blob: 9425c9600c89526e7506d7b84bbb779f9b632e76 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200292/*
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
295 */
296static void
297list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298{
299 struct perf_event *group_leader = event->group_leader;
300
301 /*
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
305 */
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
311 }
312
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
317}
318
319/*
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
322 */
323static void
324list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325{
326 struct perf_event *sibling, *tmp;
327
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
333
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
336
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
339
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100340 update_event_times(event);
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100341 event->state = PERF_EVENT_STATE_OFF;
342
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349
350 list_move_tail(&sibling->group_entry, &ctx->group_list);
351 sibling->group_leader = sibling;
352 }
353}
354
355static void
356event_sched_out(struct perf_event *event,
357 struct perf_cpu_context *cpuctx,
358 struct perf_event_context *ctx)
359{
360 if (event->state != PERF_EVENT_STATE_ACTIVE)
361 return;
362
363 event->state = PERF_EVENT_STATE_INACTIVE;
364 if (event->pending_disable) {
365 event->pending_disable = 0;
366 event->state = PERF_EVENT_STATE_OFF;
367 }
368 event->tstamp_stopped = ctx->time;
369 event->pmu->disable(event);
370 event->oncpu = -1;
371
372 if (!is_software_event(event))
373 cpuctx->active_oncpu--;
374 ctx->nr_active--;
375 if (event->attr.exclusive || !cpuctx->active_oncpu)
376 cpuctx->exclusive = 0;
377}
378
379static void
380group_sched_out(struct perf_event *group_event,
381 struct perf_cpu_context *cpuctx,
382 struct perf_event_context *ctx)
383{
384 struct perf_event *event;
385
386 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
387 return;
388
389 event_sched_out(group_event, cpuctx, ctx);
390
391 /*
392 * Schedule out siblings (if any):
393 */
394 list_for_each_entry(event, &group_event->sibling_list, group_entry)
395 event_sched_out(event, cpuctx, ctx);
396
397 if (group_event->attr.exclusive)
398 cpuctx->exclusive = 0;
399}
400
401/*
402 * Cross CPU call to remove a performance event
403 *
404 * We disable the event on the hardware level first. After that we
405 * remove it from the context list.
406 */
407static void __perf_event_remove_from_context(void *info)
408{
409 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
410 struct perf_event *event = info;
411 struct perf_event_context *ctx = event->ctx;
412
413 /*
414 * If this is a task context, we need to check whether it is
415 * the current task context of this cpu. If not it has been
416 * scheduled out before the smp call arrived.
417 */
418 if (ctx->task && cpuctx->task_ctx != ctx)
419 return;
420
421 spin_lock(&ctx->lock);
422 /*
423 * Protect the list operation against NMI by disabling the
424 * events on a global level.
425 */
426 perf_disable();
427
428 event_sched_out(event, cpuctx, ctx);
429
430 list_del_event(event, ctx);
431
432 if (!ctx->task) {
433 /*
434 * Allow more per task events with respect to the
435 * reservation:
436 */
437 cpuctx->max_pertask =
438 min(perf_max_events - ctx->nr_events,
439 perf_max_events - perf_reserved_percpu);
440 }
441
442 perf_enable();
443 spin_unlock(&ctx->lock);
444}
445
446
447/*
448 * Remove the event from a task's (or a CPU's) list of events.
449 *
450 * Must be called with ctx->mutex held.
451 *
452 * CPU events are removed with a smp call. For task events we only
453 * call when the task is on a CPU.
454 *
455 * If event->ctx is a cloned context, callers must make sure that
456 * every task struct that event->ctx->task could possibly point to
457 * remains valid. This is OK when called from perf_release since
458 * that only calls us on the top-level context, which can't be a clone.
459 * When called from perf_event_exit_task, it's OK because the
460 * context has been detached from its task.
461 */
462static void perf_event_remove_from_context(struct perf_event *event)
463{
464 struct perf_event_context *ctx = event->ctx;
465 struct task_struct *task = ctx->task;
466
467 if (!task) {
468 /*
469 * Per cpu events are removed via an smp call and
470 * the removal is always sucessful.
471 */
472 smp_call_function_single(event->cpu,
473 __perf_event_remove_from_context,
474 event, 1);
475 return;
476 }
477
478retry:
479 task_oncpu_function_call(task, __perf_event_remove_from_context,
480 event);
481
482 spin_lock_irq(&ctx->lock);
483 /*
484 * If the context is active we need to retry the smp call.
485 */
486 if (ctx->nr_active && !list_empty(&event->group_entry)) {
487 spin_unlock_irq(&ctx->lock);
488 goto retry;
489 }
490
491 /*
492 * The lock prevents that this context is scheduled in so we
493 * can remove the event safely, if the call above did not
494 * succeed.
495 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100496 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200497 list_del_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 spin_unlock_irq(&ctx->lock);
499}
500
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200501/*
502 * Update total_time_enabled and total_time_running for all events in a group.
503 */
504static void update_group_times(struct perf_event *leader)
505{
506 struct perf_event *event;
507
508 update_event_times(leader);
509 list_for_each_entry(event, &leader->sibling_list, group_entry)
510 update_event_times(event);
511}
512
513/*
514 * Cross CPU call to disable a performance event
515 */
516static void __perf_event_disable(void *info)
517{
518 struct perf_event *event = info;
519 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
520 struct perf_event_context *ctx = event->ctx;
521
522 /*
523 * If this is a per-task event, need to check whether this
524 * event's task is the current task on this cpu.
525 */
526 if (ctx->task && cpuctx->task_ctx != ctx)
527 return;
528
529 spin_lock(&ctx->lock);
530
531 /*
532 * If the event is on, turn it off.
533 * If it is in error state, leave it in error state.
534 */
535 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
536 update_context_time(ctx);
537 update_group_times(event);
538 if (event == event->group_leader)
539 group_sched_out(event, cpuctx, ctx);
540 else
541 event_sched_out(event, cpuctx, ctx);
542 event->state = PERF_EVENT_STATE_OFF;
543 }
544
545 spin_unlock(&ctx->lock);
546}
547
548/*
549 * Disable a event.
550 *
551 * If event->ctx is a cloned context, callers must make sure that
552 * every task struct that event->ctx->task could possibly point to
553 * remains valid. This condition is satisifed when called through
554 * perf_event_for_each_child or perf_event_for_each because they
555 * hold the top-level event's child_mutex, so any descendant that
556 * goes to exit will block in sync_child_event.
557 * When called from perf_pending_event it's OK because event->ctx
558 * is the current context on this CPU and preemption is disabled,
559 * hence we can't get into perf_event_task_sched_out for this context.
560 */
561static void perf_event_disable(struct perf_event *event)
562{
563 struct perf_event_context *ctx = event->ctx;
564 struct task_struct *task = ctx->task;
565
566 if (!task) {
567 /*
568 * Disable the event on the cpu that it's on
569 */
570 smp_call_function_single(event->cpu, __perf_event_disable,
571 event, 1);
572 return;
573 }
574
575 retry:
576 task_oncpu_function_call(task, __perf_event_disable, event);
577
578 spin_lock_irq(&ctx->lock);
579 /*
580 * If the event is still active, we need to retry the cross-call.
581 */
582 if (event->state == PERF_EVENT_STATE_ACTIVE) {
583 spin_unlock_irq(&ctx->lock);
584 goto retry;
585 }
586
587 /*
588 * Since we have the lock this context can't be scheduled
589 * in, so we can change the state safely.
590 */
591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
592 update_group_times(event);
593 event->state = PERF_EVENT_STATE_OFF;
594 }
595
596 spin_unlock_irq(&ctx->lock);
597}
598
599static int
600event_sched_in(struct perf_event *event,
601 struct perf_cpu_context *cpuctx,
602 struct perf_event_context *ctx,
603 int cpu)
604{
605 if (event->state <= PERF_EVENT_STATE_OFF)
606 return 0;
607
608 event->state = PERF_EVENT_STATE_ACTIVE;
609 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
610 /*
611 * The new state must be visible before we turn it on in the hardware:
612 */
613 smp_wmb();
614
615 if (event->pmu->enable(event)) {
616 event->state = PERF_EVENT_STATE_INACTIVE;
617 event->oncpu = -1;
618 return -EAGAIN;
619 }
620
621 event->tstamp_running += ctx->time - event->tstamp_stopped;
622
623 if (!is_software_event(event))
624 cpuctx->active_oncpu++;
625 ctx->nr_active++;
626
627 if (event->attr.exclusive)
628 cpuctx->exclusive = 1;
629
630 return 0;
631}
632
633static int
634group_sched_in(struct perf_event *group_event,
635 struct perf_cpu_context *cpuctx,
636 struct perf_event_context *ctx,
637 int cpu)
638{
639 struct perf_event *event, *partial_group;
640 int ret;
641
642 if (group_event->state == PERF_EVENT_STATE_OFF)
643 return 0;
644
645 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
646 if (ret)
647 return ret < 0 ? ret : 0;
648
649 if (event_sched_in(group_event, cpuctx, ctx, cpu))
650 return -EAGAIN;
651
652 /*
653 * Schedule in siblings as one group (if any):
654 */
655 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
656 if (event_sched_in(event, cpuctx, ctx, cpu)) {
657 partial_group = event;
658 goto group_error;
659 }
660 }
661
662 return 0;
663
664group_error:
665 /*
666 * Groups can be scheduled in as one unit only, so undo any
667 * partial group before returning:
668 */
669 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
670 if (event == partial_group)
671 break;
672 event_sched_out(event, cpuctx, ctx);
673 }
674 event_sched_out(group_event, cpuctx, ctx);
675
676 return -EAGAIN;
677}
678
679/*
680 * Return 1 for a group consisting entirely of software events,
681 * 0 if the group contains any hardware events.
682 */
683static int is_software_only_group(struct perf_event *leader)
684{
685 struct perf_event *event;
686
687 if (!is_software_event(leader))
688 return 0;
689
690 list_for_each_entry(event, &leader->sibling_list, group_entry)
691 if (!is_software_event(event))
692 return 0;
693
694 return 1;
695}
696
697/*
698 * Work out whether we can put this event group on the CPU now.
699 */
700static int group_can_go_on(struct perf_event *event,
701 struct perf_cpu_context *cpuctx,
702 int can_add_hw)
703{
704 /*
705 * Groups consisting entirely of software events can always go on.
706 */
707 if (is_software_only_group(event))
708 return 1;
709 /*
710 * If an exclusive group is already on, no other hardware
711 * events can go on.
712 */
713 if (cpuctx->exclusive)
714 return 0;
715 /*
716 * If this group is exclusive and there are already
717 * events on the CPU, it can't go on.
718 */
719 if (event->attr.exclusive && cpuctx->active_oncpu)
720 return 0;
721 /*
722 * Otherwise, try to add it if all previous groups were able
723 * to go on.
724 */
725 return can_add_hw;
726}
727
728static void add_event_to_ctx(struct perf_event *event,
729 struct perf_event_context *ctx)
730{
731 list_add_event(event, ctx);
732 event->tstamp_enabled = ctx->time;
733 event->tstamp_running = ctx->time;
734 event->tstamp_stopped = ctx->time;
735}
736
737/*
738 * Cross CPU call to install and enable a performance event
739 *
740 * Must be called with ctx->mutex held
741 */
742static void __perf_install_in_context(void *info)
743{
744 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
745 struct perf_event *event = info;
746 struct perf_event_context *ctx = event->ctx;
747 struct perf_event *leader = event->group_leader;
748 int cpu = smp_processor_id();
749 int err;
750
751 /*
752 * If this is a task context, we need to check whether it is
753 * the current task context of this cpu. If not it has been
754 * scheduled out before the smp call arrived.
755 * Or possibly this is the right context but it isn't
756 * on this cpu because it had no events.
757 */
758 if (ctx->task && cpuctx->task_ctx != ctx) {
759 if (cpuctx->task_ctx || ctx->task != current)
760 return;
761 cpuctx->task_ctx = ctx;
762 }
763
764 spin_lock(&ctx->lock);
765 ctx->is_active = 1;
766 update_context_time(ctx);
767
768 /*
769 * Protect the list operation against NMI by disabling the
770 * events on a global level. NOP for non NMI based events.
771 */
772 perf_disable();
773
774 add_event_to_ctx(event, ctx);
775
776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
792 err = event_sched_in(event, cpuctx, ctx, cpu);
793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
814 spin_unlock(&ctx->lock);
815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
839 * the install is always sucessful.
840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
850 spin_lock_irq(&ctx->lock);
851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
855 spin_unlock_irq(&ctx->lock);
856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
866 spin_unlock_irq(&ctx->lock);
867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
911 spin_lock(&ctx->lock);
912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
919 /*
920 * If the event is in a group and isn't the group leader,
921 * then don't put it on unless the group is on.
922 */
923 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
924 goto unlock;
925
926 if (!group_can_go_on(event, cpuctx, 1)) {
927 err = -EEXIST;
928 } else {
929 perf_disable();
930 if (event == leader)
931 err = group_sched_in(event, cpuctx, ctx,
932 smp_processor_id());
933 else
934 err = event_sched_in(event, cpuctx, ctx,
935 smp_processor_id());
936 perf_enable();
937 }
938
939 if (err) {
940 /*
941 * If this event can't go on and it's part of a
942 * group, then the whole group has to come off.
943 */
944 if (leader != event)
945 group_sched_out(leader, cpuctx, ctx);
946 if (leader->attr.pinned) {
947 update_group_times(leader);
948 leader->state = PERF_EVENT_STATE_ERROR;
949 }
950 }
951
952 unlock:
953 spin_unlock(&ctx->lock);
954}
955
956/*
957 * Enable a event.
958 *
959 * If event->ctx is a cloned context, callers must make sure that
960 * every task struct that event->ctx->task could possibly point to
961 * remains valid. This condition is satisfied when called through
962 * perf_event_for_each_child or perf_event_for_each as described
963 * for perf_event_disable.
964 */
965static void perf_event_enable(struct perf_event *event)
966{
967 struct perf_event_context *ctx = event->ctx;
968 struct task_struct *task = ctx->task;
969
970 if (!task) {
971 /*
972 * Enable the event on the cpu that it's on
973 */
974 smp_call_function_single(event->cpu, __perf_event_enable,
975 event, 1);
976 return;
977 }
978
979 spin_lock_irq(&ctx->lock);
980 if (event->state >= PERF_EVENT_STATE_INACTIVE)
981 goto out;
982
983 /*
984 * If the event is in error state, clear that first.
985 * That way, if we see the event in error state below, we
986 * know that it has gone back into error state, as distinct
987 * from the task having been scheduled away before the
988 * cross-call arrived.
989 */
990 if (event->state == PERF_EVENT_STATE_ERROR)
991 event->state = PERF_EVENT_STATE_OFF;
992
993 retry:
994 spin_unlock_irq(&ctx->lock);
995 task_oncpu_function_call(task, __perf_event_enable, event);
996
997 spin_lock_irq(&ctx->lock);
998
999 /*
1000 * If the context is active and the event is still off,
1001 * we need to retry the cross-call.
1002 */
1003 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004 goto retry;
1005
1006 /*
1007 * Since we have the lock this context can't be scheduled
1008 * in, so we can change the state safely.
1009 */
1010 if (event->state == PERF_EVENT_STATE_OFF)
1011 __perf_event_mark_enabled(event, ctx);
1012
1013 out:
1014 spin_unlock_irq(&ctx->lock);
1015}
1016
1017static int perf_event_refresh(struct perf_event *event, int refresh)
1018{
1019 /*
1020 * not supported on inherited events
1021 */
1022 if (event->attr.inherit)
1023 return -EINVAL;
1024
1025 atomic_add(refresh, &event->event_limit);
1026 perf_event_enable(event);
1027
1028 return 0;
1029}
1030
1031void __perf_event_sched_out(struct perf_event_context *ctx,
1032 struct perf_cpu_context *cpuctx)
1033{
1034 struct perf_event *event;
1035
1036 spin_lock(&ctx->lock);
1037 ctx->is_active = 0;
1038 if (likely(!ctx->nr_events))
1039 goto out;
1040 update_context_time(ctx);
1041
1042 perf_disable();
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001043 if (ctx->nr_active) {
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001044 list_for_each_entry(event, &ctx->group_list, group_entry)
1045 group_sched_out(event, cpuctx, ctx);
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001046 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001047 perf_enable();
1048 out:
1049 spin_unlock(&ctx->lock);
1050}
1051
1052/*
1053 * Test whether two contexts are equivalent, i.e. whether they
1054 * have both been cloned from the same version of the same context
1055 * and they both have the same number of enabled events.
1056 * If the number of enabled events is the same, then the set
1057 * of enabled events should be the same, because these are both
1058 * inherited contexts, therefore we can't access individual events
1059 * in them directly with an fd; we can only enable/disable all
1060 * events via prctl, or enable/disable all events in a family
1061 * via ioctl, which will have the same effect on both contexts.
1062 */
1063static int context_equiv(struct perf_event_context *ctx1,
1064 struct perf_event_context *ctx2)
1065{
1066 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1067 && ctx1->parent_gen == ctx2->parent_gen
1068 && !ctx1->pin_count && !ctx2->pin_count;
1069}
1070
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001071static void __perf_event_sync_stat(struct perf_event *event,
1072 struct perf_event *next_event)
1073{
1074 u64 value;
1075
1076 if (!event->attr.inherit_stat)
1077 return;
1078
1079 /*
1080 * Update the event value, we cannot use perf_event_read()
1081 * because we're in the middle of a context switch and have IRQs
1082 * disabled, which upsets smp_call_function_single(), however
1083 * we know the event must be on the current CPU, therefore we
1084 * don't need to use it.
1085 */
1086 switch (event->state) {
1087 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001088 event->pmu->read(event);
1089 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001090
1091 case PERF_EVENT_STATE_INACTIVE:
1092 update_event_times(event);
1093 break;
1094
1095 default:
1096 break;
1097 }
1098
1099 /*
1100 * In order to keep per-task stats reliable we need to flip the event
1101 * values when we flip the contexts.
1102 */
1103 value = atomic64_read(&next_event->count);
1104 value = atomic64_xchg(&event->count, value);
1105 atomic64_set(&next_event->count, value);
1106
1107 swap(event->total_time_enabled, next_event->total_time_enabled);
1108 swap(event->total_time_running, next_event->total_time_running);
1109
1110 /*
1111 * Since we swizzled the values, update the user visible data too.
1112 */
1113 perf_event_update_userpage(event);
1114 perf_event_update_userpage(next_event);
1115}
1116
1117#define list_next_entry(pos, member) \
1118 list_entry(pos->member.next, typeof(*pos), member)
1119
1120static void perf_event_sync_stat(struct perf_event_context *ctx,
1121 struct perf_event_context *next_ctx)
1122{
1123 struct perf_event *event, *next_event;
1124
1125 if (!ctx->nr_stat)
1126 return;
1127
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001128 update_context_time(ctx);
1129
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001130 event = list_first_entry(&ctx->event_list,
1131 struct perf_event, event_entry);
1132
1133 next_event = list_first_entry(&next_ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 while (&event->event_entry != &ctx->event_list &&
1137 &next_event->event_entry != &next_ctx->event_list) {
1138
1139 __perf_event_sync_stat(event, next_event);
1140
1141 event = list_next_entry(event, event_entry);
1142 next_event = list_next_entry(next_event, event_entry);
1143 }
1144}
1145
1146/*
1147 * Called from scheduler to remove the events of the current task,
1148 * with interrupts disabled.
1149 *
1150 * We stop each event and update the event value in event->count.
1151 *
1152 * This does not protect us against NMI, but disable()
1153 * sets the disabled bit in the control field of event _before_
1154 * accessing the event control register. If a NMI hits, then it will
1155 * not restart the event.
1156 */
1157void perf_event_task_sched_out(struct task_struct *task,
1158 struct task_struct *next, int cpu)
1159{
1160 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1161 struct perf_event_context *ctx = task->perf_event_ctxp;
1162 struct perf_event_context *next_ctx;
1163 struct perf_event_context *parent;
1164 struct pt_regs *regs;
1165 int do_switch = 1;
1166
1167 regs = task_pt_regs(task);
1168 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1169
1170 if (likely(!ctx || !cpuctx->task_ctx))
1171 return;
1172
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001173 rcu_read_lock();
1174 parent = rcu_dereference(ctx->parent_ctx);
1175 next_ctx = next->perf_event_ctxp;
1176 if (parent && next_ctx &&
1177 rcu_dereference(next_ctx->parent_ctx) == parent) {
1178 /*
1179 * Looks like the two contexts are clones, so we might be
1180 * able to optimize the context switch. We lock both
1181 * contexts and check that they are clones under the
1182 * lock (including re-checking that neither has been
1183 * uncloned in the meantime). It doesn't matter which
1184 * order we take the locks because no other cpu could
1185 * be trying to lock both of these tasks.
1186 */
1187 spin_lock(&ctx->lock);
1188 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1189 if (context_equiv(ctx, next_ctx)) {
1190 /*
1191 * XXX do we need a memory barrier of sorts
1192 * wrt to rcu_dereference() of perf_event_ctxp
1193 */
1194 task->perf_event_ctxp = next_ctx;
1195 next->perf_event_ctxp = ctx;
1196 ctx->task = next;
1197 next_ctx->task = task;
1198 do_switch = 0;
1199
1200 perf_event_sync_stat(ctx, next_ctx);
1201 }
1202 spin_unlock(&next_ctx->lock);
1203 spin_unlock(&ctx->lock);
1204 }
1205 rcu_read_unlock();
1206
1207 if (do_switch) {
1208 __perf_event_sched_out(ctx, cpuctx);
1209 cpuctx->task_ctx = NULL;
1210 }
1211}
1212
1213/*
1214 * Called with IRQs disabled
1215 */
1216static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1217{
1218 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1219
1220 if (!cpuctx->task_ctx)
1221 return;
1222
1223 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1224 return;
1225
1226 __perf_event_sched_out(ctx, cpuctx);
1227 cpuctx->task_ctx = NULL;
1228}
1229
1230/*
1231 * Called with IRQs disabled
1232 */
1233static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1234{
1235 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1236}
1237
1238static void
1239__perf_event_sched_in(struct perf_event_context *ctx,
1240 struct perf_cpu_context *cpuctx, int cpu)
1241{
1242 struct perf_event *event;
1243 int can_add_hw = 1;
1244
1245 spin_lock(&ctx->lock);
1246 ctx->is_active = 1;
1247 if (likely(!ctx->nr_events))
1248 goto out;
1249
1250 ctx->timestamp = perf_clock();
1251
1252 perf_disable();
1253
1254 /*
1255 * First go through the list and put on any pinned groups
1256 * in order to give them the best chance of going on.
1257 */
1258 list_for_each_entry(event, &ctx->group_list, group_entry) {
1259 if (event->state <= PERF_EVENT_STATE_OFF ||
1260 !event->attr.pinned)
1261 continue;
1262 if (event->cpu != -1 && event->cpu != cpu)
1263 continue;
1264
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001265 if (group_can_go_on(event, cpuctx, 1))
1266 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267
1268 /*
1269 * If this pinned group hasn't been scheduled,
1270 * put it in error state.
1271 */
1272 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1273 update_group_times(event);
1274 event->state = PERF_EVENT_STATE_ERROR;
1275 }
1276 }
1277
1278 list_for_each_entry(event, &ctx->group_list, group_entry) {
1279 /*
1280 * Ignore events in OFF or ERROR state, and
1281 * ignore pinned events since we did them already.
1282 */
1283 if (event->state <= PERF_EVENT_STATE_OFF ||
1284 event->attr.pinned)
1285 continue;
1286
1287 /*
1288 * Listen to the 'cpu' scheduling filter constraint
1289 * of events:
1290 */
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, can_add_hw))
1295 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001297 }
1298 perf_enable();
1299 out:
1300 spin_unlock(&ctx->lock);
1301}
1302
1303/*
1304 * Called from scheduler to add the events of the current task
1305 * with interrupts disabled.
1306 *
1307 * We restore the event value and then enable it.
1308 *
1309 * This does not protect us against NMI, but enable()
1310 * sets the enabled bit in the control field of event _before_
1311 * accessing the event control register. If a NMI hits, then it will
1312 * keep the event running.
1313 */
1314void perf_event_task_sched_in(struct task_struct *task, int cpu)
1315{
1316 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1317 struct perf_event_context *ctx = task->perf_event_ctxp;
1318
1319 if (likely(!ctx))
1320 return;
1321 if (cpuctx->task_ctx == ctx)
1322 return;
1323 __perf_event_sched_in(ctx, cpuctx, cpu);
1324 cpuctx->task_ctx = ctx;
1325}
1326
1327static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1328{
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1330
1331 __perf_event_sched_in(ctx, cpuctx, cpu);
1332}
1333
1334#define MAX_INTERRUPTS (~0ULL)
1335
1336static void perf_log_throttle(struct perf_event *event, int enable);
1337
1338static void perf_adjust_period(struct perf_event *event, u64 events)
1339{
1340 struct hw_perf_event *hwc = &event->hw;
1341 u64 period, sample_period;
1342 s64 delta;
1343
1344 events *= hwc->sample_period;
1345 period = div64_u64(events, event->attr.sample_freq);
1346
1347 delta = (s64)(period - hwc->sample_period);
1348 delta = (delta + 7) / 8; /* low pass filter */
1349
1350 sample_period = hwc->sample_period + delta;
1351
1352 if (!sample_period)
1353 sample_period = 1;
1354
1355 hwc->sample_period = sample_period;
1356}
1357
1358static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1359{
1360 struct perf_event *event;
1361 struct hw_perf_event *hwc;
1362 u64 interrupts, freq;
1363
1364 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001365 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001366 if (event->state != PERF_EVENT_STATE_ACTIVE)
1367 continue;
1368
1369 hwc = &event->hw;
1370
1371 interrupts = hwc->interrupts;
1372 hwc->interrupts = 0;
1373
1374 /*
1375 * unthrottle events on the tick
1376 */
1377 if (interrupts == MAX_INTERRUPTS) {
1378 perf_log_throttle(event, 1);
1379 event->pmu->unthrottle(event);
1380 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1381 }
1382
1383 if (!event->attr.freq || !event->attr.sample_freq)
1384 continue;
1385
1386 /*
1387 * if the specified freq < HZ then we need to skip ticks
1388 */
1389 if (event->attr.sample_freq < HZ) {
1390 freq = event->attr.sample_freq;
1391
1392 hwc->freq_count += freq;
1393 hwc->freq_interrupts += interrupts;
1394
1395 if (hwc->freq_count < HZ)
1396 continue;
1397
1398 interrupts = hwc->freq_interrupts;
1399 hwc->freq_interrupts = 0;
1400 hwc->freq_count -= HZ;
1401 } else
1402 freq = HZ;
1403
1404 perf_adjust_period(event, freq * interrupts);
1405
1406 /*
1407 * In order to avoid being stalled by an (accidental) huge
1408 * sample period, force reset the sample period if we didn't
1409 * get any events in this freq period.
1410 */
1411 if (!interrupts) {
1412 perf_disable();
1413 event->pmu->disable(event);
1414 atomic64_set(&hwc->period_left, 0);
1415 event->pmu->enable(event);
1416 perf_enable();
1417 }
1418 }
1419 spin_unlock(&ctx->lock);
1420}
1421
1422/*
1423 * Round-robin a context's events:
1424 */
1425static void rotate_ctx(struct perf_event_context *ctx)
1426{
1427 struct perf_event *event;
1428
1429 if (!ctx->nr_events)
1430 return;
1431
1432 spin_lock(&ctx->lock);
1433 /*
1434 * Rotate the first entry last (works just fine for group events too):
1435 */
1436 perf_disable();
1437 list_for_each_entry(event, &ctx->group_list, group_entry) {
1438 list_move_tail(&event->group_entry, &ctx->group_list);
1439 break;
1440 }
1441 perf_enable();
1442
1443 spin_unlock(&ctx->lock);
1444}
1445
1446void perf_event_task_tick(struct task_struct *curr, int cpu)
1447{
1448 struct perf_cpu_context *cpuctx;
1449 struct perf_event_context *ctx;
1450
1451 if (!atomic_read(&nr_events))
1452 return;
1453
1454 cpuctx = &per_cpu(perf_cpu_context, cpu);
1455 ctx = curr->perf_event_ctxp;
1456
1457 perf_ctx_adjust_freq(&cpuctx->ctx);
1458 if (ctx)
1459 perf_ctx_adjust_freq(ctx);
1460
1461 perf_event_cpu_sched_out(cpuctx);
1462 if (ctx)
1463 __perf_event_task_sched_out(ctx);
1464
1465 rotate_ctx(&cpuctx->ctx);
1466 if (ctx)
1467 rotate_ctx(ctx);
1468
1469 perf_event_cpu_sched_in(cpuctx, cpu);
1470 if (ctx)
1471 perf_event_task_sched_in(curr, cpu);
1472}
1473
1474/*
1475 * Enable all of a task's events that have been marked enable-on-exec.
1476 * This expects task == current.
1477 */
1478static void perf_event_enable_on_exec(struct task_struct *task)
1479{
1480 struct perf_event_context *ctx;
1481 struct perf_event *event;
1482 unsigned long flags;
1483 int enabled = 0;
1484
1485 local_irq_save(flags);
1486 ctx = task->perf_event_ctxp;
1487 if (!ctx || !ctx->nr_events)
1488 goto out;
1489
1490 __perf_event_task_sched_out(ctx);
1491
1492 spin_lock(&ctx->lock);
1493
1494 list_for_each_entry(event, &ctx->group_list, group_entry) {
1495 if (!event->attr.enable_on_exec)
1496 continue;
1497 event->attr.enable_on_exec = 0;
1498 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1499 continue;
1500 __perf_event_mark_enabled(event, ctx);
1501 enabled = 1;
1502 }
1503
1504 /*
1505 * Unclone this context if we enabled any event.
1506 */
1507 if (enabled)
1508 unclone_ctx(ctx);
1509
1510 spin_unlock(&ctx->lock);
1511
1512 perf_event_task_sched_in(task, smp_processor_id());
1513 out:
1514 local_irq_restore(flags);
1515}
1516
1517/*
1518 * Cross CPU call to read the hardware event
1519 */
1520static void __perf_event_read(void *info)
1521{
1522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1523 struct perf_event *event = info;
1524 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001525
1526 /*
1527 * If this is a task context, we need to check whether it is
1528 * the current task context of this cpu. If not it has been
1529 * scheduled out before the smp call arrived. In that case
1530 * event->count would have been updated to a recent sample
1531 * when the event was scheduled out.
1532 */
1533 if (ctx->task && cpuctx->task_ctx != ctx)
1534 return;
1535
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001536 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001537 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001538 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001539 spin_unlock(&ctx->lock);
1540
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001541 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001542}
1543
1544static u64 perf_event_read(struct perf_event *event)
1545{
1546 /*
1547 * If event is enabled and currently active on a CPU, update the
1548 * value in the event structure:
1549 */
1550 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1551 smp_call_function_single(event->oncpu,
1552 __perf_event_read, event, 1);
1553 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001554 struct perf_event_context *ctx = event->ctx;
1555 unsigned long flags;
1556
1557 spin_lock_irqsave(&ctx->lock, flags);
1558 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001560 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561 }
1562
1563 return atomic64_read(&event->count);
1564}
1565
1566/*
1567 * Initialize the perf_event context in a task_struct:
1568 */
1569static void
1570__perf_event_init_context(struct perf_event_context *ctx,
1571 struct task_struct *task)
1572{
1573 memset(ctx, 0, sizeof(*ctx));
1574 spin_lock_init(&ctx->lock);
1575 mutex_init(&ctx->mutex);
1576 INIT_LIST_HEAD(&ctx->group_list);
1577 INIT_LIST_HEAD(&ctx->event_list);
1578 atomic_set(&ctx->refcount, 1);
1579 ctx->task = task;
1580}
1581
1582static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1583{
1584 struct perf_event_context *ctx;
1585 struct perf_cpu_context *cpuctx;
1586 struct task_struct *task;
1587 unsigned long flags;
1588 int err;
1589
1590 /*
1591 * If cpu is not a wildcard then this is a percpu event:
1592 */
1593 if (cpu != -1) {
1594 /* Must be root to operate on a CPU event: */
1595 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1596 return ERR_PTR(-EACCES);
1597
1598 if (cpu < 0 || cpu > num_possible_cpus())
1599 return ERR_PTR(-EINVAL);
1600
1601 /*
1602 * We could be clever and allow to attach a event to an
1603 * offline CPU and activate it when the CPU comes up, but
1604 * that's for later.
1605 */
1606 if (!cpu_isset(cpu, cpu_online_map))
1607 return ERR_PTR(-ENODEV);
1608
1609 cpuctx = &per_cpu(perf_cpu_context, cpu);
1610 ctx = &cpuctx->ctx;
1611 get_ctx(ctx);
1612
1613 return ctx;
1614 }
1615
1616 rcu_read_lock();
1617 if (!pid)
1618 task = current;
1619 else
1620 task = find_task_by_vpid(pid);
1621 if (task)
1622 get_task_struct(task);
1623 rcu_read_unlock();
1624
1625 if (!task)
1626 return ERR_PTR(-ESRCH);
1627
1628 /*
1629 * Can't attach events to a dying task.
1630 */
1631 err = -ESRCH;
1632 if (task->flags & PF_EXITING)
1633 goto errout;
1634
1635 /* Reuse ptrace permission checks for now. */
1636 err = -EACCES;
1637 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1638 goto errout;
1639
1640 retry:
1641 ctx = perf_lock_task_context(task, &flags);
1642 if (ctx) {
1643 unclone_ctx(ctx);
1644 spin_unlock_irqrestore(&ctx->lock, flags);
1645 }
1646
1647 if (!ctx) {
1648 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1649 err = -ENOMEM;
1650 if (!ctx)
1651 goto errout;
1652 __perf_event_init_context(ctx, task);
1653 get_ctx(ctx);
1654 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1655 /*
1656 * We raced with some other task; use
1657 * the context they set.
1658 */
1659 kfree(ctx);
1660 goto retry;
1661 }
1662 get_task_struct(task);
1663 }
1664
1665 put_task_struct(task);
1666 return ctx;
1667
1668 errout:
1669 put_task_struct(task);
1670 return ERR_PTR(err);
1671}
1672
Li Zefan6fb29152009-10-15 11:21:42 +08001673static void perf_event_free_filter(struct perf_event *event);
1674
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001675static void free_event_rcu(struct rcu_head *head)
1676{
1677 struct perf_event *event;
1678
1679 event = container_of(head, struct perf_event, rcu_head);
1680 if (event->ns)
1681 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001682 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001683 kfree(event);
1684}
1685
1686static void perf_pending_sync(struct perf_event *event);
1687
1688static void free_event(struct perf_event *event)
1689{
1690 perf_pending_sync(event);
1691
1692 if (!event->parent) {
1693 atomic_dec(&nr_events);
1694 if (event->attr.mmap)
1695 atomic_dec(&nr_mmap_events);
1696 if (event->attr.comm)
1697 atomic_dec(&nr_comm_events);
1698 if (event->attr.task)
1699 atomic_dec(&nr_task_events);
1700 }
1701
1702 if (event->output) {
1703 fput(event->output->filp);
1704 event->output = NULL;
1705 }
1706
1707 if (event->destroy)
1708 event->destroy(event);
1709
1710 put_ctx(event->ctx);
1711 call_rcu(&event->rcu_head, free_event_rcu);
1712}
1713
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001714int perf_event_release_kernel(struct perf_event *event)
1715{
1716 struct perf_event_context *ctx = event->ctx;
1717
1718 WARN_ON_ONCE(ctx->parent_ctx);
1719 mutex_lock(&ctx->mutex);
1720 perf_event_remove_from_context(event);
1721 mutex_unlock(&ctx->mutex);
1722
1723 mutex_lock(&event->owner->perf_event_mutex);
1724 list_del_init(&event->owner_entry);
1725 mutex_unlock(&event->owner->perf_event_mutex);
1726 put_task_struct(event->owner);
1727
1728 free_event(event);
1729
1730 return 0;
1731}
1732EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1733
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001734/*
1735 * Called when the last reference to the file is gone.
1736 */
1737static int perf_release(struct inode *inode, struct file *file)
1738{
1739 struct perf_event *event = file->private_data;
1740
1741 file->private_data = NULL;
1742
1743 return perf_event_release_kernel(event);
1744}
1745
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001746static int perf_event_read_size(struct perf_event *event)
1747{
1748 int entry = sizeof(u64); /* value */
1749 int size = 0;
1750 int nr = 1;
1751
1752 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1753 size += sizeof(u64);
1754
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1756 size += sizeof(u64);
1757
1758 if (event->attr.read_format & PERF_FORMAT_ID)
1759 entry += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1762 nr += event->group_leader->nr_siblings;
1763 size += sizeof(u64);
1764 }
1765
1766 size += entry * nr;
1767
1768 return size;
1769}
1770
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001771u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001772{
1773 struct perf_event *child;
1774 u64 total = 0;
1775
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001776 *enabled = 0;
1777 *running = 0;
1778
Peter Zijlstra6f105812009-11-20 22:19:56 +01001779 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001780 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001781 *enabled += event->total_time_enabled +
1782 atomic64_read(&event->child_total_time_enabled);
1783 *running += event->total_time_running +
1784 atomic64_read(&event->child_total_time_running);
1785
1786 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001788 *enabled += child->total_time_enabled;
1789 *running += child->total_time_running;
1790 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001791 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001792
1793 return total;
1794}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001795EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001796
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001797static int perf_event_read_group(struct perf_event *event,
1798 u64 read_format, char __user *buf)
1799{
1800 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001801 int n = 0, size = 0, ret = -EFAULT;
1802 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001803 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001804 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001805
Peter Zijlstra6f105812009-11-20 22:19:56 +01001806 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001807 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001808
1809 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001810 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1811 values[n++] = enabled;
1812 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1813 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001814 values[n++] = count;
1815 if (read_format & PERF_FORMAT_ID)
1816 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001817
1818 size = n * sizeof(u64);
1819
1820 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001821 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001822
Peter Zijlstra6f105812009-11-20 22:19:56 +01001823 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001824
1825 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001826 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001827
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001828 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001829 if (read_format & PERF_FORMAT_ID)
1830 values[n++] = primary_event_id(sub);
1831
1832 size = n * sizeof(u64);
1833
Peter Zijlstra6f105812009-11-20 22:19:56 +01001834 if (copy_to_user(buf + size, values, size)) {
1835 ret = -EFAULT;
1836 goto unlock;
1837 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001838
1839 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001841unlock:
1842 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001843
Peter Zijlstraabf48682009-11-20 22:19:49 +01001844 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001845}
1846
1847static int perf_event_read_one(struct perf_event *event,
1848 u64 read_format, char __user *buf)
1849{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001850 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001851 u64 values[4];
1852 int n = 0;
1853
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001854 values[n++] = perf_event_read_value(event, &enabled, &running);
1855 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1856 values[n++] = enabled;
1857 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1858 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001859 if (read_format & PERF_FORMAT_ID)
1860 values[n++] = primary_event_id(event);
1861
1862 if (copy_to_user(buf, values, n * sizeof(u64)))
1863 return -EFAULT;
1864
1865 return n * sizeof(u64);
1866}
1867
1868/*
1869 * Read the performance event - simple non blocking version for now
1870 */
1871static ssize_t
1872perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1873{
1874 u64 read_format = event->attr.read_format;
1875 int ret;
1876
1877 /*
1878 * Return end-of-file for a read on a event that is in
1879 * error state (i.e. because it was pinned but it couldn't be
1880 * scheduled on to the CPU at some point).
1881 */
1882 if (event->state == PERF_EVENT_STATE_ERROR)
1883 return 0;
1884
1885 if (count < perf_event_read_size(event))
1886 return -ENOSPC;
1887
1888 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001889 if (read_format & PERF_FORMAT_GROUP)
1890 ret = perf_event_read_group(event, read_format, buf);
1891 else
1892 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001893
1894 return ret;
1895}
1896
1897static ssize_t
1898perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1899{
1900 struct perf_event *event = file->private_data;
1901
1902 return perf_read_hw(event, buf, count);
1903}
1904
1905static unsigned int perf_poll(struct file *file, poll_table *wait)
1906{
1907 struct perf_event *event = file->private_data;
1908 struct perf_mmap_data *data;
1909 unsigned int events = POLL_HUP;
1910
1911 rcu_read_lock();
1912 data = rcu_dereference(event->data);
1913 if (data)
1914 events = atomic_xchg(&data->poll, 0);
1915 rcu_read_unlock();
1916
1917 poll_wait(file, &event->waitq, wait);
1918
1919 return events;
1920}
1921
1922static void perf_event_reset(struct perf_event *event)
1923{
1924 (void)perf_event_read(event);
1925 atomic64_set(&event->count, 0);
1926 perf_event_update_userpage(event);
1927}
1928
1929/*
1930 * Holding the top-level event's child_mutex means that any
1931 * descendant process that has inherited this event will block
1932 * in sync_child_event if it goes to exit, thus satisfying the
1933 * task existence requirements of perf_event_enable/disable.
1934 */
1935static void perf_event_for_each_child(struct perf_event *event,
1936 void (*func)(struct perf_event *))
1937{
1938 struct perf_event *child;
1939
1940 WARN_ON_ONCE(event->ctx->parent_ctx);
1941 mutex_lock(&event->child_mutex);
1942 func(event);
1943 list_for_each_entry(child, &event->child_list, child_list)
1944 func(child);
1945 mutex_unlock(&event->child_mutex);
1946}
1947
1948static void perf_event_for_each(struct perf_event *event,
1949 void (*func)(struct perf_event *))
1950{
1951 struct perf_event_context *ctx = event->ctx;
1952 struct perf_event *sibling;
1953
1954 WARN_ON_ONCE(ctx->parent_ctx);
1955 mutex_lock(&ctx->mutex);
1956 event = event->group_leader;
1957
1958 perf_event_for_each_child(event, func);
1959 func(event);
1960 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1961 perf_event_for_each_child(event, func);
1962 mutex_unlock(&ctx->mutex);
1963}
1964
1965static int perf_event_period(struct perf_event *event, u64 __user *arg)
1966{
1967 struct perf_event_context *ctx = event->ctx;
1968 unsigned long size;
1969 int ret = 0;
1970 u64 value;
1971
1972 if (!event->attr.sample_period)
1973 return -EINVAL;
1974
1975 size = copy_from_user(&value, arg, sizeof(value));
1976 if (size != sizeof(value))
1977 return -EFAULT;
1978
1979 if (!value)
1980 return -EINVAL;
1981
1982 spin_lock_irq(&ctx->lock);
1983 if (event->attr.freq) {
1984 if (value > sysctl_perf_event_sample_rate) {
1985 ret = -EINVAL;
1986 goto unlock;
1987 }
1988
1989 event->attr.sample_freq = value;
1990 } else {
1991 event->attr.sample_period = value;
1992 event->hw.sample_period = value;
1993 }
1994unlock:
1995 spin_unlock_irq(&ctx->lock);
1996
1997 return ret;
1998}
1999
Li Zefan6fb29152009-10-15 11:21:42 +08002000static int perf_event_set_output(struct perf_event *event, int output_fd);
2001static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2004{
2005 struct perf_event *event = file->private_data;
2006 void (*func)(struct perf_event *);
2007 u32 flags = arg;
2008
2009 switch (cmd) {
2010 case PERF_EVENT_IOC_ENABLE:
2011 func = perf_event_enable;
2012 break;
2013 case PERF_EVENT_IOC_DISABLE:
2014 func = perf_event_disable;
2015 break;
2016 case PERF_EVENT_IOC_RESET:
2017 func = perf_event_reset;
2018 break;
2019
2020 case PERF_EVENT_IOC_REFRESH:
2021 return perf_event_refresh(event, arg);
2022
2023 case PERF_EVENT_IOC_PERIOD:
2024 return perf_event_period(event, (u64 __user *)arg);
2025
2026 case PERF_EVENT_IOC_SET_OUTPUT:
2027 return perf_event_set_output(event, arg);
2028
Li Zefan6fb29152009-10-15 11:21:42 +08002029 case PERF_EVENT_IOC_SET_FILTER:
2030 return perf_event_set_filter(event, (void __user *)arg);
2031
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002032 default:
2033 return -ENOTTY;
2034 }
2035
2036 if (flags & PERF_IOC_FLAG_GROUP)
2037 perf_event_for_each(event, func);
2038 else
2039 perf_event_for_each_child(event, func);
2040
2041 return 0;
2042}
2043
2044int perf_event_task_enable(void)
2045{
2046 struct perf_event *event;
2047
2048 mutex_lock(&current->perf_event_mutex);
2049 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2050 perf_event_for_each_child(event, perf_event_enable);
2051 mutex_unlock(&current->perf_event_mutex);
2052
2053 return 0;
2054}
2055
2056int perf_event_task_disable(void)
2057{
2058 struct perf_event *event;
2059
2060 mutex_lock(&current->perf_event_mutex);
2061 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2062 perf_event_for_each_child(event, perf_event_disable);
2063 mutex_unlock(&current->perf_event_mutex);
2064
2065 return 0;
2066}
2067
2068#ifndef PERF_EVENT_INDEX_OFFSET
2069# define PERF_EVENT_INDEX_OFFSET 0
2070#endif
2071
2072static int perf_event_index(struct perf_event *event)
2073{
2074 if (event->state != PERF_EVENT_STATE_ACTIVE)
2075 return 0;
2076
2077 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2078}
2079
2080/*
2081 * Callers need to ensure there can be no nesting of this function, otherwise
2082 * the seqlock logic goes bad. We can not serialize this because the arch
2083 * code calls this from NMI context.
2084 */
2085void perf_event_update_userpage(struct perf_event *event)
2086{
2087 struct perf_event_mmap_page *userpg;
2088 struct perf_mmap_data *data;
2089
2090 rcu_read_lock();
2091 data = rcu_dereference(event->data);
2092 if (!data)
2093 goto unlock;
2094
2095 userpg = data->user_page;
2096
2097 /*
2098 * Disable preemption so as to not let the corresponding user-space
2099 * spin too long if we get preempted.
2100 */
2101 preempt_disable();
2102 ++userpg->lock;
2103 barrier();
2104 userpg->index = perf_event_index(event);
2105 userpg->offset = atomic64_read(&event->count);
2106 if (event->state == PERF_EVENT_STATE_ACTIVE)
2107 userpg->offset -= atomic64_read(&event->hw.prev_count);
2108
2109 userpg->time_enabled = event->total_time_enabled +
2110 atomic64_read(&event->child_total_time_enabled);
2111
2112 userpg->time_running = event->total_time_running +
2113 atomic64_read(&event->child_total_time_running);
2114
2115 barrier();
2116 ++userpg->lock;
2117 preempt_enable();
2118unlock:
2119 rcu_read_unlock();
2120}
2121
Peter Zijlstra906010b2009-09-21 16:08:49 +02002122static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002123{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002124 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002125}
2126
Peter Zijlstra906010b2009-09-21 16:08:49 +02002127#ifndef CONFIG_PERF_USE_VMALLOC
2128
2129/*
2130 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2131 */
2132
2133static struct page *
2134perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2135{
2136 if (pgoff > data->nr_pages)
2137 return NULL;
2138
2139 if (pgoff == 0)
2140 return virt_to_page(data->user_page);
2141
2142 return virt_to_page(data->data_pages[pgoff - 1]);
2143}
2144
2145static struct perf_mmap_data *
2146perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002147{
2148 struct perf_mmap_data *data;
2149 unsigned long size;
2150 int i;
2151
2152 WARN_ON(atomic_read(&event->mmap_count));
2153
2154 size = sizeof(struct perf_mmap_data);
2155 size += nr_pages * sizeof(void *);
2156
2157 data = kzalloc(size, GFP_KERNEL);
2158 if (!data)
2159 goto fail;
2160
2161 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2162 if (!data->user_page)
2163 goto fail_user_page;
2164
2165 for (i = 0; i < nr_pages; i++) {
2166 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->data_pages[i])
2168 goto fail_data_pages;
2169 }
2170
Peter Zijlstra906010b2009-09-21 16:08:49 +02002171 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002172 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002173
Peter Zijlstra906010b2009-09-21 16:08:49 +02002174 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002175
2176fail_data_pages:
2177 for (i--; i >= 0; i--)
2178 free_page((unsigned long)data->data_pages[i]);
2179
2180 free_page((unsigned long)data->user_page);
2181
2182fail_user_page:
2183 kfree(data);
2184
2185fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002186 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002187}
2188
2189static void perf_mmap_free_page(unsigned long addr)
2190{
2191 struct page *page = virt_to_page((void *)addr);
2192
2193 page->mapping = NULL;
2194 __free_page(page);
2195}
2196
Peter Zijlstra906010b2009-09-21 16:08:49 +02002197static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002198{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002199 int i;
2200
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002201 perf_mmap_free_page((unsigned long)data->user_page);
2202 for (i = 0; i < data->nr_pages; i++)
2203 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002204}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002205
Peter Zijlstra906010b2009-09-21 16:08:49 +02002206#else
2207
2208/*
2209 * Back perf_mmap() with vmalloc memory.
2210 *
2211 * Required for architectures that have d-cache aliasing issues.
2212 */
2213
2214static struct page *
2215perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2216{
2217 if (pgoff > (1UL << data->data_order))
2218 return NULL;
2219
2220 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2221}
2222
2223static void perf_mmap_unmark_page(void *addr)
2224{
2225 struct page *page = vmalloc_to_page(addr);
2226
2227 page->mapping = NULL;
2228}
2229
2230static void perf_mmap_data_free_work(struct work_struct *work)
2231{
2232 struct perf_mmap_data *data;
2233 void *base;
2234 int i, nr;
2235
2236 data = container_of(work, struct perf_mmap_data, work);
2237 nr = 1 << data->data_order;
2238
2239 base = data->user_page;
2240 for (i = 0; i < nr + 1; i++)
2241 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2242
2243 vfree(base);
2244}
2245
2246static void perf_mmap_data_free(struct perf_mmap_data *data)
2247{
2248 schedule_work(&data->work);
2249}
2250
2251static struct perf_mmap_data *
2252perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2253{
2254 struct perf_mmap_data *data;
2255 unsigned long size;
2256 void *all_buf;
2257
2258 WARN_ON(atomic_read(&event->mmap_count));
2259
2260 size = sizeof(struct perf_mmap_data);
2261 size += sizeof(void *);
2262
2263 data = kzalloc(size, GFP_KERNEL);
2264 if (!data)
2265 goto fail;
2266
2267 INIT_WORK(&data->work, perf_mmap_data_free_work);
2268
2269 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2270 if (!all_buf)
2271 goto fail_all_buf;
2272
2273 data->user_page = all_buf;
2274 data->data_pages[0] = all_buf + PAGE_SIZE;
2275 data->data_order = ilog2(nr_pages);
2276 data->nr_pages = 1;
2277
2278 return data;
2279
2280fail_all_buf:
2281 kfree(data);
2282
2283fail:
2284 return NULL;
2285}
2286
2287#endif
2288
2289static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2290{
2291 struct perf_event *event = vma->vm_file->private_data;
2292 struct perf_mmap_data *data;
2293 int ret = VM_FAULT_SIGBUS;
2294
2295 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2296 if (vmf->pgoff == 0)
2297 ret = 0;
2298 return ret;
2299 }
2300
2301 rcu_read_lock();
2302 data = rcu_dereference(event->data);
2303 if (!data)
2304 goto unlock;
2305
2306 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2307 goto unlock;
2308
2309 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2310 if (!vmf->page)
2311 goto unlock;
2312
2313 get_page(vmf->page);
2314 vmf->page->mapping = vma->vm_file->f_mapping;
2315 vmf->page->index = vmf->pgoff;
2316
2317 ret = 0;
2318unlock:
2319 rcu_read_unlock();
2320
2321 return ret;
2322}
2323
2324static void
2325perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2326{
2327 long max_size = perf_data_size(data);
2328
2329 atomic_set(&data->lock, -1);
2330
2331 if (event->attr.watermark) {
2332 data->watermark = min_t(long, max_size,
2333 event->attr.wakeup_watermark);
2334 }
2335
2336 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002337 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002338
2339
2340 rcu_assign_pointer(event->data, data);
2341}
2342
2343static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2344{
2345 struct perf_mmap_data *data;
2346
2347 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2348 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002349 kfree(data);
2350}
2351
Peter Zijlstra906010b2009-09-21 16:08:49 +02002352static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353{
2354 struct perf_mmap_data *data = event->data;
2355
2356 WARN_ON(atomic_read(&event->mmap_count));
2357
2358 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360}
2361
2362static void perf_mmap_open(struct vm_area_struct *vma)
2363{
2364 struct perf_event *event = vma->vm_file->private_data;
2365
2366 atomic_inc(&event->mmap_count);
2367}
2368
2369static void perf_mmap_close(struct vm_area_struct *vma)
2370{
2371 struct perf_event *event = vma->vm_file->private_data;
2372
2373 WARN_ON_ONCE(event->ctx->parent_ctx);
2374 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002375 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376 struct user_struct *user = current_user();
2377
Peter Zijlstra906010b2009-09-21 16:08:49 +02002378 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002379 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002380 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002381 mutex_unlock(&event->mmap_mutex);
2382 }
2383}
2384
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002385static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002386 .open = perf_mmap_open,
2387 .close = perf_mmap_close,
2388 .fault = perf_mmap_fault,
2389 .page_mkwrite = perf_mmap_fault,
2390};
2391
2392static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2393{
2394 struct perf_event *event = file->private_data;
2395 unsigned long user_locked, user_lock_limit;
2396 struct user_struct *user = current_user();
2397 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002398 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002399 unsigned long vma_size;
2400 unsigned long nr_pages;
2401 long user_extra, extra;
2402 int ret = 0;
2403
2404 if (!(vma->vm_flags & VM_SHARED))
2405 return -EINVAL;
2406
2407 vma_size = vma->vm_end - vma->vm_start;
2408 nr_pages = (vma_size / PAGE_SIZE) - 1;
2409
2410 /*
2411 * If we have data pages ensure they're a power-of-two number, so we
2412 * can do bitmasks instead of modulo.
2413 */
2414 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2415 return -EINVAL;
2416
2417 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2418 return -EINVAL;
2419
2420 if (vma->vm_pgoff != 0)
2421 return -EINVAL;
2422
2423 WARN_ON_ONCE(event->ctx->parent_ctx);
2424 mutex_lock(&event->mmap_mutex);
2425 if (event->output) {
2426 ret = -EINVAL;
2427 goto unlock;
2428 }
2429
2430 if (atomic_inc_not_zero(&event->mmap_count)) {
2431 if (nr_pages != event->data->nr_pages)
2432 ret = -EINVAL;
2433 goto unlock;
2434 }
2435
2436 user_extra = nr_pages + 1;
2437 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2438
2439 /*
2440 * Increase the limit linearly with more CPUs:
2441 */
2442 user_lock_limit *= num_online_cpus();
2443
2444 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2445
2446 extra = 0;
2447 if (user_locked > user_lock_limit)
2448 extra = user_locked - user_lock_limit;
2449
2450 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2451 lock_limit >>= PAGE_SHIFT;
2452 locked = vma->vm_mm->locked_vm + extra;
2453
2454 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2455 !capable(CAP_IPC_LOCK)) {
2456 ret = -EPERM;
2457 goto unlock;
2458 }
2459
2460 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002461
2462 data = perf_mmap_data_alloc(event, nr_pages);
2463 ret = -ENOMEM;
2464 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002465 goto unlock;
2466
Peter Zijlstra906010b2009-09-21 16:08:49 +02002467 ret = 0;
2468 perf_mmap_data_init(event, data);
2469
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002470 atomic_set(&event->mmap_count, 1);
2471 atomic_long_add(user_extra, &user->locked_vm);
2472 vma->vm_mm->locked_vm += extra;
2473 event->data->nr_locked = extra;
2474 if (vma->vm_flags & VM_WRITE)
2475 event->data->writable = 1;
2476
2477unlock:
2478 mutex_unlock(&event->mmap_mutex);
2479
2480 vma->vm_flags |= VM_RESERVED;
2481 vma->vm_ops = &perf_mmap_vmops;
2482
2483 return ret;
2484}
2485
2486static int perf_fasync(int fd, struct file *filp, int on)
2487{
2488 struct inode *inode = filp->f_path.dentry->d_inode;
2489 struct perf_event *event = filp->private_data;
2490 int retval;
2491
2492 mutex_lock(&inode->i_mutex);
2493 retval = fasync_helper(fd, filp, on, &event->fasync);
2494 mutex_unlock(&inode->i_mutex);
2495
2496 if (retval < 0)
2497 return retval;
2498
2499 return 0;
2500}
2501
2502static const struct file_operations perf_fops = {
2503 .release = perf_release,
2504 .read = perf_read,
2505 .poll = perf_poll,
2506 .unlocked_ioctl = perf_ioctl,
2507 .compat_ioctl = perf_ioctl,
2508 .mmap = perf_mmap,
2509 .fasync = perf_fasync,
2510};
2511
2512/*
2513 * Perf event wakeup
2514 *
2515 * If there's data, ensure we set the poll() state and publish everything
2516 * to user-space before waking everybody up.
2517 */
2518
2519void perf_event_wakeup(struct perf_event *event)
2520{
2521 wake_up_all(&event->waitq);
2522
2523 if (event->pending_kill) {
2524 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2525 event->pending_kill = 0;
2526 }
2527}
2528
2529/*
2530 * Pending wakeups
2531 *
2532 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2533 *
2534 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2535 * single linked list and use cmpxchg() to add entries lockless.
2536 */
2537
2538static void perf_pending_event(struct perf_pending_entry *entry)
2539{
2540 struct perf_event *event = container_of(entry,
2541 struct perf_event, pending);
2542
2543 if (event->pending_disable) {
2544 event->pending_disable = 0;
2545 __perf_event_disable(event);
2546 }
2547
2548 if (event->pending_wakeup) {
2549 event->pending_wakeup = 0;
2550 perf_event_wakeup(event);
2551 }
2552}
2553
2554#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2555
2556static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2557 PENDING_TAIL,
2558};
2559
2560static void perf_pending_queue(struct perf_pending_entry *entry,
2561 void (*func)(struct perf_pending_entry *))
2562{
2563 struct perf_pending_entry **head;
2564
2565 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2566 return;
2567
2568 entry->func = func;
2569
2570 head = &get_cpu_var(perf_pending_head);
2571
2572 do {
2573 entry->next = *head;
2574 } while (cmpxchg(head, entry->next, entry) != entry->next);
2575
2576 set_perf_event_pending();
2577
2578 put_cpu_var(perf_pending_head);
2579}
2580
2581static int __perf_pending_run(void)
2582{
2583 struct perf_pending_entry *list;
2584 int nr = 0;
2585
2586 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2587 while (list != PENDING_TAIL) {
2588 void (*func)(struct perf_pending_entry *);
2589 struct perf_pending_entry *entry = list;
2590
2591 list = list->next;
2592
2593 func = entry->func;
2594 entry->next = NULL;
2595 /*
2596 * Ensure we observe the unqueue before we issue the wakeup,
2597 * so that we won't be waiting forever.
2598 * -- see perf_not_pending().
2599 */
2600 smp_wmb();
2601
2602 func(entry);
2603 nr++;
2604 }
2605
2606 return nr;
2607}
2608
2609static inline int perf_not_pending(struct perf_event *event)
2610{
2611 /*
2612 * If we flush on whatever cpu we run, there is a chance we don't
2613 * need to wait.
2614 */
2615 get_cpu();
2616 __perf_pending_run();
2617 put_cpu();
2618
2619 /*
2620 * Ensure we see the proper queue state before going to sleep
2621 * so that we do not miss the wakeup. -- see perf_pending_handle()
2622 */
2623 smp_rmb();
2624 return event->pending.next == NULL;
2625}
2626
2627static void perf_pending_sync(struct perf_event *event)
2628{
2629 wait_event(event->waitq, perf_not_pending(event));
2630}
2631
2632void perf_event_do_pending(void)
2633{
2634 __perf_pending_run();
2635}
2636
2637/*
2638 * Callchain support -- arch specific
2639 */
2640
2641__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2642{
2643 return NULL;
2644}
2645
2646/*
2647 * Output
2648 */
2649static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2650 unsigned long offset, unsigned long head)
2651{
2652 unsigned long mask;
2653
2654 if (!data->writable)
2655 return true;
2656
Peter Zijlstra906010b2009-09-21 16:08:49 +02002657 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002658
2659 offset = (offset - tail) & mask;
2660 head = (head - tail) & mask;
2661
2662 if ((int)(head - offset) < 0)
2663 return false;
2664
2665 return true;
2666}
2667
2668static void perf_output_wakeup(struct perf_output_handle *handle)
2669{
2670 atomic_set(&handle->data->poll, POLL_IN);
2671
2672 if (handle->nmi) {
2673 handle->event->pending_wakeup = 1;
2674 perf_pending_queue(&handle->event->pending,
2675 perf_pending_event);
2676 } else
2677 perf_event_wakeup(handle->event);
2678}
2679
2680/*
2681 * Curious locking construct.
2682 *
2683 * We need to ensure a later event_id doesn't publish a head when a former
2684 * event_id isn't done writing. However since we need to deal with NMIs we
2685 * cannot fully serialize things.
2686 *
2687 * What we do is serialize between CPUs so we only have to deal with NMI
2688 * nesting on a single CPU.
2689 *
2690 * We only publish the head (and generate a wakeup) when the outer-most
2691 * event_id completes.
2692 */
2693static void perf_output_lock(struct perf_output_handle *handle)
2694{
2695 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002696 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002697
2698 handle->locked = 0;
2699
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002700 for (;;) {
2701 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2702 if (cur == -1) {
2703 handle->locked = 1;
2704 break;
2705 }
2706 if (cur == cpu)
2707 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002708
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002709 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002710 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002711}
2712
2713static void perf_output_unlock(struct perf_output_handle *handle)
2714{
2715 struct perf_mmap_data *data = handle->data;
2716 unsigned long head;
2717 int cpu;
2718
2719 data->done_head = data->head;
2720
2721 if (!handle->locked)
2722 goto out;
2723
2724again:
2725 /*
2726 * The xchg implies a full barrier that ensures all writes are done
2727 * before we publish the new head, matched by a rmb() in userspace when
2728 * reading this position.
2729 */
2730 while ((head = atomic_long_xchg(&data->done_head, 0)))
2731 data->user_page->data_head = head;
2732
2733 /*
2734 * NMI can happen here, which means we can miss a done_head update.
2735 */
2736
2737 cpu = atomic_xchg(&data->lock, -1);
2738 WARN_ON_ONCE(cpu != smp_processor_id());
2739
2740 /*
2741 * Therefore we have to validate we did not indeed do so.
2742 */
2743 if (unlikely(atomic_long_read(&data->done_head))) {
2744 /*
2745 * Since we had it locked, we can lock it again.
2746 */
2747 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2748 cpu_relax();
2749
2750 goto again;
2751 }
2752
2753 if (atomic_xchg(&data->wakeup, 0))
2754 perf_output_wakeup(handle);
2755out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002756 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002757}
2758
2759void perf_output_copy(struct perf_output_handle *handle,
2760 const void *buf, unsigned int len)
2761{
2762 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002763 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002764 unsigned int size;
2765 void **pages;
2766
2767 offset = handle->offset;
2768 pages_mask = handle->data->nr_pages - 1;
2769 pages = handle->data->data_pages;
2770
2771 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002772 unsigned long page_offset;
2773 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002774 int nr;
2775
2776 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002777 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2778 page_offset = offset & (page_size - 1);
2779 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002780
2781 memcpy(pages[nr] + page_offset, buf, size);
2782
2783 len -= size;
2784 buf += size;
2785 offset += size;
2786 } while (len);
2787
2788 handle->offset = offset;
2789
2790 /*
2791 * Check we didn't copy past our reservation window, taking the
2792 * possible unsigned int wrap into account.
2793 */
2794 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2795}
2796
2797int perf_output_begin(struct perf_output_handle *handle,
2798 struct perf_event *event, unsigned int size,
2799 int nmi, int sample)
2800{
2801 struct perf_event *output_event;
2802 struct perf_mmap_data *data;
2803 unsigned long tail, offset, head;
2804 int have_lost;
2805 struct {
2806 struct perf_event_header header;
2807 u64 id;
2808 u64 lost;
2809 } lost_event;
2810
2811 rcu_read_lock();
2812 /*
2813 * For inherited events we send all the output towards the parent.
2814 */
2815 if (event->parent)
2816 event = event->parent;
2817
2818 output_event = rcu_dereference(event->output);
2819 if (output_event)
2820 event = output_event;
2821
2822 data = rcu_dereference(event->data);
2823 if (!data)
2824 goto out;
2825
2826 handle->data = data;
2827 handle->event = event;
2828 handle->nmi = nmi;
2829 handle->sample = sample;
2830
2831 if (!data->nr_pages)
2832 goto fail;
2833
2834 have_lost = atomic_read(&data->lost);
2835 if (have_lost)
2836 size += sizeof(lost_event);
2837
2838 perf_output_lock(handle);
2839
2840 do {
2841 /*
2842 * Userspace could choose to issue a mb() before updating the
2843 * tail pointer. So that all reads will be completed before the
2844 * write is issued.
2845 */
2846 tail = ACCESS_ONCE(data->user_page->data_tail);
2847 smp_rmb();
2848 offset = head = atomic_long_read(&data->head);
2849 head += size;
2850 if (unlikely(!perf_output_space(data, tail, offset, head)))
2851 goto fail;
2852 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2853
2854 handle->offset = offset;
2855 handle->head = head;
2856
2857 if (head - tail > data->watermark)
2858 atomic_set(&data->wakeup, 1);
2859
2860 if (have_lost) {
2861 lost_event.header.type = PERF_RECORD_LOST;
2862 lost_event.header.misc = 0;
2863 lost_event.header.size = sizeof(lost_event);
2864 lost_event.id = event->id;
2865 lost_event.lost = atomic_xchg(&data->lost, 0);
2866
2867 perf_output_put(handle, lost_event);
2868 }
2869
2870 return 0;
2871
2872fail:
2873 atomic_inc(&data->lost);
2874 perf_output_unlock(handle);
2875out:
2876 rcu_read_unlock();
2877
2878 return -ENOSPC;
2879}
2880
2881void perf_output_end(struct perf_output_handle *handle)
2882{
2883 struct perf_event *event = handle->event;
2884 struct perf_mmap_data *data = handle->data;
2885
2886 int wakeup_events = event->attr.wakeup_events;
2887
2888 if (handle->sample && wakeup_events) {
2889 int events = atomic_inc_return(&data->events);
2890 if (events >= wakeup_events) {
2891 atomic_sub(wakeup_events, &data->events);
2892 atomic_set(&data->wakeup, 1);
2893 }
2894 }
2895
2896 perf_output_unlock(handle);
2897 rcu_read_unlock();
2898}
2899
2900static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2901{
2902 /*
2903 * only top level events have the pid namespace they were created in
2904 */
2905 if (event->parent)
2906 event = event->parent;
2907
2908 return task_tgid_nr_ns(p, event->ns);
2909}
2910
2911static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2912{
2913 /*
2914 * only top level events have the pid namespace they were created in
2915 */
2916 if (event->parent)
2917 event = event->parent;
2918
2919 return task_pid_nr_ns(p, event->ns);
2920}
2921
2922static void perf_output_read_one(struct perf_output_handle *handle,
2923 struct perf_event *event)
2924{
2925 u64 read_format = event->attr.read_format;
2926 u64 values[4];
2927 int n = 0;
2928
2929 values[n++] = atomic64_read(&event->count);
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2931 values[n++] = event->total_time_enabled +
2932 atomic64_read(&event->child_total_time_enabled);
2933 }
2934 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2935 values[n++] = event->total_time_running +
2936 atomic64_read(&event->child_total_time_running);
2937 }
2938 if (read_format & PERF_FORMAT_ID)
2939 values[n++] = primary_event_id(event);
2940
2941 perf_output_copy(handle, values, n * sizeof(u64));
2942}
2943
2944/*
2945 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2946 */
2947static void perf_output_read_group(struct perf_output_handle *handle,
2948 struct perf_event *event)
2949{
2950 struct perf_event *leader = event->group_leader, *sub;
2951 u64 read_format = event->attr.read_format;
2952 u64 values[5];
2953 int n = 0;
2954
2955 values[n++] = 1 + leader->nr_siblings;
2956
2957 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2958 values[n++] = leader->total_time_enabled;
2959
2960 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2961 values[n++] = leader->total_time_running;
2962
2963 if (leader != event)
2964 leader->pmu->read(leader);
2965
2966 values[n++] = atomic64_read(&leader->count);
2967 if (read_format & PERF_FORMAT_ID)
2968 values[n++] = primary_event_id(leader);
2969
2970 perf_output_copy(handle, values, n * sizeof(u64));
2971
2972 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2973 n = 0;
2974
2975 if (sub != event)
2976 sub->pmu->read(sub);
2977
2978 values[n++] = atomic64_read(&sub->count);
2979 if (read_format & PERF_FORMAT_ID)
2980 values[n++] = primary_event_id(sub);
2981
2982 perf_output_copy(handle, values, n * sizeof(u64));
2983 }
2984}
2985
2986static void perf_output_read(struct perf_output_handle *handle,
2987 struct perf_event *event)
2988{
2989 if (event->attr.read_format & PERF_FORMAT_GROUP)
2990 perf_output_read_group(handle, event);
2991 else
2992 perf_output_read_one(handle, event);
2993}
2994
2995void perf_output_sample(struct perf_output_handle *handle,
2996 struct perf_event_header *header,
2997 struct perf_sample_data *data,
2998 struct perf_event *event)
2999{
3000 u64 sample_type = data->type;
3001
3002 perf_output_put(handle, *header);
3003
3004 if (sample_type & PERF_SAMPLE_IP)
3005 perf_output_put(handle, data->ip);
3006
3007 if (sample_type & PERF_SAMPLE_TID)
3008 perf_output_put(handle, data->tid_entry);
3009
3010 if (sample_type & PERF_SAMPLE_TIME)
3011 perf_output_put(handle, data->time);
3012
3013 if (sample_type & PERF_SAMPLE_ADDR)
3014 perf_output_put(handle, data->addr);
3015
3016 if (sample_type & PERF_SAMPLE_ID)
3017 perf_output_put(handle, data->id);
3018
3019 if (sample_type & PERF_SAMPLE_STREAM_ID)
3020 perf_output_put(handle, data->stream_id);
3021
3022 if (sample_type & PERF_SAMPLE_CPU)
3023 perf_output_put(handle, data->cpu_entry);
3024
3025 if (sample_type & PERF_SAMPLE_PERIOD)
3026 perf_output_put(handle, data->period);
3027
3028 if (sample_type & PERF_SAMPLE_READ)
3029 perf_output_read(handle, event);
3030
3031 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3032 if (data->callchain) {
3033 int size = 1;
3034
3035 if (data->callchain)
3036 size += data->callchain->nr;
3037
3038 size *= sizeof(u64);
3039
3040 perf_output_copy(handle, data->callchain, size);
3041 } else {
3042 u64 nr = 0;
3043 perf_output_put(handle, nr);
3044 }
3045 }
3046
3047 if (sample_type & PERF_SAMPLE_RAW) {
3048 if (data->raw) {
3049 perf_output_put(handle, data->raw->size);
3050 perf_output_copy(handle, data->raw->data,
3051 data->raw->size);
3052 } else {
3053 struct {
3054 u32 size;
3055 u32 data;
3056 } raw = {
3057 .size = sizeof(u32),
3058 .data = 0,
3059 };
3060 perf_output_put(handle, raw);
3061 }
3062 }
3063}
3064
3065void perf_prepare_sample(struct perf_event_header *header,
3066 struct perf_sample_data *data,
3067 struct perf_event *event,
3068 struct pt_regs *regs)
3069{
3070 u64 sample_type = event->attr.sample_type;
3071
3072 data->type = sample_type;
3073
3074 header->type = PERF_RECORD_SAMPLE;
3075 header->size = sizeof(*header);
3076
3077 header->misc = 0;
3078 header->misc |= perf_misc_flags(regs);
3079
3080 if (sample_type & PERF_SAMPLE_IP) {
3081 data->ip = perf_instruction_pointer(regs);
3082
3083 header->size += sizeof(data->ip);
3084 }
3085
3086 if (sample_type & PERF_SAMPLE_TID) {
3087 /* namespace issues */
3088 data->tid_entry.pid = perf_event_pid(event, current);
3089 data->tid_entry.tid = perf_event_tid(event, current);
3090
3091 header->size += sizeof(data->tid_entry);
3092 }
3093
3094 if (sample_type & PERF_SAMPLE_TIME) {
3095 data->time = perf_clock();
3096
3097 header->size += sizeof(data->time);
3098 }
3099
3100 if (sample_type & PERF_SAMPLE_ADDR)
3101 header->size += sizeof(data->addr);
3102
3103 if (sample_type & PERF_SAMPLE_ID) {
3104 data->id = primary_event_id(event);
3105
3106 header->size += sizeof(data->id);
3107 }
3108
3109 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3110 data->stream_id = event->id;
3111
3112 header->size += sizeof(data->stream_id);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_CPU) {
3116 data->cpu_entry.cpu = raw_smp_processor_id();
3117 data->cpu_entry.reserved = 0;
3118
3119 header->size += sizeof(data->cpu_entry);
3120 }
3121
3122 if (sample_type & PERF_SAMPLE_PERIOD)
3123 header->size += sizeof(data->period);
3124
3125 if (sample_type & PERF_SAMPLE_READ)
3126 header->size += perf_event_read_size(event);
3127
3128 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3129 int size = 1;
3130
3131 data->callchain = perf_callchain(regs);
3132
3133 if (data->callchain)
3134 size += data->callchain->nr;
3135
3136 header->size += size * sizeof(u64);
3137 }
3138
3139 if (sample_type & PERF_SAMPLE_RAW) {
3140 int size = sizeof(u32);
3141
3142 if (data->raw)
3143 size += data->raw->size;
3144 else
3145 size += sizeof(u32);
3146
3147 WARN_ON_ONCE(size & (sizeof(u64)-1));
3148 header->size += size;
3149 }
3150}
3151
3152static void perf_event_output(struct perf_event *event, int nmi,
3153 struct perf_sample_data *data,
3154 struct pt_regs *regs)
3155{
3156 struct perf_output_handle handle;
3157 struct perf_event_header header;
3158
3159 perf_prepare_sample(&header, data, event, regs);
3160
3161 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3162 return;
3163
3164 perf_output_sample(&handle, &header, data, event);
3165
3166 perf_output_end(&handle);
3167}
3168
3169/*
3170 * read event_id
3171 */
3172
3173struct perf_read_event {
3174 struct perf_event_header header;
3175
3176 u32 pid;
3177 u32 tid;
3178};
3179
3180static void
3181perf_event_read_event(struct perf_event *event,
3182 struct task_struct *task)
3183{
3184 struct perf_output_handle handle;
3185 struct perf_read_event read_event = {
3186 .header = {
3187 .type = PERF_RECORD_READ,
3188 .misc = 0,
3189 .size = sizeof(read_event) + perf_event_read_size(event),
3190 },
3191 .pid = perf_event_pid(event, task),
3192 .tid = perf_event_tid(event, task),
3193 };
3194 int ret;
3195
3196 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3197 if (ret)
3198 return;
3199
3200 perf_output_put(&handle, read_event);
3201 perf_output_read(&handle, event);
3202
3203 perf_output_end(&handle);
3204}
3205
3206/*
3207 * task tracking -- fork/exit
3208 *
3209 * enabled by: attr.comm | attr.mmap | attr.task
3210 */
3211
3212struct perf_task_event {
3213 struct task_struct *task;
3214 struct perf_event_context *task_ctx;
3215
3216 struct {
3217 struct perf_event_header header;
3218
3219 u32 pid;
3220 u32 ppid;
3221 u32 tid;
3222 u32 ptid;
3223 u64 time;
3224 } event_id;
3225};
3226
3227static void perf_event_task_output(struct perf_event *event,
3228 struct perf_task_event *task_event)
3229{
3230 struct perf_output_handle handle;
3231 int size;
3232 struct task_struct *task = task_event->task;
3233 int ret;
3234
3235 size = task_event->event_id.header.size;
3236 ret = perf_output_begin(&handle, event, size, 0, 0);
3237
3238 if (ret)
3239 return;
3240
3241 task_event->event_id.pid = perf_event_pid(event, task);
3242 task_event->event_id.ppid = perf_event_pid(event, current);
3243
3244 task_event->event_id.tid = perf_event_tid(event, task);
3245 task_event->event_id.ptid = perf_event_tid(event, current);
3246
3247 task_event->event_id.time = perf_clock();
3248
3249 perf_output_put(&handle, task_event->event_id);
3250
3251 perf_output_end(&handle);
3252}
3253
3254static int perf_event_task_match(struct perf_event *event)
3255{
3256 if (event->attr.comm || event->attr.mmap || event->attr.task)
3257 return 1;
3258
3259 return 0;
3260}
3261
3262static void perf_event_task_ctx(struct perf_event_context *ctx,
3263 struct perf_task_event *task_event)
3264{
3265 struct perf_event *event;
3266
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003267 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3268 if (perf_event_task_match(event))
3269 perf_event_task_output(event, task_event);
3270 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003271}
3272
3273static void perf_event_task_event(struct perf_task_event *task_event)
3274{
3275 struct perf_cpu_context *cpuctx;
3276 struct perf_event_context *ctx = task_event->task_ctx;
3277
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003278 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003279 cpuctx = &get_cpu_var(perf_cpu_context);
3280 perf_event_task_ctx(&cpuctx->ctx, task_event);
3281 put_cpu_var(perf_cpu_context);
3282
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003283 if (!ctx)
3284 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3285 if (ctx)
3286 perf_event_task_ctx(ctx, task_event);
3287 rcu_read_unlock();
3288}
3289
3290static void perf_event_task(struct task_struct *task,
3291 struct perf_event_context *task_ctx,
3292 int new)
3293{
3294 struct perf_task_event task_event;
3295
3296 if (!atomic_read(&nr_comm_events) &&
3297 !atomic_read(&nr_mmap_events) &&
3298 !atomic_read(&nr_task_events))
3299 return;
3300
3301 task_event = (struct perf_task_event){
3302 .task = task,
3303 .task_ctx = task_ctx,
3304 .event_id = {
3305 .header = {
3306 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3307 .misc = 0,
3308 .size = sizeof(task_event.event_id),
3309 },
3310 /* .pid */
3311 /* .ppid */
3312 /* .tid */
3313 /* .ptid */
3314 },
3315 };
3316
3317 perf_event_task_event(&task_event);
3318}
3319
3320void perf_event_fork(struct task_struct *task)
3321{
3322 perf_event_task(task, NULL, 1);
3323}
3324
3325/*
3326 * comm tracking
3327 */
3328
3329struct perf_comm_event {
3330 struct task_struct *task;
3331 char *comm;
3332 int comm_size;
3333
3334 struct {
3335 struct perf_event_header header;
3336
3337 u32 pid;
3338 u32 tid;
3339 } event_id;
3340};
3341
3342static void perf_event_comm_output(struct perf_event *event,
3343 struct perf_comm_event *comm_event)
3344{
3345 struct perf_output_handle handle;
3346 int size = comm_event->event_id.header.size;
3347 int ret = perf_output_begin(&handle, event, size, 0, 0);
3348
3349 if (ret)
3350 return;
3351
3352 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3353 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3354
3355 perf_output_put(&handle, comm_event->event_id);
3356 perf_output_copy(&handle, comm_event->comm,
3357 comm_event->comm_size);
3358 perf_output_end(&handle);
3359}
3360
3361static int perf_event_comm_match(struct perf_event *event)
3362{
3363 if (event->attr.comm)
3364 return 1;
3365
3366 return 0;
3367}
3368
3369static void perf_event_comm_ctx(struct perf_event_context *ctx,
3370 struct perf_comm_event *comm_event)
3371{
3372 struct perf_event *event;
3373
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3375 if (perf_event_comm_match(event))
3376 perf_event_comm_output(event, comm_event);
3377 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003378}
3379
3380static void perf_event_comm_event(struct perf_comm_event *comm_event)
3381{
3382 struct perf_cpu_context *cpuctx;
3383 struct perf_event_context *ctx;
3384 unsigned int size;
3385 char comm[TASK_COMM_LEN];
3386
3387 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003388 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003389 size = ALIGN(strlen(comm)+1, sizeof(u64));
3390
3391 comm_event->comm = comm;
3392 comm_event->comm_size = size;
3393
3394 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3395
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003396 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003397 cpuctx = &get_cpu_var(perf_cpu_context);
3398 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3399 put_cpu_var(perf_cpu_context);
3400
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003401 /*
3402 * doesn't really matter which of the child contexts the
3403 * events ends up in.
3404 */
3405 ctx = rcu_dereference(current->perf_event_ctxp);
3406 if (ctx)
3407 perf_event_comm_ctx(ctx, comm_event);
3408 rcu_read_unlock();
3409}
3410
3411void perf_event_comm(struct task_struct *task)
3412{
3413 struct perf_comm_event comm_event;
3414
3415 if (task->perf_event_ctxp)
3416 perf_event_enable_on_exec(task);
3417
3418 if (!atomic_read(&nr_comm_events))
3419 return;
3420
3421 comm_event = (struct perf_comm_event){
3422 .task = task,
3423 /* .comm */
3424 /* .comm_size */
3425 .event_id = {
3426 .header = {
3427 .type = PERF_RECORD_COMM,
3428 .misc = 0,
3429 /* .size */
3430 },
3431 /* .pid */
3432 /* .tid */
3433 },
3434 };
3435
3436 perf_event_comm_event(&comm_event);
3437}
3438
3439/*
3440 * mmap tracking
3441 */
3442
3443struct perf_mmap_event {
3444 struct vm_area_struct *vma;
3445
3446 const char *file_name;
3447 int file_size;
3448
3449 struct {
3450 struct perf_event_header header;
3451
3452 u32 pid;
3453 u32 tid;
3454 u64 start;
3455 u64 len;
3456 u64 pgoff;
3457 } event_id;
3458};
3459
3460static void perf_event_mmap_output(struct perf_event *event,
3461 struct perf_mmap_event *mmap_event)
3462{
3463 struct perf_output_handle handle;
3464 int size = mmap_event->event_id.header.size;
3465 int ret = perf_output_begin(&handle, event, size, 0, 0);
3466
3467 if (ret)
3468 return;
3469
3470 mmap_event->event_id.pid = perf_event_pid(event, current);
3471 mmap_event->event_id.tid = perf_event_tid(event, current);
3472
3473 perf_output_put(&handle, mmap_event->event_id);
3474 perf_output_copy(&handle, mmap_event->file_name,
3475 mmap_event->file_size);
3476 perf_output_end(&handle);
3477}
3478
3479static int perf_event_mmap_match(struct perf_event *event,
3480 struct perf_mmap_event *mmap_event)
3481{
3482 if (event->attr.mmap)
3483 return 1;
3484
3485 return 0;
3486}
3487
3488static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3489 struct perf_mmap_event *mmap_event)
3490{
3491 struct perf_event *event;
3492
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003493 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3494 if (perf_event_mmap_match(event, mmap_event))
3495 perf_event_mmap_output(event, mmap_event);
3496 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003497}
3498
3499static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3500{
3501 struct perf_cpu_context *cpuctx;
3502 struct perf_event_context *ctx;
3503 struct vm_area_struct *vma = mmap_event->vma;
3504 struct file *file = vma->vm_file;
3505 unsigned int size;
3506 char tmp[16];
3507 char *buf = NULL;
3508 const char *name;
3509
3510 memset(tmp, 0, sizeof(tmp));
3511
3512 if (file) {
3513 /*
3514 * d_path works from the end of the buffer backwards, so we
3515 * need to add enough zero bytes after the string to handle
3516 * the 64bit alignment we do later.
3517 */
3518 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3519 if (!buf) {
3520 name = strncpy(tmp, "//enomem", sizeof(tmp));
3521 goto got_name;
3522 }
3523 name = d_path(&file->f_path, buf, PATH_MAX);
3524 if (IS_ERR(name)) {
3525 name = strncpy(tmp, "//toolong", sizeof(tmp));
3526 goto got_name;
3527 }
3528 } else {
3529 if (arch_vma_name(mmap_event->vma)) {
3530 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3531 sizeof(tmp));
3532 goto got_name;
3533 }
3534
3535 if (!vma->vm_mm) {
3536 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3537 goto got_name;
3538 }
3539
3540 name = strncpy(tmp, "//anon", sizeof(tmp));
3541 goto got_name;
3542 }
3543
3544got_name:
3545 size = ALIGN(strlen(name)+1, sizeof(u64));
3546
3547 mmap_event->file_name = name;
3548 mmap_event->file_size = size;
3549
3550 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3551
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003552 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003553 cpuctx = &get_cpu_var(perf_cpu_context);
3554 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3555 put_cpu_var(perf_cpu_context);
3556
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003557 /*
3558 * doesn't really matter which of the child contexts the
3559 * events ends up in.
3560 */
3561 ctx = rcu_dereference(current->perf_event_ctxp);
3562 if (ctx)
3563 perf_event_mmap_ctx(ctx, mmap_event);
3564 rcu_read_unlock();
3565
3566 kfree(buf);
3567}
3568
3569void __perf_event_mmap(struct vm_area_struct *vma)
3570{
3571 struct perf_mmap_event mmap_event;
3572
3573 if (!atomic_read(&nr_mmap_events))
3574 return;
3575
3576 mmap_event = (struct perf_mmap_event){
3577 .vma = vma,
3578 /* .file_name */
3579 /* .file_size */
3580 .event_id = {
3581 .header = {
3582 .type = PERF_RECORD_MMAP,
3583 .misc = 0,
3584 /* .size */
3585 },
3586 /* .pid */
3587 /* .tid */
3588 .start = vma->vm_start,
3589 .len = vma->vm_end - vma->vm_start,
3590 .pgoff = vma->vm_pgoff,
3591 },
3592 };
3593
3594 perf_event_mmap_event(&mmap_event);
3595}
3596
3597/*
3598 * IRQ throttle logging
3599 */
3600
3601static void perf_log_throttle(struct perf_event *event, int enable)
3602{
3603 struct perf_output_handle handle;
3604 int ret;
3605
3606 struct {
3607 struct perf_event_header header;
3608 u64 time;
3609 u64 id;
3610 u64 stream_id;
3611 } throttle_event = {
3612 .header = {
3613 .type = PERF_RECORD_THROTTLE,
3614 .misc = 0,
3615 .size = sizeof(throttle_event),
3616 },
3617 .time = perf_clock(),
3618 .id = primary_event_id(event),
3619 .stream_id = event->id,
3620 };
3621
3622 if (enable)
3623 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3624
3625 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3626 if (ret)
3627 return;
3628
3629 perf_output_put(&handle, throttle_event);
3630 perf_output_end(&handle);
3631}
3632
3633/*
3634 * Generic event overflow handling, sampling.
3635 */
3636
3637static int __perf_event_overflow(struct perf_event *event, int nmi,
3638 int throttle, struct perf_sample_data *data,
3639 struct pt_regs *regs)
3640{
3641 int events = atomic_read(&event->event_limit);
3642 struct hw_perf_event *hwc = &event->hw;
3643 int ret = 0;
3644
3645 throttle = (throttle && event->pmu->unthrottle != NULL);
3646
3647 if (!throttle) {
3648 hwc->interrupts++;
3649 } else {
3650 if (hwc->interrupts != MAX_INTERRUPTS) {
3651 hwc->interrupts++;
3652 if (HZ * hwc->interrupts >
3653 (u64)sysctl_perf_event_sample_rate) {
3654 hwc->interrupts = MAX_INTERRUPTS;
3655 perf_log_throttle(event, 0);
3656 ret = 1;
3657 }
3658 } else {
3659 /*
3660 * Keep re-disabling events even though on the previous
3661 * pass we disabled it - just in case we raced with a
3662 * sched-in and the event got enabled again:
3663 */
3664 ret = 1;
3665 }
3666 }
3667
3668 if (event->attr.freq) {
3669 u64 now = perf_clock();
3670 s64 delta = now - hwc->freq_stamp;
3671
3672 hwc->freq_stamp = now;
3673
3674 if (delta > 0 && delta < TICK_NSEC)
3675 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3676 }
3677
3678 /*
3679 * XXX event_limit might not quite work as expected on inherited
3680 * events
3681 */
3682
3683 event->pending_kill = POLL_IN;
3684 if (events && atomic_dec_and_test(&event->event_limit)) {
3685 ret = 1;
3686 event->pending_kill = POLL_HUP;
3687 if (nmi) {
3688 event->pending_disable = 1;
3689 perf_pending_queue(&event->pending,
3690 perf_pending_event);
3691 } else
3692 perf_event_disable(event);
3693 }
3694
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003695 if (event->overflow_handler)
3696 event->overflow_handler(event, nmi, data, regs);
3697 else
3698 perf_event_output(event, nmi, data, regs);
3699
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003700 return ret;
3701}
3702
3703int perf_event_overflow(struct perf_event *event, int nmi,
3704 struct perf_sample_data *data,
3705 struct pt_regs *regs)
3706{
3707 return __perf_event_overflow(event, nmi, 1, data, regs);
3708}
3709
3710/*
3711 * Generic software event infrastructure
3712 */
3713
3714/*
3715 * We directly increment event->count and keep a second value in
3716 * event->hw.period_left to count intervals. This period event
3717 * is kept in the range [-sample_period, 0] so that we can use the
3718 * sign as trigger.
3719 */
3720
3721static u64 perf_swevent_set_period(struct perf_event *event)
3722{
3723 struct hw_perf_event *hwc = &event->hw;
3724 u64 period = hwc->last_period;
3725 u64 nr, offset;
3726 s64 old, val;
3727
3728 hwc->last_period = hwc->sample_period;
3729
3730again:
3731 old = val = atomic64_read(&hwc->period_left);
3732 if (val < 0)
3733 return 0;
3734
3735 nr = div64_u64(period + val, period);
3736 offset = nr * period;
3737 val -= offset;
3738 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3739 goto again;
3740
3741 return nr;
3742}
3743
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003744static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745 int nmi, struct perf_sample_data *data,
3746 struct pt_regs *regs)
3747{
3748 struct hw_perf_event *hwc = &event->hw;
3749 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003750
3751 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003752 if (!overflow)
3753 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003754
3755 if (hwc->interrupts == MAX_INTERRUPTS)
3756 return;
3757
3758 for (; overflow; overflow--) {
3759 if (__perf_event_overflow(event, nmi, throttle,
3760 data, regs)) {
3761 /*
3762 * We inhibit the overflow from happening when
3763 * hwc->interrupts == MAX_INTERRUPTS.
3764 */
3765 break;
3766 }
3767 throttle = 1;
3768 }
3769}
3770
3771static void perf_swevent_unthrottle(struct perf_event *event)
3772{
3773 /*
3774 * Nothing to do, we already reset hwc->interrupts.
3775 */
3776}
3777
3778static void perf_swevent_add(struct perf_event *event, u64 nr,
3779 int nmi, struct perf_sample_data *data,
3780 struct pt_regs *regs)
3781{
3782 struct hw_perf_event *hwc = &event->hw;
3783
3784 atomic64_add(nr, &event->count);
3785
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003786 if (!regs)
3787 return;
3788
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003789 if (!hwc->sample_period)
3790 return;
3791
3792 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3793 return perf_swevent_overflow(event, 1, nmi, data, regs);
3794
3795 if (atomic64_add_negative(nr, &hwc->period_left))
3796 return;
3797
3798 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003799}
3800
3801static int perf_swevent_is_counting(struct perf_event *event)
3802{
3803 /*
3804 * The event is active, we're good!
3805 */
3806 if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 return 1;
3808
3809 /*
3810 * The event is off/error, not counting.
3811 */
3812 if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 return 0;
3814
3815 /*
3816 * The event is inactive, if the context is active
3817 * we're part of a group that didn't make it on the 'pmu',
3818 * not counting.
3819 */
3820 if (event->ctx->is_active)
3821 return 0;
3822
3823 /*
3824 * We're inactive and the context is too, this means the
3825 * task is scheduled out, we're counting events that happen
3826 * to us, like migration events.
3827 */
3828 return 1;
3829}
3830
Li Zefan6fb29152009-10-15 11:21:42 +08003831static int perf_tp_event_match(struct perf_event *event,
3832 struct perf_sample_data *data);
3833
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003834static int perf_exclude_event(struct perf_event *event,
3835 struct pt_regs *regs)
3836{
3837 if (regs) {
3838 if (event->attr.exclude_user && user_mode(regs))
3839 return 1;
3840
3841 if (event->attr.exclude_kernel && !user_mode(regs))
3842 return 1;
3843 }
3844
3845 return 0;
3846}
3847
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003848static int perf_swevent_match(struct perf_event *event,
3849 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003850 u32 event_id,
3851 struct perf_sample_data *data,
3852 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003853{
3854 if (!perf_swevent_is_counting(event))
3855 return 0;
3856
3857 if (event->attr.type != type)
3858 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003859
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003860 if (event->attr.config != event_id)
3861 return 0;
3862
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003863 if (perf_exclude_event(event, regs))
3864 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003865
Li Zefan6fb29152009-10-15 11:21:42 +08003866 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3867 !perf_tp_event_match(event, data))
3868 return 0;
3869
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003870 return 1;
3871}
3872
3873static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3874 enum perf_type_id type,
3875 u32 event_id, u64 nr, int nmi,
3876 struct perf_sample_data *data,
3877 struct pt_regs *regs)
3878{
3879 struct perf_event *event;
3880
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003881 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003882 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003883 perf_swevent_add(event, nr, nmi, data, regs);
3884 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003885}
3886
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003887int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003888{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003889 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3890 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003891
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003892 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003893 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003894 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003895 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003896 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003897 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003898 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003899 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003900
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003901 if (cpuctx->recursion[rctx]) {
3902 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003903 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003904 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003905
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003906 cpuctx->recursion[rctx]++;
3907 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003908
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003909 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003910}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003911EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003912
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003913void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003914{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003915 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3916 barrier();
3917 cpuctx->recursion[rctx]++;
3918 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003919}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003920EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003921
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003922static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3923 u64 nr, int nmi,
3924 struct perf_sample_data *data,
3925 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003926{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003927 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003928 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003929
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003930 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01003931 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003932 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3933 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003934 /*
3935 * doesn't really matter which of the child contexts the
3936 * events ends up in.
3937 */
3938 ctx = rcu_dereference(current->perf_event_ctxp);
3939 if (ctx)
3940 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3941 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003942}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003943
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003944void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3945 struct pt_regs *regs, u64 addr)
3946{
Ingo Molnara4234bf2009-11-23 10:57:59 +01003947 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003948 int rctx;
3949
3950 rctx = perf_swevent_get_recursion_context();
3951 if (rctx < 0)
3952 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003953
Ingo Molnara4234bf2009-11-23 10:57:59 +01003954 data.addr = addr;
3955 data.raw = NULL;
3956
3957 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003958
3959 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003960}
3961
3962static void perf_swevent_read(struct perf_event *event)
3963{
3964}
3965
3966static int perf_swevent_enable(struct perf_event *event)
3967{
3968 struct hw_perf_event *hwc = &event->hw;
3969
3970 if (hwc->sample_period) {
3971 hwc->last_period = hwc->sample_period;
3972 perf_swevent_set_period(event);
3973 }
3974 return 0;
3975}
3976
3977static void perf_swevent_disable(struct perf_event *event)
3978{
3979}
3980
3981static const struct pmu perf_ops_generic = {
3982 .enable = perf_swevent_enable,
3983 .disable = perf_swevent_disable,
3984 .read = perf_swevent_read,
3985 .unthrottle = perf_swevent_unthrottle,
3986};
3987
3988/*
3989 * hrtimer based swevent callback
3990 */
3991
3992static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3993{
3994 enum hrtimer_restart ret = HRTIMER_RESTART;
3995 struct perf_sample_data data;
3996 struct pt_regs *regs;
3997 struct perf_event *event;
3998 u64 period;
3999
4000 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4001 event->pmu->read(event);
4002
4003 data.addr = 0;
4004 regs = get_irq_regs();
4005 /*
4006 * In case we exclude kernel IPs or are somehow not in interrupt
4007 * context, provide the next best thing, the user IP.
4008 */
4009 if ((event->attr.exclude_kernel || !regs) &&
4010 !event->attr.exclude_user)
4011 regs = task_pt_regs(current);
4012
4013 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004014 if (!(event->attr.exclude_idle && current->pid == 0))
4015 if (perf_event_overflow(event, 0, &data, regs))
4016 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004017 }
4018
4019 period = max_t(u64, 10000, event->hw.sample_period);
4020 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4021
4022 return ret;
4023}
4024
Soeren Sandmann721a6692009-09-15 14:33:08 +02004025static void perf_swevent_start_hrtimer(struct perf_event *event)
4026{
4027 struct hw_perf_event *hwc = &event->hw;
4028
4029 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4030 hwc->hrtimer.function = perf_swevent_hrtimer;
4031 if (hwc->sample_period) {
4032 u64 period;
4033
4034 if (hwc->remaining) {
4035 if (hwc->remaining < 0)
4036 period = 10000;
4037 else
4038 period = hwc->remaining;
4039 hwc->remaining = 0;
4040 } else {
4041 period = max_t(u64, 10000, hwc->sample_period);
4042 }
4043 __hrtimer_start_range_ns(&hwc->hrtimer,
4044 ns_to_ktime(period), 0,
4045 HRTIMER_MODE_REL, 0);
4046 }
4047}
4048
4049static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4050{
4051 struct hw_perf_event *hwc = &event->hw;
4052
4053 if (hwc->sample_period) {
4054 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4055 hwc->remaining = ktime_to_ns(remaining);
4056
4057 hrtimer_cancel(&hwc->hrtimer);
4058 }
4059}
4060
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004061/*
4062 * Software event: cpu wall time clock
4063 */
4064
4065static void cpu_clock_perf_event_update(struct perf_event *event)
4066{
4067 int cpu = raw_smp_processor_id();
4068 s64 prev;
4069 u64 now;
4070
4071 now = cpu_clock(cpu);
4072 prev = atomic64_read(&event->hw.prev_count);
4073 atomic64_set(&event->hw.prev_count, now);
4074 atomic64_add(now - prev, &event->count);
4075}
4076
4077static int cpu_clock_perf_event_enable(struct perf_event *event)
4078{
4079 struct hw_perf_event *hwc = &event->hw;
4080 int cpu = raw_smp_processor_id();
4081
4082 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004083 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004084
4085 return 0;
4086}
4087
4088static void cpu_clock_perf_event_disable(struct perf_event *event)
4089{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004090 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004091 cpu_clock_perf_event_update(event);
4092}
4093
4094static void cpu_clock_perf_event_read(struct perf_event *event)
4095{
4096 cpu_clock_perf_event_update(event);
4097}
4098
4099static const struct pmu perf_ops_cpu_clock = {
4100 .enable = cpu_clock_perf_event_enable,
4101 .disable = cpu_clock_perf_event_disable,
4102 .read = cpu_clock_perf_event_read,
4103};
4104
4105/*
4106 * Software event: task time clock
4107 */
4108
4109static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4110{
4111 u64 prev;
4112 s64 delta;
4113
4114 prev = atomic64_xchg(&event->hw.prev_count, now);
4115 delta = now - prev;
4116 atomic64_add(delta, &event->count);
4117}
4118
4119static int task_clock_perf_event_enable(struct perf_event *event)
4120{
4121 struct hw_perf_event *hwc = &event->hw;
4122 u64 now;
4123
4124 now = event->ctx->time;
4125
4126 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004127
4128 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004129
4130 return 0;
4131}
4132
4133static void task_clock_perf_event_disable(struct perf_event *event)
4134{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004135 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004136 task_clock_perf_event_update(event, event->ctx->time);
4137
4138}
4139
4140static void task_clock_perf_event_read(struct perf_event *event)
4141{
4142 u64 time;
4143
4144 if (!in_nmi()) {
4145 update_context_time(event->ctx);
4146 time = event->ctx->time;
4147 } else {
4148 u64 now = perf_clock();
4149 u64 delta = now - event->ctx->timestamp;
4150 time = event->ctx->time + delta;
4151 }
4152
4153 task_clock_perf_event_update(event, time);
4154}
4155
4156static const struct pmu perf_ops_task_clock = {
4157 .enable = task_clock_perf_event_enable,
4158 .disable = task_clock_perf_event_disable,
4159 .read = task_clock_perf_event_read,
4160};
4161
4162#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004163
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004164void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4165 int entry_size)
4166{
4167 struct perf_raw_record raw = {
4168 .size = entry_size,
4169 .data = record,
4170 };
4171
4172 struct perf_sample_data data = {
4173 .addr = addr,
4174 .raw = &raw,
4175 };
4176
4177 struct pt_regs *regs = get_irq_regs();
4178
4179 if (!regs)
4180 regs = task_pt_regs(current);
4181
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004182 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004183 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004184 &data, regs);
4185}
4186EXPORT_SYMBOL_GPL(perf_tp_event);
4187
Li Zefan6fb29152009-10-15 11:21:42 +08004188static int perf_tp_event_match(struct perf_event *event,
4189 struct perf_sample_data *data)
4190{
4191 void *record = data->raw->data;
4192
4193 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4194 return 1;
4195 return 0;
4196}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004197
4198static void tp_perf_event_destroy(struct perf_event *event)
4199{
4200 ftrace_profile_disable(event->attr.config);
4201}
4202
4203static const struct pmu *tp_perf_event_init(struct perf_event *event)
4204{
4205 /*
4206 * Raw tracepoint data is a severe data leak, only allow root to
4207 * have these.
4208 */
4209 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4210 perf_paranoid_tracepoint_raw() &&
4211 !capable(CAP_SYS_ADMIN))
4212 return ERR_PTR(-EPERM);
4213
4214 if (ftrace_profile_enable(event->attr.config))
4215 return NULL;
4216
4217 event->destroy = tp_perf_event_destroy;
4218
4219 return &perf_ops_generic;
4220}
Li Zefan6fb29152009-10-15 11:21:42 +08004221
4222static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4223{
4224 char *filter_str;
4225 int ret;
4226
4227 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4228 return -EINVAL;
4229
4230 filter_str = strndup_user(arg, PAGE_SIZE);
4231 if (IS_ERR(filter_str))
4232 return PTR_ERR(filter_str);
4233
4234 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4235
4236 kfree(filter_str);
4237 return ret;
4238}
4239
4240static void perf_event_free_filter(struct perf_event *event)
4241{
4242 ftrace_profile_free_filter(event);
4243}
4244
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004245#else
Li Zefan6fb29152009-10-15 11:21:42 +08004246
4247static int perf_tp_event_match(struct perf_event *event,
4248 struct perf_sample_data *data)
4249{
4250 return 1;
4251}
4252
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004253static const struct pmu *tp_perf_event_init(struct perf_event *event)
4254{
4255 return NULL;
4256}
Li Zefan6fb29152009-10-15 11:21:42 +08004257
4258static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4259{
4260 return -ENOENT;
4261}
4262
4263static void perf_event_free_filter(struct perf_event *event)
4264{
4265}
4266
4267#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004268
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004269#ifdef CONFIG_HAVE_HW_BREAKPOINT
4270static void bp_perf_event_destroy(struct perf_event *event)
4271{
4272 release_bp_slot(event);
4273}
4274
4275static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4276{
4277 int err;
4278 /*
4279 * The breakpoint is already filled if we haven't created the counter
4280 * through perf syscall
4281 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4282 */
4283 if (!bp->callback)
4284 err = register_perf_hw_breakpoint(bp);
4285 else
4286 err = __register_perf_hw_breakpoint(bp);
4287 if (err)
4288 return ERR_PTR(err);
4289
4290 bp->destroy = bp_perf_event_destroy;
4291
4292 return &perf_ops_bp;
4293}
4294
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004295void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004296{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004297 struct perf_sample_data sample;
4298 struct pt_regs *regs = data;
4299
4300 sample.addr = bp->attr.bp_addr;
4301
4302 if (!perf_exclude_event(bp, regs))
4303 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004304}
4305#else
4306static void bp_perf_event_destroy(struct perf_event *event)
4307{
4308}
4309
4310static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4311{
4312 return NULL;
4313}
4314
4315void perf_bp_event(struct perf_event *bp, void *regs)
4316{
4317}
4318#endif
4319
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004320atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4321
4322static void sw_perf_event_destroy(struct perf_event *event)
4323{
4324 u64 event_id = event->attr.config;
4325
4326 WARN_ON(event->parent);
4327
4328 atomic_dec(&perf_swevent_enabled[event_id]);
4329}
4330
4331static const struct pmu *sw_perf_event_init(struct perf_event *event)
4332{
4333 const struct pmu *pmu = NULL;
4334 u64 event_id = event->attr.config;
4335
4336 /*
4337 * Software events (currently) can't in general distinguish
4338 * between user, kernel and hypervisor events.
4339 * However, context switches and cpu migrations are considered
4340 * to be kernel events, and page faults are never hypervisor
4341 * events.
4342 */
4343 switch (event_id) {
4344 case PERF_COUNT_SW_CPU_CLOCK:
4345 pmu = &perf_ops_cpu_clock;
4346
4347 break;
4348 case PERF_COUNT_SW_TASK_CLOCK:
4349 /*
4350 * If the user instantiates this as a per-cpu event,
4351 * use the cpu_clock event instead.
4352 */
4353 if (event->ctx->task)
4354 pmu = &perf_ops_task_clock;
4355 else
4356 pmu = &perf_ops_cpu_clock;
4357
4358 break;
4359 case PERF_COUNT_SW_PAGE_FAULTS:
4360 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4361 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4362 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4363 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004364 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4365 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004366 if (!event->parent) {
4367 atomic_inc(&perf_swevent_enabled[event_id]);
4368 event->destroy = sw_perf_event_destroy;
4369 }
4370 pmu = &perf_ops_generic;
4371 break;
4372 }
4373
4374 return pmu;
4375}
4376
4377/*
4378 * Allocate and initialize a event structure
4379 */
4380static struct perf_event *
4381perf_event_alloc(struct perf_event_attr *attr,
4382 int cpu,
4383 struct perf_event_context *ctx,
4384 struct perf_event *group_leader,
4385 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004386 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004387 gfp_t gfpflags)
4388{
4389 const struct pmu *pmu;
4390 struct perf_event *event;
4391 struct hw_perf_event *hwc;
4392 long err;
4393
4394 event = kzalloc(sizeof(*event), gfpflags);
4395 if (!event)
4396 return ERR_PTR(-ENOMEM);
4397
4398 /*
4399 * Single events are their own group leaders, with an
4400 * empty sibling list:
4401 */
4402 if (!group_leader)
4403 group_leader = event;
4404
4405 mutex_init(&event->child_mutex);
4406 INIT_LIST_HEAD(&event->child_list);
4407
4408 INIT_LIST_HEAD(&event->group_entry);
4409 INIT_LIST_HEAD(&event->event_entry);
4410 INIT_LIST_HEAD(&event->sibling_list);
4411 init_waitqueue_head(&event->waitq);
4412
4413 mutex_init(&event->mmap_mutex);
4414
4415 event->cpu = cpu;
4416 event->attr = *attr;
4417 event->group_leader = group_leader;
4418 event->pmu = NULL;
4419 event->ctx = ctx;
4420 event->oncpu = -1;
4421
4422 event->parent = parent_event;
4423
4424 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4425 event->id = atomic64_inc_return(&perf_event_id);
4426
4427 event->state = PERF_EVENT_STATE_INACTIVE;
4428
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004429 if (!callback && parent_event)
4430 callback = parent_event->callback;
4431
4432 event->callback = callback;
4433
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004434 if (attr->disabled)
4435 event->state = PERF_EVENT_STATE_OFF;
4436
4437 pmu = NULL;
4438
4439 hwc = &event->hw;
4440 hwc->sample_period = attr->sample_period;
4441 if (attr->freq && attr->sample_freq)
4442 hwc->sample_period = 1;
4443 hwc->last_period = hwc->sample_period;
4444
4445 atomic64_set(&hwc->period_left, hwc->sample_period);
4446
4447 /*
4448 * we currently do not support PERF_FORMAT_GROUP on inherited events
4449 */
4450 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4451 goto done;
4452
4453 switch (attr->type) {
4454 case PERF_TYPE_RAW:
4455 case PERF_TYPE_HARDWARE:
4456 case PERF_TYPE_HW_CACHE:
4457 pmu = hw_perf_event_init(event);
4458 break;
4459
4460 case PERF_TYPE_SOFTWARE:
4461 pmu = sw_perf_event_init(event);
4462 break;
4463
4464 case PERF_TYPE_TRACEPOINT:
4465 pmu = tp_perf_event_init(event);
4466 break;
4467
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004468 case PERF_TYPE_BREAKPOINT:
4469 pmu = bp_perf_event_init(event);
4470 break;
4471
4472
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004473 default:
4474 break;
4475 }
4476done:
4477 err = 0;
4478 if (!pmu)
4479 err = -EINVAL;
4480 else if (IS_ERR(pmu))
4481 err = PTR_ERR(pmu);
4482
4483 if (err) {
4484 if (event->ns)
4485 put_pid_ns(event->ns);
4486 kfree(event);
4487 return ERR_PTR(err);
4488 }
4489
4490 event->pmu = pmu;
4491
4492 if (!event->parent) {
4493 atomic_inc(&nr_events);
4494 if (event->attr.mmap)
4495 atomic_inc(&nr_mmap_events);
4496 if (event->attr.comm)
4497 atomic_inc(&nr_comm_events);
4498 if (event->attr.task)
4499 atomic_inc(&nr_task_events);
4500 }
4501
4502 return event;
4503}
4504
4505static int perf_copy_attr(struct perf_event_attr __user *uattr,
4506 struct perf_event_attr *attr)
4507{
4508 u32 size;
4509 int ret;
4510
4511 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4512 return -EFAULT;
4513
4514 /*
4515 * zero the full structure, so that a short copy will be nice.
4516 */
4517 memset(attr, 0, sizeof(*attr));
4518
4519 ret = get_user(size, &uattr->size);
4520 if (ret)
4521 return ret;
4522
4523 if (size > PAGE_SIZE) /* silly large */
4524 goto err_size;
4525
4526 if (!size) /* abi compat */
4527 size = PERF_ATTR_SIZE_VER0;
4528
4529 if (size < PERF_ATTR_SIZE_VER0)
4530 goto err_size;
4531
4532 /*
4533 * If we're handed a bigger struct than we know of,
4534 * ensure all the unknown bits are 0 - i.e. new
4535 * user-space does not rely on any kernel feature
4536 * extensions we dont know about yet.
4537 */
4538 if (size > sizeof(*attr)) {
4539 unsigned char __user *addr;
4540 unsigned char __user *end;
4541 unsigned char val;
4542
4543 addr = (void __user *)uattr + sizeof(*attr);
4544 end = (void __user *)uattr + size;
4545
4546 for (; addr < end; addr++) {
4547 ret = get_user(val, addr);
4548 if (ret)
4549 return ret;
4550 if (val)
4551 goto err_size;
4552 }
4553 size = sizeof(*attr);
4554 }
4555
4556 ret = copy_from_user(attr, uattr, size);
4557 if (ret)
4558 return -EFAULT;
4559
4560 /*
4561 * If the type exists, the corresponding creation will verify
4562 * the attr->config.
4563 */
4564 if (attr->type >= PERF_TYPE_MAX)
4565 return -EINVAL;
4566
4567 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4568 return -EINVAL;
4569
4570 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4571 return -EINVAL;
4572
4573 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4574 return -EINVAL;
4575
4576out:
4577 return ret;
4578
4579err_size:
4580 put_user(sizeof(*attr), &uattr->size);
4581 ret = -E2BIG;
4582 goto out;
4583}
4584
Li Zefan6fb29152009-10-15 11:21:42 +08004585static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004586{
4587 struct perf_event *output_event = NULL;
4588 struct file *output_file = NULL;
4589 struct perf_event *old_output;
4590 int fput_needed = 0;
4591 int ret = -EINVAL;
4592
4593 if (!output_fd)
4594 goto set;
4595
4596 output_file = fget_light(output_fd, &fput_needed);
4597 if (!output_file)
4598 return -EBADF;
4599
4600 if (output_file->f_op != &perf_fops)
4601 goto out;
4602
4603 output_event = output_file->private_data;
4604
4605 /* Don't chain output fds */
4606 if (output_event->output)
4607 goto out;
4608
4609 /* Don't set an output fd when we already have an output channel */
4610 if (event->data)
4611 goto out;
4612
4613 atomic_long_inc(&output_file->f_count);
4614
4615set:
4616 mutex_lock(&event->mmap_mutex);
4617 old_output = event->output;
4618 rcu_assign_pointer(event->output, output_event);
4619 mutex_unlock(&event->mmap_mutex);
4620
4621 if (old_output) {
4622 /*
4623 * we need to make sure no existing perf_output_*()
4624 * is still referencing this event.
4625 */
4626 synchronize_rcu();
4627 fput(old_output->filp);
4628 }
4629
4630 ret = 0;
4631out:
4632 fput_light(output_file, fput_needed);
4633 return ret;
4634}
4635
4636/**
4637 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4638 *
4639 * @attr_uptr: event_id type attributes for monitoring/sampling
4640 * @pid: target pid
4641 * @cpu: target cpu
4642 * @group_fd: group leader event fd
4643 */
4644SYSCALL_DEFINE5(perf_event_open,
4645 struct perf_event_attr __user *, attr_uptr,
4646 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4647{
4648 struct perf_event *event, *group_leader;
4649 struct perf_event_attr attr;
4650 struct perf_event_context *ctx;
4651 struct file *event_file = NULL;
4652 struct file *group_file = NULL;
4653 int fput_needed = 0;
4654 int fput_needed2 = 0;
4655 int err;
4656
4657 /* for future expandability... */
4658 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4659 return -EINVAL;
4660
4661 err = perf_copy_attr(attr_uptr, &attr);
4662 if (err)
4663 return err;
4664
4665 if (!attr.exclude_kernel) {
4666 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4667 return -EACCES;
4668 }
4669
4670 if (attr.freq) {
4671 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4672 return -EINVAL;
4673 }
4674
4675 /*
4676 * Get the target context (task or percpu):
4677 */
4678 ctx = find_get_context(pid, cpu);
4679 if (IS_ERR(ctx))
4680 return PTR_ERR(ctx);
4681
4682 /*
4683 * Look up the group leader (we will attach this event to it):
4684 */
4685 group_leader = NULL;
4686 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4687 err = -EINVAL;
4688 group_file = fget_light(group_fd, &fput_needed);
4689 if (!group_file)
4690 goto err_put_context;
4691 if (group_file->f_op != &perf_fops)
4692 goto err_put_context;
4693
4694 group_leader = group_file->private_data;
4695 /*
4696 * Do not allow a recursive hierarchy (this new sibling
4697 * becoming part of another group-sibling):
4698 */
4699 if (group_leader->group_leader != group_leader)
4700 goto err_put_context;
4701 /*
4702 * Do not allow to attach to a group in a different
4703 * task or CPU context:
4704 */
4705 if (group_leader->ctx != ctx)
4706 goto err_put_context;
4707 /*
4708 * Only a group leader can be exclusive or pinned
4709 */
4710 if (attr.exclusive || attr.pinned)
4711 goto err_put_context;
4712 }
4713
4714 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004715 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004716 err = PTR_ERR(event);
4717 if (IS_ERR(event))
4718 goto err_put_context;
4719
4720 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4721 if (err < 0)
4722 goto err_free_put_context;
4723
4724 event_file = fget_light(err, &fput_needed2);
4725 if (!event_file)
4726 goto err_free_put_context;
4727
4728 if (flags & PERF_FLAG_FD_OUTPUT) {
4729 err = perf_event_set_output(event, group_fd);
4730 if (err)
4731 goto err_fput_free_put_context;
4732 }
4733
4734 event->filp = event_file;
4735 WARN_ON_ONCE(ctx->parent_ctx);
4736 mutex_lock(&ctx->mutex);
4737 perf_install_in_context(ctx, event, cpu);
4738 ++ctx->generation;
4739 mutex_unlock(&ctx->mutex);
4740
4741 event->owner = current;
4742 get_task_struct(current);
4743 mutex_lock(&current->perf_event_mutex);
4744 list_add_tail(&event->owner_entry, &current->perf_event_list);
4745 mutex_unlock(&current->perf_event_mutex);
4746
4747err_fput_free_put_context:
4748 fput_light(event_file, fput_needed2);
4749
4750err_free_put_context:
4751 if (err < 0)
4752 kfree(event);
4753
4754err_put_context:
4755 if (err < 0)
4756 put_ctx(ctx);
4757
4758 fput_light(group_file, fput_needed);
4759
4760 return err;
4761}
4762
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004763/**
4764 * perf_event_create_kernel_counter
4765 *
4766 * @attr: attributes of the counter to create
4767 * @cpu: cpu in which the counter is bound
4768 * @pid: task to profile
4769 */
4770struct perf_event *
4771perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004772 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004773{
4774 struct perf_event *event;
4775 struct perf_event_context *ctx;
4776 int err;
4777
4778 /*
4779 * Get the target context (task or percpu):
4780 */
4781
4782 ctx = find_get_context(pid, cpu);
4783 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004784 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004785
4786 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004787 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004788 err = PTR_ERR(event);
4789 if (IS_ERR(event))
4790 goto err_put_context;
4791
4792 event->filp = NULL;
4793 WARN_ON_ONCE(ctx->parent_ctx);
4794 mutex_lock(&ctx->mutex);
4795 perf_install_in_context(ctx, event, cpu);
4796 ++ctx->generation;
4797 mutex_unlock(&ctx->mutex);
4798
4799 event->owner = current;
4800 get_task_struct(current);
4801 mutex_lock(&current->perf_event_mutex);
4802 list_add_tail(&event->owner_entry, &current->perf_event_list);
4803 mutex_unlock(&current->perf_event_mutex);
4804
4805 return event;
4806
4807err_put_context:
4808 if (err < 0)
4809 put_ctx(ctx);
4810
4811 return NULL;
4812}
4813EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4814
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004815/*
4816 * inherit a event from parent task to child task:
4817 */
4818static struct perf_event *
4819inherit_event(struct perf_event *parent_event,
4820 struct task_struct *parent,
4821 struct perf_event_context *parent_ctx,
4822 struct task_struct *child,
4823 struct perf_event *group_leader,
4824 struct perf_event_context *child_ctx)
4825{
4826 struct perf_event *child_event;
4827
4828 /*
4829 * Instead of creating recursive hierarchies of events,
4830 * we link inherited events back to the original parent,
4831 * which has a filp for sure, which we use as the reference
4832 * count:
4833 */
4834 if (parent_event->parent)
4835 parent_event = parent_event->parent;
4836
4837 child_event = perf_event_alloc(&parent_event->attr,
4838 parent_event->cpu, child_ctx,
4839 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004840 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004841 if (IS_ERR(child_event))
4842 return child_event;
4843 get_ctx(child_ctx);
4844
4845 /*
4846 * Make the child state follow the state of the parent event,
4847 * not its attr.disabled bit. We hold the parent's mutex,
4848 * so we won't race with perf_event_{en, dis}able_family.
4849 */
4850 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4851 child_event->state = PERF_EVENT_STATE_INACTIVE;
4852 else
4853 child_event->state = PERF_EVENT_STATE_OFF;
4854
4855 if (parent_event->attr.freq)
4856 child_event->hw.sample_period = parent_event->hw.sample_period;
4857
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004858 child_event->overflow_handler = parent_event->overflow_handler;
4859
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004860 /*
4861 * Link it up in the child's context:
4862 */
4863 add_event_to_ctx(child_event, child_ctx);
4864
4865 /*
4866 * Get a reference to the parent filp - we will fput it
4867 * when the child event exits. This is safe to do because
4868 * we are in the parent and we know that the filp still
4869 * exists and has a nonzero count:
4870 */
4871 atomic_long_inc(&parent_event->filp->f_count);
4872
4873 /*
4874 * Link this into the parent event's child list
4875 */
4876 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4877 mutex_lock(&parent_event->child_mutex);
4878 list_add_tail(&child_event->child_list, &parent_event->child_list);
4879 mutex_unlock(&parent_event->child_mutex);
4880
4881 return child_event;
4882}
4883
4884static int inherit_group(struct perf_event *parent_event,
4885 struct task_struct *parent,
4886 struct perf_event_context *parent_ctx,
4887 struct task_struct *child,
4888 struct perf_event_context *child_ctx)
4889{
4890 struct perf_event *leader;
4891 struct perf_event *sub;
4892 struct perf_event *child_ctr;
4893
4894 leader = inherit_event(parent_event, parent, parent_ctx,
4895 child, NULL, child_ctx);
4896 if (IS_ERR(leader))
4897 return PTR_ERR(leader);
4898 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4899 child_ctr = inherit_event(sub, parent, parent_ctx,
4900 child, leader, child_ctx);
4901 if (IS_ERR(child_ctr))
4902 return PTR_ERR(child_ctr);
4903 }
4904 return 0;
4905}
4906
4907static void sync_child_event(struct perf_event *child_event,
4908 struct task_struct *child)
4909{
4910 struct perf_event *parent_event = child_event->parent;
4911 u64 child_val;
4912
4913 if (child_event->attr.inherit_stat)
4914 perf_event_read_event(child_event, child);
4915
4916 child_val = atomic64_read(&child_event->count);
4917
4918 /*
4919 * Add back the child's count to the parent's count:
4920 */
4921 atomic64_add(child_val, &parent_event->count);
4922 atomic64_add(child_event->total_time_enabled,
4923 &parent_event->child_total_time_enabled);
4924 atomic64_add(child_event->total_time_running,
4925 &parent_event->child_total_time_running);
4926
4927 /*
4928 * Remove this event from the parent's list
4929 */
4930 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4931 mutex_lock(&parent_event->child_mutex);
4932 list_del_init(&child_event->child_list);
4933 mutex_unlock(&parent_event->child_mutex);
4934
4935 /*
4936 * Release the parent event, if this was the last
4937 * reference to it.
4938 */
4939 fput(parent_event->filp);
4940}
4941
4942static void
4943__perf_event_exit_task(struct perf_event *child_event,
4944 struct perf_event_context *child_ctx,
4945 struct task_struct *child)
4946{
4947 struct perf_event *parent_event;
4948
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004949 perf_event_remove_from_context(child_event);
4950
4951 parent_event = child_event->parent;
4952 /*
4953 * It can happen that parent exits first, and has events
4954 * that are still around due to the child reference. These
4955 * events need to be zapped - but otherwise linger.
4956 */
4957 if (parent_event) {
4958 sync_child_event(child_event, child);
4959 free_event(child_event);
4960 }
4961}
4962
4963/*
4964 * When a child task exits, feed back event values to parent events.
4965 */
4966void perf_event_exit_task(struct task_struct *child)
4967{
4968 struct perf_event *child_event, *tmp;
4969 struct perf_event_context *child_ctx;
4970 unsigned long flags;
4971
4972 if (likely(!child->perf_event_ctxp)) {
4973 perf_event_task(child, NULL, 0);
4974 return;
4975 }
4976
4977 local_irq_save(flags);
4978 /*
4979 * We can't reschedule here because interrupts are disabled,
4980 * and either child is current or it is a task that can't be
4981 * scheduled, so we are now safe from rescheduling changing
4982 * our context.
4983 */
4984 child_ctx = child->perf_event_ctxp;
4985 __perf_event_task_sched_out(child_ctx);
4986
4987 /*
4988 * Take the context lock here so that if find_get_context is
4989 * reading child->perf_event_ctxp, we wait until it has
4990 * incremented the context's refcount before we do put_ctx below.
4991 */
4992 spin_lock(&child_ctx->lock);
4993 child->perf_event_ctxp = NULL;
4994 /*
4995 * If this context is a clone; unclone it so it can't get
4996 * swapped to another process while we're removing all
4997 * the events from it.
4998 */
4999 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005000 update_context_time(child_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005001 spin_unlock_irqrestore(&child_ctx->lock, flags);
5002
5003 /*
5004 * Report the task dead after unscheduling the events so that we
5005 * won't get any samples after PERF_RECORD_EXIT. We can however still
5006 * get a few PERF_RECORD_READ events.
5007 */
5008 perf_event_task(child, child_ctx, 0);
5009
5010 /*
5011 * We can recurse on the same lock type through:
5012 *
5013 * __perf_event_exit_task()
5014 * sync_child_event()
5015 * fput(parent_event->filp)
5016 * perf_release()
5017 * mutex_lock(&ctx->mutex)
5018 *
5019 * But since its the parent context it won't be the same instance.
5020 */
5021 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5022
5023again:
5024 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5025 group_entry)
5026 __perf_event_exit_task(child_event, child_ctx, child);
5027
5028 /*
5029 * If the last event was a group event, it will have appended all
5030 * its siblings to the list, but we obtained 'tmp' before that which
5031 * will still point to the list head terminating the iteration.
5032 */
5033 if (!list_empty(&child_ctx->group_list))
5034 goto again;
5035
5036 mutex_unlock(&child_ctx->mutex);
5037
5038 put_ctx(child_ctx);
5039}
5040
5041/*
5042 * free an unexposed, unused context as created by inheritance by
5043 * init_task below, used by fork() in case of fail.
5044 */
5045void perf_event_free_task(struct task_struct *task)
5046{
5047 struct perf_event_context *ctx = task->perf_event_ctxp;
5048 struct perf_event *event, *tmp;
5049
5050 if (!ctx)
5051 return;
5052
5053 mutex_lock(&ctx->mutex);
5054again:
5055 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5056 struct perf_event *parent = event->parent;
5057
5058 if (WARN_ON_ONCE(!parent))
5059 continue;
5060
5061 mutex_lock(&parent->child_mutex);
5062 list_del_init(&event->child_list);
5063 mutex_unlock(&parent->child_mutex);
5064
5065 fput(parent->filp);
5066
5067 list_del_event(event, ctx);
5068 free_event(event);
5069 }
5070
5071 if (!list_empty(&ctx->group_list))
5072 goto again;
5073
5074 mutex_unlock(&ctx->mutex);
5075
5076 put_ctx(ctx);
5077}
5078
5079/*
5080 * Initialize the perf_event context in task_struct
5081 */
5082int perf_event_init_task(struct task_struct *child)
5083{
5084 struct perf_event_context *child_ctx, *parent_ctx;
5085 struct perf_event_context *cloned_ctx;
5086 struct perf_event *event;
5087 struct task_struct *parent = current;
5088 int inherited_all = 1;
5089 int ret = 0;
5090
5091 child->perf_event_ctxp = NULL;
5092
5093 mutex_init(&child->perf_event_mutex);
5094 INIT_LIST_HEAD(&child->perf_event_list);
5095
5096 if (likely(!parent->perf_event_ctxp))
5097 return 0;
5098
5099 /*
5100 * This is executed from the parent task context, so inherit
5101 * events that have been marked for cloning.
5102 * First allocate and initialize a context for the child.
5103 */
5104
5105 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5106 if (!child_ctx)
5107 return -ENOMEM;
5108
5109 __perf_event_init_context(child_ctx, child);
5110 child->perf_event_ctxp = child_ctx;
5111 get_task_struct(child);
5112
5113 /*
5114 * If the parent's context is a clone, pin it so it won't get
5115 * swapped under us.
5116 */
5117 parent_ctx = perf_pin_task_context(parent);
5118
5119 /*
5120 * No need to check if parent_ctx != NULL here; since we saw
5121 * it non-NULL earlier, the only reason for it to become NULL
5122 * is if we exit, and since we're currently in the middle of
5123 * a fork we can't be exiting at the same time.
5124 */
5125
5126 /*
5127 * Lock the parent list. No need to lock the child - not PID
5128 * hashed yet and not running, so nobody can access it.
5129 */
5130 mutex_lock(&parent_ctx->mutex);
5131
5132 /*
5133 * We dont have to disable NMIs - we are only looking at
5134 * the list, not manipulating it:
5135 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005136 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005137
5138 if (!event->attr.inherit) {
5139 inherited_all = 0;
5140 continue;
5141 }
5142
5143 ret = inherit_group(event, parent, parent_ctx,
5144 child, child_ctx);
5145 if (ret) {
5146 inherited_all = 0;
5147 break;
5148 }
5149 }
5150
5151 if (inherited_all) {
5152 /*
5153 * Mark the child context as a clone of the parent
5154 * context, or of whatever the parent is a clone of.
5155 * Note that if the parent is a clone, it could get
5156 * uncloned at any point, but that doesn't matter
5157 * because the list of events and the generation
5158 * count can't have changed since we took the mutex.
5159 */
5160 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5161 if (cloned_ctx) {
5162 child_ctx->parent_ctx = cloned_ctx;
5163 child_ctx->parent_gen = parent_ctx->parent_gen;
5164 } else {
5165 child_ctx->parent_ctx = parent_ctx;
5166 child_ctx->parent_gen = parent_ctx->generation;
5167 }
5168 get_ctx(child_ctx->parent_ctx);
5169 }
5170
5171 mutex_unlock(&parent_ctx->mutex);
5172
5173 perf_unpin_context(parent_ctx);
5174
5175 return ret;
5176}
5177
5178static void __cpuinit perf_event_init_cpu(int cpu)
5179{
5180 struct perf_cpu_context *cpuctx;
5181
5182 cpuctx = &per_cpu(perf_cpu_context, cpu);
5183 __perf_event_init_context(&cpuctx->ctx, NULL);
5184
5185 spin_lock(&perf_resource_lock);
5186 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5187 spin_unlock(&perf_resource_lock);
5188
5189 hw_perf_event_setup(cpu);
5190}
5191
5192#ifdef CONFIG_HOTPLUG_CPU
5193static void __perf_event_exit_cpu(void *info)
5194{
5195 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5196 struct perf_event_context *ctx = &cpuctx->ctx;
5197 struct perf_event *event, *tmp;
5198
5199 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5200 __perf_event_remove_from_context(event);
5201}
5202static void perf_event_exit_cpu(int cpu)
5203{
5204 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5205 struct perf_event_context *ctx = &cpuctx->ctx;
5206
5207 mutex_lock(&ctx->mutex);
5208 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5209 mutex_unlock(&ctx->mutex);
5210}
5211#else
5212static inline void perf_event_exit_cpu(int cpu) { }
5213#endif
5214
5215static int __cpuinit
5216perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5217{
5218 unsigned int cpu = (long)hcpu;
5219
5220 switch (action) {
5221
5222 case CPU_UP_PREPARE:
5223 case CPU_UP_PREPARE_FROZEN:
5224 perf_event_init_cpu(cpu);
5225 break;
5226
5227 case CPU_ONLINE:
5228 case CPU_ONLINE_FROZEN:
5229 hw_perf_event_setup_online(cpu);
5230 break;
5231
5232 case CPU_DOWN_PREPARE:
5233 case CPU_DOWN_PREPARE_FROZEN:
5234 perf_event_exit_cpu(cpu);
5235 break;
5236
5237 default:
5238 break;
5239 }
5240
5241 return NOTIFY_OK;
5242}
5243
5244/*
5245 * This has to have a higher priority than migration_notifier in sched.c.
5246 */
5247static struct notifier_block __cpuinitdata perf_cpu_nb = {
5248 .notifier_call = perf_cpu_notify,
5249 .priority = 20,
5250};
5251
5252void __init perf_event_init(void)
5253{
5254 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5255 (void *)(long)smp_processor_id());
5256 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5257 (void *)(long)smp_processor_id());
5258 register_cpu_notifier(&perf_cpu_nb);
5259}
5260
5261static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5262{
5263 return sprintf(buf, "%d\n", perf_reserved_percpu);
5264}
5265
5266static ssize_t
5267perf_set_reserve_percpu(struct sysdev_class *class,
5268 const char *buf,
5269 size_t count)
5270{
5271 struct perf_cpu_context *cpuctx;
5272 unsigned long val;
5273 int err, cpu, mpt;
5274
5275 err = strict_strtoul(buf, 10, &val);
5276 if (err)
5277 return err;
5278 if (val > perf_max_events)
5279 return -EINVAL;
5280
5281 spin_lock(&perf_resource_lock);
5282 perf_reserved_percpu = val;
5283 for_each_online_cpu(cpu) {
5284 cpuctx = &per_cpu(perf_cpu_context, cpu);
5285 spin_lock_irq(&cpuctx->ctx.lock);
5286 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5287 perf_max_events - perf_reserved_percpu);
5288 cpuctx->max_pertask = mpt;
5289 spin_unlock_irq(&cpuctx->ctx.lock);
5290 }
5291 spin_unlock(&perf_resource_lock);
5292
5293 return count;
5294}
5295
5296static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5297{
5298 return sprintf(buf, "%d\n", perf_overcommit);
5299}
5300
5301static ssize_t
5302perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5303{
5304 unsigned long val;
5305 int err;
5306
5307 err = strict_strtoul(buf, 10, &val);
5308 if (err)
5309 return err;
5310 if (val > 1)
5311 return -EINVAL;
5312
5313 spin_lock(&perf_resource_lock);
5314 perf_overcommit = val;
5315 spin_unlock(&perf_resource_lock);
5316
5317 return count;
5318}
5319
5320static SYSDEV_CLASS_ATTR(
5321 reserve_percpu,
5322 0644,
5323 perf_show_reserve_percpu,
5324 perf_set_reserve_percpu
5325 );
5326
5327static SYSDEV_CLASS_ATTR(
5328 overcommit,
5329 0644,
5330 perf_show_overcommit,
5331 perf_set_overcommit
5332 );
5333
5334static struct attribute *perfclass_attrs[] = {
5335 &attr_reserve_percpu.attr,
5336 &attr_overcommit.attr,
5337 NULL
5338};
5339
5340static struct attribute_group perfclass_attr_group = {
5341 .attrs = perfclass_attrs,
5342 .name = "perf_events",
5343};
5344
5345static int __init perf_event_sysfs_init(void)
5346{
5347 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5348 &perfclass_attr_group);
5349}
5350device_initcall(perf_event_sysfs_init);