blob: dd38db46a77a46fd58ecc92291408141373885fd [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
Tony Lucka1ecf7f62005-05-18 16:06:00 -070014 * Copyright (C) 1999-2005 Hewlett Packard Co
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/init.h>
29#include <linux/vmalloc.h>
30#include <linux/mm.h>
31#include <linux/sysctl.h>
32#include <linux/list.h>
33#include <linux/file.h>
34#include <linux/poll.h>
35#include <linux/vfs.h>
Andrew Mortona3bc0db2006-09-25 23:32:33 -070036#include <linux/smp.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/pagemap.h>
38#include <linux/mount.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/bitops.h>
Randy Dunlapa9415642006-01-11 12:17:48 -080040#include <linux/capability.h>
Dipankar Sarmabadf1662005-09-09 13:04:10 -070041#include <linux/rcupdate.h>
Jes Sorensen60f1c442006-01-18 23:46:52 -080042#include <linux/completion.h>
Shaohua Lif14488c2008-10-06 10:43:06 -070043#include <linux/tracehook.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070044
45#include <asm/errno.h>
46#include <asm/intrinsics.h>
47#include <asm/page.h>
48#include <asm/perfmon.h>
49#include <asm/processor.h>
50#include <asm/signal.h>
51#include <asm/system.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -070066#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
Linus Torvalds1da177e2005-04-16 15:20:36 -070069/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
Robert P. J. Day85d1fe02007-02-17 19:21:17 +0100150 * spin_lock_irqsave()/spin_unlock_irqrestore():
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163 spin_lock_irqsave(&(c)->ctx_lock, f); \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
Harvey Harrisond4ed8082008-03-04 15:15:00 -0800236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
Jes Sorensen60f1c442006-01-18 23:46:52 -0800293 struct completion ctx_restart_done; /* use for blocking notification mode */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
490typedef struct {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
Ingo Molnara9f6a0d2005-09-09 13:10:41 -0700508static DEFINE_SPINLOCK(pfm_alt_install_check);
Tony Lucka1ecf7f62005-05-18 16:06:00 -0700509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
Stephane Eranian49449302005-04-25 13:08:30 -0700520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522
523static ctl_table pfm_ctl_table[]={
Eric W. Biederman4e009902007-02-14 00:33:42 -0800524 {
525 .ctl_name = CTL_UNNUMBERED,
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = &proc_dointvec,
531 },
532 {
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
537 .mode = 0666,
538 .proc_handler = &proc_dointvec,
539 },
540 {
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = &proc_dointvec,
547 },
548 {
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
553 .mode = 0600,
554 .proc_handler = &proc_dointvec,
555 },
556 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557};
558static ctl_table pfm_sysctl_dir[] = {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800559 {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
Tony Lucke3ad42b2007-11-06 13:20:43 -0800562 .mode = 0555,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800563 .child = pfm_ctl_table,
564 },
565 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566};
567static ctl_table pfm_sysctl_root[] = {
Eric W. Biederman4e009902007-02-14 00:33:42 -0800568 {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
Tony Lucke3ad42b2007-11-06 13:20:43 -0800571 .mode = 0555,
Eric W. Biederman4e009902007-02-14 00:33:42 -0800572 .child = pfm_sysctl_dir,
573 },
574 {}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700575};
576static struct ctl_table_header *pfm_sysctl_header;
577
578static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700579
580#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581#define pfm_get_cpu_data(a,b) per_cpu(a, b)
582
583static inline void
584pfm_put_task(struct task_struct *task)
585{
586 if (task != current) put_task_struct(task);
587}
588
589static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700590pfm_reserve_page(unsigned long a)
591{
592 SetPageReserved(vmalloc_to_page((void *)a));
593}
594static inline void
595pfm_unreserve_page(unsigned long a)
596{
597 ClearPageReserved(vmalloc_to_page((void*)a));
598}
599
600static inline unsigned long
601pfm_protect_ctx_ctxsw(pfm_context_t *x)
602{
603 spin_lock(&(x)->ctx_lock);
604 return 0UL;
605}
606
Peter Chubb24b8e0c2005-09-15 15:36:35 +1000607static inline void
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
609{
610 spin_unlock(&(x)->ctx_lock);
611}
612
613static inline unsigned int
614pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
615{
616 return do_munmap(mm, addr, len);
617}
618
619static inline unsigned long
620pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
621{
622 return get_unmapped_area(file, addr, len, pgoff, flags);
623}
624
625
David Howells454e2392006-06-23 02:02:57 -0700626static int
627pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
628 struct vfsmount *mnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629{
David Howells454e2392006-06-23 02:02:57 -0700630 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631}
632
633static struct file_system_type pfm_fs_type = {
634 .name = "pfmfs",
635 .get_sb = pfmfs_get_sb,
636 .kill_sb = kill_anon_super,
637};
638
639DEFINE_PER_CPU(unsigned long, pfm_syst_info);
640DEFINE_PER_CPU(struct task_struct *, pmu_owner);
641DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
642DEFINE_PER_CPU(unsigned long, pmu_activation_number);
Tony Luckfffcc152005-05-31 10:38:32 -0700643EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
645
646/* forward declaration */
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -0800647static const struct file_operations pfm_file_ops;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648
649/*
650 * forward declarations
651 */
652#ifndef CONFIG_SMP
653static void pfm_lazy_save_regs (struct task_struct *ta);
654#endif
655
656void dump_pmu_state(const char *);
657static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
658
659#include "perfmon_itanium.h"
660#include "perfmon_mckinley.h"
Stephane Eranian9179cb62006-01-10 03:10:43 -0800661#include "perfmon_montecito.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662#include "perfmon_generic.h"
663
664static pmu_config_t *pmu_confs[]={
Stephane Eranian9179cb62006-01-10 03:10:43 -0800665 &pmu_conf_mont,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666 &pmu_conf_mck,
667 &pmu_conf_ita,
668 &pmu_conf_gen, /* must be last */
669 NULL
670};
671
672
673static int pfm_end_notify_user(pfm_context_t *ctx);
674
675static inline void
676pfm_clear_psr_pp(void)
677{
678 ia64_rsm(IA64_PSR_PP);
679 ia64_srlz_i();
680}
681
682static inline void
683pfm_set_psr_pp(void)
684{
685 ia64_ssm(IA64_PSR_PP);
686 ia64_srlz_i();
687}
688
689static inline void
690pfm_clear_psr_up(void)
691{
692 ia64_rsm(IA64_PSR_UP);
693 ia64_srlz_i();
694}
695
696static inline void
697pfm_set_psr_up(void)
698{
699 ia64_ssm(IA64_PSR_UP);
700 ia64_srlz_i();
701}
702
703static inline unsigned long
704pfm_get_psr(void)
705{
706 unsigned long tmp;
707 tmp = ia64_getreg(_IA64_REG_PSR);
708 ia64_srlz_i();
709 return tmp;
710}
711
712static inline void
713pfm_set_psr_l(unsigned long val)
714{
715 ia64_setreg(_IA64_REG_PSR_L, val);
716 ia64_srlz_i();
717}
718
719static inline void
720pfm_freeze_pmu(void)
721{
722 ia64_set_pmc(0,1UL);
723 ia64_srlz_d();
724}
725
726static inline void
727pfm_unfreeze_pmu(void)
728{
729 ia64_set_pmc(0,0UL);
730 ia64_srlz_d();
731}
732
733static inline void
734pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
735{
736 int i;
737
738 for (i=0; i < nibrs; i++) {
739 ia64_set_ibr(i, ibrs[i]);
740 ia64_dv_serialize_instruction();
741 }
742 ia64_srlz_i();
743}
744
745static inline void
746pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
747{
748 int i;
749
750 for (i=0; i < ndbrs; i++) {
751 ia64_set_dbr(i, dbrs[i]);
752 ia64_dv_serialize_data();
753 }
754 ia64_srlz_d();
755}
756
757/*
758 * PMD[i] must be a counter. no check is made
759 */
760static inline unsigned long
761pfm_read_soft_counter(pfm_context_t *ctx, int i)
762{
763 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
764}
765
766/*
767 * PMD[i] must be a counter. no check is made
768 */
769static inline void
770pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
771{
772 unsigned long ovfl_val = pmu_conf->ovfl_val;
773
774 ctx->ctx_pmds[i].val = val & ~ovfl_val;
775 /*
776 * writing to unimplemented part is ignore, so we do not need to
777 * mask off top part
778 */
779 ia64_set_pmd(i, val & ovfl_val);
780}
781
782static pfm_msg_t *
783pfm_get_new_msg(pfm_context_t *ctx)
784{
785 int idx, next;
786
787 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
788
789 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790 if (next == ctx->ctx_msgq_head) return NULL;
791
792 idx = ctx->ctx_msgq_tail;
793 ctx->ctx_msgq_tail = next;
794
795 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
796
797 return ctx->ctx_msgq+idx;
798}
799
800static pfm_msg_t *
801pfm_get_next_msg(pfm_context_t *ctx)
802{
803 pfm_msg_t *msg;
804
805 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
806
807 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
808
809 /*
810 * get oldest message
811 */
812 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
813
814 /*
815 * and move forward
816 */
817 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
818
819 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
820
821 return msg;
822}
823
824static void
825pfm_reset_msgq(pfm_context_t *ctx)
826{
827 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
828 DPRINT(("ctx=%p msgq reset\n", ctx));
829}
830
831static void *
832pfm_rvmalloc(unsigned long size)
833{
834 void *mem;
835 unsigned long addr;
836
837 size = PAGE_ALIGN(size);
838 mem = vmalloc(size);
839 if (mem) {
840 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
841 memset(mem, 0, size);
842 addr = (unsigned long)mem;
843 while (size > 0) {
844 pfm_reserve_page(addr);
845 addr+=PAGE_SIZE;
846 size-=PAGE_SIZE;
847 }
848 }
849 return mem;
850}
851
852static void
853pfm_rvfree(void *mem, unsigned long size)
854{
855 unsigned long addr;
856
857 if (mem) {
858 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
859 addr = (unsigned long) mem;
860 while ((long) size > 0) {
861 pfm_unreserve_page(addr);
862 addr+=PAGE_SIZE;
863 size-=PAGE_SIZE;
864 }
865 vfree(mem);
866 }
867 return;
868}
869
870static pfm_context_t *
Al Virof8e811b2008-05-01 14:36:36 -0700871pfm_context_alloc(int ctx_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872{
873 pfm_context_t *ctx;
874
875 /*
876 * allocate context descriptor
877 * must be able to free with interrupts disabled
878 */
Yan Burman52fd9102006-12-04 14:58:35 -0800879 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880 if (ctx) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 DPRINT(("alloc ctx @%p\n", ctx));
Al Virof8e811b2008-05-01 14:36:36 -0700882
883 /*
884 * init context protection lock
885 */
886 spin_lock_init(&ctx->ctx_lock);
887
888 /*
889 * context is unloaded
890 */
891 ctx->ctx_state = PFM_CTX_UNLOADED;
892
893 /*
894 * initialization of context's flags
895 */
896 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
897 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
898 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
899 /*
900 * will move to set properties
901 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
902 */
903
904 /*
905 * init restart semaphore to locked
906 */
907 init_completion(&ctx->ctx_restart_done);
908
909 /*
910 * activation is used in SMP only
911 */
912 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
913 SET_LAST_CPU(ctx, -1);
914
915 /*
916 * initialize notification message queue
917 */
918 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
919 init_waitqueue_head(&ctx->ctx_msgq_wait);
920 init_waitqueue_head(&ctx->ctx_zombieq);
921
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 }
923 return ctx;
924}
925
926static void
927pfm_context_free(pfm_context_t *ctx)
928{
929 if (ctx) {
930 DPRINT(("free ctx @%p\n", ctx));
931 kfree(ctx);
932 }
933}
934
935static void
936pfm_mask_monitoring(struct task_struct *task)
937{
938 pfm_context_t *ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 unsigned long mask, val, ovfl_mask;
940 int i;
941
Alexey Dobriyan19c58702007-10-18 23:40:41 -0700942 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943
944 ovfl_mask = pmu_conf->ovfl_val;
945 /*
946 * monitoring can only be masked as a result of a valid
947 * counter overflow. In UP, it means that the PMU still
948 * has an owner. Note that the owner can be different
949 * from the current task. However the PMU state belongs
950 * to the owner.
951 * In SMP, a valid overflow only happens when task is
952 * current. Therefore if we come here, we know that
953 * the PMU state belongs to the current task, therefore
954 * we can access the live registers.
955 *
956 * So in both cases, the live register contains the owner's
957 * state. We can ONLY touch the PMU registers and NOT the PSR.
958 *
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700959 * As a consequence to this call, the ctx->th_pmds[] array
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 * contains stale information which must be ignored
961 * when context is reloaded AND monitoring is active (see
962 * pfm_restart).
963 */
964 mask = ctx->ctx_used_pmds[0];
965 for (i = 0; mask; i++, mask>>=1) {
966 /* skip non used pmds */
967 if ((mask & 0x1) == 0) continue;
968 val = ia64_get_pmd(i);
969
970 if (PMD_IS_COUNTING(i)) {
971 /*
972 * we rebuild the full 64 bit value of the counter
973 */
974 ctx->ctx_pmds[i].val += (val & ovfl_mask);
975 } else {
976 ctx->ctx_pmds[i].val = val;
977 }
978 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
979 i,
980 ctx->ctx_pmds[i].val,
981 val & ovfl_mask));
982 }
983 /*
984 * mask monitoring by setting the privilege level to 0
985 * we cannot use psr.pp/psr.up for this, it is controlled by
986 * the user
987 *
988 * if task is current, modify actual registers, otherwise modify
989 * thread save state, i.e., what will be restored in pfm_load_regs()
990 */
991 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
992 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
993 if ((mask & 0x1) == 0UL) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -0700994 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
995 ctx->th_pmcs[i] &= ~0xfUL;
996 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997 }
998 /*
999 * make all of this visible
1000 */
1001 ia64_srlz_d();
1002}
1003
1004/*
1005 * must always be done with task == current
1006 *
1007 * context must be in MASKED state when calling
1008 */
1009static void
1010pfm_restore_monitoring(struct task_struct *task)
1011{
1012 pfm_context_t *ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 unsigned long mask, ovfl_mask;
1014 unsigned long psr, val;
1015 int i, is_system;
1016
1017 is_system = ctx->ctx_fl_system;
1018 ovfl_mask = pmu_conf->ovfl_val;
1019
1020 if (task != current) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001021 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 return;
1023 }
1024 if (ctx->ctx_state != PFM_CTX_MASKED) {
1025 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001026 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 return;
1028 }
1029 psr = pfm_get_psr();
1030 /*
1031 * monitoring is masked via the PMC.
1032 * As we restore their value, we do not want each counter to
1033 * restart right away. We stop monitoring using the PSR,
1034 * restore the PMC (and PMD) and then re-establish the psr
1035 * as it was. Note that there can be no pending overflow at
1036 * this point, because monitoring was MASKED.
1037 *
1038 * system-wide session are pinned and self-monitoring
1039 */
1040 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1041 /* disable dcr pp */
1042 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1043 pfm_clear_psr_pp();
1044 } else {
1045 pfm_clear_psr_up();
1046 }
1047 /*
1048 * first, we restore the PMD
1049 */
1050 mask = ctx->ctx_used_pmds[0];
1051 for (i = 0; mask; i++, mask>>=1) {
1052 /* skip non used pmds */
1053 if ((mask & 0x1) == 0) continue;
1054
1055 if (PMD_IS_COUNTING(i)) {
1056 /*
1057 * we split the 64bit value according to
1058 * counter width
1059 */
1060 val = ctx->ctx_pmds[i].val & ovfl_mask;
1061 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1062 } else {
1063 val = ctx->ctx_pmds[i].val;
1064 }
1065 ia64_set_pmd(i, val);
1066
1067 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1068 i,
1069 ctx->ctx_pmds[i].val,
1070 val));
1071 }
1072 /*
1073 * restore the PMCs
1074 */
1075 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1076 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1077 if ((mask & 0x1) == 0UL) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001078 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1079 ia64_set_pmc(i, ctx->th_pmcs[i]);
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001080 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1081 task_pid_nr(task), i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001082 }
1083 ia64_srlz_d();
1084
1085 /*
1086 * must restore DBR/IBR because could be modified while masked
1087 * XXX: need to optimize
1088 */
1089 if (ctx->ctx_fl_using_dbreg) {
1090 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1091 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1092 }
1093
1094 /*
1095 * now restore PSR
1096 */
1097 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1098 /* enable dcr pp */
1099 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1100 ia64_srlz_i();
1101 }
1102 pfm_set_psr_l(psr);
1103}
1104
1105static inline void
1106pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108 int i;
1109
1110 ia64_srlz_d();
1111
1112 for (i=0; mask; i++, mask>>=1) {
1113 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1114 }
1115}
1116
1117/*
1118 * reload from thread state (used for ctxw only)
1119 */
1120static inline void
1121pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1122{
1123 int i;
1124 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1125
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1129 ia64_set_pmd(i, val);
1130 }
1131 ia64_srlz_d();
1132}
1133
1134/*
1135 * propagate PMD from context to thread-state
1136 */
1137static inline void
1138pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1139{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 unsigned long ovfl_val = pmu_conf->ovfl_val;
1141 unsigned long mask = ctx->ctx_all_pmds[0];
1142 unsigned long val;
1143 int i;
1144
1145 DPRINT(("mask=0x%lx\n", mask));
1146
1147 for (i=0; mask; i++, mask>>=1) {
1148
1149 val = ctx->ctx_pmds[i].val;
1150
1151 /*
1152 * We break up the 64 bit value into 2 pieces
1153 * the lower bits go to the machine state in the
1154 * thread (will be reloaded on ctxsw in).
1155 * The upper part stays in the soft-counter.
1156 */
1157 if (PMD_IS_COUNTING(i)) {
1158 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1159 val &= ovfl_val;
1160 }
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001161 ctx->th_pmds[i] = val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162
1163 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1164 i,
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001165 ctx->th_pmds[i],
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 ctx->ctx_pmds[i].val));
1167 }
1168}
1169
1170/*
1171 * propagate PMC from context to thread-state
1172 */
1173static inline void
1174pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1175{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 unsigned long mask = ctx->ctx_all_pmcs[0];
1177 int i;
1178
1179 DPRINT(("mask=0x%lx\n", mask));
1180
1181 for (i=0; mask; i++, mask>>=1) {
1182 /* masking 0 with ovfl_val yields 0 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07001183 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1184 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185 }
1186}
1187
1188
1189
1190static inline void
1191pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1192{
1193 int i;
1194
1195 for (i=0; mask; i++, mask>>=1) {
1196 if ((mask & 0x1) == 0) continue;
1197 ia64_set_pmc(i, pmcs[i]);
1198 }
1199 ia64_srlz_d();
1200}
1201
1202static inline int
1203pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1204{
1205 return memcmp(a, b, sizeof(pfm_uuid_t));
1206}
1207
1208static inline int
1209pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1210{
1211 int ret = 0;
1212 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1213 return ret;
1214}
1215
1216static inline int
1217pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1218{
1219 int ret = 0;
1220 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1221 return ret;
1222}
1223
1224
1225static inline int
1226pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1227 int cpu, void *arg)
1228{
1229 int ret = 0;
1230 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1231 return ret;
1232}
1233
1234static inline int
1235pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1236 int cpu, void *arg)
1237{
1238 int ret = 0;
1239 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1240 return ret;
1241}
1242
1243static inline int
1244pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1245{
1246 int ret = 0;
1247 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1248 return ret;
1249}
1250
1251static inline int
1252pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1253{
1254 int ret = 0;
1255 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1256 return ret;
1257}
1258
1259static pfm_buffer_fmt_t *
1260__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261{
1262 struct list_head * pos;
1263 pfm_buffer_fmt_t * entry;
1264
1265 list_for_each(pos, &pfm_buffer_fmt_list) {
1266 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1267 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1268 return entry;
1269 }
1270 return NULL;
1271}
1272
1273/*
1274 * find a buffer format based on its uuid
1275 */
1276static pfm_buffer_fmt_t *
1277pfm_find_buffer_fmt(pfm_uuid_t uuid)
1278{
1279 pfm_buffer_fmt_t * fmt;
1280 spin_lock(&pfm_buffer_fmt_lock);
1281 fmt = __pfm_find_buffer_fmt(uuid);
1282 spin_unlock(&pfm_buffer_fmt_lock);
1283 return fmt;
1284}
1285
1286int
1287pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1288{
1289 int ret = 0;
1290
1291 /* some sanity checks */
1292 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1293
1294 /* we need at least a handler */
1295 if (fmt->fmt_handler == NULL) return -EINVAL;
1296
1297 /*
1298 * XXX: need check validity of fmt_arg_size
1299 */
1300
1301 spin_lock(&pfm_buffer_fmt_lock);
1302
1303 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1304 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1305 ret = -EBUSY;
1306 goto out;
1307 }
1308 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1309 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1310
1311out:
1312 spin_unlock(&pfm_buffer_fmt_lock);
1313 return ret;
1314}
1315EXPORT_SYMBOL(pfm_register_buffer_fmt);
1316
1317int
1318pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1319{
1320 pfm_buffer_fmt_t *fmt;
1321 int ret = 0;
1322
1323 spin_lock(&pfm_buffer_fmt_lock);
1324
1325 fmt = __pfm_find_buffer_fmt(uuid);
1326 if (!fmt) {
1327 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1328 ret = -EINVAL;
1329 goto out;
1330 }
1331 list_del_init(&fmt->fmt_list);
1332 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1333
1334out:
1335 spin_unlock(&pfm_buffer_fmt_lock);
1336 return ret;
1337
1338}
1339EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1340
Stephane Eranian8df5a502005-04-11 13:45:00 -07001341extern void update_pal_halt_status(int);
1342
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343static int
1344pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1345{
1346 unsigned long flags;
1347 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001348 * validity checks on cpu_mask have been done upstream
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349 */
1350 LOCK_PFS(flags);
1351
1352 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353 pfm_sessions.pfs_sys_sessions,
1354 pfm_sessions.pfs_task_sessions,
1355 pfm_sessions.pfs_sys_use_dbregs,
1356 is_syswide,
1357 cpu));
1358
1359 if (is_syswide) {
1360 /*
1361 * cannot mix system wide and per-task sessions
1362 */
1363 if (pfm_sessions.pfs_task_sessions > 0UL) {
1364 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1365 pfm_sessions.pfs_task_sessions));
1366 goto abort;
1367 }
1368
1369 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1370
1371 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1372
1373 pfm_sessions.pfs_sys_session[cpu] = task;
1374
1375 pfm_sessions.pfs_sys_sessions++ ;
1376
1377 } else {
1378 if (pfm_sessions.pfs_sys_sessions) goto abort;
1379 pfm_sessions.pfs_task_sessions++;
1380 }
1381
1382 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383 pfm_sessions.pfs_sys_sessions,
1384 pfm_sessions.pfs_task_sessions,
1385 pfm_sessions.pfs_sys_use_dbregs,
1386 is_syswide,
1387 cpu));
1388
Stephane Eranian8df5a502005-04-11 13:45:00 -07001389 /*
1390 * disable default_idle() to go to PAL_HALT
1391 */
1392 update_pal_halt_status(0);
1393
Linus Torvalds1da177e2005-04-16 15:20:36 -07001394 UNLOCK_PFS(flags);
1395
1396 return 0;
1397
1398error_conflict:
1399 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001400 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
Tony Lucka1ecf7f62005-05-18 16:06:00 -07001401 cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402abort:
1403 UNLOCK_PFS(flags);
1404
1405 return -EBUSY;
1406
1407}
1408
1409static int
1410pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1411{
1412 unsigned long flags;
1413 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001414 * validity checks on cpu_mask have been done upstream
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 */
1416 LOCK_PFS(flags);
1417
1418 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1419 pfm_sessions.pfs_sys_sessions,
1420 pfm_sessions.pfs_task_sessions,
1421 pfm_sessions.pfs_sys_use_dbregs,
1422 is_syswide,
1423 cpu));
1424
1425
1426 if (is_syswide) {
1427 pfm_sessions.pfs_sys_session[cpu] = NULL;
1428 /*
1429 * would not work with perfmon+more than one bit in cpu_mask
1430 */
1431 if (ctx && ctx->ctx_fl_using_dbreg) {
1432 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1433 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1434 } else {
1435 pfm_sessions.pfs_sys_use_dbregs--;
1436 }
1437 }
1438 pfm_sessions.pfs_sys_sessions--;
1439 } else {
1440 pfm_sessions.pfs_task_sessions--;
1441 }
1442 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1443 pfm_sessions.pfs_sys_sessions,
1444 pfm_sessions.pfs_task_sessions,
1445 pfm_sessions.pfs_sys_use_dbregs,
1446 is_syswide,
1447 cpu));
1448
Stephane Eranian8df5a502005-04-11 13:45:00 -07001449 /*
1450 * if possible, enable default_idle() to go into PAL_HALT
1451 */
1452 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1453 update_pal_halt_status(1);
1454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 UNLOCK_PFS(flags);
1456
1457 return 0;
1458}
1459
1460/*
1461 * removes virtual mapping of the sampling buffer.
1462 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1463 * a PROTECT_CTX() section.
1464 */
1465static int
1466pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1467{
1468 int r;
1469
1470 /* sanity checks */
1471 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001472 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473 return -EINVAL;
1474 }
1475
1476 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1477
1478 /*
1479 * does the actual unmapping
1480 */
1481 down_write(&task->mm->mmap_sem);
1482
1483 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1484
1485 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1486
1487 up_write(&task->mm->mmap_sem);
1488 if (r !=0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001489 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490 }
1491
1492 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1493
1494 return 0;
1495}
1496
1497/*
1498 * free actual physical storage used by sampling buffer
1499 */
1500#if 0
1501static int
1502pfm_free_smpl_buffer(pfm_context_t *ctx)
1503{
1504 pfm_buffer_fmt_t *fmt;
1505
1506 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1507
1508 /*
1509 * we won't use the buffer format anymore
1510 */
1511 fmt = ctx->ctx_buf_fmt;
1512
1513 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1514 ctx->ctx_smpl_hdr,
1515 ctx->ctx_smpl_size,
1516 ctx->ctx_smpl_vaddr));
1517
1518 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519
1520 /*
1521 * free the buffer
1522 */
1523 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1524
1525 ctx->ctx_smpl_hdr = NULL;
1526 ctx->ctx_smpl_size = 0UL;
1527
1528 return 0;
1529
1530invalid_free:
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001531 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 return -EINVAL;
1533}
1534#endif
1535
1536static inline void
1537pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1538{
1539 if (fmt == NULL) return;
1540
1541 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1542
1543}
1544
1545/*
1546 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1547 * no real gain from having the whole whorehouse mounted. So we don't need
1548 * any operations on the root directory. However, we need a non-trivial
1549 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1550 */
1551static struct vfsmount *pfmfs_mnt;
1552
1553static int __init
1554init_pfm_fs(void)
1555{
1556 int err = register_filesystem(&pfm_fs_type);
1557 if (!err) {
1558 pfmfs_mnt = kern_mount(&pfm_fs_type);
1559 err = PTR_ERR(pfmfs_mnt);
1560 if (IS_ERR(pfmfs_mnt))
1561 unregister_filesystem(&pfm_fs_type);
1562 else
1563 err = 0;
1564 }
1565 return err;
1566}
1567
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568static ssize_t
1569pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1570{
1571 pfm_context_t *ctx;
1572 pfm_msg_t *msg;
1573 ssize_t ret;
1574 unsigned long flags;
1575 DECLARE_WAITQUEUE(wait, current);
1576 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001577 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 return -EINVAL;
1579 }
1580
1581 ctx = (pfm_context_t *)filp->private_data;
1582 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001583 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584 return -EINVAL;
1585 }
1586
1587 /*
1588 * check even when there is no message
1589 */
1590 if (size < sizeof(pfm_msg_t)) {
1591 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1592 return -EINVAL;
1593 }
1594
1595 PROTECT_CTX(ctx, flags);
1596
1597 /*
1598 * put ourselves on the wait queue
1599 */
1600 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1601
1602
1603 for(;;) {
1604 /*
1605 * check wait queue
1606 */
1607
1608 set_current_state(TASK_INTERRUPTIBLE);
1609
1610 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1611
1612 ret = 0;
1613 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1614
1615 UNPROTECT_CTX(ctx, flags);
1616
1617 /*
1618 * check non-blocking read
1619 */
1620 ret = -EAGAIN;
1621 if(filp->f_flags & O_NONBLOCK) break;
1622
1623 /*
1624 * check pending signals
1625 */
1626 if(signal_pending(current)) {
1627 ret = -EINTR;
1628 break;
1629 }
1630 /*
1631 * no message, so wait
1632 */
1633 schedule();
1634
1635 PROTECT_CTX(ctx, flags);
1636 }
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001637 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001638 set_current_state(TASK_RUNNING);
1639 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1640
1641 if (ret < 0) goto abort;
1642
1643 ret = -EINVAL;
1644 msg = pfm_get_next_msg(ctx);
1645 if (msg == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001646 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 goto abort_locked;
1648 }
1649
Stephane Eranian49449302005-04-25 13:08:30 -07001650 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651
1652 ret = -EFAULT;
1653 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1654
1655abort_locked:
1656 UNPROTECT_CTX(ctx, flags);
1657abort:
1658 return ret;
1659}
1660
1661static ssize_t
1662pfm_write(struct file *file, const char __user *ubuf,
1663 size_t size, loff_t *ppos)
1664{
1665 DPRINT(("pfm_write called\n"));
1666 return -EINVAL;
1667}
1668
1669static unsigned int
1670pfm_poll(struct file *filp, poll_table * wait)
1671{
1672 pfm_context_t *ctx;
1673 unsigned long flags;
1674 unsigned int mask = 0;
1675
1676 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001677 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678 return 0;
1679 }
1680
1681 ctx = (pfm_context_t *)filp->private_data;
1682 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001683 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 return 0;
1685 }
1686
1687
1688 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1689
1690 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1691
1692 PROTECT_CTX(ctx, flags);
1693
1694 if (PFM_CTXQ_EMPTY(ctx) == 0)
1695 mask = POLLIN | POLLRDNORM;
1696
1697 UNPROTECT_CTX(ctx, flags);
1698
1699 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1700
1701 return mask;
1702}
1703
1704static int
1705pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1706{
1707 DPRINT(("pfm_ioctl called\n"));
1708 return -EINVAL;
1709}
1710
1711/*
1712 * interrupt cannot be masked when coming here
1713 */
1714static inline int
1715pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1716{
1717 int ret;
1718
1719 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1720
1721 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001722 task_pid_nr(current),
Linus Torvalds1da177e2005-04-16 15:20:36 -07001723 fd,
1724 on,
1725 ctx->ctx_async_queue, ret));
1726
1727 return ret;
1728}
1729
1730static int
1731pfm_fasync(int fd, struct file *filp, int on)
1732{
1733 pfm_context_t *ctx;
1734 int ret;
1735
1736 if (PFM_IS_FILE(filp) == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001737 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001738 return -EBADF;
1739 }
1740
1741 ctx = (pfm_context_t *)filp->private_data;
1742 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001743 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 return -EBADF;
1745 }
1746 /*
1747 * we cannot mask interrupts during this call because this may
1748 * may go to sleep if memory is not readily avalaible.
1749 *
1750 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1751 * done in caller. Serialization of this function is ensured by caller.
1752 */
1753 ret = pfm_do_fasync(fd, filp, ctx, on);
1754
1755
1756 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1757 fd,
1758 on,
1759 ctx->ctx_async_queue, ret));
1760
1761 return ret;
1762}
1763
1764#ifdef CONFIG_SMP
1765/*
1766 * this function is exclusively called from pfm_close().
1767 * The context is not protected at that time, nor are interrupts
1768 * on the remote CPU. That's necessary to avoid deadlocks.
1769 */
1770static void
1771pfm_syswide_force_stop(void *info)
1772{
1773 pfm_context_t *ctx = (pfm_context_t *)info;
Al Viro64505782006-01-12 01:06:06 -08001774 struct pt_regs *regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 struct task_struct *owner;
1776 unsigned long flags;
1777 int ret;
1778
1779 if (ctx->ctx_cpu != smp_processor_id()) {
1780 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1781 ctx->ctx_cpu,
1782 smp_processor_id());
1783 return;
1784 }
1785 owner = GET_PMU_OWNER();
1786 if (owner != ctx->ctx_task) {
1787 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1788 smp_processor_id(),
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001789 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 return;
1791 }
1792 if (GET_PMU_CTX() != ctx) {
1793 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1794 smp_processor_id(),
1795 GET_PMU_CTX(), ctx);
1796 return;
1797 }
1798
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001799 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 /*
1801 * the context is already protected in pfm_close(), we simply
1802 * need to mask interrupts to avoid a PMU interrupt race on
1803 * this CPU
1804 */
1805 local_irq_save(flags);
1806
1807 ret = pfm_context_unload(ctx, NULL, 0, regs);
1808 if (ret) {
1809 DPRINT(("context_unload returned %d\n", ret));
1810 }
1811
1812 /*
1813 * unmask interrupts, PMU interrupts are now spurious here
1814 */
1815 local_irq_restore(flags);
1816}
1817
1818static void
1819pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1820{
1821 int ret;
1822
1823 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
Jens Axboe8691e5a2008-06-06 11:18:06 +02001824 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1826}
1827#endif /* CONFIG_SMP */
1828
1829/*
1830 * called for each close(). Partially free resources.
1831 * When caller is self-monitoring, the context is unloaded.
1832 */
1833static int
Miklos Szeredi75e1fcc2006-06-23 02:05:12 -07001834pfm_flush(struct file *filp, fl_owner_t id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835{
1836 pfm_context_t *ctx;
1837 struct task_struct *task;
1838 struct pt_regs *regs;
1839 unsigned long flags;
1840 unsigned long smpl_buf_size = 0UL;
1841 void *smpl_buf_vaddr = NULL;
1842 int state, is_system;
1843
1844 if (PFM_IS_FILE(filp) == 0) {
1845 DPRINT(("bad magic for\n"));
1846 return -EBADF;
1847 }
1848
1849 ctx = (pfm_context_t *)filp->private_data;
1850 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001851 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852 return -EBADF;
1853 }
1854
1855 /*
1856 * remove our file from the async queue, if we use this mode.
1857 * This can be done without the context being protected. We come
Simon Arlott72fdbdc2007-05-11 14:55:43 -07001858 * here when the context has become unreachable by other tasks.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859 *
1860 * We may still have active monitoring at this point and we may
1861 * end up in pfm_overflow_handler(). However, fasync_helper()
1862 * operates with interrupts disabled and it cleans up the
1863 * queue. If the PMU handler is called prior to entering
1864 * fasync_helper() then it will send a signal. If it is
1865 * invoked after, it will find an empty queue and no
1866 * signal will be sent. In both case, we are safe
1867 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868 PROTECT_CTX(ctx, flags);
1869
1870 state = ctx->ctx_state;
1871 is_system = ctx->ctx_fl_system;
1872
1873 task = PFM_CTX_TASK(ctx);
Al Viro64505782006-01-12 01:06:06 -08001874 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875
1876 DPRINT(("ctx_state=%d is_current=%d\n",
1877 state,
1878 task == current ? 1 : 0));
1879
1880 /*
1881 * if state == UNLOADED, then task is NULL
1882 */
1883
1884 /*
1885 * we must stop and unload because we are losing access to the context.
1886 */
1887 if (task == current) {
1888#ifdef CONFIG_SMP
1889 /*
1890 * the task IS the owner but it migrated to another CPU: that's bad
1891 * but we must handle this cleanly. Unfortunately, the kernel does
1892 * not provide a mechanism to block migration (while the context is loaded).
1893 *
1894 * We need to release the resource on the ORIGINAL cpu.
1895 */
1896 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1897
1898 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1899 /*
1900 * keep context protected but unmask interrupt for IPI
1901 */
1902 local_irq_restore(flags);
1903
1904 pfm_syswide_cleanup_other_cpu(ctx);
1905
1906 /*
1907 * restore interrupt masking
1908 */
1909 local_irq_save(flags);
1910
1911 /*
1912 * context is unloaded at this point
1913 */
1914 } else
1915#endif /* CONFIG_SMP */
1916 {
1917
1918 DPRINT(("forcing unload\n"));
1919 /*
1920 * stop and unload, returning with state UNLOADED
1921 * and session unreserved.
1922 */
1923 pfm_context_unload(ctx, NULL, 0, regs);
1924
1925 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1926 }
1927 }
1928
1929 /*
1930 * remove virtual mapping, if any, for the calling task.
1931 * cannot reset ctx field until last user is calling close().
1932 *
1933 * ctx_smpl_vaddr must never be cleared because it is needed
1934 * by every task with access to the context
1935 *
1936 * When called from do_exit(), the mm context is gone already, therefore
1937 * mm is NULL, i.e., the VMA is already gone and we do not have to
1938 * do anything here
1939 */
1940 if (ctx->ctx_smpl_vaddr && current->mm) {
1941 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1942 smpl_buf_size = ctx->ctx_smpl_size;
1943 }
1944
1945 UNPROTECT_CTX(ctx, flags);
1946
1947 /*
1948 * if there was a mapping, then we systematically remove it
1949 * at this point. Cannot be done inside critical section
1950 * because some VM function reenables interrupts.
1951 *
1952 */
1953 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1954
1955 return 0;
1956}
1957/*
1958 * called either on explicit close() or from exit_files().
1959 * Only the LAST user of the file gets to this point, i.e., it is
1960 * called only ONCE.
1961 *
1962 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1963 * (fput()),i.e, last task to access the file. Nobody else can access the
1964 * file at this point.
1965 *
1966 * When called from exit_files(), the VMA has been freed because exit_mm()
1967 * is executed before exit_files().
1968 *
1969 * When called from exit_files(), the current task is not yet ZOMBIE but we
1970 * flush the PMU state to the context.
1971 */
1972static int
1973pfm_close(struct inode *inode, struct file *filp)
1974{
1975 pfm_context_t *ctx;
1976 struct task_struct *task;
1977 struct pt_regs *regs;
1978 DECLARE_WAITQUEUE(wait, current);
1979 unsigned long flags;
1980 unsigned long smpl_buf_size = 0UL;
1981 void *smpl_buf_addr = NULL;
1982 int free_possible = 1;
1983 int state, is_system;
1984
1985 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1986
1987 if (PFM_IS_FILE(filp) == 0) {
1988 DPRINT(("bad magic\n"));
1989 return -EBADF;
1990 }
1991
1992 ctx = (pfm_context_t *)filp->private_data;
1993 if (ctx == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07001994 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001995 return -EBADF;
1996 }
1997
1998 PROTECT_CTX(ctx, flags);
1999
2000 state = ctx->ctx_state;
2001 is_system = ctx->ctx_fl_system;
2002
2003 task = PFM_CTX_TASK(ctx);
Al Viro64505782006-01-12 01:06:06 -08002004 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005
2006 DPRINT(("ctx_state=%d is_current=%d\n",
2007 state,
2008 task == current ? 1 : 0));
2009
2010 /*
2011 * if task == current, then pfm_flush() unloaded the context
2012 */
2013 if (state == PFM_CTX_UNLOADED) goto doit;
2014
2015 /*
2016 * context is loaded/masked and task != current, we need to
2017 * either force an unload or go zombie
2018 */
2019
2020 /*
2021 * The task is currently blocked or will block after an overflow.
2022 * we must force it to wakeup to get out of the
2023 * MASKED state and transition to the unloaded state by itself.
2024 *
2025 * This situation is only possible for per-task mode
2026 */
2027 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2028
2029 /*
2030 * set a "partial" zombie state to be checked
2031 * upon return from down() in pfm_handle_work().
2032 *
2033 * We cannot use the ZOMBIE state, because it is checked
2034 * by pfm_load_regs() which is called upon wakeup from down().
2035 * In such case, it would free the context and then we would
2036 * return to pfm_handle_work() which would access the
2037 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2038 * but visible to pfm_handle_work().
2039 *
2040 * For some window of time, we have a zombie context with
2041 * ctx_state = MASKED and not ZOMBIE
2042 */
2043 ctx->ctx_fl_going_zombie = 1;
2044
2045 /*
2046 * force task to wake up from MASKED state
2047 */
Jes Sorensen60f1c442006-01-18 23:46:52 -08002048 complete(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049
2050 DPRINT(("waking up ctx_state=%d\n", state));
2051
2052 /*
2053 * put ourself to sleep waiting for the other
2054 * task to report completion
2055 *
2056 * the context is protected by mutex, therefore there
2057 * is no risk of being notified of completion before
2058 * begin actually on the waitq.
2059 */
2060 set_current_state(TASK_INTERRUPTIBLE);
2061 add_wait_queue(&ctx->ctx_zombieq, &wait);
2062
2063 UNPROTECT_CTX(ctx, flags);
2064
2065 /*
2066 * XXX: check for signals :
2067 * - ok for explicit close
2068 * - not ok when coming from exit_files()
2069 */
2070 schedule();
2071
2072
2073 PROTECT_CTX(ctx, flags);
2074
2075
2076 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2077 set_current_state(TASK_RUNNING);
2078
2079 /*
2080 * context is unloaded at this point
2081 */
2082 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2083 }
2084 else if (task != current) {
2085#ifdef CONFIG_SMP
2086 /*
2087 * switch context to zombie state
2088 */
2089 ctx->ctx_state = PFM_CTX_ZOMBIE;
2090
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002091 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092 /*
2093 * cannot free the context on the spot. deferred until
2094 * the task notices the ZOMBIE state
2095 */
2096 free_possible = 0;
2097#else
2098 pfm_context_unload(ctx, NULL, 0, regs);
2099#endif
2100 }
2101
2102doit:
2103 /* reload state, may have changed during opening of critical section */
2104 state = ctx->ctx_state;
2105
2106 /*
2107 * the context is still attached to a task (possibly current)
2108 * we cannot destroy it right now
2109 */
2110
2111 /*
2112 * we must free the sampling buffer right here because
2113 * we cannot rely on it being cleaned up later by the
2114 * monitored task. It is not possible to free vmalloc'ed
2115 * memory in pfm_load_regs(). Instead, we remove the buffer
2116 * now. should there be subsequent PMU overflow originally
2117 * meant for sampling, the will be converted to spurious
2118 * and that's fine because the monitoring tools is gone anyway.
2119 */
2120 if (ctx->ctx_smpl_hdr) {
2121 smpl_buf_addr = ctx->ctx_smpl_hdr;
2122 smpl_buf_size = ctx->ctx_smpl_size;
2123 /* no more sampling */
2124 ctx->ctx_smpl_hdr = NULL;
2125 ctx->ctx_fl_is_sampling = 0;
2126 }
2127
2128 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2129 state,
2130 free_possible,
2131 smpl_buf_addr,
2132 smpl_buf_size));
2133
2134 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2135
2136 /*
2137 * UNLOADED that the session has already been unreserved.
2138 */
2139 if (state == PFM_CTX_ZOMBIE) {
2140 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2141 }
2142
2143 /*
2144 * disconnect file descriptor from context must be done
2145 * before we unlock.
2146 */
2147 filp->private_data = NULL;
2148
2149 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07002150 * if we free on the spot, the context is now completely unreachable
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 * from the callers side. The monitored task side is also cut, so we
2152 * can freely cut.
2153 *
2154 * If we have a deferred free, only the caller side is disconnected.
2155 */
2156 UNPROTECT_CTX(ctx, flags);
2157
2158 /*
2159 * All memory free operations (especially for vmalloc'ed memory)
2160 * MUST be done with interrupts ENABLED.
2161 */
2162 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2163
2164 /*
2165 * return the memory used by the context
2166 */
2167 if (free_possible) pfm_context_free(ctx);
2168
2169 return 0;
2170}
2171
2172static int
2173pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2174{
2175 DPRINT(("pfm_no_open called\n"));
2176 return -ENXIO;
2177}
2178
2179
2180
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -08002181static const struct file_operations pfm_file_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 .llseek = no_llseek,
2183 .read = pfm_read,
2184 .write = pfm_write,
2185 .poll = pfm_poll,
2186 .ioctl = pfm_ioctl,
2187 .open = pfm_no_open, /* special open code to disallow open via /proc */
2188 .fasync = pfm_fasync,
2189 .release = pfm_close,
2190 .flush = pfm_flush
2191};
2192
2193static int
2194pfmfs_delete_dentry(struct dentry *dentry)
2195{
2196 return 1;
2197}
2198
2199static struct dentry_operations pfmfs_dentry_operations = {
2200 .d_delete = pfmfs_delete_dentry,
2201};
2202
2203
Al Virof8e811b2008-05-01 14:36:36 -07002204static struct file *
2205pfm_alloc_file(pfm_context_t *ctx)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206{
Al Virof8e811b2008-05-01 14:36:36 -07002207 struct file *file;
2208 struct inode *inode;
2209 struct dentry *dentry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210 char name[32];
2211 struct qstr this;
2212
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 /*
2214 * allocate a new inode
2215 */
2216 inode = new_inode(pfmfs_mnt->mnt_sb);
Al Virof8e811b2008-05-01 14:36:36 -07002217 if (!inode)
2218 return ERR_PTR(-ENOMEM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219
2220 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2221
2222 inode->i_mode = S_IFCHR|S_IRUGO;
David Howellsef81ee92008-11-14 10:38:37 +11002223 inode->i_uid = current_fsuid();
2224 inode->i_gid = current_fsgid();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225
2226 sprintf(name, "[%lu]", inode->i_ino);
2227 this.name = name;
2228 this.len = strlen(name);
2229 this.hash = inode->i_ino;
2230
Linus Torvalds1da177e2005-04-16 15:20:36 -07002231 /*
2232 * allocate a new dcache entry
2233 */
Al Virof8e811b2008-05-01 14:36:36 -07002234 dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2235 if (!dentry) {
2236 iput(inode);
2237 return ERR_PTR(-ENOMEM);
2238 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239
Al Virof8e811b2008-05-01 14:36:36 -07002240 dentry->d_op = &pfmfs_dentry_operations;
2241 d_add(dentry, inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242
Al Virof8e811b2008-05-01 14:36:36 -07002243 file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops);
2244 if (!file) {
2245 dput(dentry);
2246 return ERR_PTR(-ENFILE);
2247 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249 file->f_flags = O_RDONLY;
Al Virof8e811b2008-05-01 14:36:36 -07002250 file->private_data = ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251
Al Virof8e811b2008-05-01 14:36:36 -07002252 return file;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253}
2254
2255static int
2256pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2257{
2258 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2259
2260 while (size > 0) {
2261 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2262
2263
2264 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2265 return -ENOMEM;
2266
2267 addr += PAGE_SIZE;
2268 buf += PAGE_SIZE;
2269 size -= PAGE_SIZE;
2270 }
2271 return 0;
2272}
2273
2274/*
2275 * allocate a sampling buffer and remaps it into the user address space of the task
2276 */
2277static int
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002278pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279{
2280 struct mm_struct *mm = task->mm;
2281 struct vm_area_struct *vma = NULL;
2282 unsigned long size;
2283 void *smpl_buf;
2284
2285
2286 /*
2287 * the fixed header + requested size and align to page boundary
2288 */
2289 size = PAGE_ALIGN(rsize);
2290
2291 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2292
2293 /*
2294 * check requested size to avoid Denial-of-service attacks
2295 * XXX: may have to refine this test
2296 * Check against address space limit.
2297 *
2298 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2299 * return -ENOMEM;
2300 */
2301 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2302 return -ENOMEM;
2303
2304 /*
2305 * We do the easy to undo allocations first.
2306 *
2307 * pfm_rvmalloc(), clears the buffer, so there is no leak
2308 */
2309 smpl_buf = pfm_rvmalloc(size);
2310 if (smpl_buf == NULL) {
2311 DPRINT(("Can't allocate sampling buffer\n"));
2312 return -ENOMEM;
2313 }
2314
2315 DPRINT(("smpl_buf @%p\n", smpl_buf));
2316
2317 /* allocate vma */
Robert P. J. Dayc3762222007-02-10 01:45:03 -08002318 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 if (!vma) {
2320 DPRINT(("Cannot allocate vma\n"));
2321 goto error_kmem;
2322 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323
2324 /*
2325 * partially initialize the vma for the sampling buffer
2326 */
2327 vma->vm_mm = mm;
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002328 vma->vm_file = filp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2330 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2331
2332 /*
2333 * Now we have everything we need and we can initialize
2334 * and connect all the data structures
2335 */
2336
2337 ctx->ctx_smpl_hdr = smpl_buf;
2338 ctx->ctx_smpl_size = size; /* aligned size */
2339
2340 /*
2341 * Let's do the difficult operations next.
2342 *
2343 * now we atomically find some area in the address space and
2344 * remap the buffer in it.
2345 */
2346 down_write(&task->mm->mmap_sem);
2347
2348 /* find some free area in address space, must have mmap sem held */
2349 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2350 if (vma->vm_start == 0UL) {
2351 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2352 up_write(&task->mm->mmap_sem);
2353 goto error;
2354 }
2355 vma->vm_end = vma->vm_start + size;
2356 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357
2358 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2359
2360 /* can only be applied to current task, need to have the mm semaphore held when called */
2361 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2362 DPRINT(("Can't remap buffer\n"));
2363 up_write(&task->mm->mmap_sem);
2364 goto error;
2365 }
2366
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002367 get_file(filp);
2368
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369 /*
2370 * now insert the vma in the vm list for the process, must be
2371 * done with mmap lock held
2372 */
2373 insert_vm_struct(mm, vma);
2374
2375 mm->total_vm += size >> PAGE_SHIFT;
Hugh Dickinsab50b8e2005-10-29 18:15:56 -07002376 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2377 vma_pages(vma));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 up_write(&task->mm->mmap_sem);
2379
2380 /*
2381 * keep track of user level virtual address
2382 */
2383 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2384 *(unsigned long *)user_vaddr = vma->vm_start;
2385
2386 return 0;
2387
2388error:
2389 kmem_cache_free(vm_area_cachep, vma);
2390error_kmem:
2391 pfm_rvfree(smpl_buf, size);
2392
2393 return -ENOMEM;
2394}
2395
2396/*
2397 * XXX: do something better here
2398 */
2399static int
2400pfm_bad_permissions(struct task_struct *task)
2401{
David Howellsef81ee92008-11-14 10:38:37 +11002402 uid_t uid = current_uid();
2403 gid_t gid = current_gid();
2404
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405 /* inspired by ptrace_attach() */
2406 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
David Howellsef81ee92008-11-14 10:38:37 +11002407 uid,
2408 gid,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002409 task->euid,
2410 task->suid,
2411 task->uid,
2412 task->egid,
2413 task->sgid));
2414
David Howellsef81ee92008-11-14 10:38:37 +11002415 return (uid != task->euid)
2416 || (uid != task->suid)
2417 || (uid != task->uid)
2418 || (gid != task->egid)
2419 || (gid != task->sgid)
2420 || (gid != task->gid)) && !capable(CAP_SYS_PTRACE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421}
2422
2423static int
2424pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2425{
2426 int ctx_flags;
2427
2428 /* valid signal */
2429
2430 ctx_flags = pfx->ctx_flags;
2431
2432 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2433
2434 /*
2435 * cannot block in this mode
2436 */
2437 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2438 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2439 return -EINVAL;
2440 }
2441 } else {
2442 }
2443 /* probably more to add here */
2444
2445 return 0;
2446}
2447
2448static int
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002449pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 unsigned int cpu, pfarg_context_t *arg)
2451{
2452 pfm_buffer_fmt_t *fmt = NULL;
2453 unsigned long size = 0UL;
2454 void *uaddr = NULL;
2455 void *fmt_arg = NULL;
2456 int ret = 0;
2457#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2458
2459 /* invoke and lock buffer format, if found */
2460 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2461 if (fmt == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002462 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463 return -EINVAL;
2464 }
2465
2466 /*
2467 * buffer argument MUST be contiguous to pfarg_context_t
2468 */
2469 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2470
2471 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2472
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002473 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474
2475 if (ret) goto error;
2476
2477 /* link buffer format and context */
2478 ctx->ctx_buf_fmt = fmt;
Al Virof8e811b2008-05-01 14:36:36 -07002479 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480
2481 /*
2482 * check if buffer format wants to use perfmon buffer allocation/mapping service
2483 */
2484 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2485 if (ret) goto error;
2486
2487 if (size) {
2488 /*
2489 * buffer is always remapped into the caller's address space
2490 */
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002491 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002492 if (ret) goto error;
2493
2494 /* keep track of user address of buffer */
2495 arg->ctx_smpl_vaddr = uaddr;
2496 }
2497 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2498
2499error:
2500 return ret;
2501}
2502
2503static void
2504pfm_reset_pmu_state(pfm_context_t *ctx)
2505{
2506 int i;
2507
2508 /*
2509 * install reset values for PMC.
2510 */
2511 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2512 if (PMC_IS_IMPL(i) == 0) continue;
2513 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2514 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2515 }
2516 /*
2517 * PMD registers are set to 0UL when the context in memset()
2518 */
2519
2520 /*
2521 * On context switched restore, we must restore ALL pmc and ALL pmd even
2522 * when they are not actively used by the task. In UP, the incoming process
2523 * may otherwise pick up left over PMC, PMD state from the previous process.
2524 * As opposed to PMD, stale PMC can cause harm to the incoming
2525 * process because they may change what is being measured.
2526 * Therefore, we must systematically reinstall the entire
2527 * PMC state. In SMP, the same thing is possible on the
2528 * same CPU but also on between 2 CPUs.
2529 *
2530 * The problem with PMD is information leaking especially
2531 * to user level when psr.sp=0
2532 *
2533 * There is unfortunately no easy way to avoid this problem
2534 * on either UP or SMP. This definitively slows down the
2535 * pfm_load_regs() function.
2536 */
2537
2538 /*
2539 * bitmask of all PMCs accessible to this context
2540 *
2541 * PMC0 is treated differently.
2542 */
2543 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2544
2545 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07002546 * bitmask of all PMDs that are accessible to this context
Linus Torvalds1da177e2005-04-16 15:20:36 -07002547 */
2548 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2549
2550 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2551
2552 /*
2553 * useful in case of re-enable after disable
2554 */
2555 ctx->ctx_used_ibrs[0] = 0UL;
2556 ctx->ctx_used_dbrs[0] = 0UL;
2557}
2558
2559static int
2560pfm_ctx_getsize(void *arg, size_t *sz)
2561{
2562 pfarg_context_t *req = (pfarg_context_t *)arg;
2563 pfm_buffer_fmt_t *fmt;
2564
2565 *sz = 0;
2566
2567 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2568
2569 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2570 if (fmt == NULL) {
2571 DPRINT(("cannot find buffer format\n"));
2572 return -EINVAL;
2573 }
2574 /* get just enough to copy in user parameters */
2575 *sz = fmt->fmt_arg_size;
2576 DPRINT(("arg_size=%lu\n", *sz));
2577
2578 return 0;
2579}
2580
2581
2582
2583/*
2584 * cannot attach if :
2585 * - kernel task
2586 * - task not owned by caller
2587 * - task incompatible with context mode
2588 */
2589static int
2590pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2591{
2592 /*
2593 * no kernel task or task not owner by caller
2594 */
2595 if (task->mm == NULL) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002596 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597 return -EPERM;
2598 }
2599 if (pfm_bad_permissions(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002600 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 return -EPERM;
2602 }
2603 /*
2604 * cannot block in self-monitoring mode
2605 */
2606 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002607 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608 return -EINVAL;
2609 }
2610
2611 if (task->exit_state == EXIT_ZOMBIE) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002612 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 return -EBUSY;
2614 }
2615
2616 /*
2617 * always ok for self
2618 */
2619 if (task == current) return 0;
2620
Matthew Wilcox21498222007-12-06 11:02:55 -05002621 if (!task_is_stopped_or_traced(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07002622 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623 return -EBUSY;
2624 }
2625 /*
2626 * make sure the task is off any CPU
2627 */
Roland McGrath85ba2d82008-07-25 19:45:58 -07002628 wait_task_inactive(task, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629
2630 /* more to come... */
2631
2632 return 0;
2633}
2634
2635static int
2636pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2637{
2638 struct task_struct *p = current;
2639 int ret;
2640
2641 /* XXX: need to add more checks here */
2642 if (pid < 2) return -EPERM;
2643
Pavel Emelyanove1b0d4b2008-02-04 23:43:03 -08002644 if (pid != task_pid_vnr(current)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645
2646 read_lock(&tasklist_lock);
2647
Pavel Emelyanove1b0d4b2008-02-04 23:43:03 -08002648 p = find_task_by_vpid(pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649
2650 /* make sure task cannot go away while we operate on it */
2651 if (p) get_task_struct(p);
2652
2653 read_unlock(&tasklist_lock);
2654
2655 if (p == NULL) return -ESRCH;
2656 }
2657
2658 ret = pfm_task_incompatible(ctx, p);
2659 if (ret == 0) {
2660 *task = p;
2661 } else if (p != current) {
2662 pfm_put_task(p);
2663 }
2664 return ret;
2665}
2666
2667
2668
2669static int
2670pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2671{
2672 pfarg_context_t *req = (pfarg_context_t *)arg;
2673 struct file *filp;
Al Virof8e811b2008-05-01 14:36:36 -07002674 struct path path;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002675 int ctx_flags;
Al Virof8e811b2008-05-01 14:36:36 -07002676 int fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002677 int ret;
2678
2679 /* let's check the arguments first */
2680 ret = pfarg_is_sane(current, req);
Al Virof8e811b2008-05-01 14:36:36 -07002681 if (ret < 0)
2682 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683
2684 ctx_flags = req->ctx_flags;
2685
2686 ret = -ENOMEM;
2687
Al Virof8e811b2008-05-01 14:36:36 -07002688 fd = get_unused_fd();
2689 if (fd < 0)
2690 return fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002691
Al Virof8e811b2008-05-01 14:36:36 -07002692 ctx = pfm_context_alloc(ctx_flags);
2693 if (!ctx)
2694 goto error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695
Al Virof8e811b2008-05-01 14:36:36 -07002696 filp = pfm_alloc_file(ctx);
2697 if (IS_ERR(filp)) {
2698 ret = PTR_ERR(filp);
2699 goto error_file;
2700 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701
Al Virof8e811b2008-05-01 14:36:36 -07002702 req->ctx_fd = ctx->ctx_fd = fd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703
2704 /*
2705 * does the user want to sample?
2706 */
2707 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
Nick Piggin41d5e5d2007-03-06 02:34:25 -08002708 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
Al Virof8e811b2008-05-01 14:36:36 -07002709 if (ret)
2710 goto buffer_error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 }
2712
Linus Torvalds1da177e2005-04-16 15:20:36 -07002713 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2714 ctx,
2715 ctx_flags,
2716 ctx->ctx_fl_system,
2717 ctx->ctx_fl_block,
2718 ctx->ctx_fl_excl_idle,
2719 ctx->ctx_fl_no_msg,
2720 ctx->ctx_fd));
2721
2722 /*
2723 * initialize soft PMU state
2724 */
2725 pfm_reset_pmu_state(ctx);
2726
Al Virof8e811b2008-05-01 14:36:36 -07002727 fd_install(fd, filp);
2728
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 return 0;
2730
2731buffer_error:
Al Virof8e811b2008-05-01 14:36:36 -07002732 path = filp->f_path;
2733 put_filp(filp);
2734 path_put(&path);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002735
2736 if (ctx->ctx_buf_fmt) {
2737 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2738 }
2739error_file:
2740 pfm_context_free(ctx);
2741
2742error:
Al Virof8e811b2008-05-01 14:36:36 -07002743 put_unused_fd(fd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002744 return ret;
2745}
2746
2747static inline unsigned long
2748pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2749{
2750 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2751 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2752 extern unsigned long carta_random32 (unsigned long seed);
2753
2754 if (reg->flags & PFM_REGFL_RANDOM) {
2755 new_seed = carta_random32(old_seed);
2756 val -= (old_seed & mask); /* counter values are negative numbers! */
2757 if ((mask >> 32) != 0)
2758 /* construct a full 64-bit random value: */
2759 new_seed |= carta_random32(old_seed >> 32) << 32;
2760 reg->seed = new_seed;
2761 }
2762 reg->lval = val;
2763 return val;
2764}
2765
2766static void
2767pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2768{
2769 unsigned long mask = ovfl_regs[0];
2770 unsigned long reset_others = 0UL;
2771 unsigned long val;
2772 int i;
2773
2774 /*
2775 * now restore reset value on sampling overflowed counters
2776 */
2777 mask >>= PMU_FIRST_COUNTER;
2778 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2779
2780 if ((mask & 0x1UL) == 0UL) continue;
2781
2782 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2783 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2784
2785 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2786 }
2787
2788 /*
2789 * Now take care of resetting the other registers
2790 */
2791 for(i = 0; reset_others; i++, reset_others >>= 1) {
2792
2793 if ((reset_others & 0x1) == 0) continue;
2794
2795 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2796
2797 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2798 is_long_reset ? "long" : "short", i, val));
2799 }
2800}
2801
2802static void
2803pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2804{
2805 unsigned long mask = ovfl_regs[0];
2806 unsigned long reset_others = 0UL;
2807 unsigned long val;
2808 int i;
2809
2810 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2811
2812 if (ctx->ctx_state == PFM_CTX_MASKED) {
2813 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2814 return;
2815 }
2816
2817 /*
2818 * now restore reset value on sampling overflowed counters
2819 */
2820 mask >>= PMU_FIRST_COUNTER;
2821 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2822
2823 if ((mask & 0x1UL) == 0UL) continue;
2824
2825 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2826 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2827
2828 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2829
2830 pfm_write_soft_counter(ctx, i, val);
2831 }
2832
2833 /*
2834 * Now take care of resetting the other registers
2835 */
2836 for(i = 0; reset_others; i++, reset_others >>= 1) {
2837
2838 if ((reset_others & 0x1) == 0) continue;
2839
2840 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2841
2842 if (PMD_IS_COUNTING(i)) {
2843 pfm_write_soft_counter(ctx, i, val);
2844 } else {
2845 ia64_set_pmd(i, val);
2846 }
2847 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2848 is_long_reset ? "long" : "short", i, val));
2849 }
2850 ia64_srlz_d();
2851}
2852
2853static int
2854pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2855{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 struct task_struct *task;
2857 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2858 unsigned long value, pmc_pm;
2859 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2860 unsigned int cnum, reg_flags, flags, pmc_type;
2861 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2862 int is_monitor, is_counting, state;
2863 int ret = -EINVAL;
2864 pfm_reg_check_t wr_func;
2865#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2866
2867 state = ctx->ctx_state;
2868 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2869 is_system = ctx->ctx_fl_system;
2870 task = ctx->ctx_task;
2871 impl_pmds = pmu_conf->impl_pmds[0];
2872
2873 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2874
2875 if (is_loaded) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002876 /*
2877 * In system wide and when the context is loaded, access can only happen
2878 * when the caller is running on the CPU being monitored by the session.
2879 * It does not have to be the owner (ctx_task) of the context per se.
2880 */
2881 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2882 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2883 return -EBUSY;
2884 }
2885 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2886 }
2887 expert_mode = pfm_sysctl.expert_mode;
2888
2889 for (i = 0; i < count; i++, req++) {
2890
2891 cnum = req->reg_num;
2892 reg_flags = req->reg_flags;
2893 value = req->reg_value;
2894 smpl_pmds = req->reg_smpl_pmds[0];
2895 reset_pmds = req->reg_reset_pmds[0];
2896 flags = 0;
2897
2898
2899 if (cnum >= PMU_MAX_PMCS) {
2900 DPRINT(("pmc%u is invalid\n", cnum));
2901 goto error;
2902 }
2903
2904 pmc_type = pmu_conf->pmc_desc[cnum].type;
2905 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2906 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2907 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2908
2909 /*
2910 * we reject all non implemented PMC as well
2911 * as attempts to modify PMC[0-3] which are used
2912 * as status registers by the PMU
2913 */
2914 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2915 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2916 goto error;
2917 }
2918 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2919 /*
2920 * If the PMC is a monitor, then if the value is not the default:
2921 * - system-wide session: PMCx.pm=1 (privileged monitor)
2922 * - per-task : PMCx.pm=0 (user monitor)
2923 */
2924 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2925 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2926 cnum,
2927 pmc_pm,
2928 is_system));
2929 goto error;
2930 }
2931
2932 if (is_counting) {
2933 /*
2934 * enforce generation of overflow interrupt. Necessary on all
2935 * CPUs.
2936 */
2937 value |= 1 << PMU_PMC_OI;
2938
2939 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2940 flags |= PFM_REGFL_OVFL_NOTIFY;
2941 }
2942
2943 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2944
2945 /* verify validity of smpl_pmds */
2946 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2947 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2948 goto error;
2949 }
2950
2951 /* verify validity of reset_pmds */
2952 if ((reset_pmds & impl_pmds) != reset_pmds) {
2953 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2954 goto error;
2955 }
2956 } else {
2957 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2958 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2959 goto error;
2960 }
2961 /* eventid on non-counting monitors are ignored */
2962 }
2963
2964 /*
2965 * execute write checker, if any
2966 */
2967 if (likely(expert_mode == 0 && wr_func)) {
2968 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2969 if (ret) goto error;
2970 ret = -EINVAL;
2971 }
2972
2973 /*
2974 * no error on this register
2975 */
2976 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2977
2978 /*
2979 * Now we commit the changes to the software state
2980 */
2981
2982 /*
2983 * update overflow information
2984 */
2985 if (is_counting) {
2986 /*
2987 * full flag update each time a register is programmed
2988 */
2989 ctx->ctx_pmds[cnum].flags = flags;
2990
2991 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2992 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2993 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2994
2995 /*
2996 * Mark all PMDS to be accessed as used.
2997 *
2998 * We do not keep track of PMC because we have to
2999 * systematically restore ALL of them.
3000 *
3001 * We do not update the used_monitors mask, because
3002 * if we have not programmed them, then will be in
3003 * a quiescent state, therefore we will not need to
3004 * mask/restore then when context is MASKED.
3005 */
3006 CTX_USED_PMD(ctx, reset_pmds);
3007 CTX_USED_PMD(ctx, smpl_pmds);
3008 /*
3009 * make sure we do not try to reset on
3010 * restart because we have established new values
3011 */
3012 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3013 }
3014 /*
3015 * Needed in case the user does not initialize the equivalent
3016 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3017 * possible leak here.
3018 */
3019 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3020
3021 /*
3022 * keep track of the monitor PMC that we are using.
3023 * we save the value of the pmc in ctx_pmcs[] and if
3024 * the monitoring is not stopped for the context we also
3025 * place it in the saved state area so that it will be
3026 * picked up later by the context switch code.
3027 *
3028 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3029 *
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003030 * The value in th_pmcs[] may be modified on overflow, i.e., when
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031 * monitoring needs to be stopped.
3032 */
3033 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3034
3035 /*
3036 * update context state
3037 */
3038 ctx->ctx_pmcs[cnum] = value;
3039
3040 if (is_loaded) {
3041 /*
3042 * write thread state
3043 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003044 if (is_system == 0) ctx->th_pmcs[cnum] = value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045
3046 /*
3047 * write hardware register if we can
3048 */
3049 if (can_access_pmu) {
3050 ia64_set_pmc(cnum, value);
3051 }
3052#ifdef CONFIG_SMP
3053 else {
3054 /*
3055 * per-task SMP only here
3056 *
3057 * we are guaranteed that the task is not running on the other CPU,
3058 * we indicate that this PMD will need to be reloaded if the task
3059 * is rescheduled on the CPU it ran last on.
3060 */
3061 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3062 }
3063#endif
3064 }
3065
3066 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3067 cnum,
3068 value,
3069 is_loaded,
3070 can_access_pmu,
3071 flags,
3072 ctx->ctx_all_pmcs[0],
3073 ctx->ctx_used_pmds[0],
3074 ctx->ctx_pmds[cnum].eventid,
3075 smpl_pmds,
3076 reset_pmds,
3077 ctx->ctx_reload_pmcs[0],
3078 ctx->ctx_used_monitors[0],
3079 ctx->ctx_ovfl_regs[0]));
3080 }
3081
3082 /*
3083 * make sure the changes are visible
3084 */
3085 if (can_access_pmu) ia64_srlz_d();
3086
3087 return 0;
3088error:
3089 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3090 return ret;
3091}
3092
3093static int
3094pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3095{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003096 struct task_struct *task;
3097 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3098 unsigned long value, hw_value, ovfl_mask;
3099 unsigned int cnum;
3100 int i, can_access_pmu = 0, state;
3101 int is_counting, is_loaded, is_system, expert_mode;
3102 int ret = -EINVAL;
3103 pfm_reg_check_t wr_func;
3104
3105
3106 state = ctx->ctx_state;
3107 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3108 is_system = ctx->ctx_fl_system;
3109 ovfl_mask = pmu_conf->ovfl_val;
3110 task = ctx->ctx_task;
3111
3112 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3113
3114 /*
3115 * on both UP and SMP, we can only write to the PMC when the task is
3116 * the owner of the local PMU.
3117 */
3118 if (likely(is_loaded)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003119 /*
3120 * In system wide and when the context is loaded, access can only happen
3121 * when the caller is running on the CPU being monitored by the session.
3122 * It does not have to be the owner (ctx_task) of the context per se.
3123 */
3124 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3125 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3126 return -EBUSY;
3127 }
3128 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3129 }
3130 expert_mode = pfm_sysctl.expert_mode;
3131
3132 for (i = 0; i < count; i++, req++) {
3133
3134 cnum = req->reg_num;
3135 value = req->reg_value;
3136
3137 if (!PMD_IS_IMPL(cnum)) {
3138 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3139 goto abort_mission;
3140 }
3141 is_counting = PMD_IS_COUNTING(cnum);
3142 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3143
3144 /*
3145 * execute write checker, if any
3146 */
3147 if (unlikely(expert_mode == 0 && wr_func)) {
3148 unsigned long v = value;
3149
3150 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3151 if (ret) goto abort_mission;
3152
3153 value = v;
3154 ret = -EINVAL;
3155 }
3156
3157 /*
3158 * no error on this register
3159 */
3160 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3161
3162 /*
3163 * now commit changes to software state
3164 */
3165 hw_value = value;
3166
3167 /*
3168 * update virtualized (64bits) counter
3169 */
3170 if (is_counting) {
3171 /*
3172 * write context state
3173 */
3174 ctx->ctx_pmds[cnum].lval = value;
3175
3176 /*
3177 * when context is load we use the split value
3178 */
3179 if (is_loaded) {
3180 hw_value = value & ovfl_mask;
3181 value = value & ~ovfl_mask;
3182 }
3183 }
3184 /*
3185 * update reset values (not just for counters)
3186 */
3187 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3188 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3189
3190 /*
3191 * update randomization parameters (not just for counters)
3192 */
3193 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3194 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3195
3196 /*
3197 * update context value
3198 */
3199 ctx->ctx_pmds[cnum].val = value;
3200
3201 /*
3202 * Keep track of what we use
3203 *
3204 * We do not keep track of PMC because we have to
3205 * systematically restore ALL of them.
3206 */
3207 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3208
3209 /*
3210 * mark this PMD register used as well
3211 */
3212 CTX_USED_PMD(ctx, RDEP(cnum));
3213
3214 /*
3215 * make sure we do not try to reset on
3216 * restart because we have established new values
3217 */
3218 if (is_counting && state == PFM_CTX_MASKED) {
3219 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3220 }
3221
3222 if (is_loaded) {
3223 /*
3224 * write thread state
3225 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003226 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227
3228 /*
3229 * write hardware register if we can
3230 */
3231 if (can_access_pmu) {
3232 ia64_set_pmd(cnum, hw_value);
3233 } else {
3234#ifdef CONFIG_SMP
3235 /*
3236 * we are guaranteed that the task is not running on the other CPU,
3237 * we indicate that this PMD will need to be reloaded if the task
3238 * is rescheduled on the CPU it ran last on.
3239 */
3240 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3241#endif
3242 }
3243 }
3244
3245 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3246 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3247 cnum,
3248 value,
3249 is_loaded,
3250 can_access_pmu,
3251 hw_value,
3252 ctx->ctx_pmds[cnum].val,
3253 ctx->ctx_pmds[cnum].short_reset,
3254 ctx->ctx_pmds[cnum].long_reset,
3255 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3256 ctx->ctx_pmds[cnum].seed,
3257 ctx->ctx_pmds[cnum].mask,
3258 ctx->ctx_used_pmds[0],
3259 ctx->ctx_pmds[cnum].reset_pmds[0],
3260 ctx->ctx_reload_pmds[0],
3261 ctx->ctx_all_pmds[0],
3262 ctx->ctx_ovfl_regs[0]));
3263 }
3264
3265 /*
3266 * make changes visible
3267 */
3268 if (can_access_pmu) ia64_srlz_d();
3269
3270 return 0;
3271
3272abort_mission:
3273 /*
3274 * for now, we have only one possibility for error
3275 */
3276 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3277 return ret;
3278}
3279
3280/*
3281 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3282 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3283 * interrupt is delivered during the call, it will be kept pending until we leave, making
3284 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3285 * guaranteed to return consistent data to the user, it may simply be old. It is not
3286 * trivial to treat the overflow while inside the call because you may end up in
3287 * some module sampling buffer code causing deadlocks.
3288 */
3289static int
3290pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3291{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292 struct task_struct *task;
3293 unsigned long val = 0UL, lval, ovfl_mask, sval;
3294 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3295 unsigned int cnum, reg_flags = 0;
3296 int i, can_access_pmu = 0, state;
3297 int is_loaded, is_system, is_counting, expert_mode;
3298 int ret = -EINVAL;
3299 pfm_reg_check_t rd_func;
3300
3301 /*
3302 * access is possible when loaded only for
3303 * self-monitoring tasks or in UP mode
3304 */
3305
3306 state = ctx->ctx_state;
3307 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3308 is_system = ctx->ctx_fl_system;
3309 ovfl_mask = pmu_conf->ovfl_val;
3310 task = ctx->ctx_task;
3311
3312 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3313
3314 if (likely(is_loaded)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003315 /*
3316 * In system wide and when the context is loaded, access can only happen
3317 * when the caller is running on the CPU being monitored by the session.
3318 * It does not have to be the owner (ctx_task) of the context per se.
3319 */
3320 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3321 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3322 return -EBUSY;
3323 }
3324 /*
3325 * this can be true when not self-monitoring only in UP
3326 */
3327 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3328
3329 if (can_access_pmu) ia64_srlz_d();
3330 }
3331 expert_mode = pfm_sysctl.expert_mode;
3332
3333 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3334 is_loaded,
3335 can_access_pmu,
3336 state));
3337
3338 /*
3339 * on both UP and SMP, we can only read the PMD from the hardware register when
3340 * the task is the owner of the local PMU.
3341 */
3342
3343 for (i = 0; i < count; i++, req++) {
3344
3345 cnum = req->reg_num;
3346 reg_flags = req->reg_flags;
3347
3348 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3349 /*
3350 * we can only read the register that we use. That includes
Simon Arlott72fdbdc2007-05-11 14:55:43 -07003351 * the one we explicitly initialize AND the one we want included
Linus Torvalds1da177e2005-04-16 15:20:36 -07003352 * in the sampling buffer (smpl_regs).
3353 *
3354 * Having this restriction allows optimization in the ctxsw routine
3355 * without compromising security (leaks)
3356 */
3357 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3358
3359 sval = ctx->ctx_pmds[cnum].val;
3360 lval = ctx->ctx_pmds[cnum].lval;
3361 is_counting = PMD_IS_COUNTING(cnum);
3362
3363 /*
3364 * If the task is not the current one, then we check if the
3365 * PMU state is still in the local live register due to lazy ctxsw.
3366 * If true, then we read directly from the registers.
3367 */
3368 if (can_access_pmu){
3369 val = ia64_get_pmd(cnum);
3370 } else {
3371 /*
3372 * context has been saved
3373 * if context is zombie, then task does not exist anymore.
3374 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3375 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07003376 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377 }
3378 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3379
3380 if (is_counting) {
3381 /*
3382 * XXX: need to check for overflow when loaded
3383 */
3384 val &= ovfl_mask;
3385 val += sval;
3386 }
3387
3388 /*
3389 * execute read checker, if any
3390 */
3391 if (unlikely(expert_mode == 0 && rd_func)) {
3392 unsigned long v = val;
3393 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3394 if (ret) goto error;
3395 val = v;
3396 ret = -EINVAL;
3397 }
3398
3399 PFM_REG_RETFLAG_SET(reg_flags, 0);
3400
3401 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3402
3403 /*
3404 * update register return value, abort all if problem during copy.
3405 * we only modify the reg_flags field. no check mode is fine because
3406 * access has been verified upfront in sys_perfmonctl().
3407 */
3408 req->reg_value = val;
3409 req->reg_flags = reg_flags;
3410 req->reg_last_reset_val = lval;
3411 }
3412
3413 return 0;
3414
3415error:
3416 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3417 return ret;
3418}
3419
3420int
3421pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3422{
3423 pfm_context_t *ctx;
3424
3425 if (req == NULL) return -EINVAL;
3426
3427 ctx = GET_PMU_CTX();
3428
3429 if (ctx == NULL) return -EINVAL;
3430
3431 /*
3432 * for now limit to current task, which is enough when calling
3433 * from overflow handler
3434 */
3435 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3436
3437 return pfm_write_pmcs(ctx, req, nreq, regs);
3438}
3439EXPORT_SYMBOL(pfm_mod_write_pmcs);
3440
3441int
3442pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3443{
3444 pfm_context_t *ctx;
3445
3446 if (req == NULL) return -EINVAL;
3447
3448 ctx = GET_PMU_CTX();
3449
3450 if (ctx == NULL) return -EINVAL;
3451
3452 /*
3453 * for now limit to current task, which is enough when calling
3454 * from overflow handler
3455 */
3456 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3457
3458 return pfm_read_pmds(ctx, req, nreq, regs);
3459}
3460EXPORT_SYMBOL(pfm_mod_read_pmds);
3461
3462/*
3463 * Only call this function when a process it trying to
3464 * write the debug registers (reading is always allowed)
3465 */
3466int
3467pfm_use_debug_registers(struct task_struct *task)
3468{
3469 pfm_context_t *ctx = task->thread.pfm_context;
3470 unsigned long flags;
3471 int ret = 0;
3472
3473 if (pmu_conf->use_rr_dbregs == 0) return 0;
3474
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003475 DPRINT(("called for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476
3477 /*
3478 * do it only once
3479 */
3480 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3481
3482 /*
3483 * Even on SMP, we do not need to use an atomic here because
3484 * the only way in is via ptrace() and this is possible only when the
3485 * process is stopped. Even in the case where the ctxsw out is not totally
3486 * completed by the time we come here, there is no way the 'stopped' process
3487 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3488 * So this is always safe.
3489 */
3490 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3491
3492 LOCK_PFS(flags);
3493
3494 /*
3495 * We cannot allow setting breakpoints when system wide monitoring
3496 * sessions are using the debug registers.
3497 */
3498 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3499 ret = -1;
3500 else
3501 pfm_sessions.pfs_ptrace_use_dbregs++;
3502
3503 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3504 pfm_sessions.pfs_ptrace_use_dbregs,
3505 pfm_sessions.pfs_sys_use_dbregs,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003506 task_pid_nr(task), ret));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507
3508 UNLOCK_PFS(flags);
3509
3510 return ret;
3511}
3512
3513/*
3514 * This function is called for every task that exits with the
3515 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3516 * able to use the debug registers for debugging purposes via
3517 * ptrace(). Therefore we know it was not using them for
3518 * perfmormance monitoring, so we only decrement the number
3519 * of "ptraced" debug register users to keep the count up to date
3520 */
3521int
3522pfm_release_debug_registers(struct task_struct *task)
3523{
3524 unsigned long flags;
3525 int ret;
3526
3527 if (pmu_conf->use_rr_dbregs == 0) return 0;
3528
3529 LOCK_PFS(flags);
3530 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003531 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 ret = -1;
3533 } else {
3534 pfm_sessions.pfs_ptrace_use_dbregs--;
3535 ret = 0;
3536 }
3537 UNLOCK_PFS(flags);
3538
3539 return ret;
3540}
3541
3542static int
3543pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3544{
3545 struct task_struct *task;
3546 pfm_buffer_fmt_t *fmt;
3547 pfm_ovfl_ctrl_t rst_ctrl;
3548 int state, is_system;
3549 int ret = 0;
3550
3551 state = ctx->ctx_state;
3552 fmt = ctx->ctx_buf_fmt;
3553 is_system = ctx->ctx_fl_system;
3554 task = PFM_CTX_TASK(ctx);
3555
3556 switch(state) {
3557 case PFM_CTX_MASKED:
3558 break;
3559 case PFM_CTX_LOADED:
3560 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3561 /* fall through */
3562 case PFM_CTX_UNLOADED:
3563 case PFM_CTX_ZOMBIE:
3564 DPRINT(("invalid state=%d\n", state));
3565 return -EBUSY;
3566 default:
3567 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3568 return -EINVAL;
3569 }
3570
3571 /*
3572 * In system wide and when the context is loaded, access can only happen
3573 * when the caller is running on the CPU being monitored by the session.
3574 * It does not have to be the owner (ctx_task) of the context per se.
3575 */
3576 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3577 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3578 return -EBUSY;
3579 }
3580
3581 /* sanity check */
3582 if (unlikely(task == NULL)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003583 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 return -EINVAL;
3585 }
3586
3587 if (task == current || is_system) {
3588
3589 fmt = ctx->ctx_buf_fmt;
3590
3591 DPRINT(("restarting self %d ovfl=0x%lx\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003592 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593 ctx->ctx_ovfl_regs[0]));
3594
3595 if (CTX_HAS_SMPL(ctx)) {
3596
3597 prefetch(ctx->ctx_smpl_hdr);
3598
3599 rst_ctrl.bits.mask_monitoring = 0;
3600 rst_ctrl.bits.reset_ovfl_pmds = 0;
3601
3602 if (state == PFM_CTX_LOADED)
3603 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3604 else
3605 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3606 } else {
3607 rst_ctrl.bits.mask_monitoring = 0;
3608 rst_ctrl.bits.reset_ovfl_pmds = 1;
3609 }
3610
3611 if (ret == 0) {
3612 if (rst_ctrl.bits.reset_ovfl_pmds)
3613 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3614
3615 if (rst_ctrl.bits.mask_monitoring == 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003616 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617
3618 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3619 } else {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003620 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003621
3622 // cannot use pfm_stop_monitoring(task, regs);
3623 }
3624 }
3625 /*
3626 * clear overflowed PMD mask to remove any stale information
3627 */
3628 ctx->ctx_ovfl_regs[0] = 0UL;
3629
3630 /*
3631 * back to LOADED state
3632 */
3633 ctx->ctx_state = PFM_CTX_LOADED;
3634
3635 /*
3636 * XXX: not really useful for self monitoring
3637 */
3638 ctx->ctx_fl_can_restart = 0;
3639
3640 return 0;
3641 }
3642
3643 /*
3644 * restart another task
3645 */
3646
3647 /*
3648 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3649 * one is seen by the task.
3650 */
3651 if (state == PFM_CTX_MASKED) {
3652 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3653 /*
3654 * will prevent subsequent restart before this one is
3655 * seen by other task
3656 */
3657 ctx->ctx_fl_can_restart = 0;
3658 }
3659
3660 /*
3661 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3662 * the task is blocked or on its way to block. That's the normal
3663 * restart path. If the monitoring is not masked, then the task
3664 * can be actively monitoring and we cannot directly intervene.
3665 * Therefore we use the trap mechanism to catch the task and
3666 * force it to reset the buffer/reset PMDs.
3667 *
3668 * if non-blocking, then we ensure that the task will go into
3669 * pfm_handle_work() before returning to user mode.
3670 *
Simon Arlott72fdbdc2007-05-11 14:55:43 -07003671 * We cannot explicitly reset another task, it MUST always
Linus Torvalds1da177e2005-04-16 15:20:36 -07003672 * be done by the task itself. This works for system wide because
3673 * the tool that is controlling the session is logically doing
3674 * "self-monitoring".
3675 */
3676 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003677 DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
Jes Sorensen60f1c442006-01-18 23:46:52 -08003678 complete(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679 } else {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003680 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681
3682 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3683
3684 PFM_SET_WORK_PENDING(task, 1);
3685
Shaohua Lif14488c2008-10-06 10:43:06 -07003686 set_notify_resume(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003687
3688 /*
3689 * XXX: send reschedule if task runs on another CPU
3690 */
3691 }
3692 return 0;
3693}
3694
3695static int
3696pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3697{
3698 unsigned int m = *(unsigned int *)arg;
3699
3700 pfm_sysctl.debug = m == 0 ? 0 : 1;
3701
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3703
3704 if (m == 0) {
3705 memset(pfm_stats, 0, sizeof(pfm_stats));
3706 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3707 }
3708 return 0;
3709}
3710
3711/*
3712 * arg can be NULL and count can be zero for this function
3713 */
3714static int
3715pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3716{
3717 struct thread_struct *thread = NULL;
3718 struct task_struct *task;
3719 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3720 unsigned long flags;
3721 dbreg_t dbreg;
3722 unsigned int rnum;
3723 int first_time;
3724 int ret = 0, state;
3725 int i, can_access_pmu = 0;
3726 int is_system, is_loaded;
3727
3728 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3729
3730 state = ctx->ctx_state;
3731 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3732 is_system = ctx->ctx_fl_system;
3733 task = ctx->ctx_task;
3734
3735 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3736
3737 /*
3738 * on both UP and SMP, we can only write to the PMC when the task is
3739 * the owner of the local PMU.
3740 */
3741 if (is_loaded) {
3742 thread = &task->thread;
3743 /*
3744 * In system wide and when the context is loaded, access can only happen
3745 * when the caller is running on the CPU being monitored by the session.
3746 * It does not have to be the owner (ctx_task) of the context per se.
3747 */
3748 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3749 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3750 return -EBUSY;
3751 }
3752 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3753 }
3754
3755 /*
3756 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3757 * ensuring that no real breakpoint can be installed via this call.
3758 *
3759 * IMPORTANT: regs can be NULL in this function
3760 */
3761
3762 first_time = ctx->ctx_fl_using_dbreg == 0;
3763
3764 /*
3765 * don't bother if we are loaded and task is being debugged
3766 */
3767 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003768 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003769 return -EBUSY;
3770 }
3771
3772 /*
3773 * check for debug registers in system wide mode
3774 *
3775 * If though a check is done in pfm_context_load(),
3776 * we must repeat it here, in case the registers are
3777 * written after the context is loaded
3778 */
3779 if (is_loaded) {
3780 LOCK_PFS(flags);
3781
3782 if (first_time && is_system) {
3783 if (pfm_sessions.pfs_ptrace_use_dbregs)
3784 ret = -EBUSY;
3785 else
3786 pfm_sessions.pfs_sys_use_dbregs++;
3787 }
3788 UNLOCK_PFS(flags);
3789 }
3790
3791 if (ret != 0) return ret;
3792
3793 /*
3794 * mark ourself as user of the debug registers for
3795 * perfmon purposes.
3796 */
3797 ctx->ctx_fl_using_dbreg = 1;
3798
3799 /*
3800 * clear hardware registers to make sure we don't
3801 * pick up stale state.
3802 *
3803 * for a system wide session, we do not use
3804 * thread.dbr, thread.ibr because this process
3805 * never leaves the current CPU and the state
3806 * is shared by all processes running on it
3807 */
3808 if (first_time && can_access_pmu) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003809 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003810 for (i=0; i < pmu_conf->num_ibrs; i++) {
3811 ia64_set_ibr(i, 0UL);
3812 ia64_dv_serialize_instruction();
3813 }
3814 ia64_srlz_i();
3815 for (i=0; i < pmu_conf->num_dbrs; i++) {
3816 ia64_set_dbr(i, 0UL);
3817 ia64_dv_serialize_data();
3818 }
3819 ia64_srlz_d();
3820 }
3821
3822 /*
3823 * Now install the values into the registers
3824 */
3825 for (i = 0; i < count; i++, req++) {
3826
3827 rnum = req->dbreg_num;
3828 dbreg.val = req->dbreg_value;
3829
3830 ret = -EINVAL;
3831
3832 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3833 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3834 rnum, dbreg.val, mode, i, count));
3835
3836 goto abort_mission;
3837 }
3838
3839 /*
3840 * make sure we do not install enabled breakpoint
3841 */
3842 if (rnum & 0x1) {
3843 if (mode == PFM_CODE_RR)
3844 dbreg.ibr.ibr_x = 0;
3845 else
3846 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3847 }
3848
3849 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3850
3851 /*
3852 * Debug registers, just like PMC, can only be modified
3853 * by a kernel call. Moreover, perfmon() access to those
3854 * registers are centralized in this routine. The hardware
3855 * does not modify the value of these registers, therefore,
3856 * if we save them as they are written, we can avoid having
3857 * to save them on context switch out. This is made possible
3858 * by the fact that when perfmon uses debug registers, ptrace()
3859 * won't be able to modify them concurrently.
3860 */
3861 if (mode == PFM_CODE_RR) {
3862 CTX_USED_IBR(ctx, rnum);
3863
3864 if (can_access_pmu) {
3865 ia64_set_ibr(rnum, dbreg.val);
3866 ia64_dv_serialize_instruction();
3867 }
3868
3869 ctx->ctx_ibrs[rnum] = dbreg.val;
3870
3871 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3872 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3873 } else {
3874 CTX_USED_DBR(ctx, rnum);
3875
3876 if (can_access_pmu) {
3877 ia64_set_dbr(rnum, dbreg.val);
3878 ia64_dv_serialize_data();
3879 }
3880 ctx->ctx_dbrs[rnum] = dbreg.val;
3881
3882 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3883 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3884 }
3885 }
3886
3887 return 0;
3888
3889abort_mission:
3890 /*
3891 * in case it was our first attempt, we undo the global modifications
3892 */
3893 if (first_time) {
3894 LOCK_PFS(flags);
3895 if (ctx->ctx_fl_system) {
3896 pfm_sessions.pfs_sys_use_dbregs--;
3897 }
3898 UNLOCK_PFS(flags);
3899 ctx->ctx_fl_using_dbreg = 0;
3900 }
3901 /*
3902 * install error return flag
3903 */
3904 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3905
3906 return ret;
3907}
3908
3909static int
3910pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3911{
3912 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3913}
3914
3915static int
3916pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3917{
3918 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3919}
3920
3921int
3922pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3923{
3924 pfm_context_t *ctx;
3925
3926 if (req == NULL) return -EINVAL;
3927
3928 ctx = GET_PMU_CTX();
3929
3930 if (ctx == NULL) return -EINVAL;
3931
3932 /*
3933 * for now limit to current task, which is enough when calling
3934 * from overflow handler
3935 */
3936 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3937
3938 return pfm_write_ibrs(ctx, req, nreq, regs);
3939}
3940EXPORT_SYMBOL(pfm_mod_write_ibrs);
3941
3942int
3943pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3944{
3945 pfm_context_t *ctx;
3946
3947 if (req == NULL) return -EINVAL;
3948
3949 ctx = GET_PMU_CTX();
3950
3951 if (ctx == NULL) return -EINVAL;
3952
3953 /*
3954 * for now limit to current task, which is enough when calling
3955 * from overflow handler
3956 */
3957 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3958
3959 return pfm_write_dbrs(ctx, req, nreq, regs);
3960}
3961EXPORT_SYMBOL(pfm_mod_write_dbrs);
3962
3963
3964static int
3965pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3966{
3967 pfarg_features_t *req = (pfarg_features_t *)arg;
3968
3969 req->ft_version = PFM_VERSION;
3970 return 0;
3971}
3972
3973static int
3974pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3975{
3976 struct pt_regs *tregs;
3977 struct task_struct *task = PFM_CTX_TASK(ctx);
3978 int state, is_system;
3979
3980 state = ctx->ctx_state;
3981 is_system = ctx->ctx_fl_system;
3982
3983 /*
3984 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3985 */
3986 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3987
3988 /*
3989 * In system wide and when the context is loaded, access can only happen
3990 * when the caller is running on the CPU being monitored by the session.
3991 * It does not have to be the owner (ctx_task) of the context per se.
3992 */
3993 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3994 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3995 return -EBUSY;
3996 }
3997 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07003998 task_pid_nr(PFM_CTX_TASK(ctx)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999 state,
4000 is_system));
4001 /*
4002 * in system mode, we need to update the PMU directly
4003 * and the user level state of the caller, which may not
4004 * necessarily be the creator of the context.
4005 */
4006 if (is_system) {
4007 /*
4008 * Update local PMU first
4009 *
4010 * disable dcr pp
4011 */
4012 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4013 ia64_srlz_i();
4014
4015 /*
4016 * update local cpuinfo
4017 */
4018 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4019
4020 /*
4021 * stop monitoring, does srlz.i
4022 */
4023 pfm_clear_psr_pp();
4024
4025 /*
4026 * stop monitoring in the caller
4027 */
4028 ia64_psr(regs)->pp = 0;
4029
4030 return 0;
4031 }
4032 /*
4033 * per-task mode
4034 */
4035
4036 if (task == current) {
4037 /* stop monitoring at kernel level */
4038 pfm_clear_psr_up();
4039
4040 /*
4041 * stop monitoring at the user level
4042 */
4043 ia64_psr(regs)->up = 0;
4044 } else {
Al Viro64505782006-01-12 01:06:06 -08004045 tregs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004046
4047 /*
4048 * stop monitoring at the user level
4049 */
4050 ia64_psr(tregs)->up = 0;
4051
4052 /*
4053 * monitoring disabled in kernel at next reschedule
4054 */
4055 ctx->ctx_saved_psr_up = 0;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004056 DPRINT(("task=[%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004057 }
4058 return 0;
4059}
4060
4061
4062static int
4063pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4064{
4065 struct pt_regs *tregs;
4066 int state, is_system;
4067
4068 state = ctx->ctx_state;
4069 is_system = ctx->ctx_fl_system;
4070
4071 if (state != PFM_CTX_LOADED) return -EINVAL;
4072
4073 /*
4074 * In system wide and when the context is loaded, access can only happen
4075 * when the caller is running on the CPU being monitored by the session.
4076 * It does not have to be the owner (ctx_task) of the context per se.
4077 */
4078 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4079 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4080 return -EBUSY;
4081 }
4082
4083 /*
4084 * in system mode, we need to update the PMU directly
4085 * and the user level state of the caller, which may not
4086 * necessarily be the creator of the context.
4087 */
4088 if (is_system) {
4089
4090 /*
4091 * set user level psr.pp for the caller
4092 */
4093 ia64_psr(regs)->pp = 1;
4094
4095 /*
4096 * now update the local PMU and cpuinfo
4097 */
4098 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4099
4100 /*
4101 * start monitoring at kernel level
4102 */
4103 pfm_set_psr_pp();
4104
4105 /* enable dcr pp */
4106 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4107 ia64_srlz_i();
4108
4109 return 0;
4110 }
4111
4112 /*
4113 * per-process mode
4114 */
4115
4116 if (ctx->ctx_task == current) {
4117
4118 /* start monitoring at kernel level */
4119 pfm_set_psr_up();
4120
4121 /*
4122 * activate monitoring at user level
4123 */
4124 ia64_psr(regs)->up = 1;
4125
4126 } else {
Al Viro64505782006-01-12 01:06:06 -08004127 tregs = task_pt_regs(ctx->ctx_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004128
4129 /*
4130 * start monitoring at the kernel level the next
4131 * time the task is scheduled
4132 */
4133 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4134
4135 /*
4136 * activate monitoring at user level
4137 */
4138 ia64_psr(tregs)->up = 1;
4139 }
4140 return 0;
4141}
4142
4143static int
4144pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4145{
4146 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4147 unsigned int cnum;
4148 int i;
4149 int ret = -EINVAL;
4150
4151 for (i = 0; i < count; i++, req++) {
4152
4153 cnum = req->reg_num;
4154
4155 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4156
4157 req->reg_value = PMC_DFL_VAL(cnum);
4158
4159 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4160
4161 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4162 }
4163 return 0;
4164
4165abort_mission:
4166 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4167 return ret;
4168}
4169
4170static int
4171pfm_check_task_exist(pfm_context_t *ctx)
4172{
4173 struct task_struct *g, *t;
4174 int ret = -ESRCH;
4175
4176 read_lock(&tasklist_lock);
4177
4178 do_each_thread (g, t) {
4179 if (t->thread.pfm_context == ctx) {
4180 ret = 0;
Li Zefan6794c752008-04-01 12:29:34 +08004181 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004182 }
4183 } while_each_thread (g, t);
Li Zefan6794c752008-04-01 12:29:34 +08004184out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004185 read_unlock(&tasklist_lock);
4186
4187 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4188
4189 return ret;
4190}
4191
4192static int
4193pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4194{
4195 struct task_struct *task;
4196 struct thread_struct *thread;
4197 struct pfm_context_t *old;
4198 unsigned long flags;
4199#ifndef CONFIG_SMP
4200 struct task_struct *owner_task = NULL;
4201#endif
4202 pfarg_load_t *req = (pfarg_load_t *)arg;
4203 unsigned long *pmcs_source, *pmds_source;
4204 int the_cpu;
4205 int ret = 0;
4206 int state, is_system, set_dbregs = 0;
4207
4208 state = ctx->ctx_state;
4209 is_system = ctx->ctx_fl_system;
4210 /*
4211 * can only load from unloaded or terminated state
4212 */
4213 if (state != PFM_CTX_UNLOADED) {
4214 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4215 req->load_pid,
4216 ctx->ctx_state));
stephane eraniana5a70b72005-04-18 11:42:00 -07004217 return -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 }
4219
4220 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4221
4222 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4223 DPRINT(("cannot use blocking mode on self\n"));
4224 return -EINVAL;
4225 }
4226
4227 ret = pfm_get_task(ctx, req->load_pid, &task);
4228 if (ret) {
4229 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4230 return ret;
4231 }
4232
4233 ret = -EINVAL;
4234
4235 /*
4236 * system wide is self monitoring only
4237 */
4238 if (is_system && task != current) {
4239 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4240 req->load_pid));
4241 goto error;
4242 }
4243
4244 thread = &task->thread;
4245
4246 ret = 0;
4247 /*
4248 * cannot load a context which is using range restrictions,
4249 * into a task that is being debugged.
4250 */
4251 if (ctx->ctx_fl_using_dbreg) {
4252 if (thread->flags & IA64_THREAD_DBG_VALID) {
4253 ret = -EBUSY;
4254 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4255 goto error;
4256 }
4257 LOCK_PFS(flags);
4258
4259 if (is_system) {
4260 if (pfm_sessions.pfs_ptrace_use_dbregs) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004261 DPRINT(("cannot load [%d] dbregs in use\n",
4262 task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004263 ret = -EBUSY;
4264 } else {
4265 pfm_sessions.pfs_sys_use_dbregs++;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004266 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004267 set_dbregs = 1;
4268 }
4269 }
4270
4271 UNLOCK_PFS(flags);
4272
4273 if (ret) goto error;
4274 }
4275
4276 /*
4277 * SMP system-wide monitoring implies self-monitoring.
4278 *
4279 * The programming model expects the task to
4280 * be pinned on a CPU throughout the session.
4281 * Here we take note of the current CPU at the
4282 * time the context is loaded. No call from
4283 * another CPU will be allowed.
4284 *
4285 * The pinning via shed_setaffinity()
4286 * must be done by the calling task prior
4287 * to this call.
4288 *
4289 * systemwide: keep track of CPU this session is supposed to run on
4290 */
4291 the_cpu = ctx->ctx_cpu = smp_processor_id();
4292
4293 ret = -EBUSY;
4294 /*
4295 * now reserve the session
4296 */
4297 ret = pfm_reserve_session(current, is_system, the_cpu);
4298 if (ret) goto error;
4299
4300 /*
4301 * task is necessarily stopped at this point.
4302 *
4303 * If the previous context was zombie, then it got removed in
4304 * pfm_save_regs(). Therefore we should not see it here.
4305 * If we see a context, then this is an active context
4306 *
4307 * XXX: needs to be atomic
4308 */
4309 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4310 thread->pfm_context, ctx));
4311
stephane.eranian@hp.com6bf11e82005-07-28 05:18:00 -07004312 ret = -EBUSY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004313 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4314 if (old != NULL) {
4315 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4316 goto error_unres;
4317 }
4318
4319 pfm_reset_msgq(ctx);
4320
4321 ctx->ctx_state = PFM_CTX_LOADED;
4322
4323 /*
4324 * link context to task
4325 */
4326 ctx->ctx_task = task;
4327
4328 if (is_system) {
4329 /*
4330 * we load as stopped
4331 */
4332 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4333 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4334
4335 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4336 } else {
4337 thread->flags |= IA64_THREAD_PM_VALID;
4338 }
4339
4340 /*
4341 * propagate into thread-state
4342 */
4343 pfm_copy_pmds(task, ctx);
4344 pfm_copy_pmcs(task, ctx);
4345
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07004346 pmcs_source = ctx->th_pmcs;
4347 pmds_source = ctx->th_pmds;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004348
4349 /*
4350 * always the case for system-wide
4351 */
4352 if (task == current) {
4353
4354 if (is_system == 0) {
4355
4356 /* allow user level control */
4357 ia64_psr(regs)->sp = 0;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004358 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004359
4360 SET_LAST_CPU(ctx, smp_processor_id());
4361 INC_ACTIVATION();
4362 SET_ACTIVATION(ctx);
4363#ifndef CONFIG_SMP
4364 /*
4365 * push the other task out, if any
4366 */
4367 owner_task = GET_PMU_OWNER();
4368 if (owner_task) pfm_lazy_save_regs(owner_task);
4369#endif
4370 }
4371 /*
4372 * load all PMD from ctx to PMU (as opposed to thread state)
4373 * restore all PMC from ctx to PMU
4374 */
4375 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4376 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4377
4378 ctx->ctx_reload_pmcs[0] = 0UL;
4379 ctx->ctx_reload_pmds[0] = 0UL;
4380
4381 /*
4382 * guaranteed safe by earlier check against DBG_VALID
4383 */
4384 if (ctx->ctx_fl_using_dbreg) {
4385 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4386 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4387 }
4388 /*
4389 * set new ownership
4390 */
4391 SET_PMU_OWNER(task, ctx);
4392
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004393 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004394 } else {
4395 /*
4396 * when not current, task MUST be stopped, so this is safe
4397 */
Al Viro64505782006-01-12 01:06:06 -08004398 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004399
4400 /* force a full reload */
4401 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4402 SET_LAST_CPU(ctx, -1);
4403
4404 /* initial saved psr (stopped) */
4405 ctx->ctx_saved_psr_up = 0UL;
4406 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4407 }
4408
4409 ret = 0;
4410
4411error_unres:
4412 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4413error:
4414 /*
4415 * we must undo the dbregs setting (for system-wide)
4416 */
4417 if (ret && set_dbregs) {
4418 LOCK_PFS(flags);
4419 pfm_sessions.pfs_sys_use_dbregs--;
4420 UNLOCK_PFS(flags);
4421 }
4422 /*
4423 * release task, there is now a link with the context
4424 */
4425 if (is_system == 0 && task != current) {
4426 pfm_put_task(task);
4427
4428 if (ret == 0) {
4429 ret = pfm_check_task_exist(ctx);
4430 if (ret) {
4431 ctx->ctx_state = PFM_CTX_UNLOADED;
4432 ctx->ctx_task = NULL;
4433 }
4434 }
4435 }
4436 return ret;
4437}
4438
4439/*
4440 * in this function, we do not need to increase the use count
4441 * for the task via get_task_struct(), because we hold the
4442 * context lock. If the task were to disappear while having
4443 * a context attached, it would go through pfm_exit_thread()
4444 * which also grabs the context lock and would therefore be blocked
4445 * until we are here.
4446 */
4447static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4448
4449static int
4450pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4451{
4452 struct task_struct *task = PFM_CTX_TASK(ctx);
4453 struct pt_regs *tregs;
4454 int prev_state, is_system;
4455 int ret;
4456
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004457 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004458
4459 prev_state = ctx->ctx_state;
4460 is_system = ctx->ctx_fl_system;
4461
4462 /*
4463 * unload only when necessary
4464 */
4465 if (prev_state == PFM_CTX_UNLOADED) {
4466 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4467 return 0;
4468 }
4469
4470 /*
4471 * clear psr and dcr bits
4472 */
4473 ret = pfm_stop(ctx, NULL, 0, regs);
4474 if (ret) return ret;
4475
4476 ctx->ctx_state = PFM_CTX_UNLOADED;
4477
4478 /*
4479 * in system mode, we need to update the PMU directly
4480 * and the user level state of the caller, which may not
4481 * necessarily be the creator of the context.
4482 */
4483 if (is_system) {
4484
4485 /*
4486 * Update cpuinfo
4487 *
4488 * local PMU is taken care of in pfm_stop()
4489 */
4490 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4491 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4492
4493 /*
4494 * save PMDs in context
4495 * release ownership
4496 */
4497 pfm_flush_pmds(current, ctx);
4498
4499 /*
4500 * at this point we are done with the PMU
4501 * so we can unreserve the resource.
4502 */
4503 if (prev_state != PFM_CTX_ZOMBIE)
4504 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4505
4506 /*
4507 * disconnect context from task
4508 */
4509 task->thread.pfm_context = NULL;
4510 /*
4511 * disconnect task from context
4512 */
4513 ctx->ctx_task = NULL;
4514
4515 /*
4516 * There is nothing more to cleanup here.
4517 */
4518 return 0;
4519 }
4520
4521 /*
4522 * per-task mode
4523 */
Al Viro64505782006-01-12 01:06:06 -08004524 tregs = task == current ? regs : task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004525
4526 if (task == current) {
4527 /*
4528 * cancel user level control
4529 */
4530 ia64_psr(regs)->sp = 1;
4531
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004532 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004533 }
4534 /*
4535 * save PMDs to context
4536 * release ownership
4537 */
4538 pfm_flush_pmds(task, ctx);
4539
4540 /*
4541 * at this point we are done with the PMU
4542 * so we can unreserve the resource.
4543 *
4544 * when state was ZOMBIE, we have already unreserved.
4545 */
4546 if (prev_state != PFM_CTX_ZOMBIE)
4547 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4548
4549 /*
4550 * reset activation counter and psr
4551 */
4552 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4553 SET_LAST_CPU(ctx, -1);
4554
4555 /*
4556 * PMU state will not be restored
4557 */
4558 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4559
4560 /*
4561 * break links between context and task
4562 */
4563 task->thread.pfm_context = NULL;
4564 ctx->ctx_task = NULL;
4565
4566 PFM_SET_WORK_PENDING(task, 0);
4567
4568 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4569 ctx->ctx_fl_can_restart = 0;
4570 ctx->ctx_fl_going_zombie = 0;
4571
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004572 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004573
4574 return 0;
4575}
4576
4577
4578/*
4579 * called only from exit_thread(): task == current
4580 * we come here only if current has a context attached (loaded or masked)
4581 */
4582void
4583pfm_exit_thread(struct task_struct *task)
4584{
4585 pfm_context_t *ctx;
4586 unsigned long flags;
Al Viro64505782006-01-12 01:06:06 -08004587 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004588 int ret, state;
4589 int free_ok = 0;
4590
4591 ctx = PFM_GET_CTX(task);
4592
4593 PROTECT_CTX(ctx, flags);
4594
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004595 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004596
4597 state = ctx->ctx_state;
4598 switch(state) {
4599 case PFM_CTX_UNLOADED:
4600 /*
Simon Arlott72fdbdc2007-05-11 14:55:43 -07004601 * only comes to this function if pfm_context is not NULL, i.e., cannot
Linus Torvalds1da177e2005-04-16 15:20:36 -07004602 * be in unloaded state
4603 */
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004604 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605 break;
4606 case PFM_CTX_LOADED:
4607 case PFM_CTX_MASKED:
4608 ret = pfm_context_unload(ctx, NULL, 0, regs);
4609 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004610 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004611 }
4612 DPRINT(("ctx unloaded for current state was %d\n", state));
4613
4614 pfm_end_notify_user(ctx);
4615 break;
4616 case PFM_CTX_ZOMBIE:
4617 ret = pfm_context_unload(ctx, NULL, 0, regs);
4618 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004619 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004620 }
4621 free_ok = 1;
4622 break;
4623 default:
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004624 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004625 break;
4626 }
4627 UNPROTECT_CTX(ctx, flags);
4628
4629 { u64 psr = pfm_get_psr();
4630 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4631 BUG_ON(GET_PMU_OWNER());
4632 BUG_ON(ia64_psr(regs)->up);
4633 BUG_ON(ia64_psr(regs)->pp);
4634 }
4635
4636 /*
4637 * All memory free operations (especially for vmalloc'ed memory)
4638 * MUST be done with interrupts ENABLED.
4639 */
4640 if (free_ok) pfm_context_free(ctx);
4641}
4642
4643/*
4644 * functions MUST be listed in the increasing order of their index (see permfon.h)
4645 */
4646#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4647#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4648#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4649#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4650#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4651
4652static pfm_cmd_desc_t pfm_cmd_tab[]={
4653/* 0 */PFM_CMD_NONE,
4654/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4655/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4656/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4657/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4658/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4659/* 6 */PFM_CMD_NONE,
4660/* 7 */PFM_CMD_NONE,
4661/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4662/* 9 */PFM_CMD_NONE,
4663/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4664/* 11 */PFM_CMD_NONE,
4665/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4666/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4667/* 14 */PFM_CMD_NONE,
4668/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4669/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4670/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4671/* 18 */PFM_CMD_NONE,
4672/* 19 */PFM_CMD_NONE,
4673/* 20 */PFM_CMD_NONE,
4674/* 21 */PFM_CMD_NONE,
4675/* 22 */PFM_CMD_NONE,
4676/* 23 */PFM_CMD_NONE,
4677/* 24 */PFM_CMD_NONE,
4678/* 25 */PFM_CMD_NONE,
4679/* 26 */PFM_CMD_NONE,
4680/* 27 */PFM_CMD_NONE,
4681/* 28 */PFM_CMD_NONE,
4682/* 29 */PFM_CMD_NONE,
4683/* 30 */PFM_CMD_NONE,
4684/* 31 */PFM_CMD_NONE,
4685/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4686/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4687};
4688#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4689
4690static int
4691pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4692{
4693 struct task_struct *task;
4694 int state, old_state;
4695
4696recheck:
4697 state = ctx->ctx_state;
4698 task = ctx->ctx_task;
4699
4700 if (task == NULL) {
4701 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4702 return 0;
4703 }
4704
4705 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4706 ctx->ctx_fd,
4707 state,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004708 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709 task->state, PFM_CMD_STOPPED(cmd)));
4710
4711 /*
4712 * self-monitoring always ok.
4713 *
4714 * for system-wide the caller can either be the creator of the
4715 * context (to one to which the context is attached to) OR
4716 * a task running on the same CPU as the session.
4717 */
4718 if (task == current || ctx->ctx_fl_system) return 0;
4719
4720 /*
stephane eraniana5a70b72005-04-18 11:42:00 -07004721 * we are monitoring another thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004722 */
stephane eraniana5a70b72005-04-18 11:42:00 -07004723 switch(state) {
4724 case PFM_CTX_UNLOADED:
4725 /*
4726 * if context is UNLOADED we are safe to go
4727 */
4728 return 0;
4729 case PFM_CTX_ZOMBIE:
4730 /*
4731 * no command can operate on a zombie context
4732 */
4733 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4734 return -EINVAL;
4735 case PFM_CTX_MASKED:
4736 /*
4737 * PMU state has been saved to software even though
4738 * the thread may still be running.
4739 */
4740 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004741 }
4742
4743 /*
4744 * context is LOADED or MASKED. Some commands may need to have
4745 * the task stopped.
4746 *
4747 * We could lift this restriction for UP but it would mean that
4748 * the user has no guarantee the task would not run between
4749 * two successive calls to perfmonctl(). That's probably OK.
4750 * If this user wants to ensure the task does not run, then
4751 * the task must be stopped.
4752 */
4753 if (PFM_CMD_STOPPED(cmd)) {
Matthew Wilcox21498222007-12-06 11:02:55 -05004754 if (!task_is_stopped_or_traced(task)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004755 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004756 return -EBUSY;
4757 }
4758 /*
4759 * task is now stopped, wait for ctxsw out
4760 *
4761 * This is an interesting point in the code.
4762 * We need to unprotect the context because
4763 * the pfm_save_regs() routines needs to grab
4764 * the same lock. There are danger in doing
4765 * this because it leaves a window open for
4766 * another task to get access to the context
4767 * and possibly change its state. The one thing
4768 * that is not possible is for the context to disappear
4769 * because we are protected by the VFS layer, i.e.,
4770 * get_fd()/put_fd().
4771 */
4772 old_state = state;
4773
4774 UNPROTECT_CTX(ctx, flags);
4775
Roland McGrath85ba2d82008-07-25 19:45:58 -07004776 wait_task_inactive(task, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004777
4778 PROTECT_CTX(ctx, flags);
4779
4780 /*
4781 * we must recheck to verify if state has changed
4782 */
4783 if (ctx->ctx_state != old_state) {
4784 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4785 goto recheck;
4786 }
4787 }
4788 return 0;
4789}
4790
4791/*
4792 * system-call entry point (must return long)
4793 */
4794asmlinkage long
4795sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4796{
4797 struct file *file = NULL;
4798 pfm_context_t *ctx = NULL;
4799 unsigned long flags = 0UL;
4800 void *args_k = NULL;
4801 long ret; /* will expand int return types */
4802 size_t base_sz, sz, xtra_sz = 0;
4803 int narg, completed_args = 0, call_made = 0, cmd_flags;
4804 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4805 int (*getsize)(void *arg, size_t *sz);
4806#define PFM_MAX_ARGSIZE 4096
4807
4808 /*
4809 * reject any call if perfmon was disabled at initialization
4810 */
4811 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4812
4813 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4814 DPRINT(("invalid cmd=%d\n", cmd));
4815 return -EINVAL;
4816 }
4817
4818 func = pfm_cmd_tab[cmd].cmd_func;
4819 narg = pfm_cmd_tab[cmd].cmd_narg;
4820 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4821 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4822 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4823
4824 if (unlikely(func == NULL)) {
4825 DPRINT(("invalid cmd=%d\n", cmd));
4826 return -EINVAL;
4827 }
4828
4829 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4830 PFM_CMD_NAME(cmd),
4831 cmd,
4832 narg,
4833 base_sz,
4834 count));
4835
4836 /*
4837 * check if number of arguments matches what the command expects
4838 */
4839 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4840 return -EINVAL;
4841
4842restart_args:
4843 sz = xtra_sz + base_sz*count;
4844 /*
4845 * limit abuse to min page size
4846 */
4847 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004848 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004849 return -E2BIG;
4850 }
4851
4852 /*
4853 * allocate default-sized argument buffer
4854 */
4855 if (likely(count && args_k == NULL)) {
4856 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4857 if (args_k == NULL) return -ENOMEM;
4858 }
4859
4860 ret = -EFAULT;
4861
4862 /*
4863 * copy arguments
4864 *
4865 * assume sz = 0 for command without parameters
4866 */
4867 if (sz && copy_from_user(args_k, arg, sz)) {
4868 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4869 goto error_args;
4870 }
4871
4872 /*
4873 * check if command supports extra parameters
4874 */
4875 if (completed_args == 0 && getsize) {
4876 /*
4877 * get extra parameters size (based on main argument)
4878 */
4879 ret = (*getsize)(args_k, &xtra_sz);
4880 if (ret) goto error_args;
4881
4882 completed_args = 1;
4883
4884 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4885
4886 /* retry if necessary */
4887 if (likely(xtra_sz)) goto restart_args;
4888 }
4889
4890 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4891
4892 ret = -EBADF;
4893
4894 file = fget(fd);
4895 if (unlikely(file == NULL)) {
4896 DPRINT(("invalid fd %d\n", fd));
4897 goto error_args;
4898 }
4899 if (unlikely(PFM_IS_FILE(file) == 0)) {
4900 DPRINT(("fd %d not related to perfmon\n", fd));
4901 goto error_args;
4902 }
4903
4904 ctx = (pfm_context_t *)file->private_data;
4905 if (unlikely(ctx == NULL)) {
4906 DPRINT(("no context for fd %d\n", fd));
4907 goto error_args;
4908 }
4909 prefetch(&ctx->ctx_state);
4910
4911 PROTECT_CTX(ctx, flags);
4912
4913 /*
4914 * check task is stopped
4915 */
4916 ret = pfm_check_task_state(ctx, cmd, flags);
4917 if (unlikely(ret)) goto abort_locked;
4918
4919skip_fd:
Al Viro64505782006-01-12 01:06:06 -08004920 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004921
4922 call_made = 1;
4923
4924abort_locked:
4925 if (likely(ctx)) {
4926 DPRINT(("context unlocked\n"));
4927 UNPROTECT_CTX(ctx, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928 }
4929
4930 /* copy argument back to user, if needed */
4931 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4932
4933error_args:
Stephane Eranianb8444d02006-08-25 14:00:19 -07004934 if (file)
4935 fput(file);
4936
Jesper Juhlb2325fe2005-11-07 01:01:35 -08004937 kfree(args_k);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004938
4939 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4940
4941 return ret;
4942}
4943
4944static void
4945pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4946{
4947 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4948 pfm_ovfl_ctrl_t rst_ctrl;
4949 int state;
4950 int ret = 0;
4951
4952 state = ctx->ctx_state;
4953 /*
4954 * Unlock sampling buffer and reset index atomically
4955 * XXX: not really needed when blocking
4956 */
4957 if (CTX_HAS_SMPL(ctx)) {
4958
4959 rst_ctrl.bits.mask_monitoring = 0;
4960 rst_ctrl.bits.reset_ovfl_pmds = 0;
4961
4962 if (state == PFM_CTX_LOADED)
4963 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4964 else
4965 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4966 } else {
4967 rst_ctrl.bits.mask_monitoring = 0;
4968 rst_ctrl.bits.reset_ovfl_pmds = 1;
4969 }
4970
4971 if (ret == 0) {
4972 if (rst_ctrl.bits.reset_ovfl_pmds) {
4973 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4974 }
4975 if (rst_ctrl.bits.mask_monitoring == 0) {
4976 DPRINT(("resuming monitoring\n"));
4977 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4978 } else {
4979 DPRINT(("stopping monitoring\n"));
4980 //pfm_stop_monitoring(current, regs);
4981 }
4982 ctx->ctx_state = PFM_CTX_LOADED;
4983 }
4984}
4985
4986/*
4987 * context MUST BE LOCKED when calling
4988 * can only be called for current
4989 */
4990static void
4991pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4992{
4993 int ret;
4994
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004995 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004996
4997 ret = pfm_context_unload(ctx, NULL, 0, regs);
4998 if (ret) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07004999 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005000 }
5001
5002 /*
5003 * and wakeup controlling task, indicating we are now disconnected
5004 */
5005 wake_up_interruptible(&ctx->ctx_zombieq);
5006
5007 /*
5008 * given that context is still locked, the controlling
5009 * task will only get access when we return from
5010 * pfm_handle_work().
5011 */
5012}
5013
5014static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005015
Stephane Eranian49449302005-04-25 13:08:30 -07005016 /*
5017 * pfm_handle_work() can be called with interrupts enabled
5018 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5019 * call may sleep, therefore we must re-enable interrupts
5020 * to avoid deadlocks. It is safe to do so because this function
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005021 * is called ONLY when returning to user level (pUStk=1), in which case
Stephane Eranian49449302005-04-25 13:08:30 -07005022 * there is no risk of kernel stack overflow due to deep
5023 * interrupt nesting.
5024 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005025void
5026pfm_handle_work(void)
5027{
5028 pfm_context_t *ctx;
5029 struct pt_regs *regs;
Stephane Eranian49449302005-04-25 13:08:30 -07005030 unsigned long flags, dummy_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005031 unsigned long ovfl_regs;
5032 unsigned int reason;
5033 int ret;
5034
5035 ctx = PFM_GET_CTX(current);
5036 if (ctx == NULL) {
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005037 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5038 task_pid_nr(current));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005039 return;
5040 }
5041
5042 PROTECT_CTX(ctx, flags);
5043
5044 PFM_SET_WORK_PENDING(current, 0);
5045
Al Viro64505782006-01-12 01:06:06 -08005046 regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005047
5048 /*
5049 * extract reason for being here and clear
5050 */
5051 reason = ctx->ctx_fl_trap_reason;
5052 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5053 ovfl_regs = ctx->ctx_ovfl_regs[0];
5054
5055 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5056
5057 /*
5058 * must be done before we check for simple-reset mode
5059 */
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005060 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5061 goto do_zombie;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005062
5063 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005064 if (reason == PFM_TRAP_REASON_RESET)
5065 goto skip_blocking;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005066
Stephane Eranian49449302005-04-25 13:08:30 -07005067 /*
5068 * restore interrupt mask to what it was on entry.
5069 * Could be enabled/diasbled.
5070 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005071 UNPROTECT_CTX(ctx, flags);
5072
Stephane Eranian49449302005-04-25 13:08:30 -07005073 /*
5074 * force interrupt enable because of down_interruptible()
5075 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005076 local_irq_enable();
5077
5078 DPRINT(("before block sleeping\n"));
5079
5080 /*
5081 * may go through without blocking on SMP systems
5082 * if restart has been received already by the time we call down()
5083 */
Jes Sorensen60f1c442006-01-18 23:46:52 -08005084 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085
5086 DPRINT(("after block sleeping ret=%d\n", ret));
5087
5088 /*
Stephane Eranian49449302005-04-25 13:08:30 -07005089 * lock context and mask interrupts again
5090 * We save flags into a dummy because we may have
5091 * altered interrupts mask compared to entry in this
5092 * function.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005093 */
Stephane Eranian49449302005-04-25 13:08:30 -07005094 PROTECT_CTX(ctx, dummy_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005095
5096 /*
5097 * we need to read the ovfl_regs only after wake-up
5098 * because we may have had pfm_write_pmds() in between
5099 * and that can changed PMD values and therefore
5100 * ovfl_regs is reset for these new PMD values.
5101 */
5102 ovfl_regs = ctx->ctx_ovfl_regs[0];
5103
5104 if (ctx->ctx_fl_going_zombie) {
5105do_zombie:
5106 DPRINT(("context is zombie, bailing out\n"));
5107 pfm_context_force_terminate(ctx, regs);
5108 goto nothing_to_do;
5109 }
5110 /*
5111 * in case of interruption of down() we don't restart anything
5112 */
Hidetoshi Seto0fb232f2008-05-09 15:27:09 +09005113 if (ret < 0)
5114 goto nothing_to_do;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005115
5116skip_blocking:
5117 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5118 ctx->ctx_ovfl_regs[0] = 0UL;
5119
5120nothing_to_do:
Stephane Eranian49449302005-04-25 13:08:30 -07005121 /*
5122 * restore flags as they were upon entry
5123 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005124 UNPROTECT_CTX(ctx, flags);
5125}
5126
5127static int
5128pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5129{
5130 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5131 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5132 return 0;
5133 }
5134
5135 DPRINT(("waking up somebody\n"));
5136
5137 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5138
5139 /*
5140 * safe, we are not in intr handler, nor in ctxsw when
5141 * we come here
5142 */
5143 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5144
5145 return 0;
5146}
5147
5148static int
5149pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5150{
5151 pfm_msg_t *msg = NULL;
5152
5153 if (ctx->ctx_fl_no_msg == 0) {
5154 msg = pfm_get_new_msg(ctx);
5155 if (msg == NULL) {
5156 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5157 return -1;
5158 }
5159
5160 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5161 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5162 msg->pfm_ovfl_msg.msg_active_set = 0;
5163 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5164 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5165 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5166 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5167 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5168 }
5169
5170 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5171 msg,
5172 ctx->ctx_fl_no_msg,
5173 ctx->ctx_fd,
5174 ovfl_pmds));
5175
5176 return pfm_notify_user(ctx, msg);
5177}
5178
5179static int
5180pfm_end_notify_user(pfm_context_t *ctx)
5181{
5182 pfm_msg_t *msg;
5183
5184 msg = pfm_get_new_msg(ctx);
5185 if (msg == NULL) {
5186 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5187 return -1;
5188 }
5189 /* no leak */
5190 memset(msg, 0, sizeof(*msg));
5191
5192 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5193 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5194 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5195
5196 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5197 msg,
5198 ctx->ctx_fl_no_msg,
5199 ctx->ctx_fd));
5200
5201 return pfm_notify_user(ctx, msg);
5202}
5203
5204/*
5205 * main overflow processing routine.
Simon Arlott72fdbdc2007-05-11 14:55:43 -07005206 * it can be called from the interrupt path or explicitly during the context switch code
Linus Torvalds1da177e2005-04-16 15:20:36 -07005207 */
5208static void
5209pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5210{
5211 pfm_ovfl_arg_t *ovfl_arg;
5212 unsigned long mask;
5213 unsigned long old_val, ovfl_val, new_val;
5214 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5215 unsigned long tstamp;
5216 pfm_ovfl_ctrl_t ovfl_ctrl;
5217 unsigned int i, has_smpl;
5218 int must_notify = 0;
5219
5220 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5221
5222 /*
5223 * sanity test. Should never happen
5224 */
5225 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5226
5227 tstamp = ia64_get_itc();
5228 mask = pmc0 >> PMU_FIRST_COUNTER;
5229 ovfl_val = pmu_conf->ovfl_val;
5230 has_smpl = CTX_HAS_SMPL(ctx);
5231
5232 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5233 "used_pmds=0x%lx\n",
5234 pmc0,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005235 task ? task_pid_nr(task): -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005236 (regs ? regs->cr_iip : 0),
5237 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5238 ctx->ctx_used_pmds[0]));
5239
5240
5241 /*
5242 * first we update the virtual counters
5243 * assume there was a prior ia64_srlz_d() issued
5244 */
5245 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5246
5247 /* skip pmd which did not overflow */
5248 if ((mask & 0x1) == 0) continue;
5249
5250 /*
5251 * Note that the pmd is not necessarily 0 at this point as qualified events
5252 * may have happened before the PMU was frozen. The residual count is not
5253 * taken into consideration here but will be with any read of the pmd via
5254 * pfm_read_pmds().
5255 */
5256 old_val = new_val = ctx->ctx_pmds[i].val;
5257 new_val += 1 + ovfl_val;
5258 ctx->ctx_pmds[i].val = new_val;
5259
5260 /*
5261 * check for overflow condition
5262 */
5263 if (likely(old_val > new_val)) {
5264 ovfl_pmds |= 1UL << i;
5265 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5266 }
5267
5268 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5269 i,
5270 new_val,
5271 old_val,
5272 ia64_get_pmd(i) & ovfl_val,
5273 ovfl_pmds,
5274 ovfl_notify));
5275 }
5276
5277 /*
5278 * there was no 64-bit overflow, nothing else to do
5279 */
5280 if (ovfl_pmds == 0UL) return;
5281
5282 /*
5283 * reset all control bits
5284 */
5285 ovfl_ctrl.val = 0;
5286 reset_pmds = 0UL;
5287
5288 /*
5289 * if a sampling format module exists, then we "cache" the overflow by
5290 * calling the module's handler() routine.
5291 */
5292 if (has_smpl) {
5293 unsigned long start_cycles, end_cycles;
5294 unsigned long pmd_mask;
5295 int j, k, ret = 0;
5296 int this_cpu = smp_processor_id();
5297
5298 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5299 ovfl_arg = &ctx->ctx_ovfl_arg;
5300
5301 prefetch(ctx->ctx_smpl_hdr);
5302
5303 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5304
5305 mask = 1UL << i;
5306
5307 if ((pmd_mask & 0x1) == 0) continue;
5308
5309 ovfl_arg->ovfl_pmd = (unsigned char )i;
5310 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5311 ovfl_arg->active_set = 0;
5312 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5313 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5314
5315 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5316 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5317 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5318
5319 /*
5320 * copy values of pmds of interest. Sampling format may copy them
5321 * into sampling buffer.
5322 */
5323 if (smpl_pmds) {
5324 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5325 if ((smpl_pmds & 0x1) == 0) continue;
5326 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5327 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5328 }
5329 }
5330
5331 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5332
5333 start_cycles = ia64_get_itc();
5334
5335 /*
5336 * call custom buffer format record (handler) routine
5337 */
5338 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5339
5340 end_cycles = ia64_get_itc();
5341
5342 /*
5343 * For those controls, we take the union because they have
5344 * an all or nothing behavior.
5345 */
5346 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5347 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5348 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5349 /*
5350 * build the bitmask of pmds to reset now
5351 */
5352 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5353
5354 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5355 }
5356 /*
5357 * when the module cannot handle the rest of the overflows, we abort right here
5358 */
5359 if (ret && pmd_mask) {
5360 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5361 pmd_mask<<PMU_FIRST_COUNTER));
5362 }
5363 /*
5364 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5365 */
5366 ovfl_pmds &= ~reset_pmds;
5367 } else {
5368 /*
5369 * when no sampling module is used, then the default
5370 * is to notify on overflow if requested by user
5371 */
5372 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5373 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5374 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5375 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5376 /*
5377 * if needed, we reset all overflowed pmds
5378 */
5379 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5380 }
5381
5382 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5383
5384 /*
5385 * reset the requested PMD registers using the short reset values
5386 */
5387 if (reset_pmds) {
5388 unsigned long bm = reset_pmds;
5389 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5390 }
5391
5392 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5393 /*
5394 * keep track of what to reset when unblocking
5395 */
5396 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5397
5398 /*
5399 * check for blocking context
5400 */
5401 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5402
5403 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5404
5405 /*
5406 * set the perfmon specific checking pending work for the task
5407 */
5408 PFM_SET_WORK_PENDING(task, 1);
5409
5410 /*
5411 * when coming from ctxsw, current still points to the
5412 * previous task, therefore we must work with task and not current.
5413 */
Shaohua Lif14488c2008-10-06 10:43:06 -07005414 set_notify_resume(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005415 }
5416 /*
5417 * defer until state is changed (shorten spin window). the context is locked
5418 * anyway, so the signal receiver would come spin for nothing.
5419 */
5420 must_notify = 1;
5421 }
5422
5423 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005424 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005425 PFM_GET_WORK_PENDING(task),
5426 ctx->ctx_fl_trap_reason,
5427 ovfl_pmds,
5428 ovfl_notify,
5429 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5430 /*
5431 * in case monitoring must be stopped, we toggle the psr bits
5432 */
5433 if (ovfl_ctrl.bits.mask_monitoring) {
5434 pfm_mask_monitoring(task);
5435 ctx->ctx_state = PFM_CTX_MASKED;
5436 ctx->ctx_fl_can_restart = 1;
5437 }
5438
5439 /*
5440 * send notification now
5441 */
5442 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5443
5444 return;
5445
5446sanity_check:
5447 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5448 smp_processor_id(),
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005449 task ? task_pid_nr(task) : -1,
Linus Torvalds1da177e2005-04-16 15:20:36 -07005450 pmc0);
5451 return;
5452
5453stop_monitoring:
5454 /*
5455 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5456 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5457 * come here as zombie only if the task is the current task. In which case, we
5458 * can access the PMU hardware directly.
5459 *
5460 * Note that zombies do have PM_VALID set. So here we do the minimal.
5461 *
5462 * In case the context was zombified it could not be reclaimed at the time
5463 * the monitoring program exited. At this point, the PMU reservation has been
5464 * returned, the sampiing buffer has been freed. We must convert this call
5465 * into a spurious interrupt. However, we must also avoid infinite overflows
5466 * by stopping monitoring for this task. We can only come here for a per-task
5467 * context. All we need to do is to stop monitoring using the psr bits which
5468 * are always task private. By re-enabling secure montioring, we ensure that
5469 * the monitored task will not be able to re-activate monitoring.
5470 * The task will eventually be context switched out, at which point the context
5471 * will be reclaimed (that includes releasing ownership of the PMU).
5472 *
5473 * So there might be a window of time where the number of per-task session is zero
5474 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5475 * context. This is safe because if a per-task session comes in, it will push this one
5476 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5477 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5478 * also push our zombie context out.
5479 *
5480 * Overall pretty hairy stuff....
5481 */
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005482 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483 pfm_clear_psr_up();
5484 ia64_psr(regs)->up = 0;
5485 ia64_psr(regs)->sp = 1;
5486 return;
5487}
5488
5489static int
Jeff Garzik9010eff2008-04-18 19:22:58 -04005490pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005491{
5492 struct task_struct *task;
5493 pfm_context_t *ctx;
5494 unsigned long flags;
5495 u64 pmc0;
5496 int this_cpu = smp_processor_id();
5497 int retval = 0;
5498
5499 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5500
5501 /*
5502 * srlz.d done before arriving here
5503 */
5504 pmc0 = ia64_get_pmc(0);
5505
5506 task = GET_PMU_OWNER();
5507 ctx = GET_PMU_CTX();
5508
5509 /*
5510 * if we have some pending bits set
5511 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5512 */
5513 if (PMC0_HAS_OVFL(pmc0) && task) {
5514 /*
5515 * we assume that pmc0.fr is always set here
5516 */
5517
5518 /* sanity check */
5519 if (!ctx) goto report_spurious1;
5520
5521 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5522 goto report_spurious2;
5523
5524 PROTECT_CTX_NOPRINT(ctx, flags);
5525
5526 pfm_overflow_handler(task, ctx, pmc0, regs);
5527
5528 UNPROTECT_CTX_NOPRINT(ctx, flags);
5529
5530 } else {
5531 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5532 retval = -1;
5533 }
5534 /*
5535 * keep it unfrozen at all times
5536 */
5537 pfm_unfreeze_pmu();
5538
5539 return retval;
5540
5541report_spurious1:
5542 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005543 this_cpu, task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005544 pfm_unfreeze_pmu();
5545 return -1;
5546report_spurious2:
5547 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5548 this_cpu,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005549 task_pid_nr(task));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005550 pfm_unfreeze_pmu();
5551 return -1;
5552}
5553
5554static irqreturn_t
Tony Luck3bbe4862006-10-17 14:28:16 -07005555pfm_interrupt_handler(int irq, void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005556{
5557 unsigned long start_cycles, total_cycles;
5558 unsigned long min, max;
5559 int this_cpu;
5560 int ret;
Tony Luck3bbe4862006-10-17 14:28:16 -07005561 struct pt_regs *regs = get_irq_regs();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005562
5563 this_cpu = get_cpu();
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005564 if (likely(!pfm_alt_intr_handler)) {
5565 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5566 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005567
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005568 start_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005569
Jeff Garzik9010eff2008-04-18 19:22:58 -04005570 ret = pfm_do_interrupt_handler(arg, regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005571
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005572 total_cycles = ia64_get_itc();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005573
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005574 /*
5575 * don't measure spurious interrupts
5576 */
5577 if (likely(ret == 0)) {
5578 total_cycles -= start_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005579
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005580 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5581 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005582
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005583 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5584 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005585 }
Tony Lucka1ecf7f62005-05-18 16:06:00 -07005586 else {
5587 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5588 }
5589
Linus Torvalds1da177e2005-04-16 15:20:36 -07005590 put_cpu_no_resched();
5591 return IRQ_HANDLED;
5592}
5593
5594/*
5595 * /proc/perfmon interface, for debug only
5596 */
5597
5598#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5599
5600static void *
5601pfm_proc_start(struct seq_file *m, loff_t *pos)
5602{
5603 if (*pos == 0) {
5604 return PFM_PROC_SHOW_HEADER;
5605 }
5606
5607 while (*pos <= NR_CPUS) {
5608 if (cpu_online(*pos - 1)) {
5609 return (void *)*pos;
5610 }
5611 ++*pos;
5612 }
5613 return NULL;
5614}
5615
5616static void *
5617pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5618{
5619 ++*pos;
5620 return pfm_proc_start(m, pos);
5621}
5622
5623static void
5624pfm_proc_stop(struct seq_file *m, void *v)
5625{
5626}
5627
5628static void
5629pfm_proc_show_header(struct seq_file *m)
5630{
5631 struct list_head * pos;
5632 pfm_buffer_fmt_t * entry;
5633 unsigned long flags;
5634
5635 seq_printf(m,
5636 "perfmon version : %u.%u\n"
5637 "model : %s\n"
5638 "fastctxsw : %s\n"
5639 "expert mode : %s\n"
5640 "ovfl_mask : 0x%lx\n"
5641 "PMU flags : 0x%x\n",
5642 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5643 pmu_conf->pmu_name,
5644 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5645 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5646 pmu_conf->ovfl_val,
5647 pmu_conf->flags);
5648
5649 LOCK_PFS(flags);
5650
5651 seq_printf(m,
5652 "proc_sessions : %u\n"
5653 "sys_sessions : %u\n"
5654 "sys_use_dbregs : %u\n"
5655 "ptrace_use_dbregs : %u\n",
5656 pfm_sessions.pfs_task_sessions,
5657 pfm_sessions.pfs_sys_sessions,
5658 pfm_sessions.pfs_sys_use_dbregs,
5659 pfm_sessions.pfs_ptrace_use_dbregs);
5660
5661 UNLOCK_PFS(flags);
5662
5663 spin_lock(&pfm_buffer_fmt_lock);
5664
5665 list_for_each(pos, &pfm_buffer_fmt_list) {
5666 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5667 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5668 entry->fmt_uuid[0],
5669 entry->fmt_uuid[1],
5670 entry->fmt_uuid[2],
5671 entry->fmt_uuid[3],
5672 entry->fmt_uuid[4],
5673 entry->fmt_uuid[5],
5674 entry->fmt_uuid[6],
5675 entry->fmt_uuid[7],
5676 entry->fmt_uuid[8],
5677 entry->fmt_uuid[9],
5678 entry->fmt_uuid[10],
5679 entry->fmt_uuid[11],
5680 entry->fmt_uuid[12],
5681 entry->fmt_uuid[13],
5682 entry->fmt_uuid[14],
5683 entry->fmt_uuid[15],
5684 entry->fmt_name);
5685 }
5686 spin_unlock(&pfm_buffer_fmt_lock);
5687
5688}
5689
5690static int
5691pfm_proc_show(struct seq_file *m, void *v)
5692{
5693 unsigned long psr;
5694 unsigned int i;
5695 int cpu;
5696
5697 if (v == PFM_PROC_SHOW_HEADER) {
5698 pfm_proc_show_header(m);
5699 return 0;
5700 }
5701
5702 /* show info for CPU (v - 1) */
5703
5704 cpu = (long)v - 1;
5705 seq_printf(m,
5706 "CPU%-2d overflow intrs : %lu\n"
5707 "CPU%-2d overflow cycles : %lu\n"
5708 "CPU%-2d overflow min : %lu\n"
5709 "CPU%-2d overflow max : %lu\n"
5710 "CPU%-2d smpl handler calls : %lu\n"
5711 "CPU%-2d smpl handler cycles : %lu\n"
5712 "CPU%-2d spurious intrs : %lu\n"
5713 "CPU%-2d replay intrs : %lu\n"
5714 "CPU%-2d syst_wide : %d\n"
5715 "CPU%-2d dcr_pp : %d\n"
5716 "CPU%-2d exclude idle : %d\n"
5717 "CPU%-2d owner : %d\n"
5718 "CPU%-2d context : %p\n"
5719 "CPU%-2d activations : %lu\n",
5720 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5721 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5722 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5723 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5724 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5725 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5726 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5727 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5728 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5729 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5730 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5731 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5732 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5733 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5734
5735 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5736
5737 psr = pfm_get_psr();
5738
5739 ia64_srlz_d();
5740
5741 seq_printf(m,
5742 "CPU%-2d psr : 0x%lx\n"
5743 "CPU%-2d pmc0 : 0x%lx\n",
5744 cpu, psr,
5745 cpu, ia64_get_pmc(0));
5746
5747 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5748 if (PMC_IS_COUNTING(i) == 0) continue;
5749 seq_printf(m,
5750 "CPU%-2d pmc%u : 0x%lx\n"
5751 "CPU%-2d pmd%u : 0x%lx\n",
5752 cpu, i, ia64_get_pmc(i),
5753 cpu, i, ia64_get_pmd(i));
5754 }
5755 }
5756 return 0;
5757}
5758
Jan Engelhardta23fe552008-01-22 20:42:07 +01005759const struct seq_operations pfm_seq_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005760 .start = pfm_proc_start,
5761 .next = pfm_proc_next,
5762 .stop = pfm_proc_stop,
5763 .show = pfm_proc_show
5764};
5765
5766static int
5767pfm_proc_open(struct inode *inode, struct file *file)
5768{
5769 return seq_open(file, &pfm_seq_ops);
5770}
5771
5772
5773/*
5774 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5775 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5776 * is active or inactive based on mode. We must rely on the value in
5777 * local_cpu_data->pfm_syst_info
5778 */
5779void
5780pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5781{
5782 struct pt_regs *regs;
5783 unsigned long dcr;
5784 unsigned long dcr_pp;
5785
5786 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5787
5788 /*
5789 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5790 * on every CPU, so we can rely on the pid to identify the idle task.
5791 */
5792 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
Al Viro64505782006-01-12 01:06:06 -08005793 regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005794 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5795 return;
5796 }
5797 /*
5798 * if monitoring has started
5799 */
5800 if (dcr_pp) {
5801 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5802 /*
5803 * context switching in?
5804 */
5805 if (is_ctxswin) {
5806 /* mask monitoring for the idle task */
5807 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5808 pfm_clear_psr_pp();
5809 ia64_srlz_i();
5810 return;
5811 }
5812 /*
5813 * context switching out
5814 * restore monitoring for next task
5815 *
5816 * Due to inlining this odd if-then-else construction generates
5817 * better code.
5818 */
5819 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5820 pfm_set_psr_pp();
5821 ia64_srlz_i();
5822 }
5823}
5824
5825#ifdef CONFIG_SMP
5826
5827static void
5828pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5829{
5830 struct task_struct *task = ctx->ctx_task;
5831
5832 ia64_psr(regs)->up = 0;
5833 ia64_psr(regs)->sp = 1;
5834
5835 if (GET_PMU_OWNER() == task) {
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005836 DPRINT(("cleared ownership for [%d]\n",
5837 task_pid_nr(ctx->ctx_task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005838 SET_PMU_OWNER(NULL, NULL);
5839 }
5840
5841 /*
5842 * disconnect the task from the context and vice-versa
5843 */
5844 PFM_SET_WORK_PENDING(task, 0);
5845
5846 task->thread.pfm_context = NULL;
5847 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5848
Alexey Dobriyan19c58702007-10-18 23:40:41 -07005849 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005850}
5851
5852
5853/*
5854 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5855 */
5856void
5857pfm_save_regs(struct task_struct *task)
5858{
5859 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005860 unsigned long flags;
5861 u64 psr;
5862
5863
5864 ctx = PFM_GET_CTX(task);
5865 if (ctx == NULL) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005866
5867 /*
5868 * we always come here with interrupts ALREADY disabled by
5869 * the scheduler. So we simply need to protect against concurrent
5870 * access, not CPU concurrency.
5871 */
5872 flags = pfm_protect_ctx_ctxsw(ctx);
5873
5874 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
Al Viro64505782006-01-12 01:06:06 -08005875 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005876
5877 pfm_clear_psr_up();
5878
5879 pfm_force_cleanup(ctx, regs);
5880
5881 BUG_ON(ctx->ctx_smpl_hdr);
5882
5883 pfm_unprotect_ctx_ctxsw(ctx, flags);
5884
5885 pfm_context_free(ctx);
5886 return;
5887 }
5888
5889 /*
5890 * save current PSR: needed because we modify it
5891 */
5892 ia64_srlz_d();
5893 psr = pfm_get_psr();
5894
5895 BUG_ON(psr & (IA64_PSR_I));
5896
5897 /*
5898 * stop monitoring:
5899 * This is the last instruction which may generate an overflow
5900 *
5901 * We do not need to set psr.sp because, it is irrelevant in kernel.
5902 * It will be restored from ipsr when going back to user level
5903 */
5904 pfm_clear_psr_up();
5905
5906 /*
5907 * keep a copy of psr.up (for reload)
5908 */
5909 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5910
5911 /*
5912 * release ownership of this PMU.
5913 * PM interrupts are masked, so nothing
5914 * can happen.
5915 */
5916 SET_PMU_OWNER(NULL, NULL);
5917
5918 /*
5919 * we systematically save the PMD as we have no
5920 * guarantee we will be schedule at that same
5921 * CPU again.
5922 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005923 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005924
5925 /*
5926 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5927 * we will need it on the restore path to check
5928 * for pending overflow.
5929 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005930 ctx->th_pmcs[0] = ia64_get_pmc(0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005931
5932 /*
5933 * unfreeze PMU if had pending overflows
5934 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07005935 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005936
5937 /*
5938 * finally, allow context access.
5939 * interrupts will still be masked after this call.
5940 */
5941 pfm_unprotect_ctx_ctxsw(ctx, flags);
5942}
5943
5944#else /* !CONFIG_SMP */
5945void
5946pfm_save_regs(struct task_struct *task)
5947{
5948 pfm_context_t *ctx;
5949 u64 psr;
5950
5951 ctx = PFM_GET_CTX(task);
5952 if (ctx == NULL) return;
5953
5954 /*
5955 * save current PSR: needed because we modify it
5956 */
5957 psr = pfm_get_psr();
5958
5959 BUG_ON(psr & (IA64_PSR_I));
5960
5961 /*
5962 * stop monitoring:
5963 * This is the last instruction which may generate an overflow
5964 *
5965 * We do not need to set psr.sp because, it is irrelevant in kernel.
5966 * It will be restored from ipsr when going back to user level
5967 */
5968 pfm_clear_psr_up();
5969
5970 /*
5971 * keep a copy of psr.up (for reload)
5972 */
5973 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5974}
5975
5976static void
5977pfm_lazy_save_regs (struct task_struct *task)
5978{
5979 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005980 unsigned long flags;
5981
5982 { u64 psr = pfm_get_psr();
5983 BUG_ON(psr & IA64_PSR_UP);
5984 }
5985
5986 ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005987
5988 /*
5989 * we need to mask PMU overflow here to
5990 * make sure that we maintain pmc0 until
5991 * we save it. overflow interrupts are
5992 * treated as spurious if there is no
5993 * owner.
5994 *
5995 * XXX: I don't think this is necessary
5996 */
5997 PROTECT_CTX(ctx,flags);
5998
5999 /*
6000 * release ownership of this PMU.
6001 * must be done before we save the registers.
6002 *
6003 * after this call any PMU interrupt is treated
6004 * as spurious.
6005 */
6006 SET_PMU_OWNER(NULL, NULL);
6007
6008 /*
6009 * save all the pmds we use
6010 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006011 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006012
6013 /*
6014 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6015 * it is needed to check for pended overflow
6016 * on the restore path
6017 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006018 ctx->th_pmcs[0] = ia64_get_pmc(0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006019
6020 /*
6021 * unfreeze PMU if had pending overflows
6022 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006023 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006024
6025 /*
6026 * now get can unmask PMU interrupts, they will
6027 * be treated as purely spurious and we will not
6028 * lose any information
6029 */
6030 UNPROTECT_CTX(ctx,flags);
6031}
6032#endif /* CONFIG_SMP */
6033
6034#ifdef CONFIG_SMP
6035/*
6036 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6037 */
6038void
6039pfm_load_regs (struct task_struct *task)
6040{
6041 pfm_context_t *ctx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006042 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6043 unsigned long flags;
6044 u64 psr, psr_up;
6045 int need_irq_resend;
6046
6047 ctx = PFM_GET_CTX(task);
6048 if (unlikely(ctx == NULL)) return;
6049
6050 BUG_ON(GET_PMU_OWNER());
6051
Linus Torvalds1da177e2005-04-16 15:20:36 -07006052 /*
6053 * possible on unload
6054 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006055 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006056
6057 /*
6058 * we always come here with interrupts ALREADY disabled by
6059 * the scheduler. So we simply need to protect against concurrent
6060 * access, not CPU concurrency.
6061 */
6062 flags = pfm_protect_ctx_ctxsw(ctx);
6063 psr = pfm_get_psr();
6064
6065 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6066
6067 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6068 BUG_ON(psr & IA64_PSR_I);
6069
6070 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
Al Viro64505782006-01-12 01:06:06 -08006071 struct pt_regs *regs = task_pt_regs(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006072
6073 BUG_ON(ctx->ctx_smpl_hdr);
6074
6075 pfm_force_cleanup(ctx, regs);
6076
6077 pfm_unprotect_ctx_ctxsw(ctx, flags);
6078
6079 /*
6080 * this one (kmalloc'ed) is fine with interrupts disabled
6081 */
6082 pfm_context_free(ctx);
6083
6084 return;
6085 }
6086
6087 /*
6088 * we restore ALL the debug registers to avoid picking up
6089 * stale state.
6090 */
6091 if (ctx->ctx_fl_using_dbreg) {
6092 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6093 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6094 }
6095 /*
6096 * retrieve saved psr.up
6097 */
6098 psr_up = ctx->ctx_saved_psr_up;
6099
6100 /*
6101 * if we were the last user of the PMU on that CPU,
6102 * then nothing to do except restore psr
6103 */
6104 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6105
6106 /*
6107 * retrieve partial reload masks (due to user modifications)
6108 */
6109 pmc_mask = ctx->ctx_reload_pmcs[0];
6110 pmd_mask = ctx->ctx_reload_pmds[0];
6111
6112 } else {
6113 /*
6114 * To avoid leaking information to the user level when psr.sp=0,
6115 * we must reload ALL implemented pmds (even the ones we don't use).
6116 * In the kernel we only allow PFM_READ_PMDS on registers which
6117 * we initialized or requested (sampling) so there is no risk there.
6118 */
6119 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6120
6121 /*
6122 * ALL accessible PMCs are systematically reloaded, unused registers
6123 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6124 * up stale configuration.
6125 *
6126 * PMC0 is never in the mask. It is always restored separately.
6127 */
6128 pmc_mask = ctx->ctx_all_pmcs[0];
6129 }
6130 /*
6131 * when context is MASKED, we will restore PMC with plm=0
6132 * and PMD with stale information, but that's ok, nothing
6133 * will be captured.
6134 *
6135 * XXX: optimize here
6136 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006137 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6138 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006139
6140 /*
6141 * check for pending overflow at the time the state
6142 * was saved.
6143 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006144 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006145 /*
6146 * reload pmc0 with the overflow information
6147 * On McKinley PMU, this will trigger a PMU interrupt
6148 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006149 ia64_set_pmc(0, ctx->th_pmcs[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006150 ia64_srlz_d();
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006151 ctx->th_pmcs[0] = 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006152
6153 /*
6154 * will replay the PMU interrupt
6155 */
Ingo Molnarc0ad90a2006-06-29 02:24:44 -07006156 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006157
6158 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6159 }
6160
6161 /*
6162 * we just did a reload, so we reset the partial reload fields
6163 */
6164 ctx->ctx_reload_pmcs[0] = 0UL;
6165 ctx->ctx_reload_pmds[0] = 0UL;
6166
6167 SET_LAST_CPU(ctx, smp_processor_id());
6168
6169 /*
6170 * dump activation value for this PMU
6171 */
6172 INC_ACTIVATION();
6173 /*
6174 * record current activation for this context
6175 */
6176 SET_ACTIVATION(ctx);
6177
6178 /*
6179 * establish new ownership.
6180 */
6181 SET_PMU_OWNER(task, ctx);
6182
6183 /*
6184 * restore the psr.up bit. measurement
6185 * is active again.
6186 * no PMU interrupt can happen at this point
6187 * because we still have interrupts disabled.
6188 */
6189 if (likely(psr_up)) pfm_set_psr_up();
6190
6191 /*
6192 * allow concurrent access to context
6193 */
6194 pfm_unprotect_ctx_ctxsw(ctx, flags);
6195}
6196#else /* !CONFIG_SMP */
6197/*
6198 * reload PMU state for UP kernels
6199 * in 2.5 we come here with interrupts disabled
6200 */
6201void
6202pfm_load_regs (struct task_struct *task)
6203{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006204 pfm_context_t *ctx;
6205 struct task_struct *owner;
6206 unsigned long pmd_mask, pmc_mask;
6207 u64 psr, psr_up;
6208 int need_irq_resend;
6209
6210 owner = GET_PMU_OWNER();
6211 ctx = PFM_GET_CTX(task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006212 psr = pfm_get_psr();
6213
6214 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6215 BUG_ON(psr & IA64_PSR_I);
6216
6217 /*
6218 * we restore ALL the debug registers to avoid picking up
6219 * stale state.
6220 *
6221 * This must be done even when the task is still the owner
6222 * as the registers may have been modified via ptrace()
6223 * (not perfmon) by the previous task.
6224 */
6225 if (ctx->ctx_fl_using_dbreg) {
6226 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6227 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6228 }
6229
6230 /*
6231 * retrieved saved psr.up
6232 */
6233 psr_up = ctx->ctx_saved_psr_up;
6234 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6235
6236 /*
6237 * short path, our state is still there, just
6238 * need to restore psr and we go
6239 *
6240 * we do not touch either PMC nor PMD. the psr is not touched
6241 * by the overflow_handler. So we are safe w.r.t. to interrupt
6242 * concurrency even without interrupt masking.
6243 */
6244 if (likely(owner == task)) {
6245 if (likely(psr_up)) pfm_set_psr_up();
6246 return;
6247 }
6248
6249 /*
6250 * someone else is still using the PMU, first push it out and
6251 * then we'll be able to install our stuff !
6252 *
6253 * Upon return, there will be no owner for the current PMU
6254 */
6255 if (owner) pfm_lazy_save_regs(owner);
6256
6257 /*
6258 * To avoid leaking information to the user level when psr.sp=0,
6259 * we must reload ALL implemented pmds (even the ones we don't use).
6260 * In the kernel we only allow PFM_READ_PMDS on registers which
6261 * we initialized or requested (sampling) so there is no risk there.
6262 */
6263 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6264
6265 /*
6266 * ALL accessible PMCs are systematically reloaded, unused registers
6267 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6268 * up stale configuration.
6269 *
6270 * PMC0 is never in the mask. It is always restored separately
6271 */
6272 pmc_mask = ctx->ctx_all_pmcs[0];
6273
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006274 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6275 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006276
6277 /*
6278 * check for pending overflow at the time the state
6279 * was saved.
6280 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006281 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006282 /*
6283 * reload pmc0 with the overflow information
6284 * On McKinley PMU, this will trigger a PMU interrupt
6285 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006286 ia64_set_pmc(0, ctx->th_pmcs[0]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006287 ia64_srlz_d();
6288
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006289 ctx->th_pmcs[0] = 0UL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006290
6291 /*
6292 * will replay the PMU interrupt
6293 */
Ingo Molnarc0ad90a2006-06-29 02:24:44 -07006294 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006295
6296 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6297 }
6298
6299 /*
6300 * establish new ownership.
6301 */
6302 SET_PMU_OWNER(task, ctx);
6303
6304 /*
6305 * restore the psr.up bit. measurement
6306 * is active again.
6307 * no PMU interrupt can happen at this point
6308 * because we still have interrupts disabled.
6309 */
6310 if (likely(psr_up)) pfm_set_psr_up();
6311}
6312#endif /* CONFIG_SMP */
6313
6314/*
6315 * this function assumes monitoring is stopped
6316 */
6317static void
6318pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6319{
6320 u64 pmc0;
6321 unsigned long mask2, val, pmd_val, ovfl_val;
6322 int i, can_access_pmu = 0;
6323 int is_self;
6324
6325 /*
6326 * is the caller the task being monitored (or which initiated the
6327 * session for system wide measurements)
6328 */
6329 is_self = ctx->ctx_task == task ? 1 : 0;
6330
6331 /*
6332 * can access PMU is task is the owner of the PMU state on the current CPU
6333 * or if we are running on the CPU bound to the context in system-wide mode
6334 * (that is not necessarily the task the context is attached to in this mode).
6335 * In system-wide we always have can_access_pmu true because a task running on an
6336 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6337 */
6338 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6339 if (can_access_pmu) {
6340 /*
6341 * Mark the PMU as not owned
6342 * This will cause the interrupt handler to do nothing in case an overflow
6343 * interrupt was in-flight
6344 * This also guarantees that pmc0 will contain the final state
6345 * It virtually gives us full control on overflow processing from that point
6346 * on.
6347 */
6348 SET_PMU_OWNER(NULL, NULL);
6349 DPRINT(("releasing ownership\n"));
6350
6351 /*
6352 * read current overflow status:
6353 *
6354 * we are guaranteed to read the final stable state
6355 */
6356 ia64_srlz_d();
6357 pmc0 = ia64_get_pmc(0); /* slow */
6358
6359 /*
6360 * reset freeze bit, overflow status information destroyed
6361 */
6362 pfm_unfreeze_pmu();
6363 } else {
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006364 pmc0 = ctx->th_pmcs[0];
Linus Torvalds1da177e2005-04-16 15:20:36 -07006365 /*
6366 * clear whatever overflow status bits there were
6367 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006368 ctx->th_pmcs[0] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006369 }
6370 ovfl_val = pmu_conf->ovfl_val;
6371 /*
6372 * we save all the used pmds
6373 * we take care of overflows for counting PMDs
6374 *
6375 * XXX: sampling situation is not taken into account here
6376 */
6377 mask2 = ctx->ctx_used_pmds[0];
6378
6379 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6380
6381 for (i = 0; mask2; i++, mask2>>=1) {
6382
6383 /* skip non used pmds */
6384 if ((mask2 & 0x1) == 0) continue;
6385
6386 /*
6387 * can access PMU always true in system wide mode
6388 */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006389 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07006390
6391 if (PMD_IS_COUNTING(i)) {
6392 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006393 task_pid_nr(task),
Linus Torvalds1da177e2005-04-16 15:20:36 -07006394 i,
6395 ctx->ctx_pmds[i].val,
6396 val & ovfl_val));
6397
6398 /*
6399 * we rebuild the full 64 bit value of the counter
6400 */
6401 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6402
6403 /*
6404 * now everything is in ctx_pmds[] and we need
6405 * to clear the saved context from save_regs() such that
6406 * pfm_read_pmds() gets the correct value
6407 */
6408 pmd_val = 0UL;
6409
6410 /*
6411 * take care of overflow inline
6412 */
6413 if (pmc0 & (1UL << i)) {
6414 val += 1 + ovfl_val;
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006415 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006416 }
6417 }
6418
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006419 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006420
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006421 if (is_self) ctx->th_pmds[i] = pmd_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006422
6423 ctx->ctx_pmds[i].val = val;
6424 }
6425}
6426
6427static struct irqaction perfmon_irqaction = {
6428 .handler = pfm_interrupt_handler,
Thomas Gleixner121a4222006-07-01 19:29:17 -07006429 .flags = IRQF_DISABLED,
Linus Torvalds1da177e2005-04-16 15:20:36 -07006430 .name = "perfmon"
6431};
6432
Tony Lucka1ecf7f62005-05-18 16:06:00 -07006433static void
6434pfm_alt_save_pmu_state(void *data)
6435{
6436 struct pt_regs *regs;
6437
Al Viro64505782006-01-12 01:06:06 -08006438 regs = task_pt_regs(current);
Tony Lucka1ecf7f62005-05-18 16:06:00 -07006439
6440 DPRINT(("called\n"));
6441
6442 /*
6443 * should not be necessary but
6444 * let's take not risk
6445 */
6446 pfm_clear_psr_up();
6447 pfm_clear_psr_pp();
6448 ia64_psr(regs)->pp = 0;
6449
6450 /*
6451 * This call is required
6452 * May cause a spurious interrupt on some processors
6453 */
6454 pfm_freeze_pmu();
6455
6456 ia64_srlz_d();
6457}
6458
6459void
6460pfm_alt_restore_pmu_state(void *data)
6461{
6462 struct pt_regs *regs;
6463
Al Viro64505782006-01-12 01:06:06 -08006464 regs = task_pt_regs(current);
Tony Lucka1ecf7f62005-05-18 16:06:00 -07006465
6466 DPRINT(("called\n"));
6467
6468 /*
6469 * put PMU back in state expected
6470 * by perfmon
6471 */
6472 pfm_clear_psr_up();
6473 pfm_clear_psr_pp();
6474 ia64_psr(regs)->pp = 0;
6475
6476 /*
6477 * perfmon runs with PMU unfrozen at all times
6478 */
6479 pfm_unfreeze_pmu();
6480
6481 ia64_srlz_d();
6482}
6483
6484int
6485pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6486{
6487 int ret, i;
6488 int reserve_cpu;
6489
6490 /* some sanity checks */
6491 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6492
6493 /* do the easy test first */
6494 if (pfm_alt_intr_handler) return -EBUSY;
6495
6496 /* one at a time in the install or remove, just fail the others */
6497 if (!spin_trylock(&pfm_alt_install_check)) {
6498 return -EBUSY;
6499 }
6500
6501 /* reserve our session */
6502 for_each_online_cpu(reserve_cpu) {
6503 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6504 if (ret) goto cleanup_reserve;
6505 }
6506
6507 /* save the current system wide pmu states */
Jens Axboe15c8b6c2008-05-09 09:39:44 +02006508 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
Tony Lucka1ecf7f62005-05-18 16:06:00 -07006509 if (ret) {
6510 DPRINT(("on_each_cpu() failed: %d\n", ret));
6511 goto cleanup_reserve;
6512 }
6513
6514 /* officially change to the alternate interrupt handler */
6515 pfm_alt_intr_handler = hdl;
6516
6517 spin_unlock(&pfm_alt_install_check);
6518
6519 return 0;
6520
6521cleanup_reserve:
6522 for_each_online_cpu(i) {
6523 /* don't unreserve more than we reserved */
6524 if (i >= reserve_cpu) break;
6525
6526 pfm_unreserve_session(NULL, 1, i);
6527 }
6528
6529 spin_unlock(&pfm_alt_install_check);
6530
6531 return ret;
6532}
6533EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6534
6535int
6536pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6537{
6538 int i;
6539 int ret;
6540
6541 if (hdl == NULL) return -EINVAL;
6542
6543 /* cannot remove someone else's handler! */
6544 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6545
6546 /* one at a time in the install or remove, just fail the others */
6547 if (!spin_trylock(&pfm_alt_install_check)) {
6548 return -EBUSY;
6549 }
6550
6551 pfm_alt_intr_handler = NULL;
6552
Jens Axboe15c8b6c2008-05-09 09:39:44 +02006553 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
Tony Lucka1ecf7f62005-05-18 16:06:00 -07006554 if (ret) {
6555 DPRINT(("on_each_cpu() failed: %d\n", ret));
6556 }
6557
6558 for_each_online_cpu(i) {
6559 pfm_unreserve_session(NULL, 1, i);
6560 }
6561
6562 spin_unlock(&pfm_alt_install_check);
6563
6564 return 0;
6565}
6566EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6567
Linus Torvalds1da177e2005-04-16 15:20:36 -07006568/*
6569 * perfmon initialization routine, called from the initcall() table
6570 */
6571static int init_pfm_fs(void);
6572
6573static int __init
6574pfm_probe_pmu(void)
6575{
6576 pmu_config_t **p;
6577 int family;
6578
6579 family = local_cpu_data->family;
6580 p = pmu_confs;
6581
6582 while(*p) {
6583 if ((*p)->probe) {
6584 if ((*p)->probe() == 0) goto found;
6585 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6586 goto found;
6587 }
6588 p++;
6589 }
6590 return -1;
6591found:
6592 pmu_conf = *p;
6593 return 0;
6594}
6595
Arjan van de Ven5dfe4c92007-02-12 00:55:31 -08006596static const struct file_operations pfm_proc_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006597 .open = pfm_proc_open,
6598 .read = seq_read,
6599 .llseek = seq_lseek,
6600 .release = seq_release,
6601};
6602
6603int __init
6604pfm_init(void)
6605{
6606 unsigned int n, n_counters, i;
6607
6608 printk("perfmon: version %u.%u IRQ %u\n",
6609 PFM_VERSION_MAJ,
6610 PFM_VERSION_MIN,
6611 IA64_PERFMON_VECTOR);
6612
6613 if (pfm_probe_pmu()) {
6614 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6615 local_cpu_data->family);
6616 return -ENODEV;
6617 }
6618
6619 /*
6620 * compute the number of implemented PMD/PMC from the
6621 * description tables
6622 */
6623 n = 0;
6624 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6625 if (PMC_IS_IMPL(i) == 0) continue;
6626 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6627 n++;
6628 }
6629 pmu_conf->num_pmcs = n;
6630
6631 n = 0; n_counters = 0;
6632 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6633 if (PMD_IS_IMPL(i) == 0) continue;
6634 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6635 n++;
6636 if (PMD_IS_COUNTING(i)) n_counters++;
6637 }
6638 pmu_conf->num_pmds = n;
6639 pmu_conf->num_counters = n_counters;
6640
6641 /*
6642 * sanity checks on the number of debug registers
6643 */
6644 if (pmu_conf->use_rr_dbregs) {
6645 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6646 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6647 pmu_conf = NULL;
6648 return -1;
6649 }
6650 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6651 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6652 pmu_conf = NULL;
6653 return -1;
6654 }
6655 }
6656
6657 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6658 pmu_conf->pmu_name,
6659 pmu_conf->num_pmcs,
6660 pmu_conf->num_pmds,
6661 pmu_conf->num_counters,
6662 ffz(pmu_conf->ovfl_val));
6663
6664 /* sanity check */
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006665 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006666 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6667 pmu_conf = NULL;
6668 return -1;
6669 }
6670
6671 /*
6672 * create /proc/perfmon (mostly for debugging purposes)
6673 */
Denis V. Luneve2363762008-04-29 01:02:25 -07006674 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006675 if (perfmon_dir == NULL) {
6676 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6677 pmu_conf = NULL;
6678 return -1;
6679 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006680
6681 /*
6682 * create /proc/sys/kernel/perfmon (for debugging purposes)
6683 */
Eric W. Biederman0b4d4142007-02-14 00:34:09 -08006684 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006685
6686 /*
6687 * initialize all our spinlocks
6688 */
6689 spin_lock_init(&pfm_sessions.pfs_lock);
6690 spin_lock_init(&pfm_buffer_fmt_lock);
6691
6692 init_pfm_fs();
6693
6694 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6695
6696 return 0;
6697}
6698
6699__initcall(pfm_init);
6700
6701/*
6702 * this function is called before pfm_init()
6703 */
6704void
6705pfm_init_percpu (void)
6706{
Ashok Rajff741902005-11-11 14:32:40 -08006707 static int first_time=1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006708 /*
6709 * make sure no measurement is active
6710 * (may inherit programmed PMCs from EFI).
6711 */
6712 pfm_clear_psr_pp();
6713 pfm_clear_psr_up();
6714
6715 /*
6716 * we run with the PMU not frozen at all times
6717 */
6718 pfm_unfreeze_pmu();
6719
Ashok Rajff741902005-11-11 14:32:40 -08006720 if (first_time) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006721 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
Ashok Rajff741902005-11-11 14:32:40 -08006722 first_time=0;
6723 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006724
6725 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6726 ia64_srlz_d();
6727}
6728
6729/*
6730 * used for debug purposes only
6731 */
6732void
6733dump_pmu_state(const char *from)
6734{
6735 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006736 struct pt_regs *regs;
6737 pfm_context_t *ctx;
6738 unsigned long psr, dcr, info, flags;
6739 int i, this_cpu;
6740
6741 local_irq_save(flags);
6742
6743 this_cpu = smp_processor_id();
Al Viro64505782006-01-12 01:06:06 -08006744 regs = task_pt_regs(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006745 info = PFM_CPUINFO_GET();
6746 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6747
6748 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6749 local_irq_restore(flags);
6750 return;
6751 }
6752
6753 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6754 this_cpu,
6755 from,
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006756 task_pid_nr(current),
Linus Torvalds1da177e2005-04-16 15:20:36 -07006757 regs->cr_iip,
6758 current->comm);
6759
6760 task = GET_PMU_OWNER();
6761 ctx = GET_PMU_CTX();
6762
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006763 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006764
6765 psr = pfm_get_psr();
6766
6767 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6768 this_cpu,
6769 ia64_get_pmc(0),
6770 psr & IA64_PSR_PP ? 1 : 0,
6771 psr & IA64_PSR_UP ? 1 : 0,
6772 dcr & IA64_DCR_PP ? 1 : 0,
6773 info,
6774 ia64_psr(regs)->up,
6775 ia64_psr(regs)->pp);
6776
6777 ia64_psr(regs)->up = 0;
6778 ia64_psr(regs)->pp = 0;
6779
Linus Torvalds1da177e2005-04-16 15:20:36 -07006780 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6781 if (PMC_IS_IMPL(i) == 0) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006782 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006783 }
6784
6785 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6786 if (PMD_IS_IMPL(i) == 0) continue;
Keshavamurthy Anil S35589a82006-09-26 12:03:13 -07006787 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006788 }
6789
6790 if (ctx) {
6791 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6792 this_cpu,
6793 ctx->ctx_state,
6794 ctx->ctx_smpl_vaddr,
6795 ctx->ctx_smpl_hdr,
6796 ctx->ctx_msgq_head,
6797 ctx->ctx_msgq_tail,
6798 ctx->ctx_saved_psr_up);
6799 }
6800 local_irq_restore(flags);
6801}
6802
6803/*
6804 * called from process.c:copy_thread(). task is new child.
6805 */
6806void
6807pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6808{
6809 struct thread_struct *thread;
6810
Alexey Dobriyan19c58702007-10-18 23:40:41 -07006811 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07006812
6813 thread = &task->thread;
6814
6815 /*
6816 * cut links inherited from parent (current)
6817 */
6818 thread->pfm_context = NULL;
6819
6820 PFM_SET_WORK_PENDING(task, 0);
6821
6822 /*
6823 * the psr bits are already set properly in copy_threads()
6824 */
6825}
6826#else /* !CONFIG_PERFMON */
6827asmlinkage long
6828sys_perfmonctl (int fd, int cmd, void *arg, int count)
6829{
6830 return -ENOSYS;
6831}
6832#endif /* CONFIG_PERFMON */