| Christoph Lameter | b20a350 | 2006-03-22 00:09:12 -0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Memory Migration functionality - linux/mm/migration.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
 | 5 |  * | 
 | 6 |  * Page migration was first developed in the context of the memory hotplug | 
 | 7 |  * project. The main authors of the migration code are: | 
 | 8 |  * | 
 | 9 |  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
 | 10 |  * Hirokazu Takahashi <taka@valinux.co.jp> | 
 | 11 |  * Dave Hansen <haveblue@us.ibm.com> | 
 | 12 |  * Christoph Lameter <clameter@sgi.com> | 
 | 13 |  */ | 
 | 14 |  | 
 | 15 | #include <linux/migrate.h> | 
 | 16 | #include <linux/module.h> | 
 | 17 | #include <linux/swap.h> | 
 | 18 | #include <linux/pagemap.h> | 
 | 19 | #include <linux/buffer_head.h>	/* for try_to_release_page(), | 
 | 20 | 					buffer_heads_over_limit */ | 
 | 21 | #include <linux/mm_inline.h> | 
 | 22 | #include <linux/pagevec.h> | 
 | 23 | #include <linux/rmap.h> | 
 | 24 | #include <linux/topology.h> | 
 | 25 | #include <linux/cpu.h> | 
 | 26 | #include <linux/cpuset.h> | 
 | 27 | #include <linux/swapops.h> | 
 | 28 |  | 
 | 29 | #include "internal.h" | 
 | 30 |  | 
 | 31 | #include "internal.h" | 
 | 32 |  | 
 | 33 | /* The maximum number of pages to take off the LRU for migration */ | 
 | 34 | #define MIGRATE_CHUNK_SIZE 256 | 
 | 35 |  | 
 | 36 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | 
 | 37 |  | 
 | 38 | /* | 
 | 39 |  * Isolate one page from the LRU lists. If successful put it onto | 
 | 40 |  * the indicated list with elevated page count. | 
 | 41 |  * | 
 | 42 |  * Result: | 
 | 43 |  *  -EBUSY: page not on LRU list | 
 | 44 |  *  0: page removed from LRU list and added to the specified list. | 
 | 45 |  */ | 
 | 46 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | 
 | 47 | { | 
 | 48 | 	int ret = -EBUSY; | 
 | 49 |  | 
 | 50 | 	if (PageLRU(page)) { | 
 | 51 | 		struct zone *zone = page_zone(page); | 
 | 52 |  | 
 | 53 | 		spin_lock_irq(&zone->lru_lock); | 
 | 54 | 		if (PageLRU(page)) { | 
 | 55 | 			ret = 0; | 
 | 56 | 			get_page(page); | 
 | 57 | 			ClearPageLRU(page); | 
 | 58 | 			if (PageActive(page)) | 
 | 59 | 				del_page_from_active_list(zone, page); | 
 | 60 | 			else | 
 | 61 | 				del_page_from_inactive_list(zone, page); | 
 | 62 | 			list_add_tail(&page->lru, pagelist); | 
 | 63 | 		} | 
 | 64 | 		spin_unlock_irq(&zone->lru_lock); | 
 | 65 | 	} | 
 | 66 | 	return ret; | 
 | 67 | } | 
 | 68 |  | 
 | 69 | /* | 
 | 70 |  * migrate_prep() needs to be called after we have compiled the list of pages | 
 | 71 |  * to be migrated using isolate_lru_page() but before we begin a series of calls | 
 | 72 |  * to migrate_pages(). | 
 | 73 |  */ | 
 | 74 | int migrate_prep(void) | 
 | 75 | { | 
 | 76 | 	/* Must have swap device for migration */ | 
 | 77 | 	if (nr_swap_pages <= 0) | 
 | 78 | 		return -ENODEV; | 
 | 79 |  | 
 | 80 | 	/* | 
 | 81 | 	 * Clear the LRU lists so pages can be isolated. | 
 | 82 | 	 * Note that pages may be moved off the LRU after we have | 
 | 83 | 	 * drained them. Those pages will fail to migrate like other | 
 | 84 | 	 * pages that may be busy. | 
 | 85 | 	 */ | 
 | 86 | 	lru_add_drain_all(); | 
 | 87 |  | 
 | 88 | 	return 0; | 
 | 89 | } | 
 | 90 |  | 
 | 91 | static inline void move_to_lru(struct page *page) | 
 | 92 | { | 
 | 93 | 	list_del(&page->lru); | 
 | 94 | 	if (PageActive(page)) { | 
 | 95 | 		/* | 
 | 96 | 		 * lru_cache_add_active checks that | 
 | 97 | 		 * the PG_active bit is off. | 
 | 98 | 		 */ | 
 | 99 | 		ClearPageActive(page); | 
 | 100 | 		lru_cache_add_active(page); | 
 | 101 | 	} else { | 
 | 102 | 		lru_cache_add(page); | 
 | 103 | 	} | 
 | 104 | 	put_page(page); | 
 | 105 | } | 
 | 106 |  | 
 | 107 | /* | 
 | 108 |  * Add isolated pages on the list back to the LRU. | 
 | 109 |  * | 
 | 110 |  * returns the number of pages put back. | 
 | 111 |  */ | 
 | 112 | int putback_lru_pages(struct list_head *l) | 
 | 113 | { | 
 | 114 | 	struct page *page; | 
 | 115 | 	struct page *page2; | 
 | 116 | 	int count = 0; | 
 | 117 |  | 
 | 118 | 	list_for_each_entry_safe(page, page2, l, lru) { | 
 | 119 | 		move_to_lru(page); | 
 | 120 | 		count++; | 
 | 121 | 	} | 
 | 122 | 	return count; | 
 | 123 | } | 
 | 124 |  | 
 | 125 | /* | 
 | 126 |  * Non migratable page | 
 | 127 |  */ | 
 | 128 | int fail_migrate_page(struct page *newpage, struct page *page) | 
 | 129 | { | 
 | 130 | 	return -EIO; | 
 | 131 | } | 
 | 132 | EXPORT_SYMBOL(fail_migrate_page); | 
 | 133 |  | 
 | 134 | /* | 
 | 135 |  * swapout a single page | 
 | 136 |  * page is locked upon entry, unlocked on exit | 
 | 137 |  */ | 
 | 138 | static int swap_page(struct page *page) | 
 | 139 | { | 
 | 140 | 	struct address_space *mapping = page_mapping(page); | 
 | 141 |  | 
 | 142 | 	if (page_mapped(page) && mapping) | 
 | 143 | 		if (try_to_unmap(page, 1) != SWAP_SUCCESS) | 
 | 144 | 			goto unlock_retry; | 
 | 145 |  | 
 | 146 | 	if (PageDirty(page)) { | 
 | 147 | 		/* Page is dirty, try to write it out here */ | 
 | 148 | 		switch(pageout(page, mapping)) { | 
 | 149 | 		case PAGE_KEEP: | 
 | 150 | 		case PAGE_ACTIVATE: | 
 | 151 | 			goto unlock_retry; | 
 | 152 |  | 
 | 153 | 		case PAGE_SUCCESS: | 
 | 154 | 			goto retry; | 
 | 155 |  | 
 | 156 | 		case PAGE_CLEAN: | 
 | 157 | 			; /* try to free the page below */ | 
 | 158 | 		} | 
 | 159 | 	} | 
 | 160 |  | 
 | 161 | 	if (PagePrivate(page)) { | 
 | 162 | 		if (!try_to_release_page(page, GFP_KERNEL) || | 
 | 163 | 		    (!mapping && page_count(page) == 1)) | 
 | 164 | 			goto unlock_retry; | 
 | 165 | 	} | 
 | 166 |  | 
 | 167 | 	if (remove_mapping(mapping, page)) { | 
 | 168 | 		/* Success */ | 
 | 169 | 		unlock_page(page); | 
 | 170 | 		return 0; | 
 | 171 | 	} | 
 | 172 |  | 
 | 173 | unlock_retry: | 
 | 174 | 	unlock_page(page); | 
 | 175 |  | 
 | 176 | retry: | 
 | 177 | 	return -EAGAIN; | 
 | 178 | } | 
 | 179 | EXPORT_SYMBOL(swap_page); | 
 | 180 |  | 
 | 181 | /* | 
 | 182 |  * Remove references for a page and establish the new page with the correct | 
 | 183 |  * basic settings to be able to stop accesses to the page. | 
 | 184 |  */ | 
 | 185 | int migrate_page_remove_references(struct page *newpage, | 
 | 186 | 				struct page *page, int nr_refs) | 
 | 187 | { | 
 | 188 | 	struct address_space *mapping = page_mapping(page); | 
 | 189 | 	struct page **radix_pointer; | 
 | 190 |  | 
 | 191 | 	/* | 
 | 192 | 	 * Avoid doing any of the following work if the page count | 
 | 193 | 	 * indicates that the page is in use or truncate has removed | 
 | 194 | 	 * the page. | 
 | 195 | 	 */ | 
 | 196 | 	if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | 
 | 197 | 		return -EAGAIN; | 
 | 198 |  | 
 | 199 | 	/* | 
 | 200 | 	 * Establish swap ptes for anonymous pages or destroy pte | 
 | 201 | 	 * maps for files. | 
 | 202 | 	 * | 
 | 203 | 	 * In order to reestablish file backed mappings the fault handlers | 
 | 204 | 	 * will take the radix tree_lock which may then be used to stop | 
 | 205 |   	 * processses from accessing this page until the new page is ready. | 
 | 206 | 	 * | 
 | 207 | 	 * A process accessing via a swap pte (an anonymous page) will take a | 
 | 208 | 	 * page_lock on the old page which will block the process until the | 
 | 209 | 	 * migration attempt is complete. At that time the PageSwapCache bit | 
 | 210 | 	 * will be examined. If the page was migrated then the PageSwapCache | 
 | 211 | 	 * bit will be clear and the operation to retrieve the page will be | 
 | 212 | 	 * retried which will find the new page in the radix tree. Then a new | 
 | 213 | 	 * direct mapping may be generated based on the radix tree contents. | 
 | 214 | 	 * | 
 | 215 | 	 * If the page was not migrated then the PageSwapCache bit | 
 | 216 | 	 * is still set and the operation may continue. | 
 | 217 | 	 */ | 
 | 218 | 	if (try_to_unmap(page, 1) == SWAP_FAIL) | 
 | 219 | 		/* A vma has VM_LOCKED set -> permanent failure */ | 
 | 220 | 		return -EPERM; | 
 | 221 |  | 
 | 222 | 	/* | 
 | 223 | 	 * Give up if we were unable to remove all mappings. | 
 | 224 | 	 */ | 
 | 225 | 	if (page_mapcount(page)) | 
 | 226 | 		return -EAGAIN; | 
 | 227 |  | 
 | 228 | 	write_lock_irq(&mapping->tree_lock); | 
 | 229 |  | 
 | 230 | 	radix_pointer = (struct page **)radix_tree_lookup_slot( | 
 | 231 | 						&mapping->page_tree, | 
 | 232 | 						page_index(page)); | 
 | 233 |  | 
 | 234 | 	if (!page_mapping(page) || page_count(page) != nr_refs || | 
 | 235 | 			*radix_pointer != page) { | 
 | 236 | 		write_unlock_irq(&mapping->tree_lock); | 
 | 237 | 		return 1; | 
 | 238 | 	} | 
 | 239 |  | 
 | 240 | 	/* | 
 | 241 | 	 * Now we know that no one else is looking at the page. | 
 | 242 | 	 * | 
 | 243 | 	 * Certain minimal information about a page must be available | 
 | 244 | 	 * in order for other subsystems to properly handle the page if they | 
 | 245 | 	 * find it through the radix tree update before we are finished | 
 | 246 | 	 * copying the page. | 
 | 247 | 	 */ | 
 | 248 | 	get_page(newpage); | 
 | 249 | 	newpage->index = page->index; | 
 | 250 | 	newpage->mapping = page->mapping; | 
 | 251 | 	if (PageSwapCache(page)) { | 
 | 252 | 		SetPageSwapCache(newpage); | 
 | 253 | 		set_page_private(newpage, page_private(page)); | 
 | 254 | 	} | 
 | 255 |  | 
 | 256 | 	*radix_pointer = newpage; | 
 | 257 | 	__put_page(page); | 
 | 258 | 	write_unlock_irq(&mapping->tree_lock); | 
 | 259 |  | 
 | 260 | 	return 0; | 
 | 261 | } | 
 | 262 | EXPORT_SYMBOL(migrate_page_remove_references); | 
 | 263 |  | 
 | 264 | /* | 
 | 265 |  * Copy the page to its new location | 
 | 266 |  */ | 
 | 267 | void migrate_page_copy(struct page *newpage, struct page *page) | 
 | 268 | { | 
 | 269 | 	copy_highpage(newpage, page); | 
 | 270 |  | 
 | 271 | 	if (PageError(page)) | 
 | 272 | 		SetPageError(newpage); | 
 | 273 | 	if (PageReferenced(page)) | 
 | 274 | 		SetPageReferenced(newpage); | 
 | 275 | 	if (PageUptodate(page)) | 
 | 276 | 		SetPageUptodate(newpage); | 
 | 277 | 	if (PageActive(page)) | 
 | 278 | 		SetPageActive(newpage); | 
 | 279 | 	if (PageChecked(page)) | 
 | 280 | 		SetPageChecked(newpage); | 
 | 281 | 	if (PageMappedToDisk(page)) | 
 | 282 | 		SetPageMappedToDisk(newpage); | 
 | 283 |  | 
 | 284 | 	if (PageDirty(page)) { | 
 | 285 | 		clear_page_dirty_for_io(page); | 
 | 286 | 		set_page_dirty(newpage); | 
 | 287 |  	} | 
 | 288 |  | 
 | 289 | 	ClearPageSwapCache(page); | 
 | 290 | 	ClearPageActive(page); | 
 | 291 | 	ClearPagePrivate(page); | 
 | 292 | 	set_page_private(page, 0); | 
 | 293 | 	page->mapping = NULL; | 
 | 294 |  | 
 | 295 | 	/* | 
 | 296 | 	 * If any waiters have accumulated on the new page then | 
 | 297 | 	 * wake them up. | 
 | 298 | 	 */ | 
 | 299 | 	if (PageWriteback(newpage)) | 
 | 300 | 		end_page_writeback(newpage); | 
 | 301 | } | 
 | 302 | EXPORT_SYMBOL(migrate_page_copy); | 
 | 303 |  | 
 | 304 | /* | 
 | 305 |  * Common logic to directly migrate a single page suitable for | 
 | 306 |  * pages that do not use PagePrivate. | 
 | 307 |  * | 
 | 308 |  * Pages are locked upon entry and exit. | 
 | 309 |  */ | 
 | 310 | int migrate_page(struct page *newpage, struct page *page) | 
 | 311 | { | 
 | 312 | 	int rc; | 
 | 313 |  | 
 | 314 | 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */ | 
 | 315 |  | 
 | 316 | 	rc = migrate_page_remove_references(newpage, page, 2); | 
 | 317 |  | 
 | 318 | 	if (rc) | 
 | 319 | 		return rc; | 
 | 320 |  | 
 | 321 | 	migrate_page_copy(newpage, page); | 
 | 322 |  | 
 | 323 | 	/* | 
 | 324 | 	 * Remove auxiliary swap entries and replace | 
 | 325 | 	 * them with real ptes. | 
 | 326 | 	 * | 
 | 327 | 	 * Note that a real pte entry will allow processes that are not | 
 | 328 | 	 * waiting on the page lock to use the new page via the page tables | 
 | 329 | 	 * before the new page is unlocked. | 
 | 330 | 	 */ | 
 | 331 | 	remove_from_swap(newpage); | 
 | 332 | 	return 0; | 
 | 333 | } | 
 | 334 | EXPORT_SYMBOL(migrate_page); | 
 | 335 |  | 
 | 336 | /* | 
 | 337 |  * migrate_pages | 
 | 338 |  * | 
 | 339 |  * Two lists are passed to this function. The first list | 
 | 340 |  * contains the pages isolated from the LRU to be migrated. | 
 | 341 |  * The second list contains new pages that the pages isolated | 
 | 342 |  * can be moved to. If the second list is NULL then all | 
 | 343 |  * pages are swapped out. | 
 | 344 |  * | 
 | 345 |  * The function returns after 10 attempts or if no pages | 
 | 346 |  * are movable anymore because to has become empty | 
 | 347 |  * or no retryable pages exist anymore. | 
 | 348 |  * | 
 | 349 |  * Return: Number of pages not migrated when "to" ran empty. | 
 | 350 |  */ | 
 | 351 | int migrate_pages(struct list_head *from, struct list_head *to, | 
 | 352 | 		  struct list_head *moved, struct list_head *failed) | 
 | 353 | { | 
 | 354 | 	int retry; | 
 | 355 | 	int nr_failed = 0; | 
 | 356 | 	int pass = 0; | 
 | 357 | 	struct page *page; | 
 | 358 | 	struct page *page2; | 
 | 359 | 	int swapwrite = current->flags & PF_SWAPWRITE; | 
 | 360 | 	int rc; | 
 | 361 |  | 
 | 362 | 	if (!swapwrite) | 
 | 363 | 		current->flags |= PF_SWAPWRITE; | 
 | 364 |  | 
 | 365 | redo: | 
 | 366 | 	retry = 0; | 
 | 367 |  | 
 | 368 | 	list_for_each_entry_safe(page, page2, from, lru) { | 
 | 369 | 		struct page *newpage = NULL; | 
 | 370 | 		struct address_space *mapping; | 
 | 371 |  | 
 | 372 | 		cond_resched(); | 
 | 373 |  | 
 | 374 | 		rc = 0; | 
 | 375 | 		if (page_count(page) == 1) | 
 | 376 | 			/* page was freed from under us. So we are done. */ | 
 | 377 | 			goto next; | 
 | 378 |  | 
 | 379 | 		if (to && list_empty(to)) | 
 | 380 | 			break; | 
 | 381 |  | 
 | 382 | 		/* | 
 | 383 | 		 * Skip locked pages during the first two passes to give the | 
 | 384 | 		 * functions holding the lock time to release the page. Later we | 
 | 385 | 		 * use lock_page() to have a higher chance of acquiring the | 
 | 386 | 		 * lock. | 
 | 387 | 		 */ | 
 | 388 | 		rc = -EAGAIN; | 
 | 389 | 		if (pass > 2) | 
 | 390 | 			lock_page(page); | 
 | 391 | 		else | 
 | 392 | 			if (TestSetPageLocked(page)) | 
 | 393 | 				goto next; | 
 | 394 |  | 
 | 395 | 		/* | 
 | 396 | 		 * Only wait on writeback if we have already done a pass where | 
 | 397 | 		 * we we may have triggered writeouts for lots of pages. | 
 | 398 | 		 */ | 
 | 399 | 		if (pass > 0) { | 
 | 400 | 			wait_on_page_writeback(page); | 
 | 401 | 		} else { | 
 | 402 | 			if (PageWriteback(page)) | 
 | 403 | 				goto unlock_page; | 
 | 404 | 		} | 
 | 405 |  | 
 | 406 | 		/* | 
 | 407 | 		 * Anonymous pages must have swap cache references otherwise | 
 | 408 | 		 * the information contained in the page maps cannot be | 
 | 409 | 		 * preserved. | 
 | 410 | 		 */ | 
 | 411 | 		if (PageAnon(page) && !PageSwapCache(page)) { | 
 | 412 | 			if (!add_to_swap(page, GFP_KERNEL)) { | 
 | 413 | 				rc = -ENOMEM; | 
 | 414 | 				goto unlock_page; | 
 | 415 | 			} | 
 | 416 | 		} | 
 | 417 |  | 
 | 418 | 		if (!to) { | 
 | 419 | 			rc = swap_page(page); | 
 | 420 | 			goto next; | 
 | 421 | 		} | 
 | 422 |  | 
 | 423 | 		newpage = lru_to_page(to); | 
 | 424 | 		lock_page(newpage); | 
 | 425 |  | 
 | 426 | 		/* | 
 | 427 | 		 * Pages are properly locked and writeback is complete. | 
 | 428 | 		 * Try to migrate the page. | 
 | 429 | 		 */ | 
 | 430 | 		mapping = page_mapping(page); | 
 | 431 | 		if (!mapping) | 
 | 432 | 			goto unlock_both; | 
 | 433 |  | 
 | 434 | 		if (mapping->a_ops->migratepage) { | 
 | 435 | 			/* | 
 | 436 | 			 * Most pages have a mapping and most filesystems | 
 | 437 | 			 * should provide a migration function. Anonymous | 
 | 438 | 			 * pages are part of swap space which also has its | 
 | 439 | 			 * own migration function. This is the most common | 
 | 440 | 			 * path for page migration. | 
 | 441 | 			 */ | 
 | 442 | 			rc = mapping->a_ops->migratepage(newpage, page); | 
 | 443 | 			goto unlock_both; | 
 | 444 |                 } | 
 | 445 |  | 
 | 446 | 		/* | 
 | 447 | 		 * Default handling if a filesystem does not provide | 
 | 448 | 		 * a migration function. We can only migrate clean | 
 | 449 | 		 * pages so try to write out any dirty pages first. | 
 | 450 | 		 */ | 
 | 451 | 		if (PageDirty(page)) { | 
 | 452 | 			switch (pageout(page, mapping)) { | 
 | 453 | 			case PAGE_KEEP: | 
 | 454 | 			case PAGE_ACTIVATE: | 
 | 455 | 				goto unlock_both; | 
 | 456 |  | 
 | 457 | 			case PAGE_SUCCESS: | 
 | 458 | 				unlock_page(newpage); | 
 | 459 | 				goto next; | 
 | 460 |  | 
 | 461 | 			case PAGE_CLEAN: | 
 | 462 | 				; /* try to migrate the page below */ | 
 | 463 | 			} | 
 | 464 |                 } | 
 | 465 |  | 
 | 466 | 		/* | 
 | 467 | 		 * Buffers are managed in a filesystem specific way. | 
 | 468 | 		 * We must have no buffers or drop them. | 
 | 469 | 		 */ | 
 | 470 | 		if (!page_has_buffers(page) || | 
 | 471 | 		    try_to_release_page(page, GFP_KERNEL)) { | 
 | 472 | 			rc = migrate_page(newpage, page); | 
 | 473 | 			goto unlock_both; | 
 | 474 | 		} | 
 | 475 |  | 
 | 476 | 		/* | 
 | 477 | 		 * On early passes with mapped pages simply | 
 | 478 | 		 * retry. There may be a lock held for some | 
 | 479 | 		 * buffers that may go away. Later | 
 | 480 | 		 * swap them out. | 
 | 481 | 		 */ | 
 | 482 | 		if (pass > 4) { | 
 | 483 | 			/* | 
 | 484 | 			 * Persistently unable to drop buffers..... As a | 
 | 485 | 			 * measure of last resort we fall back to | 
 | 486 | 			 * swap_page(). | 
 | 487 | 			 */ | 
 | 488 | 			unlock_page(newpage); | 
 | 489 | 			newpage = NULL; | 
 | 490 | 			rc = swap_page(page); | 
 | 491 | 			goto next; | 
 | 492 | 		} | 
 | 493 |  | 
 | 494 | unlock_both: | 
 | 495 | 		unlock_page(newpage); | 
 | 496 |  | 
 | 497 | unlock_page: | 
 | 498 | 		unlock_page(page); | 
 | 499 |  | 
 | 500 | next: | 
 | 501 | 		if (rc == -EAGAIN) { | 
 | 502 | 			retry++; | 
 | 503 | 		} else if (rc) { | 
 | 504 | 			/* Permanent failure */ | 
 | 505 | 			list_move(&page->lru, failed); | 
 | 506 | 			nr_failed++; | 
 | 507 | 		} else { | 
 | 508 | 			if (newpage) { | 
 | 509 | 				/* Successful migration. Return page to LRU */ | 
 | 510 | 				move_to_lru(newpage); | 
 | 511 | 			} | 
 | 512 | 			list_move(&page->lru, moved); | 
 | 513 | 		} | 
 | 514 | 	} | 
 | 515 | 	if (retry && pass++ < 10) | 
 | 516 | 		goto redo; | 
 | 517 |  | 
 | 518 | 	if (!swapwrite) | 
 | 519 | 		current->flags &= ~PF_SWAPWRITE; | 
 | 520 |  | 
 | 521 | 	return nr_failed + retry; | 
 | 522 | } | 
 | 523 |  | 
 | 524 | /* | 
 | 525 |  * Migration function for pages with buffers. This function can only be used | 
 | 526 |  * if the underlying filesystem guarantees that no other references to "page" | 
 | 527 |  * exist. | 
 | 528 |  */ | 
 | 529 | int buffer_migrate_page(struct page *newpage, struct page *page) | 
 | 530 | { | 
 | 531 | 	struct address_space *mapping = page->mapping; | 
 | 532 | 	struct buffer_head *bh, *head; | 
 | 533 | 	int rc; | 
 | 534 |  | 
 | 535 | 	if (!mapping) | 
 | 536 | 		return -EAGAIN; | 
 | 537 |  | 
 | 538 | 	if (!page_has_buffers(page)) | 
 | 539 | 		return migrate_page(newpage, page); | 
 | 540 |  | 
 | 541 | 	head = page_buffers(page); | 
 | 542 |  | 
 | 543 | 	rc = migrate_page_remove_references(newpage, page, 3); | 
 | 544 |  | 
 | 545 | 	if (rc) | 
 | 546 | 		return rc; | 
 | 547 |  | 
 | 548 | 	bh = head; | 
 | 549 | 	do { | 
 | 550 | 		get_bh(bh); | 
 | 551 | 		lock_buffer(bh); | 
 | 552 | 		bh = bh->b_this_page; | 
 | 553 |  | 
 | 554 | 	} while (bh != head); | 
 | 555 |  | 
 | 556 | 	ClearPagePrivate(page); | 
 | 557 | 	set_page_private(newpage, page_private(page)); | 
 | 558 | 	set_page_private(page, 0); | 
 | 559 | 	put_page(page); | 
 | 560 | 	get_page(newpage); | 
 | 561 |  | 
 | 562 | 	bh = head; | 
 | 563 | 	do { | 
 | 564 | 		set_bh_page(bh, newpage, bh_offset(bh)); | 
 | 565 | 		bh = bh->b_this_page; | 
 | 566 |  | 
 | 567 | 	} while (bh != head); | 
 | 568 |  | 
 | 569 | 	SetPagePrivate(newpage); | 
 | 570 |  | 
 | 571 | 	migrate_page_copy(newpage, page); | 
 | 572 |  | 
 | 573 | 	bh = head; | 
 | 574 | 	do { | 
 | 575 | 		unlock_buffer(bh); | 
 | 576 |  		put_bh(bh); | 
 | 577 | 		bh = bh->b_this_page; | 
 | 578 |  | 
 | 579 | 	} while (bh != head); | 
 | 580 |  | 
 | 581 | 	return 0; | 
 | 582 | } | 
 | 583 | EXPORT_SYMBOL(buffer_migrate_page); | 
 | 584 |  | 
 | 585 | /* | 
 | 586 |  * Migrate the list 'pagelist' of pages to a certain destination. | 
 | 587 |  * | 
 | 588 |  * Specify destination with either non-NULL vma or dest_node >= 0 | 
 | 589 |  * Return the number of pages not migrated or error code | 
 | 590 |  */ | 
 | 591 | int migrate_pages_to(struct list_head *pagelist, | 
 | 592 | 			struct vm_area_struct *vma, int dest) | 
 | 593 | { | 
 | 594 | 	LIST_HEAD(newlist); | 
 | 595 | 	LIST_HEAD(moved); | 
 | 596 | 	LIST_HEAD(failed); | 
 | 597 | 	int err = 0; | 
 | 598 | 	unsigned long offset = 0; | 
 | 599 | 	int nr_pages; | 
 | 600 | 	struct page *page; | 
 | 601 | 	struct list_head *p; | 
 | 602 |  | 
 | 603 | redo: | 
 | 604 | 	nr_pages = 0; | 
 | 605 | 	list_for_each(p, pagelist) { | 
 | 606 | 		if (vma) { | 
 | 607 | 			/* | 
 | 608 | 			 * The address passed to alloc_page_vma is used to | 
 | 609 | 			 * generate the proper interleave behavior. We fake | 
 | 610 | 			 * the address here by an increasing offset in order | 
 | 611 | 			 * to get the proper distribution of pages. | 
 | 612 | 			 * | 
 | 613 | 			 * No decision has been made as to which page | 
 | 614 | 			 * a certain old page is moved to so we cannot | 
 | 615 | 			 * specify the correct address. | 
 | 616 | 			 */ | 
 | 617 | 			page = alloc_page_vma(GFP_HIGHUSER, vma, | 
 | 618 | 					offset + vma->vm_start); | 
 | 619 | 			offset += PAGE_SIZE; | 
 | 620 | 		} | 
 | 621 | 		else | 
 | 622 | 			page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | 
 | 623 |  | 
 | 624 | 		if (!page) { | 
 | 625 | 			err = -ENOMEM; | 
 | 626 | 			goto out; | 
 | 627 | 		} | 
 | 628 | 		list_add_tail(&page->lru, &newlist); | 
 | 629 | 		nr_pages++; | 
 | 630 | 		if (nr_pages > MIGRATE_CHUNK_SIZE) | 
 | 631 | 			break; | 
 | 632 | 	} | 
 | 633 | 	err = migrate_pages(pagelist, &newlist, &moved, &failed); | 
 | 634 |  | 
 | 635 | 	putback_lru_pages(&moved);	/* Call release pages instead ?? */ | 
 | 636 |  | 
 | 637 | 	if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | 
 | 638 | 		goto redo; | 
 | 639 | out: | 
 | 640 | 	/* Return leftover allocated pages */ | 
 | 641 | 	while (!list_empty(&newlist)) { | 
 | 642 | 		page = list_entry(newlist.next, struct page, lru); | 
 | 643 | 		list_del(&page->lru); | 
 | 644 | 		__free_page(page); | 
 | 645 | 	} | 
 | 646 | 	list_splice(&failed, pagelist); | 
 | 647 | 	if (err < 0) | 
 | 648 | 		return err; | 
 | 649 |  | 
 | 650 | 	/* Calculate number of leftover pages */ | 
 | 651 | 	nr_pages = 0; | 
 | 652 | 	list_for_each(p, pagelist) | 
 | 653 | 		nr_pages++; | 
 | 654 | 	return nr_pages; | 
 | 655 | } |