| David Daney | 5b3b168 | 2009-01-08 16:46:40 -0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * This file is subject to the terms and conditions of the GNU General Public | 
 | 3 |  * License.  See the file "COPYING" in the main directory of this archive | 
 | 4 |  * for more details. | 
 | 5 |  * | 
 | 6 |  * Unified implementation of memcpy, memmove and the __copy_user backend. | 
 | 7 |  * | 
 | 8 |  * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org) | 
 | 9 |  * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. | 
 | 10 |  * Copyright (C) 2002 Broadcom, Inc. | 
 | 11 |  *   memcpy/copy_user author: Mark Vandevoorde | 
 | 12 |  * | 
 | 13 |  * Mnemonic names for arguments to memcpy/__copy_user | 
 | 14 |  */ | 
 | 15 |  | 
 | 16 | #include <asm/asm.h> | 
 | 17 | #include <asm/asm-offsets.h> | 
 | 18 | #include <asm/regdef.h> | 
 | 19 |  | 
 | 20 | #define dst a0 | 
 | 21 | #define src a1 | 
 | 22 | #define len a2 | 
 | 23 |  | 
 | 24 | /* | 
 | 25 |  * Spec | 
 | 26 |  * | 
 | 27 |  * memcpy copies len bytes from src to dst and sets v0 to dst. | 
 | 28 |  * It assumes that | 
 | 29 |  *   - src and dst don't overlap | 
 | 30 |  *   - src is readable | 
 | 31 |  *   - dst is writable | 
 | 32 |  * memcpy uses the standard calling convention | 
 | 33 |  * | 
 | 34 |  * __copy_user copies up to len bytes from src to dst and sets a2 (len) to | 
 | 35 |  * the number of uncopied bytes due to an exception caused by a read or write. | 
 | 36 |  * __copy_user assumes that src and dst don't overlap, and that the call is | 
 | 37 |  * implementing one of the following: | 
 | 38 |  *   copy_to_user | 
 | 39 |  *     - src is readable  (no exceptions when reading src) | 
 | 40 |  *   copy_from_user | 
 | 41 |  *     - dst is writable  (no exceptions when writing dst) | 
 | 42 |  * __copy_user uses a non-standard calling convention; see | 
 | 43 |  * arch/mips/include/asm/uaccess.h | 
 | 44 |  * | 
 | 45 |  * When an exception happens on a load, the handler must | 
 | 46 |  # ensure that all of the destination buffer is overwritten to prevent | 
 | 47 |  * leaking information to user mode programs. | 
 | 48 |  */ | 
 | 49 |  | 
 | 50 | /* | 
 | 51 |  * Implementation | 
 | 52 |  */ | 
 | 53 |  | 
 | 54 | /* | 
 | 55 |  * The exception handler for loads requires that: | 
 | 56 |  *  1- AT contain the address of the byte just past the end of the source | 
 | 57 |  *     of the copy, | 
 | 58 |  *  2- src_entry <= src < AT, and | 
 | 59 |  *  3- (dst - src) == (dst_entry - src_entry), | 
 | 60 |  * The _entry suffix denotes values when __copy_user was called. | 
 | 61 |  * | 
 | 62 |  * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user | 
 | 63 |  * (2) is met by incrementing src by the number of bytes copied | 
 | 64 |  * (3) is met by not doing loads between a pair of increments of dst and src | 
 | 65 |  * | 
 | 66 |  * The exception handlers for stores adjust len (if necessary) and return. | 
 | 67 |  * These handlers do not need to overwrite any data. | 
 | 68 |  * | 
 | 69 |  * For __rmemcpy and memmove an exception is always a kernel bug, therefore | 
 | 70 |  * they're not protected. | 
 | 71 |  */ | 
 | 72 |  | 
 | 73 | #define EXC(inst_reg,addr,handler)		\ | 
 | 74 | 9:	inst_reg, addr;				\ | 
 | 75 | 	.section __ex_table,"a";		\ | 
 | 76 | 	PTR	9b, handler;			\ | 
 | 77 | 	.previous | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * Only on the 64-bit kernel we can made use of 64-bit registers. | 
 | 81 |  */ | 
 | 82 | #ifdef CONFIG_64BIT | 
 | 83 | #define USE_DOUBLE | 
 | 84 | #endif | 
 | 85 |  | 
 | 86 | #ifdef USE_DOUBLE | 
 | 87 |  | 
 | 88 | #define LOAD   ld | 
 | 89 | #define LOADL  ldl | 
 | 90 | #define LOADR  ldr | 
 | 91 | #define STOREL sdl | 
 | 92 | #define STORER sdr | 
 | 93 | #define STORE  sd | 
 | 94 | #define ADD    daddu | 
 | 95 | #define SUB    dsubu | 
 | 96 | #define SRL    dsrl | 
 | 97 | #define SRA    dsra | 
 | 98 | #define SLL    dsll | 
 | 99 | #define SLLV   dsllv | 
 | 100 | #define SRLV   dsrlv | 
 | 101 | #define NBYTES 8 | 
 | 102 | #define LOG_NBYTES 3 | 
 | 103 |  | 
 | 104 | /* | 
 | 105 |  * As we are sharing code base with the mips32 tree (which use the o32 ABI | 
 | 106 |  * register definitions). We need to redefine the register definitions from | 
 | 107 |  * the n64 ABI register naming to the o32 ABI register naming. | 
 | 108 |  */ | 
 | 109 | #undef t0 | 
 | 110 | #undef t1 | 
 | 111 | #undef t2 | 
 | 112 | #undef t3 | 
 | 113 | #define t0	$8 | 
 | 114 | #define t1	$9 | 
 | 115 | #define t2	$10 | 
 | 116 | #define t3	$11 | 
 | 117 | #define t4	$12 | 
 | 118 | #define t5	$13 | 
 | 119 | #define t6	$14 | 
 | 120 | #define t7	$15 | 
 | 121 |  | 
 | 122 | #else | 
 | 123 |  | 
 | 124 | #define LOAD   lw | 
 | 125 | #define LOADL  lwl | 
 | 126 | #define LOADR  lwr | 
 | 127 | #define STOREL swl | 
 | 128 | #define STORER swr | 
 | 129 | #define STORE  sw | 
 | 130 | #define ADD    addu | 
 | 131 | #define SUB    subu | 
 | 132 | #define SRL    srl | 
 | 133 | #define SLL    sll | 
 | 134 | #define SRA    sra | 
 | 135 | #define SLLV   sllv | 
 | 136 | #define SRLV   srlv | 
 | 137 | #define NBYTES 4 | 
 | 138 | #define LOG_NBYTES 2 | 
 | 139 |  | 
 | 140 | #endif /* USE_DOUBLE */ | 
 | 141 |  | 
 | 142 | #ifdef CONFIG_CPU_LITTLE_ENDIAN | 
 | 143 | #define LDFIRST LOADR | 
 | 144 | #define LDREST  LOADL | 
 | 145 | #define STFIRST STORER | 
 | 146 | #define STREST  STOREL | 
 | 147 | #define SHIFT_DISCARD SLLV | 
 | 148 | #else | 
 | 149 | #define LDFIRST LOADL | 
 | 150 | #define LDREST  LOADR | 
 | 151 | #define STFIRST STOREL | 
 | 152 | #define STREST  STORER | 
 | 153 | #define SHIFT_DISCARD SRLV | 
 | 154 | #endif | 
 | 155 |  | 
 | 156 | #define FIRST(unit) ((unit)*NBYTES) | 
 | 157 | #define REST(unit)  (FIRST(unit)+NBYTES-1) | 
 | 158 | #define UNIT(unit)  FIRST(unit) | 
 | 159 |  | 
 | 160 | #define ADDRMASK (NBYTES-1) | 
 | 161 |  | 
 | 162 | 	.text | 
 | 163 | 	.set	noreorder | 
 | 164 | 	.set	noat | 
 | 165 |  | 
 | 166 | /* | 
 | 167 |  * A combined memcpy/__copy_user | 
 | 168 |  * __copy_user sets len to 0 for success; else to an upper bound of | 
 | 169 |  * the number of uncopied bytes. | 
 | 170 |  * memcpy sets v0 to dst. | 
 | 171 |  */ | 
 | 172 | 	.align	5 | 
 | 173 | LEAF(memcpy)					/* a0=dst a1=src a2=len */ | 
 | 174 | 	move	v0, dst				/* return value */ | 
 | 175 | __memcpy: | 
 | 176 | FEXPORT(__copy_user) | 
 | 177 | 	/* | 
 | 178 | 	 * Note: dst & src may be unaligned, len may be 0 | 
 | 179 | 	 * Temps | 
 | 180 | 	 */ | 
 | 181 | 	# | 
 | 182 | 	# Octeon doesn't care if the destination is unaligned. The hardware | 
 | 183 | 	# can fix it faster than we can special case the assembly. | 
 | 184 | 	# | 
 | 185 | 	pref	0, 0(src) | 
 | 186 | 	sltu	t0, len, NBYTES		# Check if < 1 word | 
 | 187 | 	bnez	t0, copy_bytes_checklen | 
 | 188 | 	 and	t0, src, ADDRMASK	# Check if src unaligned | 
 | 189 | 	bnez	t0, src_unaligned | 
 | 190 | 	 sltu	t0, len, 4*NBYTES	# Check if < 4 words | 
 | 191 | 	bnez	t0, less_than_4units | 
 | 192 | 	 sltu	t0, len, 8*NBYTES	# Check if < 8 words | 
 | 193 | 	bnez	t0, less_than_8units | 
 | 194 | 	 sltu	t0, len, 16*NBYTES	# Check if < 16 words | 
 | 195 | 	bnez	t0, cleanup_both_aligned | 
 | 196 | 	 sltu	t0, len, 128+1		# Check if len < 129 | 
 | 197 | 	bnez	t0, 1f			# Skip prefetch if len is too short | 
 | 198 | 	 sltu	t0, len, 256+1		# Check if len < 257 | 
 | 199 | 	bnez	t0, 1f			# Skip prefetch if len is too short | 
 | 200 | 	 pref	0, 128(src)		# We must not prefetch invalid addresses | 
 | 201 | 	# | 
 | 202 | 	# This is where we loop if there is more than 128 bytes left | 
 | 203 | 2:	pref	0, 256(src)		# We must not prefetch invalid addresses | 
 | 204 | 	# | 
 | 205 | 	# This is where we loop if we can't prefetch anymore | 
 | 206 | 1: | 
 | 207 | EXC(	LOAD	t0, UNIT(0)(src),	l_exc) | 
 | 208 | EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy) | 
 | 209 | EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy) | 
 | 210 | EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy) | 
 | 211 | 	SUB	len, len, 16*NBYTES | 
 | 212 | EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p16u) | 
 | 213 | EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p15u) | 
 | 214 | EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p14u) | 
 | 215 | EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p13u) | 
 | 216 | EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy) | 
 | 217 | EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy) | 
 | 218 | EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy) | 
 | 219 | EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy) | 
 | 220 | EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p12u) | 
 | 221 | EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p11u) | 
 | 222 | EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p10u) | 
 | 223 | 	ADD	src, src, 16*NBYTES | 
 | 224 | EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p9u) | 
 | 225 | 	ADD	dst, dst, 16*NBYTES | 
 | 226 | EXC(	LOAD	t0, UNIT(-8)(src),	l_exc_copy) | 
 | 227 | EXC(	LOAD	t1, UNIT(-7)(src),	l_exc_copy) | 
 | 228 | EXC(	LOAD	t2, UNIT(-6)(src),	l_exc_copy) | 
 | 229 | EXC(	LOAD	t3, UNIT(-5)(src),	l_exc_copy) | 
 | 230 | EXC(	STORE	t0, UNIT(-8)(dst),	s_exc_p8u) | 
 | 231 | EXC(	STORE	t1, UNIT(-7)(dst),	s_exc_p7u) | 
 | 232 | EXC(	STORE	t2, UNIT(-6)(dst),	s_exc_p6u) | 
 | 233 | EXC(	STORE	t3, UNIT(-5)(dst),	s_exc_p5u) | 
 | 234 | EXC(	LOAD	t0, UNIT(-4)(src),	l_exc_copy) | 
 | 235 | EXC(	LOAD	t1, UNIT(-3)(src),	l_exc_copy) | 
 | 236 | EXC(	LOAD	t2, UNIT(-2)(src),	l_exc_copy) | 
 | 237 | EXC(	LOAD	t3, UNIT(-1)(src),	l_exc_copy) | 
 | 238 | EXC(	STORE	t0, UNIT(-4)(dst),	s_exc_p4u) | 
 | 239 | EXC(	STORE	t1, UNIT(-3)(dst),	s_exc_p3u) | 
 | 240 | EXC(	STORE	t2, UNIT(-2)(dst),	s_exc_p2u) | 
 | 241 | EXC(	STORE	t3, UNIT(-1)(dst),	s_exc_p1u) | 
 | 242 | 	sltu	t0, len, 256+1		# See if we can prefetch more | 
 | 243 | 	beqz	t0, 2b | 
 | 244 | 	 sltu	t0, len, 128		# See if we can loop more time | 
 | 245 | 	beqz	t0, 1b | 
 | 246 | 	 nop | 
 | 247 | 	# | 
 | 248 | 	# Jump here if there are less than 16*NBYTES left. | 
 | 249 | 	# | 
 | 250 | cleanup_both_aligned: | 
 | 251 | 	beqz	len, done | 
 | 252 | 	 sltu	t0, len, 8*NBYTES | 
 | 253 | 	bnez	t0, less_than_8units | 
 | 254 | 	 nop | 
 | 255 | EXC(	LOAD	t0, UNIT(0)(src),	l_exc) | 
 | 256 | EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy) | 
 | 257 | EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy) | 
 | 258 | EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy) | 
 | 259 | 	SUB	len, len, 8*NBYTES | 
 | 260 | EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p8u) | 
 | 261 | EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p7u) | 
 | 262 | EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p6u) | 
 | 263 | EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p5u) | 
 | 264 | EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy) | 
 | 265 | EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy) | 
 | 266 | EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy) | 
 | 267 | EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy) | 
 | 268 | EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p4u) | 
 | 269 | EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p3u) | 
 | 270 | EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p2u) | 
 | 271 | EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p1u) | 
 | 272 | 	ADD	src, src, 8*NBYTES | 
 | 273 | 	beqz	len, done | 
 | 274 | 	 ADD	dst, dst, 8*NBYTES | 
 | 275 | 	# | 
 | 276 | 	# Jump here if there are less than 8*NBYTES left. | 
 | 277 | 	# | 
 | 278 | less_than_8units: | 
 | 279 | 	sltu	t0, len, 4*NBYTES | 
 | 280 | 	bnez	t0, less_than_4units | 
 | 281 | 	 nop | 
 | 282 | EXC(	LOAD	t0, UNIT(0)(src),	l_exc) | 
 | 283 | EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy) | 
 | 284 | EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy) | 
 | 285 | EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy) | 
 | 286 | 	SUB	len, len, 4*NBYTES | 
 | 287 | EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u) | 
 | 288 | EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u) | 
 | 289 | EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u) | 
 | 290 | EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u) | 
 | 291 | 	ADD	src, src, 4*NBYTES | 
 | 292 | 	beqz	len, done | 
 | 293 | 	 ADD	dst, dst, 4*NBYTES | 
 | 294 | 	# | 
 | 295 | 	# Jump here if there are less than 4*NBYTES left. This means | 
 | 296 | 	# we may need to copy up to 3 NBYTES words. | 
 | 297 | 	# | 
 | 298 | less_than_4units: | 
 | 299 | 	sltu	t0, len, 1*NBYTES | 
 | 300 | 	bnez	t0, copy_bytes_checklen | 
 | 301 | 	 nop | 
 | 302 | 	# | 
 | 303 | 	# 1) Copy NBYTES, then check length again | 
 | 304 | 	# | 
 | 305 | EXC(	LOAD	t0, 0(src),		l_exc) | 
 | 306 | 	SUB	len, len, NBYTES | 
 | 307 | 	sltu	t1, len, 8 | 
 | 308 | EXC(	STORE	t0, 0(dst),		s_exc_p1u) | 
 | 309 | 	ADD	src, src, NBYTES | 
 | 310 | 	bnez	t1, copy_bytes_checklen | 
 | 311 | 	 ADD	dst, dst, NBYTES | 
 | 312 | 	# | 
 | 313 | 	# 2) Copy NBYTES, then check length again | 
 | 314 | 	# | 
 | 315 | EXC(	LOAD	t0, 0(src),		l_exc) | 
 | 316 | 	SUB	len, len, NBYTES | 
 | 317 | 	sltu	t1, len, 8 | 
 | 318 | EXC(	STORE	t0, 0(dst),		s_exc_p1u) | 
 | 319 | 	ADD	src, src, NBYTES | 
 | 320 | 	bnez	t1, copy_bytes_checklen | 
 | 321 | 	 ADD	dst, dst, NBYTES | 
 | 322 | 	# | 
 | 323 | 	# 3) Copy NBYTES, then check length again | 
 | 324 | 	# | 
 | 325 | EXC(	LOAD	t0, 0(src),		l_exc) | 
 | 326 | 	SUB	len, len, NBYTES | 
 | 327 | 	ADD	src, src, NBYTES | 
 | 328 | 	ADD	dst, dst, NBYTES | 
 | 329 | 	b copy_bytes_checklen | 
 | 330 | EXC(	 STORE	t0, -8(dst),		s_exc_p1u) | 
 | 331 |  | 
 | 332 | src_unaligned: | 
 | 333 | #define rem t8 | 
 | 334 | 	SRL	t0, len, LOG_NBYTES+2    # +2 for 4 units/iter | 
 | 335 | 	beqz	t0, cleanup_src_unaligned | 
 | 336 | 	 and	rem, len, (4*NBYTES-1)   # rem = len % 4*NBYTES | 
 | 337 | 1: | 
 | 338 | /* | 
 | 339 |  * Avoid consecutive LD*'s to the same register since some mips | 
 | 340 |  * implementations can't issue them in the same cycle. | 
 | 341 |  * It's OK to load FIRST(N+1) before REST(N) because the two addresses | 
 | 342 |  * are to the same unit (unless src is aligned, but it's not). | 
 | 343 |  */ | 
 | 344 | EXC(	LDFIRST	t0, FIRST(0)(src),	l_exc) | 
 | 345 | EXC(	LDFIRST	t1, FIRST(1)(src),	l_exc_copy) | 
 | 346 | 	SUB     len, len, 4*NBYTES | 
 | 347 | EXC(	LDREST	t0, REST(0)(src),	l_exc_copy) | 
 | 348 | EXC(	LDREST	t1, REST(1)(src),	l_exc_copy) | 
 | 349 | EXC(	LDFIRST	t2, FIRST(2)(src),	l_exc_copy) | 
 | 350 | EXC(	LDFIRST	t3, FIRST(3)(src),	l_exc_copy) | 
 | 351 | EXC(	LDREST	t2, REST(2)(src),	l_exc_copy) | 
 | 352 | EXC(	LDREST	t3, REST(3)(src),	l_exc_copy) | 
 | 353 | 	ADD	src, src, 4*NBYTES | 
 | 354 | EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u) | 
 | 355 | EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u) | 
 | 356 | EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u) | 
 | 357 | EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u) | 
 | 358 | 	bne	len, rem, 1b | 
 | 359 | 	 ADD	dst, dst, 4*NBYTES | 
 | 360 |  | 
 | 361 | cleanup_src_unaligned: | 
 | 362 | 	beqz	len, done | 
 | 363 | 	 and	rem, len, NBYTES-1  # rem = len % NBYTES | 
 | 364 | 	beq	rem, len, copy_bytes | 
 | 365 | 	 nop | 
 | 366 | 1: | 
 | 367 | EXC(	LDFIRST t0, FIRST(0)(src),	l_exc) | 
 | 368 | EXC(	LDREST	t0, REST(0)(src),	l_exc_copy) | 
 | 369 | 	SUB	len, len, NBYTES | 
 | 370 | EXC(	STORE	t0, 0(dst),		s_exc_p1u) | 
 | 371 | 	ADD	src, src, NBYTES | 
 | 372 | 	bne	len, rem, 1b | 
 | 373 | 	 ADD	dst, dst, NBYTES | 
 | 374 |  | 
 | 375 | copy_bytes_checklen: | 
 | 376 | 	beqz	len, done | 
 | 377 | 	 nop | 
 | 378 | copy_bytes: | 
 | 379 | 	/* 0 < len < NBYTES  */ | 
 | 380 | #define COPY_BYTE(N)			\ | 
 | 381 | EXC(	lb	t0, N(src), l_exc);	\ | 
 | 382 | 	SUB	len, len, 1;		\ | 
 | 383 | 	beqz	len, done;		\ | 
 | 384 | EXC(	 sb	t0, N(dst), s_exc_p1) | 
 | 385 |  | 
 | 386 | 	COPY_BYTE(0) | 
 | 387 | 	COPY_BYTE(1) | 
 | 388 | #ifdef USE_DOUBLE | 
 | 389 | 	COPY_BYTE(2) | 
 | 390 | 	COPY_BYTE(3) | 
 | 391 | 	COPY_BYTE(4) | 
 | 392 | 	COPY_BYTE(5) | 
 | 393 | #endif | 
 | 394 | EXC(	lb	t0, NBYTES-2(src), l_exc) | 
 | 395 | 	SUB	len, len, 1 | 
 | 396 | 	jr	ra | 
 | 397 | EXC(	 sb	t0, NBYTES-2(dst), s_exc_p1) | 
 | 398 | done: | 
 | 399 | 	jr	ra | 
 | 400 | 	 nop | 
 | 401 | 	END(memcpy) | 
 | 402 |  | 
 | 403 | l_exc_copy: | 
 | 404 | 	/* | 
 | 405 | 	 * Copy bytes from src until faulting load address (or until a | 
 | 406 | 	 * lb faults) | 
 | 407 | 	 * | 
 | 408 | 	 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) | 
 | 409 | 	 * may be more than a byte beyond the last address. | 
 | 410 | 	 * Hence, the lb below may get an exception. | 
 | 411 | 	 * | 
 | 412 | 	 * Assumes src < THREAD_BUADDR($28) | 
 | 413 | 	 */ | 
 | 414 | 	LOAD	t0, TI_TASK($28) | 
 | 415 | 	 nop | 
 | 416 | 	LOAD	t0, THREAD_BUADDR(t0) | 
 | 417 | 1: | 
 | 418 | EXC(	lb	t1, 0(src),	l_exc) | 
 | 419 | 	ADD	src, src, 1 | 
 | 420 | 	sb	t1, 0(dst)	# can't fault -- we're copy_from_user | 
 | 421 | 	bne	src, t0, 1b | 
 | 422 | 	 ADD	dst, dst, 1 | 
 | 423 | l_exc: | 
 | 424 | 	LOAD	t0, TI_TASK($28) | 
 | 425 | 	 nop | 
 | 426 | 	LOAD	t0, THREAD_BUADDR(t0)	# t0 is just past last good address | 
 | 427 | 	 nop | 
 | 428 | 	SUB	len, AT, t0		# len number of uncopied bytes | 
 | 429 | 	/* | 
 | 430 | 	 * Here's where we rely on src and dst being incremented in tandem, | 
 | 431 | 	 *   See (3) above. | 
 | 432 | 	 * dst += (fault addr - src) to put dst at first byte to clear | 
 | 433 | 	 */ | 
 | 434 | 	ADD	dst, t0			# compute start address in a1 | 
 | 435 | 	SUB	dst, src | 
 | 436 | 	/* | 
 | 437 | 	 * Clear len bytes starting at dst.  Can't call __bzero because it | 
 | 438 | 	 * might modify len.  An inefficient loop for these rare times... | 
 | 439 | 	 */ | 
 | 440 | 	beqz	len, done | 
 | 441 | 	 SUB	src, len, 1 | 
 | 442 | 1:	sb	zero, 0(dst) | 
 | 443 | 	ADD	dst, dst, 1 | 
 | 444 | 	bnez	src, 1b | 
 | 445 | 	 SUB	src, src, 1 | 
 | 446 | 	jr	ra | 
 | 447 | 	 nop | 
 | 448 |  | 
 | 449 |  | 
 | 450 | #define SEXC(n)				\ | 
 | 451 | s_exc_p ## n ## u:			\ | 
 | 452 | 	jr	ra;			\ | 
 | 453 | 	 ADD	len, len, n*NBYTES | 
 | 454 |  | 
 | 455 | SEXC(16) | 
 | 456 | SEXC(15) | 
 | 457 | SEXC(14) | 
 | 458 | SEXC(13) | 
 | 459 | SEXC(12) | 
 | 460 | SEXC(11) | 
 | 461 | SEXC(10) | 
 | 462 | SEXC(9) | 
 | 463 | SEXC(8) | 
 | 464 | SEXC(7) | 
 | 465 | SEXC(6) | 
 | 466 | SEXC(5) | 
 | 467 | SEXC(4) | 
 | 468 | SEXC(3) | 
 | 469 | SEXC(2) | 
 | 470 | SEXC(1) | 
 | 471 |  | 
 | 472 | s_exc_p1: | 
 | 473 | 	jr	ra | 
 | 474 | 	 ADD	len, len, 1 | 
 | 475 | s_exc: | 
 | 476 | 	jr	ra | 
 | 477 | 	 nop | 
 | 478 |  | 
 | 479 | 	.align	5 | 
 | 480 | LEAF(memmove) | 
 | 481 | 	ADD	t0, a0, a2 | 
 | 482 | 	ADD	t1, a1, a2 | 
 | 483 | 	sltu	t0, a1, t0			# dst + len <= src -> memcpy | 
 | 484 | 	sltu	t1, a0, t1			# dst >= src + len -> memcpy | 
 | 485 | 	and	t0, t1 | 
 | 486 | 	beqz	t0, __memcpy | 
 | 487 | 	 move	v0, a0				/* return value */ | 
 | 488 | 	beqz	a2, r_out | 
 | 489 | 	END(memmove) | 
 | 490 |  | 
 | 491 | 	/* fall through to __rmemcpy */ | 
 | 492 | LEAF(__rmemcpy)					/* a0=dst a1=src a2=len */ | 
 | 493 | 	 sltu	t0, a1, a0 | 
 | 494 | 	beqz	t0, r_end_bytes_up		# src >= dst | 
 | 495 | 	 nop | 
 | 496 | 	ADD	a0, a2				# dst = dst + len | 
 | 497 | 	ADD	a1, a2				# src = src + len | 
 | 498 |  | 
 | 499 | r_end_bytes: | 
 | 500 | 	lb	t0, -1(a1) | 
 | 501 | 	SUB	a2, a2, 0x1 | 
 | 502 | 	sb	t0, -1(a0) | 
 | 503 | 	SUB	a1, a1, 0x1 | 
 | 504 | 	bnez	a2, r_end_bytes | 
 | 505 | 	 SUB	a0, a0, 0x1 | 
 | 506 |  | 
 | 507 | r_out: | 
 | 508 | 	jr	ra | 
 | 509 | 	 move	a2, zero | 
 | 510 |  | 
 | 511 | r_end_bytes_up: | 
 | 512 | 	lb	t0, (a1) | 
 | 513 | 	SUB	a2, a2, 0x1 | 
 | 514 | 	sb	t0, (a0) | 
 | 515 | 	ADD	a1, a1, 0x1 | 
 | 516 | 	bnez	a2, r_end_bytes_up | 
 | 517 | 	 ADD	a0, a0, 0x1 | 
 | 518 |  | 
 | 519 | 	jr	ra | 
 | 520 | 	 move	a2, zero | 
 | 521 | 	END(__rmemcpy) |