ | 
|  | 335 | cmp = sctp_auth_compare_vectors(local_key_vector, | 
|  | 336 | peer_key_vector); | 
|  | 337 | if (cmp < 0) { | 
|  | 338 | first_vector = local_key_vector; | 
|  | 339 | last_vector = peer_key_vector; | 
|  | 340 | } else { | 
|  | 341 | first_vector = peer_key_vector; | 
|  | 342 | last_vector = local_key_vector; | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, | 
|  | 346 | gfp); | 
|  | 347 | out: | 
|  | 348 | kfree(local_key_vector); | 
|  | 349 | kfree(peer_key_vector); | 
|  | 350 |  | 
|  | 351 | return secret; | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | /* | 
|  | 355 | * Populate the association overlay list with the list | 
|  | 356 | * from the endpoint. | 
|  | 357 | */ | 
|  | 358 | int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, | 
|  | 359 | struct sctp_association *asoc, | 
|  | 360 | gfp_t gfp) | 
|  | 361 | { | 
|  | 362 | struct sctp_shared_key *sh_key; | 
|  | 363 | struct sctp_shared_key *new; | 
|  | 364 |  | 
|  | 365 | BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); | 
|  | 366 |  | 
|  | 367 | key_for_each(sh_key, &ep->endpoint_shared_keys) { | 
|  | 368 | new = sctp_auth_shkey_create(sh_key->key_id, gfp); | 
|  | 369 | if (!new) | 
|  | 370 | goto nomem; | 
|  | 371 |  | 
|  | 372 | new->key = sh_key->key; | 
|  | 373 | sctp_auth_key_hold(new->key); | 
|  | 374 | list_add(&new->key_list, &asoc->endpoint_shared_keys); | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | return 0; | 
|  | 378 |  | 
|  | 379 | nomem: | 
|  | 380 | sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); | 
|  | 381 | return -ENOMEM; | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 |  | 
|  | 385 | /* Public interface to creat the association shared key. | 
|  | 386 | * See code above for the algorithm. | 
|  | 387 | */ | 
|  | 388 | int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) | 
|  | 389 | { | 
|  | 390 | struct sctp_auth_bytes	*secret; | 
|  | 391 | struct sctp_shared_key *ep_key; | 
|  | 392 |  | 
|  | 393 | /* If we don't support AUTH, or peer is not capable | 
|  | 394 | * we don't need to do anything. | 
|  | 395 | */ | 
|  | 396 | if (!sctp_auth_enable || !asoc->peer.auth_capable) | 
|  | 397 | return 0; | 
|  | 398 |  | 
|  | 399 | /* If the key_id is non-zero and we couldn't find an | 
|  | 400 | * endpoint pair shared key, we can't compute the | 
|  | 401 | * secret. | 
|  | 402 | * For key_id 0, endpoint pair shared key is a NULL key. | 
|  | 403 | */ | 
|  | 404 | ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); | 
|  | 405 | BUG_ON(!ep_key); | 
|  | 406 |  | 
|  | 407 | secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | 
|  | 408 | if (!secret) | 
|  | 409 | return -ENOMEM; | 
|  | 410 |  | 
|  | 411 | sctp_auth_key_put(asoc->asoc_shared_key); | 
|  | 412 | asoc->asoc_shared_key = secret; | 
|  | 413 |  | 
|  | 414 | return 0; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 |  | 
|  | 418 | /* Find the endpoint pair shared key based on the key_id */ | 
|  | 419 | struct sctp_shared_key *sctp_auth_get_shkey( | 
|  | 420 | const struct sctp_association *asoc, | 
|  | 421 | __u16 key_id) | 
|  | 422 | { | 
|  | 423 | struct sctp_shared_key *key = NULL; | 
|  | 424 |  | 
|  | 425 | /* First search associations set of endpoint pair shared keys */ | 
|  | 426 | key_for_each(key, &asoc->endpoint_shared_keys) { | 
|  | 427 | if (key->key_id == key_id) | 
|  | 428 | break; | 
|  | 429 | } | 
|  | 430 |  | 
|  | 431 | return key; | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | /* | 
|  | 435 | * Initialize all the possible digest transforms that we can use.  Right now | 
|  | 436 | * now, the supported digests are SHA1 and SHA256.  We do this here once | 
|  | 437 | * because of the restrictiong that transforms may only be allocated in | 
|  | 438 | * user context.  This forces us to pre-allocated all possible transforms | 
|  | 439 | * at the endpoint init time. | 
|  | 440 | */ | 
|  | 441 | int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) | 
|  | 442 | { | 
|  | 443 | struct crypto_hash *tfm = NULL; | 
|  | 444 | __u16   id; | 
|  | 445 |  | 
|  | 446 | /* if the transforms are already allocted, we are done */ | 
|  | 447 | if (!sctp_auth_enable) { | 
|  | 448 | ep->auth_hmacs = NULL; | 
|  | 449 | return 0; | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | if (ep->auth_hmacs) | 
|  | 453 | return 0; | 
|  | 454 |  | 
|  | 455 | /* Allocated the array of pointers to transorms */ | 
|  | 456 | ep->auth_hmacs = kzalloc( | 
|  | 457 | sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, | 
|  | 458 | gfp); | 
|  | 459 | if (!ep->auth_hmacs) | 
|  | 460 | return -ENOMEM; | 
|  | 461 |  | 
|  | 462 | for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { | 
|  | 463 |  | 
|  | 464 | /* See is we support the id.  Supported IDs have name and | 
|  | 465 | * length fields set, so that we can allocated and use | 
|  | 466 | * them.  We can safely just check for name, for without the | 
|  | 467 | * name, we can't allocate the TFM. | 
|  | 468 | */ | 
|  | 469 | if (!sctp_hmac_list[id].hmac_name) | 
|  | 470 | continue; | 
|  | 471 |  | 
|  | 472 | /* If this TFM has been allocated, we are all set */ | 
|  | 473 | if (ep->auth_hmacs[id]) | 
|  | 474 | continue; | 
|  | 475 |  | 
|  | 476 | /* Allocate the ID */ | 
|  | 477 | tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, | 
|  | 478 | CRYPTO_ALG_ASYNC); | 
|  | 479 | if (IS_ERR(tfm)) | 
|  | 480 | goto out_err; | 
|  | 481 |  | 
|  | 482 | ep->auth_hmacs[id] = tfm; | 
|  | 483 | } | 
|  | 484 |  | 
|  | 485 | return 0; | 
|  | 486 |  | 
|  | 487 | out_err: | 
|  | 488 | /* Clean up any successfull allocations */ | 
|  | 489 | sctp_auth_destroy_hmacs(ep->auth_hmacs); | 
|  | 490 | return -ENOMEM; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | /* Destroy the hmac tfm array */ | 
|  | 494 | void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) | 
|  | 495 | { | 
|  | 496 | int i; | 
|  | 497 |  | 
|  | 498 | if (!auth_hmacs) | 
|  | 499 | return; | 
|  | 500 |  | 
|  | 501 | for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) | 
|  | 502 | { | 
|  | 503 | if (auth_hmacs[i]) | 
|  | 504 | crypto_free_hash(auth_hmacs[i]); | 
|  | 505 | } | 
|  | 506 | kfree(auth_hmacs); | 
|  | 507 | } | 
|  | 508 |  | 
|  | 509 |  | 
|  | 510 | struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) | 
|  | 511 | { | 
|  | 512 | return &sctp_hmac_list[hmac_id]; | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | /* Get an hmac description information that we can use to build | 
|  | 516 | * the AUTH chunk | 
|  | 517 | */ | 
|  | 518 | struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) | 
|  | 519 | { | 
|  | 520 | struct sctp_hmac_algo_param *hmacs; | 
|  | 521 | __u16 n_elt; | 
|  | 522 | __u16 id = 0; | 
|  | 523 | int i; | 
|  | 524 |  | 
|  | 525 | /* If we have a default entry, use it */ | 
|  | 526 | if (asoc->default_hmac_id) | 
|  | 527 | return &sctp_hmac_list[asoc->default_hmac_id]; | 
|  | 528 |  | 
|  | 529 | /* Since we do not have a default entry, find the first entry | 
|  | 530 | * we support and return that.  Do not cache that id. | 
|  | 531 | */ | 
|  | 532 | hmacs = asoc->peer.peer_hmacs; | 
|  | 533 | if (!hmacs) | 
|  | 534 | return NULL; | 
|  | 535 |  | 
|  | 536 | n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; | 
|  | 537 | for (i = 0; i < n_elt; i++) { | 
|  | 538 | id = ntohs(hmacs->hmac_ids[i]); | 
|  | 539 |  | 
|  | 540 | /* Check the id is in the supported range */ | 
|  | 541 | if (id > SCTP_AUTH_HMAC_ID_MAX) | 
|  | 542 | continue; | 
|  | 543 |  | 
|  | 544 | /* See is we support the id.  Supported IDs have name and | 
|  | 545 | * length fields set, so that we can allocated and use | 
|  | 546 | * them.  We can safely just check for name, for without the | 
|  | 547 | * name, we can't allocate the TFM. | 
|  | 548 | */ | 
|  | 549 | if (!sctp_hmac_list[id].hmac_name) | 
|  | 550 | continue; | 
|  | 551 |  | 
|  | 552 | break; | 
|  | 553 | } | 
|  | 554 |  | 
|  | 555 | if (id == 0) | 
|  | 556 | return NULL; | 
|  | 557 |  | 
|  | 558 | return &sctp_hmac_list[id]; | 
|  | 559 | } | 
|  | 560 |  | 
| Al Viro | d06f608 | 2007-10-29 05:03:23 +0000 | [diff] [blame] | 561 | static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 562 | { | 
|  | 563 | int  found = 0; | 
|  | 564 | int  i; | 
|  | 565 |  | 
|  | 566 | for (i = 0; i < n_elts; i++) { | 
|  | 567 | if (hmac_id == hmacs[i]) { | 
|  | 568 | found = 1; | 
|  | 569 | break; | 
|  | 570 | } | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 | return found; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | /* See if the HMAC_ID is one that we claim as supported */ | 
|  | 577 | int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, | 
| Al Viro | d06f608 | 2007-10-29 05:03:23 +0000 | [diff] [blame] | 578 | __be16 hmac_id) | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 579 | { | 
|  | 580 | struct sctp_hmac_algo_param *hmacs; | 
|  | 581 | __u16 n_elt; | 
|  | 582 |  | 
|  | 583 | if (!asoc) | 
|  | 584 | return 0; | 
|  | 585 |  | 
|  | 586 | hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; | 
|  | 587 | n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; | 
|  | 588 |  | 
|  | 589 | return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); | 
|  | 590 | } | 
|  | 591 |  | 
|  | 592 |  | 
|  | 593 | /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH: | 
|  | 594 | * Section 6.1: | 
|  | 595 | *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed | 
|  | 596 | *   algorithm it supports. | 
|  | 597 | */ | 
|  | 598 | void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, | 
|  | 599 | struct sctp_hmac_algo_param *hmacs) | 
|  | 600 | { | 
|  | 601 | struct sctp_endpoint *ep; | 
|  | 602 | __u16   id; | 
|  | 603 | int	i; | 
|  | 604 | int	n_params; | 
|  | 605 |  | 
|  | 606 | /* if the default id is already set, use it */ | 
|  | 607 | if (asoc->default_hmac_id) | 
|  | 608 | return; | 
|  | 609 |  | 
|  | 610 | n_params = (ntohs(hmacs->param_hdr.length) | 
|  | 611 | - sizeof(sctp_paramhdr_t)) >> 1; | 
|  | 612 | ep = asoc->ep; | 
|  | 613 | for (i = 0; i < n_params; i++) { | 
|  | 614 | id = ntohs(hmacs->hmac_ids[i]); | 
|  | 615 |  | 
|  | 616 | /* Check the id is in the supported range */ | 
|  | 617 | if (id > SCTP_AUTH_HMAC_ID_MAX) | 
|  | 618 | continue; | 
|  | 619 |  | 
|  | 620 | /* If this TFM has been allocated, use this id */ | 
|  | 621 | if (ep->auth_hmacs[id]) { | 
|  | 622 | asoc->default_hmac_id = id; | 
|  | 623 | break; | 
|  | 624 | } | 
|  | 625 | } | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 |  | 
|  | 629 | /* Check to see if the given chunk is supposed to be authenticated */ | 
|  | 630 | static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) | 
|  | 631 | { | 
|  | 632 | unsigned short len; | 
|  | 633 | int found = 0; | 
|  | 634 | int i; | 
|  | 635 |  | 
| Vlad Yasevich | 555d3d5 | 2007-11-29 08:56:16 -0500 | [diff] [blame] | 636 | if (!param || param->param_hdr.length == 0) | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 637 | return 0; | 
|  | 638 |  | 
|  | 639 | len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); | 
|  | 640 |  | 
|  | 641 | /* SCTP-AUTH, Section 3.2 | 
|  | 642 | *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH | 
|  | 643 | *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if | 
|  | 644 | *    a CHUNKS parameter is received then the types for INIT, INIT-ACK, | 
|  | 645 | *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. | 
|  | 646 | */ | 
|  | 647 | for (i = 0; !found && i < len; i++) { | 
|  | 648 | switch (param->chunks[i]) { | 
|  | 649 | case SCTP_CID_INIT: | 
|  | 650 | case SCTP_CID_INIT_ACK: | 
|  | 651 | case SCTP_CID_SHUTDOWN_COMPLETE: | 
|  | 652 | case SCTP_CID_AUTH: | 
|  | 653 | break; | 
|  | 654 |  | 
|  | 655 | default: | 
|  | 656 | if (param->chunks[i] == chunk) | 
|  | 657 | found = 1; | 
|  | 658 | break; | 
|  | 659 | } | 
|  | 660 | } | 
|  | 661 |  | 
|  | 662 | return found; | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | /* Check if peer requested that this chunk is authenticated */ | 
|  | 666 | int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) | 
|  | 667 | { | 
|  | 668 | if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable) | 
|  | 669 | return 0; | 
|  | 670 |  | 
|  | 671 | return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); | 
|  | 672 | } | 
|  | 673 |  | 
|  | 674 | /* Check if we requested that peer authenticate this chunk. */ | 
|  | 675 | int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) | 
|  | 676 | { | 
|  | 677 | if (!sctp_auth_enable || !asoc) | 
|  | 678 | return 0; | 
|  | 679 |  | 
|  | 680 | return __sctp_auth_cid(chunk, | 
|  | 681 | (struct sctp_chunks_param *)asoc->c.auth_chunks); | 
|  | 682 | } | 
|  | 683 |  | 
|  | 684 | /* SCTP-AUTH: Section 6.2: | 
|  | 685 | *    The sender MUST calculate the MAC as described in RFC2104 [2] using | 
|  | 686 | *    the hash function H as described by the MAC Identifier and the shared | 
|  | 687 | *    association key K based on the endpoint pair shared key described by | 
|  | 688 | *    the shared key identifier.  The 'data' used for the computation of | 
|  | 689 | *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to | 
|  | 690 | *    zero (as shown in Figure 6) followed by all chunks that are placed | 
|  | 691 | *    after the AUTH chunk in the SCTP packet. | 
|  | 692 | */ | 
|  | 693 | void sctp_auth_calculate_hmac(const struct sctp_association *asoc, | 
|  | 694 | struct sk_buff *skb, | 
|  | 695 | struct sctp_auth_chunk *auth, | 
|  | 696 | gfp_t gfp) | 
|  | 697 | { | 
|  | 698 | struct scatterlist sg; | 
|  | 699 | struct hash_desc desc; | 
|  | 700 | struct sctp_auth_bytes *asoc_key; | 
|  | 701 | __u16 key_id, hmac_id; | 
|  | 702 | __u8 *digest; | 
|  | 703 | unsigned char *end; | 
|  | 704 | int free_key = 0; | 
|  | 705 |  | 
|  | 706 | /* Extract the info we need: | 
|  | 707 | * - hmac id | 
|  | 708 | * - key id | 
|  | 709 | */ | 
|  | 710 | key_id = ntohs(auth->auth_hdr.shkey_id); | 
|  | 711 | hmac_id = ntohs(auth->auth_hdr.hmac_id); | 
|  | 712 |  | 
|  | 713 | if (key_id == asoc->active_key_id) | 
|  | 714 | asoc_key = asoc->asoc_shared_key; | 
|  | 715 | else { | 
|  | 716 | struct sctp_shared_key *ep_key; | 
|  | 717 |  | 
|  | 718 | ep_key = sctp_auth_get_shkey(asoc, key_id); | 
|  | 719 | if (!ep_key) | 
|  | 720 | return; | 
|  | 721 |  | 
|  | 722 | asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); | 
|  | 723 | if (!asoc_key) | 
|  | 724 | return; | 
|  | 725 |  | 
|  | 726 | free_key = 1; | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | /* set up scatter list */ | 
|  | 730 | end = skb_tail_pointer(skb); | 
| Herbert Xu | 68e3f5d | 2007-10-27 00:52:07 -0700 | [diff] [blame] | 731 | sg_init_one(&sg, auth, end - (unsigned char *)auth); | 
| Vlad Yasevich | 1f48564 | 2007-10-09 01:15:59 -0700 | [diff] [blame] | 732 |  | 
|  | 733 | desc.tfm = asoc->ep->auth_hmacs[hmac_id]; | 
|  | 734 | desc.flags = 0; | 
|  | 735 |  | 
|  | 736 | digest = auth->auth_hdr.hmac; | 
|  | 737 | if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) | 
|  | 738 | goto free; | 
|  | 739 |  | 
|  | 740 | crypto_hash_digest(&desc, &sg, sg.length, digest); | 
|  | 741 |  | 
|  | 742 | free: | 
|  | 743 | if (free_key) | 
|  | 744 | sctp_auth_key_put(asoc_key); | 
|  | 745 | } | 
| Vlad Yasevich | 65b07e5 | 2007-09-16 19:34:00 -0700 | [diff] [blame] | 746 |  | 
|  | 747 | /* API Helpers */ | 
|  | 748 |  | 
|  | 749 | /* Add a chunk to the endpoint authenticated chunk list */ | 
|  | 750 | int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) | 
|  | 751 | { | 
|  | 752 | struct sctp_chunks_param *p = ep->auth_chunk_list; | 
|  | 753 | __u16 nchunks; | 
|  | 754 | __u16 param_len; | 
|  | 755 |  | 
|  | 756 | /* If this chunk is already specified, we are done */ | 
|  | 757 | if (__sctp_auth_cid(chunk_id, p)) | 
|  | 758 | return 0; | 
|  | 759 |  | 
|  | 760 | /* Check if we can add this chunk to the array */ | 
|  | 761 | param_len = ntohs(p->param_hdr.length); | 
|  | 762 | nchunks = param_len - sizeof(sctp_paramhdr_t); | 
|  | 763 | if (nchunks == SCTP_NUM_CHUNK_TYPES) | 
|  | 764 | return -EINVAL; | 
|  | 765 |  | 
|  | 766 | p->chunks[nchunks] = chunk_id; | 
|  | 767 | p->param_hdr.length = htons(param_len + 1); | 
|  | 768 | return 0; | 
|  | 769 | } | 
|  | 770 |  | 
|  | 771 | /* Add hmac identifires to the endpoint list of supported hmac ids */ | 
|  | 772 | int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, | 
|  | 773 | struct sctp_hmacalgo *hmacs) | 
|  | 774 | { | 
|  | 775 | int has_sha1 = 0; | 
|  | 776 | __u16 id; | 
|  | 777 | int i; | 
|  | 778 |  | 
|  | 779 | /* Scan the list looking for unsupported id.  Also make sure that | 
|  | 780 | * SHA1 is specified. | 
|  | 781 | */ | 
|  | 782 | for (i = 0; i < hmacs->shmac_num_idents; i++) { | 
|  | 783 | id = hmacs->shmac_idents[i]; | 
|  | 784 |  | 
|  | 785 | if (SCTP_AUTH_HMAC_ID_SHA1 == id) | 
|  | 786 | has_sha1 = 1; | 
|  | 787 |  | 
|  | 788 | if (!sctp_hmac_list[id].hmac_name) | 
|  | 789 | return -EOPNOTSUPP; | 
|  | 790 | } | 
|  | 791 |  | 
|  | 792 | if (!has_sha1) | 
|  | 793 | return -EINVAL; | 
|  | 794 |  | 
|  | 795 | memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], | 
|  | 796 | hmacs->shmac_num_idents * sizeof(__u16)); | 
|  | 797 | ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + | 
|  | 798 | hmacs->shmac_num_idents * sizeof(__u16)); | 
|  | 799 | return 0; | 
|  | 800 | } | 
|  | 801 |  | 
|  | 802 | /* Set a new shared key on either endpoint or association.  If the | 
|  | 803 | * the key with a same ID already exists, replace the key (remove the | 
|  | 804 | * old key and add a new one). | 
|  | 805 | */ | 
|  | 806 | int sctp_auth_set_key(struct sctp_endpoint *ep, | 
|  | 807 | struct sctp_association *asoc, | 
|  | 808 | struct sctp_authkey *auth_key) | 
|  | 809 | { | 
|  | 810 | struct sctp_shared_key *cur_key = NULL; | 
|  | 811 | struct sctp_auth_bytes *key; | 
|  | 812 | struct list_head *sh_keys; | 
|  | 813 | int replace = 0; | 
|  | 814 |  | 
|  | 815 | /* Try to find the given key id to see if | 
|  | 816 | * we are doing a replace, or adding a new key | 
|  | 817 | */ | 
|  | 818 | if (asoc) | 
|  | 819 | sh_keys = &asoc->endpoint_shared_keys; | 
|  | 820 | else | 
|  | 821 | sh_keys = &ep->endpoint_shared_keys; | 
|  | 822 |  | 
|  | 823 | key_for_each(cur_key, sh_keys) { | 
|  | 824 | if (cur_key->key_id == auth_key->sca_keynumber) { | 
|  | 825 | replace = 1; | 
|  | 826 | break; | 
|  | 827 | } | 
|  | 828 | } | 
|  | 829 |  | 
|  | 830 | /* If we are not replacing a key id, we need to allocate | 
|  | 831 | * a shared key. | 
|  | 832 | */ | 
|  | 833 | if (!replace) { | 
|  | 834 | cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, | 
|  | 835 | GFP_KERNEL); | 
|  | 836 | if (!cur_key) | 
|  | 837 | return -ENOMEM; | 
|  | 838 | } | 
|  | 839 |  | 
|  | 840 | /* Create a new key data based on the info passed in */ | 
|  | 841 | key = sctp_auth_create_key(auth_key->sca_keylen, GFP_KERNEL); | 
|  | 842 | if (!key) | 
|  | 843 | goto nomem; | 
|  | 844 |  | 
|  | 845 | memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylen); | 
|  | 846 |  | 
|  | 847 | /* If we are replacing, remove the old keys data from the | 
|  | 848 | * key id.  If we are adding new key id, add it to the | 
|  | 849 | * list. | 
|  | 850 | */ | 
|  | 851 | if (replace) | 
|  | 852 | sctp_auth_key_put(cur_key->key); | 
|  | 853 | else | 
|  | 854 | list_add(&cur_key->key_list, sh_keys); | 
|  | 855 |  | 
|  | 856 | cur_key->key = key; | 
|  | 857 | sctp_auth_key_hold(key); | 
|  | 858 |  | 
|  | 859 | return 0; | 
|  | 860 | nomem: | 
|  | 861 | if (!replace) | 
|  | 862 | sctp_auth_shkey_free(cur_key); | 
|  | 863 |  | 
|  | 864 | return -ENOMEM; | 
|  | 865 | } | 
|  | 866 |  | 
|  | 867 | int sctp_auth_set_active_key(struct sctp_endpoint *ep, | 
|  | 868 | struct sctp_association *asoc, | 
|  | 869 | __u16  key_id) | 
|  | 870 | { | 
|  | 871 | struct sctp_shared_key *key; | 
|  | 872 | struct list_head *sh_keys; | 
|  | 873 | int found = 0; | 
|  | 874 |  | 
|  | 875 | /* The key identifier MUST correst to an existing key */ | 
|  | 876 | if (asoc) | 
|  | 877 | sh_keys = &asoc->endpoint_shared_keys; | 
|  | 878 | else | 
|  | 879 | sh_keys = &ep->endpoint_shared_keys; | 
|  | 880 |  | 
|  | 881 | key_for_each(key, sh_keys) { | 
|  | 882 | if (key->key_id == key_id) { | 
|  | 883 | found = 1; | 
|  | 884 | break; | 
|  | 885 | } | 
|  | 886 | } | 
|  | 887 |  | 
|  | 888 | if (!found) | 
|  | 889 | return -EINVAL; | 
|  | 890 |  | 
|  | 891 | if (asoc) { | 
|  | 892 | asoc->active_key_id = key_id; | 
|  | 893 | sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); | 
|  | 894 | } else | 
|  | 895 | ep->active_key_id = key_id; | 
|  | 896 |  | 
|  | 897 | return 0; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | int sctp_auth_del_key_id(struct sctp_endpoint *ep, | 
|  | 901 | struct sctp_association *asoc, | 
|  | 902 | __u16  key_id) | 
|  | 903 | { | 
|  | 904 | struct sctp_shared_key *key; | 
|  | 905 | struct list_head *sh_keys; | 
|  | 906 | int found = 0; | 
|  | 907 |  | 
|  | 908 | /* The key identifier MUST NOT be the current active key | 
|  | 909 | * The key identifier MUST correst to an existing key | 
|  | 910 | */ | 
|  | 911 | if (asoc) { | 
|  | 912 | if (asoc->active_key_id == key_id) | 
|  | 913 | return -EINVAL; | 
|  | 914 |  | 
|  | 915 | sh_keys = &asoc->endpoint_shared_keys; | 
|  | 916 | } else { | 
|  | 917 | if (ep->active_key_id == key_id) | 
|  | 918 | return -EINVAL; | 
|  | 919 |  | 
|  | 920 | sh_keys = &ep->endpoint_shared_keys; | 
|  | 921 | } | 
|  | 922 |  | 
|  | 923 | key_for_each(key, sh_keys) { | 
|  | 924 | if (key->key_id == key_id) { | 
|  | 925 | found = 1; | 
|  | 926 | break; | 
|  | 927 | } | 
|  | 928 | } | 
|  | 929 |  | 
|  | 930 | if (!found) | 
|  | 931 | return -EINVAL; | 
|  | 932 |  | 
|  | 933 | /* Delete the shared key */ | 
|  | 934 | list_del_init(&key->key_list); | 
|  | 935 | sctp_auth_shkey_free(key); | 
|  | 936 |  | 
|  | 937 | return 0; | 
|  | 938 | } |