| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 1 | #ifndef __NET_SCHED_RED_H | 
 | 2 | #define __NET_SCHED_RED_H | 
 | 3 |  | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 4 | #include <linux/types.h> | 
 | 5 | #include <net/pkt_sched.h> | 
 | 6 | #include <net/inet_ecn.h> | 
 | 7 | #include <net/dsfield.h> | 
 | 8 |  | 
 | 9 | /*	Random Early Detection (RED) algorithm. | 
 | 10 | 	======================================= | 
 | 11 |  | 
 | 12 | 	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
 | 13 | 	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
 | 14 |  | 
 | 15 | 	This file codes a "divisionless" version of RED algorithm | 
 | 16 | 	as written down in Fig.17 of the paper. | 
 | 17 |  | 
 | 18 | 	Short description. | 
 | 19 | 	------------------ | 
 | 20 |  | 
 | 21 | 	When a new packet arrives we calculate the average queue length: | 
 | 22 |  | 
 | 23 | 	avg = (1-W)*avg + W*current_queue_len, | 
 | 24 |  | 
 | 25 | 	W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
 | 26 | 	the inertia of the algorithm. To allow larger bursts, W should be | 
 | 27 | 	decreased. | 
 | 28 |  | 
 | 29 | 	if (avg > th_max) -> packet marked (dropped). | 
 | 30 | 	if (avg < th_min) -> packet passes. | 
 | 31 | 	if (th_min < avg < th_max) we calculate probability: | 
 | 32 |  | 
 | 33 | 	Pb = max_P * (avg - th_min)/(th_max-th_min) | 
 | 34 |  | 
 | 35 | 	and mark (drop) packet with this probability. | 
 | 36 | 	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
 | 37 | 	max_P should be small (not 1), usually 0.01..0.02 is good value. | 
 | 38 |  | 
 | 39 | 	max_P is chosen as a number, so that max_P/(th_max-th_min) | 
 | 40 | 	is a negative power of two in order arithmetics to contain | 
 | 41 | 	only shifts. | 
 | 42 |  | 
 | 43 |  | 
 | 44 | 	Parameters, settable by user: | 
 | 45 | 	----------------------------- | 
 | 46 |  | 
 | 47 | 	qth_min		- bytes (should be < qth_max/2) | 
 | 48 | 	qth_max		- bytes (should be at least 2*qth_min and less limit) | 
 | 49 | 	Wlog	       	- bits (<32) log(1/W). | 
 | 50 | 	Plog	       	- bits (<32) | 
 | 51 |  | 
 | 52 | 	Plog is related to max_P by formula: | 
 | 53 |  | 
 | 54 | 	max_P = (qth_max-qth_min)/2^Plog; | 
 | 55 |  | 
 | 56 | 	F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
 | 57 | 	corresponds to max_P=0.02 | 
 | 58 |  | 
 | 59 | 	Scell_log | 
 | 60 | 	Stab | 
 | 61 |  | 
 | 62 | 	Lookup table for log((1-W)^(t/t_ave). | 
 | 63 |  | 
 | 64 |  | 
 | 65 | 	NOTES: | 
 | 66 |  | 
 | 67 | 	Upper bound on W. | 
 | 68 | 	----------------- | 
 | 69 |  | 
 | 70 | 	If you want to allow bursts of L packets of size S, | 
 | 71 | 	you should choose W: | 
 | 72 |  | 
 | 73 | 	L + 1 - th_min/S < (1-(1-W)^L)/W | 
 | 74 |  | 
 | 75 | 	th_min/S = 32         th_min/S = 4 | 
 | 76 |  | 
 | 77 | 	log(W)	L | 
 | 78 | 	-1	33 | 
 | 79 | 	-2	35 | 
 | 80 | 	-3	39 | 
 | 81 | 	-4	46 | 
 | 82 | 	-5	57 | 
 | 83 | 	-6	75 | 
 | 84 | 	-7	101 | 
 | 85 | 	-8	135 | 
 | 86 | 	-9	190 | 
 | 87 | 	etc. | 
 | 88 |  */ | 
 | 89 |  | 
 | 90 | #define RED_STAB_SIZE	256 | 
 | 91 | #define RED_STAB_MASK	(RED_STAB_SIZE - 1) | 
 | 92 |  | 
| Eric Dumazet | fd2c3ef | 2009-11-03 03:26:03 +0000 | [diff] [blame] | 93 | struct red_stats { | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 94 | 	u32		prob_drop;	/* Early probability drops */ | 
 | 95 | 	u32		prob_mark;	/* Early probability marks */ | 
 | 96 | 	u32		forced_drop;	/* Forced drops, qavg > max_thresh */ | 
 | 97 | 	u32		forced_mark;	/* Forced marks, qavg > max_thresh */ | 
 | 98 | 	u32		pdrop;          /* Drops due to queue limits */ | 
 | 99 | 	u32		other;          /* Drops due to drop() calls */ | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 100 | }; | 
 | 101 |  | 
| Eric Dumazet | fd2c3ef | 2009-11-03 03:26:03 +0000 | [diff] [blame] | 102 | struct red_parms { | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 103 | 	/* Parameters */ | 
 | 104 | 	u32		qth_min;	/* Min avg length threshold: A scaled */ | 
 | 105 | 	u32		qth_max;	/* Max avg length threshold: A scaled */ | 
 | 106 | 	u32		Scell_max; | 
 | 107 | 	u32		Rmask;		/* Cached random mask, see red_rmask */ | 
 | 108 | 	u8		Scell_log; | 
 | 109 | 	u8		Wlog;		/* log(W)		*/ | 
 | 110 | 	u8		Plog;		/* random number bits	*/ | 
 | 111 | 	u8		Stab[RED_STAB_SIZE]; | 
 | 112 |  | 
 | 113 | 	/* Variables */ | 
 | 114 | 	int		qcount;		/* Number of packets since last random | 
 | 115 | 					   number generation */ | 
 | 116 | 	u32		qR;		/* Cached random number */ | 
 | 117 |  | 
 | 118 | 	unsigned long	qavg;		/* Average queue length: A scaled */ | 
 | 119 | 	psched_time_t	qidlestart;	/* Start of current idle period */ | 
 | 120 | }; | 
 | 121 |  | 
 | 122 | static inline u32 red_rmask(u8 Plog) | 
 | 123 | { | 
 | 124 | 	return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; | 
 | 125 | } | 
 | 126 |  | 
 | 127 | static inline void red_set_parms(struct red_parms *p, | 
 | 128 | 				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | 
 | 129 | 				 u8 Scell_log, u8 *stab) | 
 | 130 | { | 
 | 131 | 	/* Reset average queue length, the value is strictly bound | 
 | 132 | 	 * to the parameters below, reseting hurts a bit but leaving | 
 | 133 | 	 * it might result in an unreasonable qavg for a while. --TGR | 
 | 134 | 	 */ | 
 | 135 | 	p->qavg		= 0; | 
 | 136 |  | 
 | 137 | 	p->qcount	= -1; | 
 | 138 | 	p->qth_min	= qth_min << Wlog; | 
 | 139 | 	p->qth_max	= qth_max << Wlog; | 
 | 140 | 	p->Wlog		= Wlog; | 
 | 141 | 	p->Plog		= Plog; | 
 | 142 | 	p->Rmask	= red_rmask(Plog); | 
 | 143 | 	p->Scell_log	= Scell_log; | 
 | 144 | 	p->Scell_max	= (255 << Scell_log); | 
 | 145 |  | 
 | 146 | 	memcpy(p->Stab, stab, sizeof(p->Stab)); | 
 | 147 | } | 
 | 148 |  | 
 | 149 | static inline int red_is_idling(struct red_parms *p) | 
 | 150 | { | 
| Patrick McHardy | a084980 | 2007-03-23 11:28:30 -0700 | [diff] [blame] | 151 | 	return p->qidlestart != PSCHED_PASTPERFECT; | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 152 | } | 
 | 153 |  | 
 | 154 | static inline void red_start_of_idle_period(struct red_parms *p) | 
 | 155 | { | 
| Patrick McHardy | 3bebcda | 2007-03-23 11:29:25 -0700 | [diff] [blame] | 156 | 	p->qidlestart = psched_get_time(); | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 157 | } | 
 | 158 |  | 
 | 159 | static inline void red_end_of_idle_period(struct red_parms *p) | 
 | 160 | { | 
| Patrick McHardy | a084980 | 2007-03-23 11:28:30 -0700 | [diff] [blame] | 161 | 	p->qidlestart = PSCHED_PASTPERFECT; | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 162 | } | 
 | 163 |  | 
 | 164 | static inline void red_restart(struct red_parms *p) | 
 | 165 | { | 
 | 166 | 	red_end_of_idle_period(p); | 
 | 167 | 	p->qavg = 0; | 
 | 168 | 	p->qcount = -1; | 
 | 169 | } | 
 | 170 |  | 
 | 171 | static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) | 
 | 172 | { | 
 | 173 | 	psched_time_t now; | 
 | 174 | 	long us_idle; | 
 | 175 | 	int  shift; | 
 | 176 |  | 
| Patrick McHardy | 3bebcda | 2007-03-23 11:29:25 -0700 | [diff] [blame] | 177 | 	now = psched_get_time(); | 
| Patrick McHardy | 03cc45c | 2007-03-23 11:29:11 -0700 | [diff] [blame] | 178 | 	us_idle = psched_tdiff_bounded(now, p->qidlestart, p->Scell_max); | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 179 |  | 
 | 180 | 	/* | 
 | 181 | 	 * The problem: ideally, average length queue recalcultion should | 
 | 182 | 	 * be done over constant clock intervals. This is too expensive, so | 
 | 183 | 	 * that the calculation is driven by outgoing packets. | 
 | 184 | 	 * When the queue is idle we have to model this clock by hand. | 
 | 185 | 	 * | 
 | 186 | 	 * SF+VJ proposed to "generate": | 
 | 187 | 	 * | 
 | 188 | 	 *	m = idletime / (average_pkt_size / bandwidth) | 
 | 189 | 	 * | 
 | 190 | 	 * dummy packets as a burst after idle time, i.e. | 
 | 191 | 	 * | 
 | 192 | 	 * 	p->qavg *= (1-W)^m | 
 | 193 | 	 * | 
 | 194 | 	 * This is an apparently overcomplicated solution (f.e. we have to | 
 | 195 | 	 * precompute a table to make this calculation in reasonable time) | 
 | 196 | 	 * I believe that a simpler model may be used here, | 
 | 197 | 	 * but it is field for experiments. | 
 | 198 | 	 */ | 
 | 199 |  | 
 | 200 | 	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | 
 | 201 |  | 
 | 202 | 	if (shift) | 
 | 203 | 		return p->qavg >> shift; | 
 | 204 | 	else { | 
 | 205 | 		/* Approximate initial part of exponent with linear function: | 
 | 206 | 		 * | 
 | 207 | 		 * 	(1-W)^m ~= 1-mW + ... | 
 | 208 | 		 * | 
 | 209 | 		 * Seems, it is the best solution to | 
 | 210 | 		 * problem of too coarse exponent tabulation. | 
 | 211 | 		 */ | 
| Ilpo Järvinen | c4c0ce5 | 2006-08-04 16:36:18 -0700 | [diff] [blame] | 212 | 		us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log; | 
| Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 213 |  | 
 | 214 | 		if (us_idle < (p->qavg >> 1)) | 
 | 215 | 			return p->qavg - us_idle; | 
 | 216 | 		else | 
 | 217 | 			return p->qavg >> 1; | 
 | 218 | 	} | 
 | 219 | } | 
 | 220 |  | 
 | 221 | static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, | 
 | 222 | 						       unsigned int backlog) | 
 | 223 | { | 
 | 224 | 	/* | 
 | 225 | 	 * NOTE: p->qavg is fixed point number with point at Wlog. | 
 | 226 | 	 * The formula below is equvalent to floating point | 
 | 227 | 	 * version: | 
 | 228 | 	 * | 
 | 229 | 	 * 	qavg = qavg*(1-W) + backlog*W; | 
 | 230 | 	 * | 
 | 231 | 	 * --ANK (980924) | 
 | 232 | 	 */ | 
 | 233 | 	return p->qavg + (backlog - (p->qavg >> p->Wlog)); | 
 | 234 | } | 
 | 235 |  | 
 | 236 | static inline unsigned long red_calc_qavg(struct red_parms *p, | 
 | 237 | 					  unsigned int backlog) | 
 | 238 | { | 
 | 239 | 	if (!red_is_idling(p)) | 
 | 240 | 		return red_calc_qavg_no_idle_time(p, backlog); | 
 | 241 | 	else | 
 | 242 | 		return red_calc_qavg_from_idle_time(p); | 
 | 243 | } | 
 | 244 |  | 
 | 245 | static inline u32 red_random(struct red_parms *p) | 
 | 246 | { | 
 | 247 | 	return net_random() & p->Rmask; | 
 | 248 | } | 
 | 249 |  | 
 | 250 | static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) | 
 | 251 | { | 
 | 252 | 	/* The formula used below causes questions. | 
 | 253 |  | 
 | 254 | 	   OK. qR is random number in the interval 0..Rmask | 
 | 255 | 	   i.e. 0..(2^Plog). If we used floating point | 
 | 256 | 	   arithmetics, it would be: (2^Plog)*rnd_num, | 
 | 257 | 	   where rnd_num is less 1. | 
 | 258 |  | 
 | 259 | 	   Taking into account, that qavg have fixed | 
 | 260 | 	   point at Wlog, and Plog is related to max_P by | 
 | 261 | 	   max_P = (qth_max-qth_min)/2^Plog; two lines | 
 | 262 | 	   below have the following floating point equivalent: | 
 | 263 |  | 
 | 264 | 	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | 
 | 265 |  | 
 | 266 | 	   Any questions? --ANK (980924) | 
 | 267 | 	 */ | 
 | 268 | 	return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); | 
 | 269 | } | 
 | 270 |  | 
 | 271 | enum { | 
 | 272 | 	RED_BELOW_MIN_THRESH, | 
 | 273 | 	RED_BETWEEN_TRESH, | 
 | 274 | 	RED_ABOVE_MAX_TRESH, | 
 | 275 | }; | 
 | 276 |  | 
 | 277 | static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) | 
 | 278 | { | 
 | 279 | 	if (qavg < p->qth_min) | 
 | 280 | 		return RED_BELOW_MIN_THRESH; | 
 | 281 | 	else if (qavg >= p->qth_max) | 
 | 282 | 		return RED_ABOVE_MAX_TRESH; | 
 | 283 | 	else | 
 | 284 | 		return RED_BETWEEN_TRESH; | 
 | 285 | } | 
 | 286 |  | 
 | 287 | enum { | 
 | 288 | 	RED_DONT_MARK, | 
 | 289 | 	RED_PROB_MARK, | 
 | 290 | 	RED_HARD_MARK, | 
 | 291 | }; | 
 | 292 |  | 
 | 293 | static inline int red_action(struct red_parms *p, unsigned long qavg) | 
 | 294 | { | 
 | 295 | 	switch (red_cmp_thresh(p, qavg)) { | 
 | 296 | 		case RED_BELOW_MIN_THRESH: | 
 | 297 | 			p->qcount = -1; | 
 | 298 | 			return RED_DONT_MARK; | 
 | 299 |  | 
 | 300 | 		case RED_BETWEEN_TRESH: | 
 | 301 | 			if (++p->qcount) { | 
 | 302 | 				if (red_mark_probability(p, qavg)) { | 
 | 303 | 					p->qcount = 0; | 
 | 304 | 					p->qR = red_random(p); | 
 | 305 | 					return RED_PROB_MARK; | 
 | 306 | 				} | 
 | 307 | 			} else | 
 | 308 | 				p->qR = red_random(p); | 
 | 309 |  | 
 | 310 | 			return RED_DONT_MARK; | 
 | 311 |  | 
 | 312 | 		case RED_ABOVE_MAX_TRESH: | 
 | 313 | 			p->qcount = -1; | 
 | 314 | 			return RED_HARD_MARK; | 
 | 315 | 	} | 
 | 316 |  | 
 | 317 | 	BUG(); | 
 | 318 | 	return RED_DONT_MARK; | 
 | 319 | } | 
 | 320 |  | 
 | 321 | #endif |