| Adrian Bunk | 88278ca | 2008-05-19 16:53:02 -0700 | [diff] [blame] | 1 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2 |  * umul.S:      This routine was taken from glibc-1.09 and is covered | 
 | 3 |  *              by the GNU Library General Public License Version 2. | 
 | 4 |  */ | 
 | 5 |  | 
 | 6 |  | 
 | 7 | /* | 
 | 8 |  * Unsigned multiply.  Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the | 
 | 9 |  * upper 32 bits of the 64-bit product). | 
 | 10 |  * | 
 | 11 |  * This code optimizes short (less than 13-bit) multiplies.  Short | 
 | 12 |  * multiplies require 25 instruction cycles, and long ones require | 
 | 13 |  * 45 instruction cycles. | 
 | 14 |  * | 
 | 15 |  * On return, overflow has occurred (%o1 is not zero) if and only if | 
 | 16 |  * the Z condition code is clear, allowing, e.g., the following: | 
 | 17 |  * | 
 | 18 |  *	call	.umul | 
 | 19 |  *	nop | 
 | 20 |  *	bnz	overflow	(or tnz) | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | 	.globl .umul | 
| Al Viro | 7caaeab | 2005-09-11 20:14:07 -0700 | [diff] [blame] | 24 | 	.globl _Umul | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 25 | .umul: | 
| Al Viro | 7caaeab | 2005-09-11 20:14:07 -0700 | [diff] [blame] | 26 | _Umul:	/* needed for export */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 27 | 	or	%o0, %o1, %o4 | 
 | 28 | 	mov	%o0, %y		! multiplier -> Y | 
 | 29 |  | 
 | 30 | 	andncc	%o4, 0xfff, %g0	! test bits 12..31 of *both* args | 
 | 31 | 	be	Lmul_shortway	! if zero, can do it the short way | 
 | 32 | 	 andcc	%g0, %g0, %o4	! zero the partial product and clear N and V | 
 | 33 |  | 
 | 34 | 	/* | 
 | 35 | 	 * Long multiply.  32 steps, followed by a final shift step. | 
 | 36 | 	 */ | 
 | 37 | 	mulscc	%o4, %o1, %o4	! 1 | 
 | 38 | 	mulscc	%o4, %o1, %o4	! 2 | 
 | 39 | 	mulscc	%o4, %o1, %o4	! 3 | 
 | 40 | 	mulscc	%o4, %o1, %o4	! 4 | 
 | 41 | 	mulscc	%o4, %o1, %o4	! 5 | 
 | 42 | 	mulscc	%o4, %o1, %o4	! 6 | 
 | 43 | 	mulscc	%o4, %o1, %o4	! 7 | 
 | 44 | 	mulscc	%o4, %o1, %o4	! 8 | 
 | 45 | 	mulscc	%o4, %o1, %o4	! 9 | 
 | 46 | 	mulscc	%o4, %o1, %o4	! 10 | 
 | 47 | 	mulscc	%o4, %o1, %o4	! 11 | 
 | 48 | 	mulscc	%o4, %o1, %o4	! 12 | 
 | 49 | 	mulscc	%o4, %o1, %o4	! 13 | 
 | 50 | 	mulscc	%o4, %o1, %o4	! 14 | 
 | 51 | 	mulscc	%o4, %o1, %o4	! 15 | 
 | 52 | 	mulscc	%o4, %o1, %o4	! 16 | 
 | 53 | 	mulscc	%o4, %o1, %o4	! 17 | 
 | 54 | 	mulscc	%o4, %o1, %o4	! 18 | 
 | 55 | 	mulscc	%o4, %o1, %o4	! 19 | 
 | 56 | 	mulscc	%o4, %o1, %o4	! 20 | 
 | 57 | 	mulscc	%o4, %o1, %o4	! 21 | 
 | 58 | 	mulscc	%o4, %o1, %o4	! 22 | 
 | 59 | 	mulscc	%o4, %o1, %o4	! 23 | 
 | 60 | 	mulscc	%o4, %o1, %o4	! 24 | 
 | 61 | 	mulscc	%o4, %o1, %o4	! 25 | 
 | 62 | 	mulscc	%o4, %o1, %o4	! 26 | 
 | 63 | 	mulscc	%o4, %o1, %o4	! 27 | 
 | 64 | 	mulscc	%o4, %o1, %o4	! 28 | 
 | 65 | 	mulscc	%o4, %o1, %o4	! 29 | 
 | 66 | 	mulscc	%o4, %o1, %o4	! 30 | 
 | 67 | 	mulscc	%o4, %o1, %o4	! 31 | 
 | 68 | 	mulscc	%o4, %o1, %o4	! 32 | 
 | 69 | 	mulscc	%o4, %g0, %o4	! final shift | 
 | 70 |  | 
 | 71 |  | 
 | 72 | 	/* | 
 | 73 | 	 * Normally, with the shift-and-add approach, if both numbers are | 
 | 74 | 	 * positive you get the correct result.  With 32-bit two's-complement | 
 | 75 | 	 * numbers, -x is represented as | 
 | 76 | 	 * | 
 | 77 | 	 *		  x		    32 | 
 | 78 | 	 *	( 2  -  ------ ) mod 2  *  2 | 
 | 79 | 	 *		   32 | 
 | 80 | 	 *		  2 | 
 | 81 | 	 * | 
 | 82 | 	 * (the `mod 2' subtracts 1 from 1.bbbb).  To avoid lots of 2^32s, | 
 | 83 | 	 * we can treat this as if the radix point were just to the left | 
 | 84 | 	 * of the sign bit (multiply by 2^32), and get | 
 | 85 | 	 * | 
 | 86 | 	 *	-x  =  (2 - x) mod 2 | 
 | 87 | 	 * | 
 | 88 | 	 * Then, ignoring the `mod 2's for convenience: | 
 | 89 | 	 * | 
 | 90 | 	 *   x *  y	= xy | 
 | 91 | 	 *  -x *  y	= 2y - xy | 
 | 92 | 	 *   x * -y	= 2x - xy | 
 | 93 | 	 *  -x * -y	= 4 - 2x - 2y + xy | 
 | 94 | 	 * | 
 | 95 | 	 * For signed multiplies, we subtract (x << 32) from the partial | 
 | 96 | 	 * product to fix this problem for negative multipliers (see mul.s). | 
 | 97 | 	 * Because of the way the shift into the partial product is calculated | 
 | 98 | 	 * (N xor V), this term is automatically removed for the multiplicand, | 
 | 99 | 	 * so we don't have to adjust. | 
 | 100 | 	 * | 
 | 101 | 	 * But for unsigned multiplies, the high order bit wasn't a sign bit, | 
 | 102 | 	 * and the correction is wrong.  So for unsigned multiplies where the | 
 | 103 | 	 * high order bit is one, we end up with xy - (y << 32).  To fix it | 
 | 104 | 	 * we add y << 32. | 
 | 105 | 	 */ | 
 | 106 | #if 0 | 
 | 107 | 	tst	%o1 | 
 | 108 | 	bl,a	1f		! if %o1 < 0 (high order bit = 1), | 
 | 109 | 	 add	%o4, %o0, %o4	! %o4 += %o0 (add y to upper half) | 
 | 110 |  | 
 | 111 | 1: | 
 | 112 | 	rd	%y, %o0		! get lower half of product | 
 | 113 | 	retl | 
 | 114 | 	 addcc	%o4, %g0, %o1	! put upper half in place and set Z for %o1==0 | 
 | 115 | #else | 
 | 116 | 	/* Faster code from tege@sics.se.  */ | 
 | 117 | 	sra	%o1, 31, %o2	! make mask from sign bit | 
 | 118 | 	and	%o0, %o2, %o2	! %o2 = 0 or %o0, depending on sign of %o1 | 
 | 119 | 	rd	%y, %o0		! get lower half of product | 
 | 120 | 	retl | 
 | 121 | 	 addcc	%o4, %o2, %o1	! add compensation and put upper half in place | 
 | 122 | #endif | 
 | 123 |  | 
 | 124 | Lmul_shortway: | 
 | 125 | 	/* | 
 | 126 | 	 * Short multiply.  12 steps, followed by a final shift step. | 
 | 127 | 	 * The resulting bits are off by 12 and (32-12) = 20 bit positions, | 
 | 128 | 	 * but there is no problem with %o0 being negative (unlike above), | 
 | 129 | 	 * and overflow is impossible (the answer is at most 24 bits long). | 
 | 130 | 	 */ | 
 | 131 | 	mulscc	%o4, %o1, %o4	! 1 | 
 | 132 | 	mulscc	%o4, %o1, %o4	! 2 | 
 | 133 | 	mulscc	%o4, %o1, %o4	! 3 | 
 | 134 | 	mulscc	%o4, %o1, %o4	! 4 | 
 | 135 | 	mulscc	%o4, %o1, %o4	! 5 | 
 | 136 | 	mulscc	%o4, %o1, %o4	! 6 | 
 | 137 | 	mulscc	%o4, %o1, %o4	! 7 | 
 | 138 | 	mulscc	%o4, %o1, %o4	! 8 | 
 | 139 | 	mulscc	%o4, %o1, %o4	! 9 | 
 | 140 | 	mulscc	%o4, %o1, %o4	! 10 | 
 | 141 | 	mulscc	%o4, %o1, %o4	! 11 | 
 | 142 | 	mulscc	%o4, %o1, %o4	! 12 | 
 | 143 | 	mulscc	%o4, %g0, %o4	! final shift | 
 | 144 |  | 
 | 145 | 	/* | 
 | 146 | 	 * %o4 has 20 of the bits that should be in the result; %y has | 
 | 147 | 	 * the bottom 12 (as %y's top 12).  That is: | 
 | 148 | 	 * | 
 | 149 | 	 *	  %o4		    %y | 
 | 150 | 	 * +----------------+----------------+ | 
 | 151 | 	 * | -12- |   -20-  | -12- |   -20-  | | 
 | 152 | 	 * +------(---------+------)---------+ | 
 | 153 | 	 *	   -----result----- | 
 | 154 | 	 * | 
 | 155 | 	 * The 12 bits of %o4 left of the `result' area are all zero; | 
 | 156 | 	 * in fact, all top 20 bits of %o4 are zero. | 
 | 157 | 	 */ | 
 | 158 |  | 
 | 159 | 	rd	%y, %o5 | 
 | 160 | 	sll	%o4, 12, %o0	! shift middle bits left 12 | 
 | 161 | 	srl	%o5, 20, %o5	! shift low bits right 20 | 
 | 162 | 	or	%o5, %o0, %o0 | 
 | 163 | 	retl | 
 | 164 | 	 addcc	%g0, %g0, %o1	! %o1 = zero, and set Z | 
 | 165 |  | 
 | 166 | 	.globl	.umul_patch | 
 | 167 | .umul_patch: | 
 | 168 | 	umul	%o0, %o1, %o0 | 
 | 169 | 	retl | 
 | 170 | 	 rd	%y, %o1 | 
 | 171 | 	nop |