| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Routines to emulate some Altivec/VMX instructions, specifically | 
|  | 3 | * those that can trap when given denormalized operands in Java mode. | 
|  | 4 | */ | 
|  | 5 | #include <linux/kernel.h> | 
|  | 6 | #include <linux/errno.h> | 
|  | 7 | #include <linux/sched.h> | 
|  | 8 | #include <asm/ptrace.h> | 
|  | 9 | #include <asm/processor.h> | 
|  | 10 | #include <asm/uaccess.h> | 
|  | 11 |  | 
|  | 12 | /* Functions in vector.S */ | 
|  | 13 | extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b); | 
|  | 14 | extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b); | 
|  | 15 | extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | 
|  | 16 | extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | 
|  | 17 | extern void vrefp(vector128 *dst, vector128 *src); | 
|  | 18 | extern void vrsqrtefp(vector128 *dst, vector128 *src); | 
|  | 19 | extern void vexptep(vector128 *dst, vector128 *src); | 
|  | 20 |  | 
|  | 21 | static unsigned int exp2s[8] = { | 
|  | 22 | 0x800000, | 
|  | 23 | 0x8b95c2, | 
|  | 24 | 0x9837f0, | 
|  | 25 | 0xa5fed7, | 
|  | 26 | 0xb504f3, | 
|  | 27 | 0xc5672a, | 
|  | 28 | 0xd744fd, | 
|  | 29 | 0xeac0c7 | 
|  | 30 | }; | 
|  | 31 |  | 
|  | 32 | /* | 
|  | 33 | * Computes an estimate of 2^x.  The `s' argument is the 32-bit | 
|  | 34 | * single-precision floating-point representation of x. | 
|  | 35 | */ | 
|  | 36 | static unsigned int eexp2(unsigned int s) | 
|  | 37 | { | 
|  | 38 | int exp, pwr; | 
|  | 39 | unsigned int mant, frac; | 
|  | 40 |  | 
|  | 41 | /* extract exponent field from input */ | 
|  | 42 | exp = ((s >> 23) & 0xff) - 127; | 
|  | 43 | if (exp > 7) { | 
|  | 44 | /* check for NaN input */ | 
|  | 45 | if (exp == 128 && (s & 0x7fffff) != 0) | 
|  | 46 | return s | 0x400000;	/* return QNaN */ | 
|  | 47 | /* 2^-big = 0, 2^+big = +Inf */ | 
|  | 48 | return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */ | 
|  | 49 | } | 
|  | 50 | if (exp < -23) | 
|  | 51 | return 0x3f800000;	/* 1.0 */ | 
|  | 52 |  | 
|  | 53 | /* convert to fixed point integer in 9.23 representation */ | 
|  | 54 | pwr = (s & 0x7fffff) | 0x800000; | 
|  | 55 | if (exp > 0) | 
|  | 56 | pwr <<= exp; | 
|  | 57 | else | 
|  | 58 | pwr >>= -exp; | 
|  | 59 | if (s & 0x80000000) | 
|  | 60 | pwr = -pwr; | 
|  | 61 |  | 
|  | 62 | /* extract integer part, which becomes exponent part of result */ | 
|  | 63 | exp = (pwr >> 23) + 126; | 
|  | 64 | if (exp >= 254) | 
|  | 65 | return 0x7f800000; | 
|  | 66 | if (exp < -23) | 
|  | 67 | return 0; | 
|  | 68 |  | 
|  | 69 | /* table lookup on top 3 bits of fraction to get mantissa */ | 
|  | 70 | mant = exp2s[(pwr >> 20) & 7]; | 
|  | 71 |  | 
|  | 72 | /* linear interpolation using remaining 20 bits of fraction */ | 
|  | 73 | asm("mulhwu %0,%1,%2" : "=r" (frac) | 
|  | 74 | : "r" (pwr << 12), "r" (0x172b83ff)); | 
|  | 75 | asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant)); | 
|  | 76 | mant += frac; | 
|  | 77 |  | 
|  | 78 | if (exp >= 0) | 
|  | 79 | return mant + (exp << 23); | 
|  | 80 |  | 
|  | 81 | /* denormalized result */ | 
|  | 82 | exp = -exp; | 
|  | 83 | mant += 1 << (exp - 1); | 
|  | 84 | return mant >> exp; | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * Computes an estimate of log_2(x).  The `s' argument is the 32-bit | 
|  | 89 | * single-precision floating-point representation of x. | 
|  | 90 | */ | 
|  | 91 | static unsigned int elog2(unsigned int s) | 
|  | 92 | { | 
|  | 93 | int exp, mant, lz, frac; | 
|  | 94 |  | 
|  | 95 | exp = s & 0x7f800000; | 
|  | 96 | mant = s & 0x7fffff; | 
|  | 97 | if (exp == 0x7f800000) {	/* Inf or NaN */ | 
|  | 98 | if (mant != 0) | 
|  | 99 | s |= 0x400000;	/* turn NaN into QNaN */ | 
|  | 100 | return s; | 
|  | 101 | } | 
|  | 102 | if ((exp | mant) == 0)		/* +0 or -0 */ | 
|  | 103 | return 0xff800000;	/* return -Inf */ | 
|  | 104 |  | 
|  | 105 | if (exp == 0) { | 
|  | 106 | /* denormalized */ | 
|  | 107 | asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant)); | 
|  | 108 | mant <<= lz - 8; | 
|  | 109 | exp = (-118 - lz) << 23; | 
|  | 110 | } else { | 
|  | 111 | mant |= 0x800000; | 
|  | 112 | exp -= 127 << 23; | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */ | 
|  | 116 | exp |= 0x400000;			/* 0.5 * 2^23 */ | 
|  | 117 | asm("mulhwu %0,%1,%2" : "=r" (mant) | 
|  | 118 | : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */ | 
|  | 119 | } | 
|  | 120 | if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */ | 
|  | 121 | exp |= 0x200000;			/* 0.25 * 2^23 */ | 
|  | 122 | asm("mulhwu %0,%1,%2" : "=r" (mant) | 
|  | 123 | : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */ | 
|  | 124 | } | 
|  | 125 | if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */ | 
|  | 126 | exp |= 0x100000;			/* 0.125 * 2^23 */ | 
|  | 127 | asm("mulhwu %0,%1,%2" : "=r" (mant) | 
|  | 128 | : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */ | 
|  | 129 | } | 
|  | 130 | if (mant > 0x800000) {				/* 1.0 * 2^23 */ | 
|  | 131 | /* calculate (mant - 1) * 1.381097463 */ | 
|  | 132 | /* 1.381097463 == 0.125 / (2^0.125 - 1) */ | 
|  | 133 | asm("mulhwu %0,%1,%2" : "=r" (frac) | 
|  | 134 | : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a)); | 
|  | 135 | exp += frac; | 
|  | 136 | } | 
|  | 137 | s = exp & 0x80000000; | 
|  | 138 | if (exp != 0) { | 
|  | 139 | if (s) | 
|  | 140 | exp = -exp; | 
|  | 141 | asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp)); | 
|  | 142 | lz = 8 - lz; | 
|  | 143 | if (lz > 0) | 
|  | 144 | exp >>= lz; | 
|  | 145 | else if (lz < 0) | 
|  | 146 | exp <<= -lz; | 
|  | 147 | s += ((lz + 126) << 23) + exp; | 
|  | 148 | } | 
|  | 149 | return s; | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | #define VSCR_SAT	1 | 
|  | 153 |  | 
|  | 154 | static int ctsxs(unsigned int x, int scale, unsigned int *vscrp) | 
|  | 155 | { | 
|  | 156 | int exp, mant; | 
|  | 157 |  | 
|  | 158 | exp = (x >> 23) & 0xff; | 
|  | 159 | mant = x & 0x7fffff; | 
|  | 160 | if (exp == 255 && mant != 0) | 
|  | 161 | return 0;		/* NaN -> 0 */ | 
|  | 162 | exp = exp - 127 + scale; | 
|  | 163 | if (exp < 0) | 
|  | 164 | return 0;		/* round towards zero */ | 
|  | 165 | if (exp >= 31) { | 
|  | 166 | /* saturate, unless the result would be -2^31 */ | 
|  | 167 | if (x + (scale << 23) != 0xcf000000) | 
|  | 168 | *vscrp |= VSCR_SAT; | 
|  | 169 | return (x & 0x80000000)? 0x80000000: 0x7fffffff; | 
|  | 170 | } | 
|  | 171 | mant |= 0x800000; | 
|  | 172 | mant = (mant << 7) >> (30 - exp); | 
|  | 173 | return (x & 0x80000000)? -mant: mant; | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp) | 
|  | 177 | { | 
|  | 178 | int exp; | 
|  | 179 | unsigned int mant; | 
|  | 180 |  | 
|  | 181 | exp = (x >> 23) & 0xff; | 
|  | 182 | mant = x & 0x7fffff; | 
|  | 183 | if (exp == 255 && mant != 0) | 
|  | 184 | return 0;		/* NaN -> 0 */ | 
|  | 185 | exp = exp - 127 + scale; | 
|  | 186 | if (exp < 0) | 
|  | 187 | return 0;		/* round towards zero */ | 
|  | 188 | if (x & 0x80000000) { | 
|  | 189 | /* negative => saturate to 0 */ | 
|  | 190 | *vscrp |= VSCR_SAT; | 
|  | 191 | return 0; | 
|  | 192 | } | 
|  | 193 | if (exp >= 32) { | 
|  | 194 | /* saturate */ | 
|  | 195 | *vscrp |= VSCR_SAT; | 
|  | 196 | return 0xffffffff; | 
|  | 197 | } | 
|  | 198 | mant |= 0x800000; | 
|  | 199 | mant = (mant << 8) >> (31 - exp); | 
|  | 200 | return mant; | 
|  | 201 | } | 
|  | 202 |  | 
|  | 203 | /* Round to floating integer, towards 0 */ | 
|  | 204 | static unsigned int rfiz(unsigned int x) | 
|  | 205 | { | 
|  | 206 | int exp; | 
|  | 207 |  | 
|  | 208 | exp = ((x >> 23) & 0xff) - 127; | 
|  | 209 | if (exp == 128 && (x & 0x7fffff) != 0) | 
|  | 210 | return x | 0x400000;	/* NaN -> make it a QNaN */ | 
|  | 211 | if (exp >= 23) | 
|  | 212 | return x;		/* it's an integer already (or Inf) */ | 
|  | 213 | if (exp < 0) | 
|  | 214 | return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */ | 
|  | 215 | return x & ~(0x7fffff >> exp); | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* Round to floating integer, towards +/- Inf */ | 
|  | 219 | static unsigned int rfii(unsigned int x) | 
|  | 220 | { | 
|  | 221 | int exp, mask; | 
|  | 222 |  | 
|  | 223 | exp = ((x >> 23) & 0xff) - 127; | 
|  | 224 | if (exp == 128 && (x & 0x7fffff) != 0) | 
|  | 225 | return x | 0x400000;	/* NaN -> make it a QNaN */ | 
|  | 226 | if (exp >= 23) | 
|  | 227 | return x;		/* it's an integer already (or Inf) */ | 
|  | 228 | if ((x & 0x7fffffff) == 0) | 
|  | 229 | return x;		/* +/-0 -> +/-0 */ | 
|  | 230 | if (exp < 0) | 
|  | 231 | /* 0 < |x| < 1.0 rounds to +/- 1.0 */ | 
|  | 232 | return (x & 0x80000000) | 0x3f800000; | 
|  | 233 | mask = 0x7fffff >> exp; | 
|  | 234 | /* mantissa overflows into exponent - that's OK, | 
|  | 235 | it can't overflow into the sign bit */ | 
|  | 236 | return (x + mask) & ~mask; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | /* Round to floating integer, to nearest */ | 
|  | 240 | static unsigned int rfin(unsigned int x) | 
|  | 241 | { | 
|  | 242 | int exp, half; | 
|  | 243 |  | 
|  | 244 | exp = ((x >> 23) & 0xff) - 127; | 
|  | 245 | if (exp == 128 && (x & 0x7fffff) != 0) | 
|  | 246 | return x | 0x400000;	/* NaN -> make it a QNaN */ | 
|  | 247 | if (exp >= 23) | 
|  | 248 | return x;		/* it's an integer already (or Inf) */ | 
|  | 249 | if (exp < -1) | 
|  | 250 | return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */ | 
|  | 251 | if (exp == -1) | 
|  | 252 | /* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */ | 
|  | 253 | return (x & 0x80000000) | 0x3f800000; | 
|  | 254 | half = 0x400000 >> exp; | 
|  | 255 | /* add 0.5 to the magnitude and chop off the fraction bits */ | 
|  | 256 | return (x + half) & ~(0x7fffff >> exp); | 
|  | 257 | } | 
|  | 258 |  | 
|  | 259 | int emulate_altivec(struct pt_regs *regs) | 
|  | 260 | { | 
|  | 261 | unsigned int instr, i; | 
|  | 262 | unsigned int va, vb, vc, vd; | 
|  | 263 | vector128 *vrs; | 
|  | 264 |  | 
|  | 265 | if (get_user(instr, (unsigned int __user *) regs->nip)) | 
|  | 266 | return -EFAULT; | 
|  | 267 | if ((instr >> 26) != 4) | 
|  | 268 | return -EINVAL;		/* not an altivec instruction */ | 
|  | 269 | vd = (instr >> 21) & 0x1f; | 
|  | 270 | va = (instr >> 16) & 0x1f; | 
|  | 271 | vb = (instr >> 11) & 0x1f; | 
|  | 272 | vc = (instr >> 6) & 0x1f; | 
|  | 273 |  | 
|  | 274 | vrs = current->thread.vr; | 
|  | 275 | switch (instr & 0x3f) { | 
|  | 276 | case 10: | 
|  | 277 | switch (vc) { | 
|  | 278 | case 0:	/* vaddfp */ | 
|  | 279 | vaddfp(&vrs[vd], &vrs[va], &vrs[vb]); | 
|  | 280 | break; | 
|  | 281 | case 1:	/* vsubfp */ | 
|  | 282 | vsubfp(&vrs[vd], &vrs[va], &vrs[vb]); | 
|  | 283 | break; | 
|  | 284 | case 4:	/* vrefp */ | 
|  | 285 | vrefp(&vrs[vd], &vrs[vb]); | 
|  | 286 | break; | 
|  | 287 | case 5:	/* vrsqrtefp */ | 
|  | 288 | vrsqrtefp(&vrs[vd], &vrs[vb]); | 
|  | 289 | break; | 
|  | 290 | case 6:	/* vexptefp */ | 
|  | 291 | for (i = 0; i < 4; ++i) | 
|  | 292 | vrs[vd].u[i] = eexp2(vrs[vb].u[i]); | 
|  | 293 | break; | 
|  | 294 | case 7:	/* vlogefp */ | 
|  | 295 | for (i = 0; i < 4; ++i) | 
|  | 296 | vrs[vd].u[i] = elog2(vrs[vb].u[i]); | 
|  | 297 | break; | 
|  | 298 | case 8:		/* vrfin */ | 
|  | 299 | for (i = 0; i < 4; ++i) | 
|  | 300 | vrs[vd].u[i] = rfin(vrs[vb].u[i]); | 
|  | 301 | break; | 
|  | 302 | case 9:		/* vrfiz */ | 
|  | 303 | for (i = 0; i < 4; ++i) | 
|  | 304 | vrs[vd].u[i] = rfiz(vrs[vb].u[i]); | 
|  | 305 | break; | 
|  | 306 | case 10:	/* vrfip */ | 
|  | 307 | for (i = 0; i < 4; ++i) { | 
|  | 308 | u32 x = vrs[vb].u[i]; | 
|  | 309 | x = (x & 0x80000000)? rfiz(x): rfii(x); | 
|  | 310 | vrs[vd].u[i] = x; | 
|  | 311 | } | 
|  | 312 | break; | 
|  | 313 | case 11:	/* vrfim */ | 
|  | 314 | for (i = 0; i < 4; ++i) { | 
|  | 315 | u32 x = vrs[vb].u[i]; | 
|  | 316 | x = (x & 0x80000000)? rfii(x): rfiz(x); | 
|  | 317 | vrs[vd].u[i] = x; | 
|  | 318 | } | 
|  | 319 | break; | 
|  | 320 | case 14:	/* vctuxs */ | 
|  | 321 | for (i = 0; i < 4; ++i) | 
|  | 322 | vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va, | 
|  | 323 | ¤t->thread.vscr.u[3]); | 
|  | 324 | break; | 
|  | 325 | case 15:	/* vctsxs */ | 
|  | 326 | for (i = 0; i < 4; ++i) | 
|  | 327 | vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va, | 
|  | 328 | ¤t->thread.vscr.u[3]); | 
|  | 329 | break; | 
|  | 330 | default: | 
|  | 331 | return -EINVAL; | 
|  | 332 | } | 
|  | 333 | break; | 
|  | 334 | case 46:	/* vmaddfp */ | 
|  | 335 | vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | 
|  | 336 | break; | 
|  | 337 | case 47:	/* vnmsubfp */ | 
|  | 338 | vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | 
|  | 339 | break; | 
|  | 340 | default: | 
|  | 341 | return -EINVAL; | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | return 0; | 
|  | 345 | } |