| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 |  | 
|  | 3 | fp_arith.c: floating-point math routines for the Linux-m68k | 
|  | 4 | floating point emulator. | 
|  | 5 |  | 
|  | 6 | Copyright (c) 1998-1999 David Huggins-Daines. | 
|  | 7 |  | 
|  | 8 | Somewhat based on the AlphaLinux floating point emulator, by David | 
|  | 9 | Mosberger-Tang. | 
|  | 10 |  | 
|  | 11 | You may copy, modify, and redistribute this file under the terms of | 
|  | 12 | the GNU General Public License, version 2, or any later version, at | 
|  | 13 | your convenience. | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | #include "fp_emu.h" | 
|  | 17 | #include "multi_arith.h" | 
|  | 18 | #include "fp_arith.h" | 
|  | 19 |  | 
|  | 20 | const struct fp_ext fp_QNaN = | 
|  | 21 | { | 
|  | 22 | .exp = 0x7fff, | 
|  | 23 | .mant = { .m64 = ~0 } | 
|  | 24 | }; | 
|  | 25 |  | 
|  | 26 | const struct fp_ext fp_Inf = | 
|  | 27 | { | 
|  | 28 | .exp = 0x7fff, | 
|  | 29 | }; | 
|  | 30 |  | 
|  | 31 | /* let's start with the easy ones */ | 
|  | 32 |  | 
|  | 33 | struct fp_ext * | 
|  | 34 | fp_fabs(struct fp_ext *dest, struct fp_ext *src) | 
|  | 35 | { | 
|  | 36 | dprint(PINSTR, "fabs\n"); | 
|  | 37 |  | 
|  | 38 | fp_monadic_check(dest, src); | 
|  | 39 |  | 
|  | 40 | dest->sign = 0; | 
|  | 41 |  | 
|  | 42 | return dest; | 
|  | 43 | } | 
|  | 44 |  | 
|  | 45 | struct fp_ext * | 
|  | 46 | fp_fneg(struct fp_ext *dest, struct fp_ext *src) | 
|  | 47 | { | 
|  | 48 | dprint(PINSTR, "fneg\n"); | 
|  | 49 |  | 
|  | 50 | fp_monadic_check(dest, src); | 
|  | 51 |  | 
|  | 52 | dest->sign = !dest->sign; | 
|  | 53 |  | 
|  | 54 | return dest; | 
|  | 55 | } | 
|  | 56 |  | 
|  | 57 | /* Now, the slightly harder ones */ | 
|  | 58 |  | 
|  | 59 | /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB, | 
|  | 60 | FDSUB, and FCMP instructions. */ | 
|  | 61 |  | 
|  | 62 | struct fp_ext * | 
|  | 63 | fp_fadd(struct fp_ext *dest, struct fp_ext *src) | 
|  | 64 | { | 
|  | 65 | int diff; | 
|  | 66 |  | 
|  | 67 | dprint(PINSTR, "fadd\n"); | 
|  | 68 |  | 
|  | 69 | fp_dyadic_check(dest, src); | 
|  | 70 |  | 
|  | 71 | if (IS_INF(dest)) { | 
|  | 72 | /* infinity - infinity == NaN */ | 
|  | 73 | if (IS_INF(src) && (src->sign != dest->sign)) | 
|  | 74 | fp_set_nan(dest); | 
|  | 75 | return dest; | 
|  | 76 | } | 
|  | 77 | if (IS_INF(src)) { | 
|  | 78 | fp_copy_ext(dest, src); | 
|  | 79 | return dest; | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | if (IS_ZERO(dest)) { | 
|  | 83 | if (IS_ZERO(src)) { | 
|  | 84 | if (src->sign != dest->sign) { | 
|  | 85 | if (FPDATA->rnd == FPCR_ROUND_RM) | 
|  | 86 | dest->sign = 1; | 
|  | 87 | else | 
|  | 88 | dest->sign = 0; | 
|  | 89 | } | 
|  | 90 | } else | 
|  | 91 | fp_copy_ext(dest, src); | 
|  | 92 | return dest; | 
|  | 93 | } | 
|  | 94 |  | 
|  | 95 | dest->lowmant = src->lowmant = 0; | 
|  | 96 |  | 
|  | 97 | if ((diff = dest->exp - src->exp) > 0) | 
|  | 98 | fp_denormalize(src, diff); | 
|  | 99 | else if ((diff = -diff) > 0) | 
|  | 100 | fp_denormalize(dest, diff); | 
|  | 101 |  | 
|  | 102 | if (dest->sign == src->sign) { | 
|  | 103 | if (fp_addmant(dest, src)) | 
|  | 104 | if (!fp_addcarry(dest)) | 
|  | 105 | return dest; | 
|  | 106 | } else { | 
|  | 107 | if (dest->mant.m64 < src->mant.m64) { | 
|  | 108 | fp_submant(dest, src, dest); | 
|  | 109 | dest->sign = !dest->sign; | 
|  | 110 | } else | 
|  | 111 | fp_submant(dest, dest, src); | 
|  | 112 | } | 
|  | 113 |  | 
|  | 114 | return dest; | 
|  | 115 | } | 
|  | 116 |  | 
|  | 117 | /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB | 
|  | 118 | instructions. | 
|  | 119 |  | 
|  | 120 | Remember that the arguments are in assembler-syntax order! */ | 
|  | 121 |  | 
|  | 122 | struct fp_ext * | 
|  | 123 | fp_fsub(struct fp_ext *dest, struct fp_ext *src) | 
|  | 124 | { | 
|  | 125 | dprint(PINSTR, "fsub "); | 
|  | 126 |  | 
|  | 127 | src->sign = !src->sign; | 
|  | 128 | return fp_fadd(dest, src); | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 |  | 
|  | 132 | struct fp_ext * | 
|  | 133 | fp_fcmp(struct fp_ext *dest, struct fp_ext *src) | 
|  | 134 | { | 
|  | 135 | dprint(PINSTR, "fcmp "); | 
|  | 136 |  | 
|  | 137 | FPDATA->temp[1] = *dest; | 
|  | 138 | src->sign = !src->sign; | 
|  | 139 | return fp_fadd(&FPDATA->temp[1], src); | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | struct fp_ext * | 
|  | 143 | fp_ftst(struct fp_ext *dest, struct fp_ext *src) | 
|  | 144 | { | 
|  | 145 | dprint(PINSTR, "ftst\n"); | 
|  | 146 |  | 
|  | 147 | (void)dest; | 
|  | 148 |  | 
|  | 149 | return src; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | struct fp_ext * | 
|  | 153 | fp_fmul(struct fp_ext *dest, struct fp_ext *src) | 
|  | 154 | { | 
|  | 155 | union fp_mant128 temp; | 
|  | 156 | int exp; | 
|  | 157 |  | 
|  | 158 | dprint(PINSTR, "fmul\n"); | 
|  | 159 |  | 
|  | 160 | fp_dyadic_check(dest, src); | 
|  | 161 |  | 
|  | 162 | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | 163 | dest->sign = src->sign ^ dest->sign; | 
|  | 164 |  | 
|  | 165 | /* Handle infinities */ | 
|  | 166 | if (IS_INF(dest)) { | 
|  | 167 | if (IS_ZERO(src)) | 
|  | 168 | fp_set_nan(dest); | 
|  | 169 | return dest; | 
|  | 170 | } | 
|  | 171 | if (IS_INF(src)) { | 
|  | 172 | if (IS_ZERO(dest)) | 
|  | 173 | fp_set_nan(dest); | 
|  | 174 | else | 
|  | 175 | fp_copy_ext(dest, src); | 
|  | 176 | return dest; | 
|  | 177 | } | 
|  | 178 |  | 
|  | 179 | /* Of course, as we all know, zero * anything = zero.  You may | 
|  | 180 | not have known that it might be a positive or negative | 
|  | 181 | zero... */ | 
|  | 182 | if (IS_ZERO(dest) || IS_ZERO(src)) { | 
|  | 183 | dest->exp = 0; | 
|  | 184 | dest->mant.m64 = 0; | 
|  | 185 | dest->lowmant = 0; | 
|  | 186 |  | 
|  | 187 | return dest; | 
|  | 188 | } | 
|  | 189 |  | 
|  | 190 | exp = dest->exp + src->exp - 0x3ffe; | 
|  | 191 |  | 
|  | 192 | /* shift up the mantissa for denormalized numbers, | 
|  | 193 | so that the highest bit is set, this makes the | 
|  | 194 | shift of the result below easier */ | 
|  | 195 | if ((long)dest->mant.m32[0] >= 0) | 
|  | 196 | exp -= fp_overnormalize(dest); | 
|  | 197 | if ((long)src->mant.m32[0] >= 0) | 
|  | 198 | exp -= fp_overnormalize(src); | 
|  | 199 |  | 
|  | 200 | /* now, do a 64-bit multiply with expansion */ | 
|  | 201 | fp_multiplymant(&temp, dest, src); | 
|  | 202 |  | 
|  | 203 | /* normalize it back to 64 bits and stuff it back into the | 
|  | 204 | destination struct */ | 
|  | 205 | if ((long)temp.m32[0] > 0) { | 
|  | 206 | exp--; | 
|  | 207 | fp_putmant128(dest, &temp, 1); | 
|  | 208 | } else | 
|  | 209 | fp_putmant128(dest, &temp, 0); | 
|  | 210 |  | 
|  | 211 | if (exp >= 0x7fff) { | 
|  | 212 | fp_set_ovrflw(dest); | 
|  | 213 | return dest; | 
|  | 214 | } | 
|  | 215 | dest->exp = exp; | 
|  | 216 | if (exp < 0) { | 
|  | 217 | fp_set_sr(FPSR_EXC_UNFL); | 
|  | 218 | fp_denormalize(dest, -exp); | 
|  | 219 | } | 
|  | 220 |  | 
|  | 221 | return dest; | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and | 
|  | 225 | FSGLDIV instructions. | 
|  | 226 |  | 
|  | 227 | Note that the order of the operands is counter-intuitive: instead | 
|  | 228 | of src / dest, the result is actually dest / src. */ | 
|  | 229 |  | 
|  | 230 | struct fp_ext * | 
|  | 231 | fp_fdiv(struct fp_ext *dest, struct fp_ext *src) | 
|  | 232 | { | 
|  | 233 | union fp_mant128 temp; | 
|  | 234 | int exp; | 
|  | 235 |  | 
|  | 236 | dprint(PINSTR, "fdiv\n"); | 
|  | 237 |  | 
|  | 238 | fp_dyadic_check(dest, src); | 
|  | 239 |  | 
|  | 240 | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | 241 | dest->sign = src->sign ^ dest->sign; | 
|  | 242 |  | 
|  | 243 | /* Handle infinities */ | 
|  | 244 | if (IS_INF(dest)) { | 
|  | 245 | /* infinity / infinity = NaN (quiet, as always) */ | 
|  | 246 | if (IS_INF(src)) | 
|  | 247 | fp_set_nan(dest); | 
|  | 248 | /* infinity / anything else = infinity (with approprate sign) */ | 
|  | 249 | return dest; | 
|  | 250 | } | 
|  | 251 | if (IS_INF(src)) { | 
|  | 252 | /* anything / infinity = zero (with appropriate sign) */ | 
|  | 253 | dest->exp = 0; | 
|  | 254 | dest->mant.m64 = 0; | 
|  | 255 | dest->lowmant = 0; | 
|  | 256 |  | 
|  | 257 | return dest; | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | /* zeroes */ | 
|  | 261 | if (IS_ZERO(dest)) { | 
|  | 262 | /* zero / zero = NaN */ | 
|  | 263 | if (IS_ZERO(src)) | 
|  | 264 | fp_set_nan(dest); | 
|  | 265 | /* zero / anything else = zero */ | 
|  | 266 | return dest; | 
|  | 267 | } | 
|  | 268 | if (IS_ZERO(src)) { | 
|  | 269 | /* anything / zero = infinity (with appropriate sign) */ | 
|  | 270 | fp_set_sr(FPSR_EXC_DZ); | 
|  | 271 | dest->exp = 0x7fff; | 
|  | 272 | dest->mant.m64 = 0; | 
|  | 273 |  | 
|  | 274 | return dest; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | exp = dest->exp - src->exp + 0x3fff; | 
|  | 278 |  | 
|  | 279 | /* shift up the mantissa for denormalized numbers, | 
|  | 280 | so that the highest bit is set, this makes lots | 
|  | 281 | of things below easier */ | 
|  | 282 | if ((long)dest->mant.m32[0] >= 0) | 
|  | 283 | exp -= fp_overnormalize(dest); | 
|  | 284 | if ((long)src->mant.m32[0] >= 0) | 
|  | 285 | exp -= fp_overnormalize(src); | 
|  | 286 |  | 
|  | 287 | /* now, do the 64-bit divide */ | 
|  | 288 | fp_dividemant(&temp, dest, src); | 
|  | 289 |  | 
|  | 290 | /* normalize it back to 64 bits and stuff it back into the | 
|  | 291 | destination struct */ | 
|  | 292 | if (!temp.m32[0]) { | 
|  | 293 | exp--; | 
|  | 294 | fp_putmant128(dest, &temp, 32); | 
|  | 295 | } else | 
|  | 296 | fp_putmant128(dest, &temp, 31); | 
|  | 297 |  | 
|  | 298 | if (exp >= 0x7fff) { | 
|  | 299 | fp_set_ovrflw(dest); | 
|  | 300 | return dest; | 
|  | 301 | } | 
|  | 302 | dest->exp = exp; | 
|  | 303 | if (exp < 0) { | 
|  | 304 | fp_set_sr(FPSR_EXC_UNFL); | 
|  | 305 | fp_denormalize(dest, -exp); | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | return dest; | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | struct fp_ext * | 
|  | 312 | fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) | 
|  | 313 | { | 
|  | 314 | int exp; | 
|  | 315 |  | 
|  | 316 | dprint(PINSTR, "fsglmul\n"); | 
|  | 317 |  | 
|  | 318 | fp_dyadic_check(dest, src); | 
|  | 319 |  | 
|  | 320 | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | 321 | dest->sign = src->sign ^ dest->sign; | 
|  | 322 |  | 
|  | 323 | /* Handle infinities */ | 
|  | 324 | if (IS_INF(dest)) { | 
|  | 325 | if (IS_ZERO(src)) | 
|  | 326 | fp_set_nan(dest); | 
|  | 327 | return dest; | 
|  | 328 | } | 
|  | 329 | if (IS_INF(src)) { | 
|  | 330 | if (IS_ZERO(dest)) | 
|  | 331 | fp_set_nan(dest); | 
|  | 332 | else | 
|  | 333 | fp_copy_ext(dest, src); | 
|  | 334 | return dest; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | /* Of course, as we all know, zero * anything = zero.  You may | 
|  | 338 | not have known that it might be a positive or negative | 
|  | 339 | zero... */ | 
|  | 340 | if (IS_ZERO(dest) || IS_ZERO(src)) { | 
|  | 341 | dest->exp = 0; | 
|  | 342 | dest->mant.m64 = 0; | 
|  | 343 | dest->lowmant = 0; | 
|  | 344 |  | 
|  | 345 | return dest; | 
|  | 346 | } | 
|  | 347 |  | 
|  | 348 | exp = dest->exp + src->exp - 0x3ffe; | 
|  | 349 |  | 
|  | 350 | /* do a 32-bit multiply */ | 
|  | 351 | fp_mul64(dest->mant.m32[0], dest->mant.m32[1], | 
|  | 352 | dest->mant.m32[0] & 0xffffff00, | 
|  | 353 | src->mant.m32[0] & 0xffffff00); | 
|  | 354 |  | 
|  | 355 | if (exp >= 0x7fff) { | 
|  | 356 | fp_set_ovrflw(dest); | 
|  | 357 | return dest; | 
|  | 358 | } | 
|  | 359 | dest->exp = exp; | 
|  | 360 | if (exp < 0) { | 
|  | 361 | fp_set_sr(FPSR_EXC_UNFL); | 
|  | 362 | fp_denormalize(dest, -exp); | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | return dest; | 
|  | 366 | } | 
|  | 367 |  | 
|  | 368 | struct fp_ext * | 
|  | 369 | fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) | 
|  | 370 | { | 
|  | 371 | int exp; | 
|  | 372 | unsigned long quot, rem; | 
|  | 373 |  | 
|  | 374 | dprint(PINSTR, "fsgldiv\n"); | 
|  | 375 |  | 
|  | 376 | fp_dyadic_check(dest, src); | 
|  | 377 |  | 
|  | 378 | /* calculate the correct sign now, as it's necessary for infinities */ | 
|  | 379 | dest->sign = src->sign ^ dest->sign; | 
|  | 380 |  | 
|  | 381 | /* Handle infinities */ | 
|  | 382 | if (IS_INF(dest)) { | 
|  | 383 | /* infinity / infinity = NaN (quiet, as always) */ | 
|  | 384 | if (IS_INF(src)) | 
|  | 385 | fp_set_nan(dest); | 
|  | 386 | /* infinity / anything else = infinity (with approprate sign) */ | 
|  | 387 | return dest; | 
|  | 388 | } | 
|  | 389 | if (IS_INF(src)) { | 
|  | 390 | /* anything / infinity = zero (with appropriate sign) */ | 
|  | 391 | dest->exp = 0; | 
|  | 392 | dest->mant.m64 = 0; | 
|  | 393 | dest->lowmant = 0; | 
|  | 394 |  | 
|  | 395 | return dest; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | /* zeroes */ | 
|  | 399 | if (IS_ZERO(dest)) { | 
|  | 400 | /* zero / zero = NaN */ | 
|  | 401 | if (IS_ZERO(src)) | 
|  | 402 | fp_set_nan(dest); | 
|  | 403 | /* zero / anything else = zero */ | 
|  | 404 | return dest; | 
|  | 405 | } | 
|  | 406 | if (IS_ZERO(src)) { | 
|  | 407 | /* anything / zero = infinity (with appropriate sign) */ | 
|  | 408 | fp_set_sr(FPSR_EXC_DZ); | 
|  | 409 | dest->exp = 0x7fff; | 
|  | 410 | dest->mant.m64 = 0; | 
|  | 411 |  | 
|  | 412 | return dest; | 
|  | 413 | } | 
|  | 414 |  | 
|  | 415 | exp = dest->exp - src->exp + 0x3fff; | 
|  | 416 |  | 
|  | 417 | dest->mant.m32[0] &= 0xffffff00; | 
|  | 418 | src->mant.m32[0] &= 0xffffff00; | 
|  | 419 |  | 
|  | 420 | /* do the 32-bit divide */ | 
|  | 421 | if (dest->mant.m32[0] >= src->mant.m32[0]) { | 
|  | 422 | fp_sub64(dest->mant, src->mant); | 
|  | 423 | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
|  | 424 | dest->mant.m32[0] = 0x80000000 | (quot >> 1); | 
|  | 425 | dest->mant.m32[1] = (quot & 1) | rem;	/* only for rounding */ | 
|  | 426 | } else { | 
|  | 427 | fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
|  | 428 | dest->mant.m32[0] = quot; | 
|  | 429 | dest->mant.m32[1] = rem;		/* only for rounding */ | 
|  | 430 | exp--; | 
|  | 431 | } | 
|  | 432 |  | 
|  | 433 | if (exp >= 0x7fff) { | 
|  | 434 | fp_set_ovrflw(dest); | 
|  | 435 | return dest; | 
|  | 436 | } | 
|  | 437 | dest->exp = exp; | 
|  | 438 | if (exp < 0) { | 
|  | 439 | fp_set_sr(FPSR_EXC_UNFL); | 
|  | 440 | fp_denormalize(dest, -exp); | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | return dest; | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | /* fp_roundint: Internal rounding function for use by several of these | 
|  | 447 | emulated instructions. | 
|  | 448 |  | 
|  | 449 | This one rounds off the fractional part using the rounding mode | 
|  | 450 | specified. */ | 
|  | 451 |  | 
|  | 452 | static void fp_roundint(struct fp_ext *dest, int mode) | 
|  | 453 | { | 
|  | 454 | union fp_mant64 oldmant; | 
|  | 455 | unsigned long mask; | 
|  | 456 |  | 
|  | 457 | if (!fp_normalize_ext(dest)) | 
|  | 458 | return; | 
|  | 459 |  | 
|  | 460 | /* infinities and zeroes */ | 
|  | 461 | if (IS_INF(dest) || IS_ZERO(dest)) | 
|  | 462 | return; | 
|  | 463 |  | 
|  | 464 | /* first truncate the lower bits */ | 
|  | 465 | oldmant = dest->mant; | 
|  | 466 | switch (dest->exp) { | 
|  | 467 | case 0 ... 0x3ffe: | 
|  | 468 | dest->mant.m64 = 0; | 
|  | 469 | break; | 
|  | 470 | case 0x3fff ... 0x401e: | 
|  | 471 | dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); | 
|  | 472 | dest->mant.m32[1] = 0; | 
|  | 473 | if (oldmant.m64 == dest->mant.m64) | 
|  | 474 | return; | 
|  | 475 | break; | 
|  | 476 | case 0x401f ... 0x403e: | 
|  | 477 | dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); | 
|  | 478 | if (oldmant.m32[1] == dest->mant.m32[1]) | 
|  | 479 | return; | 
|  | 480 | break; | 
|  | 481 | default: | 
|  | 482 | return; | 
|  | 483 | } | 
|  | 484 | fp_set_sr(FPSR_EXC_INEX2); | 
|  | 485 |  | 
|  | 486 | /* We might want to normalize upwards here... however, since | 
|  | 487 | we know that this is only called on the output of fp_fdiv, | 
|  | 488 | or with the input to fp_fint or fp_fintrz, and the inputs | 
|  | 489 | to all these functions are either normal or denormalized | 
|  | 490 | (no subnormals allowed!), there's really no need. | 
|  | 491 |  | 
|  | 492 | In the case of fp_fdiv, observe that 0x80000000 / 0xffff = | 
|  | 493 | 0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the | 
|  | 494 | smallest possible normal dividend and the largest possible normal | 
|  | 495 | divisor will still produce a normal quotient, therefore, (normal | 
|  | 496 | << 64) / normal is normal in all cases) */ | 
|  | 497 |  | 
|  | 498 | switch (mode) { | 
|  | 499 | case FPCR_ROUND_RN: | 
|  | 500 | switch (dest->exp) { | 
|  | 501 | case 0 ... 0x3ffd: | 
|  | 502 | return; | 
|  | 503 | case 0x3ffe: | 
|  | 504 | /* As noted above, the input is always normal, so the | 
|  | 505 | guard bit (bit 63) is always set.  therefore, the | 
|  | 506 | only case in which we will NOT round to 1.0 is when | 
|  | 507 | the input is exactly 0.5. */ | 
|  | 508 | if (oldmant.m64 == (1ULL << 63)) | 
|  | 509 | return; | 
|  | 510 | break; | 
|  | 511 | case 0x3fff ... 0x401d: | 
|  | 512 | mask = 1 << (0x401d - dest->exp); | 
|  | 513 | if (!(oldmant.m32[0] & mask)) | 
|  | 514 | return; | 
|  | 515 | if (oldmant.m32[0] & (mask << 1)) | 
|  | 516 | break; | 
|  | 517 | if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && | 
|  | 518 | !oldmant.m32[1]) | 
|  | 519 | return; | 
|  | 520 | break; | 
|  | 521 | case 0x401e: | 
|  | 522 | if (!(oldmant.m32[1] >= 0)) | 
|  | 523 | return; | 
|  | 524 | if (oldmant.m32[0] & 1) | 
|  | 525 | break; | 
|  | 526 | if (!(oldmant.m32[1] << 1)) | 
|  | 527 | return; | 
|  | 528 | break; | 
|  | 529 | case 0x401f ... 0x403d: | 
|  | 530 | mask = 1 << (0x403d - dest->exp); | 
|  | 531 | if (!(oldmant.m32[1] & mask)) | 
|  | 532 | return; | 
|  | 533 | if (oldmant.m32[1] & (mask << 1)) | 
|  | 534 | break; | 
|  | 535 | if (!(oldmant.m32[1] << (dest->exp - 0x401d))) | 
|  | 536 | return; | 
|  | 537 | break; | 
|  | 538 | default: | 
|  | 539 | return; | 
|  | 540 | } | 
|  | 541 | break; | 
|  | 542 | case FPCR_ROUND_RZ: | 
|  | 543 | return; | 
|  | 544 | default: | 
|  | 545 | if (dest->sign ^ (mode - FPCR_ROUND_RM)) | 
|  | 546 | break; | 
|  | 547 | return; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | switch (dest->exp) { | 
|  | 551 | case 0 ... 0x3ffe: | 
|  | 552 | dest->exp = 0x3fff; | 
|  | 553 | dest->mant.m64 = 1ULL << 63; | 
|  | 554 | break; | 
|  | 555 | case 0x3fff ... 0x401e: | 
|  | 556 | mask = 1 << (0x401e - dest->exp); | 
|  | 557 | if (dest->mant.m32[0] += mask) | 
|  | 558 | break; | 
|  | 559 | dest->mant.m32[0] = 0x80000000; | 
|  | 560 | dest->exp++; | 
|  | 561 | break; | 
|  | 562 | case 0x401f ... 0x403e: | 
|  | 563 | mask = 1 << (0x403e - dest->exp); | 
|  | 564 | if (dest->mant.m32[1] += mask) | 
|  | 565 | break; | 
|  | 566 | if (dest->mant.m32[0] += 1) | 
|  | 567 | break; | 
|  | 568 | dest->mant.m32[0] = 0x80000000; | 
|  | 569 | dest->exp++; | 
|  | 570 | break; | 
|  | 571 | } | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | /* modrem_kernel: Implementation of the FREM and FMOD instructions | 
|  | 575 | (which are exactly the same, except for the rounding used on the | 
|  | 576 | intermediate value) */ | 
|  | 577 |  | 
|  | 578 | static struct fp_ext * | 
|  | 579 | modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) | 
|  | 580 | { | 
|  | 581 | struct fp_ext tmp; | 
|  | 582 |  | 
|  | 583 | fp_dyadic_check(dest, src); | 
|  | 584 |  | 
|  | 585 | /* Infinities and zeros */ | 
|  | 586 | if (IS_INF(dest) || IS_ZERO(src)) { | 
|  | 587 | fp_set_nan(dest); | 
|  | 588 | return dest; | 
|  | 589 | } | 
|  | 590 | if (IS_ZERO(dest) || IS_INF(src)) | 
|  | 591 | return dest; | 
|  | 592 |  | 
|  | 593 | /* FIXME: there is almost certainly a smarter way to do this */ | 
|  | 594 | fp_copy_ext(&tmp, dest); | 
|  | 595 | fp_fdiv(&tmp, src);		/* NOTE: src might be modified */ | 
|  | 596 | fp_roundint(&tmp, mode); | 
|  | 597 | fp_fmul(&tmp, src); | 
|  | 598 | fp_fsub(dest, &tmp); | 
|  | 599 |  | 
|  | 600 | /* set the quotient byte */ | 
|  | 601 | fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); | 
|  | 602 | return dest; | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | /* fp_fmod: Implements the kernel of the FMOD instruction. | 
|  | 606 |  | 
|  | 607 | Again, the argument order is backwards.  The result, as defined in | 
|  | 608 | the Motorola manuals, is: | 
|  | 609 |  | 
|  | 610 | fmod(src,dest) = (dest - (src * floor(dest / src))) */ | 
|  | 611 |  | 
|  | 612 | struct fp_ext * | 
|  | 613 | fp_fmod(struct fp_ext *dest, struct fp_ext *src) | 
|  | 614 | { | 
|  | 615 | dprint(PINSTR, "fmod\n"); | 
|  | 616 | return modrem_kernel(dest, src, FPCR_ROUND_RZ); | 
|  | 617 | } | 
|  | 618 |  | 
|  | 619 | /* fp_frem: Implements the kernel of the FREM instruction. | 
|  | 620 |  | 
|  | 621 | frem(src,dest) = (dest - (src * round(dest / src))) | 
|  | 622 | */ | 
|  | 623 |  | 
|  | 624 | struct fp_ext * | 
|  | 625 | fp_frem(struct fp_ext *dest, struct fp_ext *src) | 
|  | 626 | { | 
|  | 627 | dprint(PINSTR, "frem\n"); | 
|  | 628 | return modrem_kernel(dest, src, FPCR_ROUND_RN); | 
|  | 629 | } | 
|  | 630 |  | 
|  | 631 | struct fp_ext * | 
|  | 632 | fp_fint(struct fp_ext *dest, struct fp_ext *src) | 
|  | 633 | { | 
|  | 634 | dprint(PINSTR, "fint\n"); | 
|  | 635 |  | 
|  | 636 | fp_copy_ext(dest, src); | 
|  | 637 |  | 
|  | 638 | fp_roundint(dest, FPDATA->rnd); | 
|  | 639 |  | 
|  | 640 | return dest; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | struct fp_ext * | 
|  | 644 | fp_fintrz(struct fp_ext *dest, struct fp_ext *src) | 
|  | 645 | { | 
|  | 646 | dprint(PINSTR, "fintrz\n"); | 
|  | 647 |  | 
|  | 648 | fp_copy_ext(dest, src); | 
|  | 649 |  | 
|  | 650 | fp_roundint(dest, FPCR_ROUND_RZ); | 
|  | 651 |  | 
|  | 652 | return dest; | 
|  | 653 | } | 
|  | 654 |  | 
|  | 655 | struct fp_ext * | 
|  | 656 | fp_fscale(struct fp_ext *dest, struct fp_ext *src) | 
|  | 657 | { | 
|  | 658 | int scale, oldround; | 
|  | 659 |  | 
|  | 660 | dprint(PINSTR, "fscale\n"); | 
|  | 661 |  | 
|  | 662 | fp_dyadic_check(dest, src); | 
|  | 663 |  | 
|  | 664 | /* Infinities */ | 
|  | 665 | if (IS_INF(src)) { | 
|  | 666 | fp_set_nan(dest); | 
|  | 667 | return dest; | 
|  | 668 | } | 
|  | 669 | if (IS_INF(dest)) | 
|  | 670 | return dest; | 
|  | 671 |  | 
|  | 672 | /* zeroes */ | 
|  | 673 | if (IS_ZERO(src) || IS_ZERO(dest)) | 
|  | 674 | return dest; | 
|  | 675 |  | 
|  | 676 | /* Source exponent out of range */ | 
|  | 677 | if (src->exp >= 0x400c) { | 
|  | 678 | fp_set_ovrflw(dest); | 
|  | 679 | return dest; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /* src must be rounded with round to zero. */ | 
|  | 683 | oldround = FPDATA->rnd; | 
|  | 684 | FPDATA->rnd = FPCR_ROUND_RZ; | 
|  | 685 | scale = fp_conv_ext2long(src); | 
|  | 686 | FPDATA->rnd = oldround; | 
|  | 687 |  | 
|  | 688 | /* new exponent */ | 
|  | 689 | scale += dest->exp; | 
|  | 690 |  | 
|  | 691 | if (scale >= 0x7fff) { | 
|  | 692 | fp_set_ovrflw(dest); | 
|  | 693 | } else if (scale <= 0) { | 
|  | 694 | fp_set_sr(FPSR_EXC_UNFL); | 
|  | 695 | fp_denormalize(dest, -scale); | 
|  | 696 | } else | 
|  | 697 | dest->exp = scale; | 
|  | 698 |  | 
|  | 699 | return dest; | 
|  | 700 | } | 
|  | 701 |  |